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Abstract

The Hamiltonian of a quantum system governs the dynamics of the system via the

Schrodinger equation. In this paper, the Hamiltonian is reconstructed in the Pauli

basis using measurables on random states forming a time series dataset. The time

propagation is implemented through Trotterization and optimized variationally with

gradients computed on the quantum circuit. We validate our output by reproducing

the dynamics of unseen observables on a randomly chosen state not used for the op-

timization. Unlike existing techniques that try and exploit the structure/properties
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of the Hamiltonian, our scheme is general and provides freedom with regard to what

observables or initial states can be used while still remaining efficient with regard to

implementation. We extend our protocol to doing quantum state learning where we

solve the reverse problem of doing state learning given time series data of observables

generated against several Hamiltonian dynamics. We show results on Hamiltonians in-

volving XX, ZZ couplings along with transverse field Ising Hamiltonians and propose

an analytical method for the learning of Hamiltonians consisting of generators of the

SU(3) group. This paper is likely to pave the way toward using Hamiltonian learning

for time series prediction within the context of quantum machine learning algorithms.

1 Introduction

Quantum tomography1–6 includes the study of quantum systems (state tomography) and the

dynamics (process tomography) that govern these systems. While in process tomography, we

are interested in reconstructing the Hamiltonian that governs the dynamics of the system,7–12

in quantum state tomography we characterize the quantum mechanical state by the measure-

ment of expectation values of an informationally complete (IC) set of Hermitian operators

given multiple copies of a system. Within process tomography, we have direct methods that

include standard quantum process tomography,13 ancilla assisted process14–16 and indirect

methods that make use of system dynamics, quantum entanglement, and average fidelity

information.17–19 Some of the recent work in state tomography includes using permutation

invariance,20 entropy maximization,21–23 shadow tomography24 , incoherent measurements25

and ensemble averaging.26

In principle, the Hamiltonian learning problem requires estimating a number of parame-

ters that increases exponentially with the size of the system. But in reality, most physical

Hamiltonians can be described by only a few-body relevant interaction terms that scale poly-

nomially with the size of the quantum systems. While the conventional Hamiltonian learning
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techniques require the preparation of ground or thermal states which is still a challenge,27,28

our Hamiltonian learning algorithm entirely circumvents this problem by providing indepen-

dence on the choice of the quantum states as well as on the observables whose time dynamics

can be easily recorded. For this work, we focus on n-qubit Hamiltonians involving at most

two-body interactions and can be defined as H =
∑n

i,j>i cijσiσj where σ′s are the Pauli string

operators (σx, σy, σz, σi). To reconstruct the Hamiltonian of such a system, it is sufficient

to estimate the parameters {cij} and one of the ways of doing so is through optimization

using variational algorithms. Here, we do a study of Hamiltonian learning using the time

dynamics of observables measured on different quantum states using variational algorithms

run on parameterized quantum circuits (PQC’s). The coefficients of the Hamiltonian are re-

constructed in the Pauli basis through an optimization scheme solved on PQC’s. Variational

quantum algorithms (VQA)29 are seen as one of the promising techniques that can likely

explore the power of computation on quantum circuits.30–35 Some of the applications include

electronic structure calculations,36,37 explore low energy symmetry states,38 and supervised

machine learning.39 The interested reader may refer to40 for a thorough study of variational

algorithms and their use in quantum machine learning for chemistry and physics.

We show how the learning of the Hamiltonian is affected by increasing the number of observ-

ables, quantum states, and the sampling frequency that we choose over the time interval. We

exploit the fact that given sufficient observables to characterize the dynamics of a Hamilto-

nian, we can uniquely converge on reconstructing the exact Hamiltonian. Further, we show

examples that exploit the knowledge of the Hamiltonian locality and try reconstructing the

Hamiltonian of the system with very high fidelity. In practice, one does not have access to

the actual Hamiltonian. We thus create validation schemes that can be used to inform us

about the statistical knowledge required for reconstructing the Hamiltonian.

Following this, we extend the scope of the method to state learning where the tools developed

straightforwardly extend with a hardware efficient ansatz used to model the state. Unlike
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conventional quantum state learning of providing a state description using tomography we

here would like to characterize the state as parameters of an ansatz that maps to it. The

methods used here are found to be robust to random parameter Hamiltonians and initial

starting states used.

2 Methodology

We describe the problem in the context of spin systems as they directly map to the space

of qubits over which the computations shall be performed. Let an unknown Hamiltonian

act on a set of n qubits whose initial state we get to choose/prepare. The experimenter

measures the time dynamics of random observables chosen on this system. We would like to

be able to predict the Hamiltonian that closely approximates the dynamics of the observables.

Throughout our discussion, we shall restrict ourselves to second-order Hamiltonian couplings.

Generalization of this can be extended to higher-order couplings. In the absence of any

knowledge of the system’s Hamiltonian, we consider a generic Hamiltonian with all to all

coupling. Thus,

H =
∑
i,j,β,γ

Jijβγσ
β
i σ

γ
j (1)

where β, γ indexes the Pauli matrices {X, Y, Z}. Let {|ψi〉} be the set of states over which

the Hamiltonian is allowed to act and let {Oα} be the observables whose dynamics have been

recorded/sampled at discrete intervals of time. We work in the framework where {|ψi〉} can

be efficiently prepared and {Oα} can be efficiently measured. Let Oα(k∆t) refer to the

measurement of observable Oα made at the timestep k, where ∆t refers to the time interval

between the measurements.

To start with we randomly initialize the parameters of the Jij of the Hamiltonian. We then

construct the unitary operator U(t) = exp(−iHt) that generates the time dynamics of H
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using Trotterization.41 The constructed unitary U is allowed to act on each of the starting

states |ψi〉 and observables |Oα〉 is measured at intervals of ∆t for a total of N timesteps,

thus running for the evolution for the duration of N∆t. Having a Trotter implementation of

U for time ∆t allows us to trivially extend the dynamics for time k∆t by repeating k layers

of our base implementation. Just like any other machine learning algorithm, we have a

scheme that implements the dynamics of a generic Hamiltonian H and data points Oα(k∆t)

measured. We are now left with minimizing a cost function of our choice. We choose the

2-norm function to minimize between Oα(k∆t) and Oobs
α,i (k∆t) over the states |ψi〉. Thus our

cost function is,

Cost =
∑
α,i,k

(〈ψi|U †(k∆t) Oα U(k∆t) |ψi〉 −Oobs
α,i,k)

2 (2)

where the summation α indexes the summation over observables, i indexes the summation

over various starting states over which the dynamics is carried, and k indicates the time steps

over the evolution. Here Oobs
α,i,k refers to the observable Oobs measured on |ψi〉 at the timestep

k. To minimize the cost function we use standard gradient descent (SGD) to compute the

gradients dCost
dJij

. Within Trotterization one can trivially map the couplings Jij directly to the

circuit parameters of the constructed U(∆t). This allows us to trivially compute the gradient

to circuit parameters using parameter shift rule.42 Alternatively, the analytical expression

for gradients can be directly computed on a quantum circuit for these specific Trotter circuits

as shown in Appendix 5.2.43

As a measure of validation, the experimenter then validates against a new observable not yet

measured on the system. If the Hamiltonian fails to reproduce an approximate comparison,

the experimenter chooses to either increase the number of starting states or the number of

observables over which the dynamics are observed. We show a shallow-depth implementation

of Trotterization for an XYZ Hamiltonian in Appendix 5.1.
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Extension to State learning

We showed how using multiple starting states one can learn the Hamiltonian given the dy-

namics of the observables. We now solve the inverse problem. We use multiple Hamiltonians

to learn/prepare a state of interest. Thus formally, let {Hi} be the set of Hamiltonians

over which the state is allowed to evolve and let {Oα} be the observables whose dynamics

have been recorded/sampled at discrete intervals of time. We work in the framework where

{Ui = exp(−iHit)} can be efficiently synthesized and {Oα} can be efficiently measured. Let

Oα(k∆t) refer to the measurement of observable Oα made at timestep k, where ∆t refers to

the time interval of each timestep.

Figure 1: Ansatz V (~β) used to generate the state
∣∣∣ψ(~β)

〉
with real coefficients. The ansatz

is made of Ry Pauli rotation gates to restrict to real coefficients and a ladder of CNOT gates
that can be used to create the entanglement.

We choose an ansatz V (~β) to prepare the state of interest
∣∣∣ψ(~β)

〉
. Fig 1 shows a schematic

representation of the ansatz used to create a state with real coefficients. Thus we have,

V (~β) |0〉
⊗
n =

∣∣∣ψ(~β)
〉

, where n is the number of qubits used to represent the state. We

then impose the constraints of the dynamics recorded by Oα. Thus we end up with an

optimization problem with the following cost function to be minimized over the variables ~β,
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Cost =
∑
α,i,k

(
〈
ψ(~β)

∣∣∣U †i (k∆t) Oα Ui(k∆t)
∣∣∣ψ(~β)

〉
−Oobs

α,i,k)
2 (3)

where the summation α indexes the summation over observables, i indexes the summation

over various unitaries Ui = exp(−iHit) that implements the dynamics, and k indicates the

time steps over the evolution. Here Oobs
α,i,k refers to the observable Oobs measured on |ψi〉 at

the timestep k. To minimize the cost function we use SGD to compute the gradients dCost
dβs

,

where s labels the indices of ~β. These gradients can be computed again trivially using the

parameter shift rule.

3 Results and discussion

In this current work, we propose a variational approach for Hamiltonian and quantum state

learning based on the time dynamics of various observables. We considered various quantum

systems and performed numerical simulations in IBM’s Qiskit44 to test and validate the

proposed formalism.

3.1 2-local Hamiltonian with all σzσz and σxσx coupling

To test the validation of our proposed approach for Hamiltonian tomography, we first con-

sidered a general 2-local Hamiltonian of the form: H =
∑

i,j>i cijσ
i
zσ

j
z +
∑

i,j>i dijσ
i
xσ

j
x where

(cij, dij) are randomly chosen coupling parameters between qubit-i and qubit-j. This Hamil-

tonian H is the true Hamiltonian that we want to learn and thereby predict the time dynamics

of certain unknown observables. The cost function of the optimization process is defined as

the mean square error between the true and reconstructed time series expectation values of

the different observables considered computed using random starting quantum states. To

verify that the starting quantum states are chosen at random we plot in Figure 2 the state

overlap and the trace distance, T(ρ, σ) = 1
2
||ρ−σ||1, between the considered quantum states.
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The observables correspond to the 2-point correlation functions: σizσ
j
z and σixσ

j
x whose time

dynamics can be obtained from experiments. We, hereby, present an extensive list of results

and inferences from the learning of the above Hamiltonian.

Figure 2: State overlap and trace distance between the considered quantum states to depict
that the proposed protocol is independent of the choice of the starting quantum states.

One of the measures that we considered to test the performance of our approach is the trace

distance between the true and the reconstructed Hamiltonian. The trace distance in the

case of two Hamiltonians is defined as: if UH = exp{−iHt} and UK = exp{−iKt} are the

evolution operators for the true (H ) and the learning (K ) Hamiltonians then the trace dis-

tance is T (H,K) = ||UH(t)†UK(t)− I||2. As described in Section 2, the different variables in

our approach are the number of time steps (NT ) up to which the expectation values of the

different observables need to be recorded, the number of starting quantum states (NS), and

the number of observables (NO) required for accurate learning of the Hamiltonian. Since

in an experiment, not all observables can be measured with high fidelity so we try to use a

limited number of observables for which the time dynamics are recorded for various starting

states. We vary each of these variables and calculate the trace distance in each case to find

an optimized set of (NT ,NS,NO) as per the requirement of the experiment.

Figure 3 shows the variation of the trace distance with the number of epochs during the

optimization process. Each subplot in Figure 3 depicts the trace distance variation for a

fixed number of starting quantum states but for a different number of time steps for which
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Figure 3: Variation of the trace distance between the true and the reconstructed Hamiltonian
as a function of the number of epochs for fixed NO = 3. It is evident that the Hamiltonian
can be learned more efficiently if the expectation values of observables at higher time steps
are also known for any number of starting quantum states.

Figure 4: Convergence of the trace distance between the true and the reconstructed Hamil-
tonian is plotted to highlight the effect of increasing the number of starting quantum states
when NO and NT are fixed.

the observable’s expectation values are known. For this plot we fixed the number of different

observables of σikσ
j
k to 3 i.e. we randomly selected expectation values of 3 σizσ

j
z and 3 σixσ

j
x

correlation functions. As can be seen in the Figure, the convergence of the trace distance

improves when observables corresponding to higher time steps are included in the optimiza-
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tion in all cases of NS. To analyze the effect of the variation of NS on the accuracy of the

reconstruction of the Hamiltonian, we show in Figure 4 the trace distance convergence for

fixed NO = 3, and NS being varied in each subplot for one particular NT . We see that for

NS ≥ 6 the converged trace distance is very close to 0 and therefore, although increasing

the number of random quantum states does improve the performance up to a certain value

of NS for all NT but beyond that, the accuracy is independent of increasing the quantum

states.

The next step is to analyze the performance of our approach upon varying the number of

Figure 5: Plots of the trace distance upon varying the number of observables (NO) con-
sidered for Hamiltonian learning. The convergence of the learned Hamiltonian to the true
Hamiltonian improves upon increasing NO in all cases. It is also interesting to note that
we can obtain a highly accurate Hamiltonian by using fewer observables for higher NT as is
evident from the bottom plots.

observables (correlation functions) whose expectation values are considered in the Hamilto-

nian learning protocol. In Figure 5, we plot the trajectories of trace distance for the various

number of observables (NO) considered for a fixed NT and NS in each subplot. We see that

the reconstructed Hamiltonian’s trace distance with the true Hamiltonian converges to 0

faster upon increasing NO in the protocol. We also change NT in the different subplots to

emphasize the advantage of using the time dynamics of observables for optimization. As can

be seen in Figure 5 that T (H,K) approaches 0 upon optimization even for fewer observables
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upon including their expectation values for higher time steps.

Once the optimized set of parameters is obtained upon convergence, one of the ways to

Figure 6: Time dynamics for XM and ZM -magnetic field observables using the true and the
reconstructed Hamiltonian for a general 2-local Hamiltonian with random coupling param-
eters.

test the accuracy of learning is to evolve a quantum state under the true and the learned

Hamiltonian separately and compare the dynamics of an observable under such an evolution.

For our case, we considered the X and Z-magnetic field operators, denoted by XM and ZM

respectively, and defined by K̂ =
∑

p σ
p
kσiσiσiσi (k = x, z ). We computed the time dynamics

of these operators using the evolution of a random quantum state under the true and the

learned Hamiltonian. High overlap in the trajectories in Figure 6 validates that the proposed

protocol is successful in the efficient reconstruction of an unknown Hamiltonian.

3.2 Reconstructing Transverse Field Ising Model Hamiltonian

The aforementioned results correspond to the learning of a general 2-local Hamiltonian with

random coupling parameters. Since every quantum system has its own Hamiltonian so we

need an empirical recipe for determining the optimized set of NO, NS, NT . We show the

reconstruction of the Transverse Field Ising Model (TFIM) Hamiltonian for the following

two systems:
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3.2.1 Inhomogeneous 5-qubit Transverse Field Ising Model Hamiltonian

Here we present a practical approach for Hamiltonian learning for the specific case of an

inhomogeneous 5-qubit TFIM Hamiltonian, defined by H =
∑

i ciσ
i
x +

∑
i,j=i+1 dijσ

i
zσ

j
z, but

is generalizable to any Hamiltonian. We inferred from the previous section that the time

dynamics of various observables is an essential element for assisting the convergence of the

trace distance. Therefore, from the perspective of experiments when the true Hamiltonian

is unknown, one can start with obtaining mean values of a few observables using a few

random starting quantum states but for higher time steps. Then our proposed optimization

method can be applied to obtain the coupling parameters in the Hamiltonian. Since for

practical implementation, we won’t have access to the true Hamiltonian and so, one cannot

calculate the trace distance to validate that the reconstructed Hamiltonian is close to the

true Hamiltonian. However, what we can have access to is the time dynamics of another

observable on the real system that is not used during the optimization process. We, therefore,

define the concept of validation error as the mean square error between the time series

expectation values of the observable calculated using a random quantum state evolved under

the true Hamiltonian and the reconstructed Hamiltonian. Figure 7 shows the validation error

corresponding to the ZM -magnetic field operator for various values of NO, NS, NT for the

considered TFIM Hamiltonian. Thus, the optimized set forNO, NS, NT can be obtained when

the validation error is below a certain threshold as per the requirement of the experiment.

For the inhomogeneous 5-qubit TFIM we obtain the converged coupling parameters cor-

responding to NO, NS, NT for which the validation error is below 1e-6. The true and the

learned Hamiltonian is then used to evolve a random quantum state to obtain the time series

expectation values of the observables X ′ and Z ′ which are the 3-point correlation functions

σixσ
j
xσ

k
x and σizσ

j
zσ

k
z . The performance efficacy of our method can be validated from Figure

8 which shows the overlap at each time step in the dynamics of these observables using the

true and the reconstructed Hamiltonian.
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Figure 7: Validation error corresponding to the time dynamics of ZM -magnetic field operator
following the reconstruction of a 5-qubit TFIM Hamiltonian using the various values for
NO, NS, NT .

Figure 8: Time dynamics of 3-point correlation functions X ′ and Z ′ for 5-qubit TFIM
Hamiltonian. The learned Hamiltonian is obtained using NO = 3, NS = 8, NT = 5 for which
the validation error is below 1e-6.

3.2.2 Homogeneous 10-qubit Transverse Field Ising Model Hamiltonian

The quantum Ising chain is a classic domain for testing various ideas and methodologies from

statistical mechanics and consequently, forms a classic candidate to experimentally test the

efficiency of any hamiltonian learning formalism. For the learning of a homogeneous TFIM

hamiltonian, defined by H = h
∑

i σ
i
x + J

∑
i,j=i+1 σ

i
zσ

j
z, we considered a quantum system

comprising of 10-qubits. Since there are only 2 parameters (h, J) that need to be learned,
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the parameterized hamiltonian from the proposed protocol converges quickly to the true

Hamiltonian. We again chronologically vary the set of (NT , NS, NO) during optimization to

procure that set for which the validation error is below 1e-6 following which the training pa-

rameters are obtained and used for predicting the dynamics of certain unknown observables.

Figure 9 shows the dynamics of X and Z-magnetic fields’ observables under the true and the

learned Hamiltonian for various time steps which again validates the learning approach.

Figure 9: Time dynamics of XM and ZM -magnetic field observables for 10-qubit homoge-
neous TFIM Hamiltonian. The learned Hamiltonian is obtained using NO = 2, NS = 2, NT =
1 for which the validation error is below 1e-6.

3.3 Quantum State Learning

Efficient characterization of a pure quantum state by learning the parameters of a param-

eterized quantum circuit has recently been gaining much popularity within the domain of

quantum state learning owing to their use of shallow quantum circuits with low circuit depth.

Here, we extend our idea of Hamiltonian learning and propose to learn the quantum state

of a system using PQC based on the knowledge of the time dynamics of various observables

obtained from the evolution of the state under different random Hamiltonians. We start

with a hardware-efficient ansatz whose parameters are variationally optimized to satisfy the

constraints of the problem. We show the learning of random n-qubit quantum states for up

to 6 qubits.
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As opposed to varying the number of random initial quantum states, for state learning,

Figure 10: Trace distance between the true and the learned quantum state for various n-
qubit quantum states using the time dynamics approach for fixed NH , NT , and varying NO.
Even though an informationally incomplete set of observables are used but still the time
dynamics approach is able to reconstruct the quantum state close to the true state, thereby
validating the proposed formalism.

we start with a parameterized quantum state and evolve it under different Hamiltonians

chosen at random for various time steps and compute the expectation values of different

observables. The evolution operator for the Hamiltonian can be implemented on a quantum

circuit using Trotterization as discussed in Appendix 5.1. However, for the proof of con-

cept, we numerically evaluate the evolution operator since we are dealing with only a few

qubits. Here, the choice of observables whose time dynamics we consider in the optimiza-

tion protocol consists of the operators corresponding to the probabilities and coherences of

the density matrix. Ideally, the number of observables required for an accurate and unique

representation of a quantum state grows exponentially with the system size. Also, not all

observables can be obtained with high fidelity in an experiment. This is why our method can

prove to be advantageous as if we can obtain the time dynamics of fewer easily measurable

observables then our protocol can learn the quantum state of a system with high fidelity.

The cost function, in this case, is similar to that in Hamiltonian learning and is discussed

in Section 2. We minimize the mean square error between the time dynamics of the observ-
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ables obtained from the true state and the reconstructed state. The comprehensive results

corresponding to the variation of the trace distance (T(ρ, σ) = 1
2
||ρ− σ||1) between the true

and the learned state during optimization is shown in Appendix 5.4. We vary the number of

random Hamiltonians (NH) under which the quantum state is evolved, the number of time

steps (NT ) for evolution, and the number of observables (NO) to obtain the converge set of

parameters for which the trace distance is within an error threshold. However as before, in

an experiment, we won’t have access to the trace distance as the true state is unknown so

we can again go back to the concept of a validation error. As we learn the quantum state

upon optimization for one set of (NT , NH , NO) we then evolve it under a known Hamiltonian

and obtain the time dynamics of a new observable not used during learning and compute

the validation error. Depending on the bound of the error threshold, one can choose the

parameters for (NT , NH , NO). In Figure 10 we see the variation of the trace distance with

the number of epochs for quantum states prepared on various n-qubit quantum systems.

To show the accuracy of reconstructing the quantum state, we compute the evolution of

the reconstructed state and the true state under a random Hamiltonian and plot the time

dynamics of X and Z-magnetic fields’ observables in Figure 11.

3.4 Generalized Hamiltonian learning for SU(3) group

Quantum information processing of qutrit systems, consisting of three-dimensional quan-

tum states, is of special significance and has drawn considerable attention both theoretically

and experimentally.45 For example, the nitrogen-vacancy center in diamond,46 three ground

states of trapped 171Yb+ ion, etc.47 can serve as a qutrit system on which various quantum

operations can be performed. The geometry of the special unitary SU(3n) group can be used

to define a quantum gate on n-qutrit quantum state. The use of Lie algebraic operations

provides a technical advantage as certain classes of molecules can be described by common

Hamiltonian, differing only by linear parameters.48 In Appendix 5.5 we derive the mathe-

matical expression for the calculation of analytical gradients for SU(3) group Hamiltonians
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Figure 11: Time dynamics of XM and ZM -magnetic field observables under the evolution
of a random Hamiltonian using the true and the learned quantum states for various n-qubit
quantum states.

defined as H =
∑8

i=1 ciλi, where λi correspond to Gell-Mann matrices that span the Lie

algebra of SU(3) group. Based on the cost function defined in Eq. (3), the gradients with

respect to the coefficients {cp} are:

∂Cost

∂cp
= 2

NO,NS ,NT∑
α,i,k

〈ψi|
∂U †(k∆t)OαU(k∆t)

∂cp
|ψi〉 (4)

Using the analytical gradients as shown in Appendix 5.5, it must be emphasized that the

protocol so engendered is cost-effective as for a given choice of (Oα, ψi) (corresponding to

each term within Eq. (4)) the set of quantum measurements necessary to construct Eq. (4)

∀k time steps can be expressed in terms of 9 measurements for SU(3) (for a general SU(N)

this number will be N2) evaluated from the quantum circuit using the initial state |ψi〉

alone provided Oα ∈ {λi}9i=1. For each of these 9 measurements, the primitive observables

that need to be measured are the generators {λi}9i=1 defined before. One must note that
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this obviates the need to perform repetitive measurements using the time-evolved version

of U(k∆t) for all of the successive NT time steps as is usually necessitated for systems

wherein such a Lie-algebraic structure is not present. In other words, the total number

of measurements to construct Eq. (14) in its entirety will then simply be 9NONS which

is independent of NT . Thus, using the structural properties of the SU(N ) group, we can

further extend this approach efficiently for Hamiltonian learning of multi-dimensional qudit

quantum systems as well.

4 Concluding remarks

Measuring the time dependence of the mean values of observables enables us to solve two

complementary problems. First and foremost we seek to reconstruct the Hamiltonian that

generated the dynamics of various quantum systems. On the flip side we characterize the

state of the evolving system. We provide numerical results showing how the method works.

We used Trotterization to implement the evolution operator onto the quantum circuit and

the entire workhorse of our proposed formalism is centered around variational optimization

using shallow-depth quantum circuits and thus, is easily implementable on a near-term quan-

tum device. We presented a comprehensive list of results corresponding to the Hamiltonian

learning of various 2-local Hamiltonians as well as state learning of quantum systems com-

prising up to 6 qubits where we illustrate the significance of using time dynamics within

the optimization process. The simple nature of our proposed approach can find its appli-

cation in a variety of different areas where the dynamics of various observables need to be

studied. As a subsidiary validation we examine a special (but general) case where the prob-

lem can be solved analytically. In Appendix 5.5, we propose to learn the Hamiltonian of

multi-dimensional qudit systems by exploiting the structural properties of SU(N ) groups

and specifically show the analytical gradient calculation procedure for qutrit systems de-

fined by SU(3) geometry. We also intend to further investigate the utility of the methods
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developed here for studying time series datasets in typical machine learning algorithms that

are commonly tackled using long short-term memory models (LSTM)49 and recurrent neural

network models (RNN).50

5 Appendix

5.1 Trotterized time evolution of a Hamiltonian

We consider the Heisenberg model on a 1D lattice with nearest-neighbor interactions whose

Hamiltonian can be defined as H = Hxx +Hyy +Hzz where

Hxx =
∑
i

Jσixσ
i+1
x Hyy =

∑
j

Jσjyσ
j+1
y Hzz =

∑
k

Jσkzσ
k+1
z

We are interested in evaluating the evolution operator U = exp(−iHt) but the non-commutation

of the Pauli operators doesn’t allow the operator U to be written as the product of sim-

pler exponentials as U 6= exp(−iHxxt)exp(−iHyyt)exp(−iHzzt). This is where Trotteri-

zation can be used to approximate U by splitting it into the product of simpler expo-

nentials using N trotter steps giving an approximation up to second order in t/N as U ≈[
exp(−iHxxt/N)exp(−iHyyt/N)exp(−iHzzt/N)

]N
. Here, we show Trotterization specifically

for the nearest neighbor XYZ Hamiltonian but it can be generalized for others.

Let us consider a Hamiltonian as defined above for an 8-qubit quantum system. For nearest

neighbor coupling each qubit couples with a maximum of 2 qubits. We can thus split the

execution into 2 layers such that qubits in the first layer couple with exactly one other qubit.

This ensures that the overall depth of the circuit is constant and independent of the number

of qubits. It scales only with the degree of the vertex which is 2 (constant) here. Figure

12 shows the quantum circuit implementation of one-step Trotterization, using only 1 and

2-qubit quantum gates, that can be repeated N times for full-time evolution. The number

of 2 qubit gates scales as 4n-4 for the construction as shown in Figure 13. The advantage
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Figure 12: Quantum circuit corresponding to one step of Trotterization for the time evolution
of a Hamiltonian comprising of only nearest-neighbors interactions.

Figure 13: Quantum circuit for one step Trotterization obtained by eliminating the unnec-
essary CNOT and CY gates from Figure 12 to reduce the circuit depth from 18 to 12.

of using this scheme of Trotterization is evident from the circuit diagram in Figure 12 as

essentially the CNOT and CY gates around the shown barrier are not required and so the

circuit depth can be reduced as can be seen in Figure 13.

5.2 Gradients calculation on quantum circuit

Since our ansatz makes use of Pauli rotation gates we instead can compute them analytically.

The most general Pauli rotation operator is given by exp(−i~n.~σθ), where ~σ = (I, σx, σy, σz)

,~n = (n0, n1, n2, n3) and θ is the angle of rotation. Using the identity that exp−i~n.~σθ =

cos(θ)n0I + isin(θ)(n1σx + n1σy + n1σz) one can straightforwardly derive an expression for
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the gradients,

d 〈ψ|H |ψ〉
dθi

=
d 〈ψ|
dθi

H |ψ〉+ 〈ψ|Hd |ψ〉
dθi

= Re(
d 〈ψ|
dθi

H |ψ〉) (Since H is hermitian)

(5)

Now since our unitaries are a function of Ry(θ) we have,

dRy

dθ
=
deiσyθ/2

dθ
=

1

2
iσye

iσyθ/2

=
1

2
eiσyπ/2eiσyθ/2 =

1

2
Ry(π)Ry(θ)

=
1

2
Ry(θ + π)

(6)

Thus computing the gradients of the cost function with respect to parameters of Pauli rota-

tion gates can be straightforwardly evaluated on the circuit with π shift of the corresponding

parameter. Alternatively for a unitary U = exp(−i θ
2
Pi), where Pi is a pauli operator, one

could use the expression from parameter shift rules51 to compute the gradient of a cost

function C(α, β) = 〈ψ|U †(α, β) O U(α, β) |ψ〉 given by,

dC(α, β)

dα
=

1

2

[
C(α +

π

2
, β)− C(α− π

2
, β)
]

(7)

5.3 Cost function and convergence criteria for Hamiltonian learn-

ing

The recipe for Hamiltonian learning in our case involves the experimental knowledge of the

time dynamics of expectation values of correlation functions starting with multiple random

quantum states. The number of correlation functions and random initial states required

for Hamiltonian reconstruction depends on the error threshold ε, that the experimentalist

is interested in, between the true and the reconstructed Hamiltonian and can be evaluated
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using the validation error. As discussed in Section 2, let Oα(k∆t) refer to the measurement

of observable Oα made at timestep k, where ∆t refers to the time interval of each timestep.

Then, the cost function is defined as the 2-norm function between Oα(k∆t) and Oobs
α,i (k∆t)

over the states |ψi〉:

Cost =
∑
α,i,k

(〈ψi|U †(k∆t) Oα U(k∆t) |ψi〉 −Oobs
α,i,k)

2 (8)

where U(k∆t) is the unitary operator that evolves the quantum state under a Hamiltonian

H. As shown in Section 3, the variables in our proposed protocol that affect the accuracy

of Hamiltonian learning are the number of quantum states (NS), the number of time steps

(NT ) up to which we consider the time dynamics, and the number of observables (NO)

whose time dynamics we consider in the cost function. In section 3 we have shown the

results corresponding to the trace distance between the true and the learned Hamiltonian

and also defined the validation error for choosing the correct set of (NS, NT , NO). In Figure

14 the cost function is plotted as a function of the epochs for different sets of (NS, NT ,

NO), and the corresponding validation error is plotted in Figure 15 for the inhomogeneous

5-qubit TFIM Hamiltonian defined in Section 3.2.1. As can be seen the mean square error

loss i.e. the cost converges to 0 in all cases yet the validation error is significantly high for

accurate learning in various cases. This is because even though the cost converges to 0 for

fewer starting states, observables, and time steps but that information is insufficient to have

accurate learning of the Hamiltonian. Thus the concept of validation error is important as

based on it we can check whether or not the learned Hamiltonian, obtained from a given set

of (NS, NT , NO), is close to the true Hamiltonian.

5.4 Quantum state learning from time dynamics of observables

A natural extension of the idea of using time dynamics of various observables for Hamiltonian

learning can be applied to solving the inverse problem of learning an unknown quantum
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Figure 14: The mean square error (cost) as a function of the epochs for various sets of (NS,
NT , NO).

Figure 15: The validation error plot showing that even though the cost function converges
to 0 in Figure 14 for all sets of (NS, NT , NO) yet the corresponding learned Hamiltonian is
close to the true Hamiltonian for those sets for which the validation error converges to 0.

state of a given system. Here, instead of starting with multiple random quantum states, we

have at our disposal multiple random Hamiltonians (NH) that are used for the evolution of

the quantum state and the expectation values of different observables (NO) are recorded at

various time steps (NT ). The observables here correspond to the probabilities and coherences
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of the n-qubit quantum system:

{|1〉 〈1| , |2〉 〈2| , |3〉 〈3| , |4〉 〈4| , (|1〉 〈2| ± |2〉 〈1|), (|1〉 〈3| ± |3〉 〈1|), (|1〉 〈4| ± |4〉 〈1|),

(|2〉 〈3| ± |3〉 〈2|), (|2〉 〈4| ± |4〉 〈2|), (|3〉 〈4| ± |4〉 〈3|)} (9)

The operators in Eq. (9) form the informationally complete (IC) Hermitian operators

Figure 16: Trace distance between the true and the learned state is plotted as a function
of the epochs during the optimization process for fixed NO = 16 and varying NH , NT . As
is evident, using time dynamics of observables in the optimization process improves the
learning of the quantum state.

Figure 17: The effect of varying NH for fixed NT on state learning.

whose expectation values are the probabilities and coherences of a 2-qubit quantum system.

We consider the time dynamics of a few of these observables in our optimization protocol

24



as discussed in Section 2. Here, we present the results corresponding to the learning of a

random 5-qubit quantum state. As was evident in the Hamiltonian learning protocol, for

state learning as well, including the expectation values of observables at higher time steps in

the optimization process improves the convergence of the learned state to the true state as

shown in Figure 16. Also, to analyze the effect of varying the number of random Hamiltonians

on state learning we see in Figure 17 that as NH increases the learning improves significantly

when NT is small but for higher NT the state can be learned using fewer Hamiltonians.

Lastly, in Figure 18 we vary the number of observables for various NT and as expected, we

can learn the quantum state using fewer observables than the IC set if we include their time

dynamics in the optimization protocol.

Figure 18: Varying the number of observables included during optimization shows that the
accuracy of state learning improves upon increasing NO. However, we can achieve similar
accuracy using fewer observables if we have the knowledge of observables at higher time
steps.
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5.5 Quantum Hamiltonian learning of the dynamics generated by

the SU(3) group using analytical gradients

The Hamiltonian of such a system can be expressed in terms of Gell-Mann matrices: H =∑8
i=1 ciλi, where λi are the generators of the SU(3) group:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

Now, in order to learn the Hamiltonian of such a quantum system we can perform opti-

mization to learn the coefficients {ci}. One of the ways to do so is to use our proposed

formalism of using time dynamics of various observables sampled using different quantum

states and optimizing the coefficients using the numerical approach of gradient calculation

as discussed in Section 5.2 based on the cost function defined in Eq. (8). However, as a

generalized approach, we can also calculate the gradients analytically. There can be dif-

ferent approaches to doing so. We, hereby, propose an approach based on a version of the

Baker–Campbell–Hausdorff (BCH) formula:

eABe−A = B+[A,B]+
1

2!
[A, [A,B]]+

1

3!
[A, [A, [A,B]]+ . . .+

1

n!
[A, [A, . . . , [A,B]], . . .] (10)

The unitary operator for the state evolution under the Hamiltonian H is U = exp
{
−i
∑8

i=1 ciλit
}

.

To compute the gradients of the cost function in Eq. (8) analytically, we use the BCH ex-
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pansion of U †OαU as:

U †OαU = Oα + it

[∑
k

ckλk, Oα

]
+

(it)2

2!

[∑
k

ckλk,

[∑
k′

ck′λk′ , Oα

]]
+ . . .

+
(it)n

n!

∑
k

ckλk,

∑
k′

ck′λk′ , . . . ,

∑
kn

′

ckn′λkn′ , Oα

 , . . . ,
 (11)

Now, we take the derivative of U †OαU with respect to the coefficients {cp}:

∂U †OαU

∂cp
= it [λp, Oα] +

(it)2

2!

([∑
k′ 6=p

ck′λp, [λk′ , Oα]

]
+ 2cp[λp, [λp, Oα]]

)
+ . . .

+
(it)n

n!
(

[∑
k′ 6=p

∑
k′′ 6=p

. . .
∑
kn′ 6=p

ck′ck′′ . . . ckn′λp[λk′ , [λk′′ , . . . , [λkn′ , Oα]] . . .

]

+

[∑
k′′ 6=p

∑
k′′′ 6=p

. . .
∑
kn′ 6=p

2cpck′′ck′′′ . . . ckn′λp, [λp, [λ
′′
k, . . . , [λkn′ , Oα]], . . .

]
+ [ncn−1p λp, [λp, . . . [λp, Oα]] . . .]) (12)

The Gell-Mann matrices satisfy the commutation relationship:

[λa, λb] = 2i
∑
c

fabcλc (13)

where fabc are the structure constants given by: fabc = −1
4
i(tr(λa[λb, λc])). Thus, depending

on the required accuracy level, one can fix the value of n and calculate ∂U†OαU
∂cp

. Thereby, we

can calculate the gradients as:

∂Cost

∂cp
= 2

NO,NS ,NT∑
α,i,k

〈ψi|
∂U †(k∆t)OαU(k∆t)

∂cp
|ψi〉 (14)

Thus, substituting Eq. (12) in Eq. (14) and taking advantage of the structural relationship

of SU(N) systems, the gradients can be computed with measurements that are independent

of the time steps of the evolution. This protocol can be extended to SU(N) systems as well
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and we intend to investigate it further in future works.
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