@ D.2349

JANUARY 1981 PPPL-174

uc-20g

9259@

HAMILTONIAN MAPS IN THE
COMPLEX PLANE

B RER
b e

J+ M. GREENE AND I, C. PERCIVAL

PLASMA PHYSICS
LABORATORY

||||v '||||y

VIRTRIBTION OF TH1s Docuyer 1S UKHMITED

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

LS

This work was supported by the U.S. Department of Energy
Contract No. DE-AZD2-76-CHO 3073. Reproduction, transla-
ticn, publication, use and disposal, ir whole or in part,
by or for the United States government is permitted.




Hamiltonian Maps in the Complex Plane

John M. Graene
Princeton Plasma Physlcs Laboratory,
Princeton, New Jersey 08544, U.S.A.
and
Ian C. Percival
Queen Mary College, University of London

London, El 4NS, U.K.
Abstract

Following Aruwol'd's proof of the KAM theorem, an analogy wicth the

vertical pendulum, and some general arguments concerning maps in the complex
plane, detailed calculaticns are presented and illustrated graphically for the

standard map at the golden mean frequency. The functional dependence of the

coordinate q on the canonilcal angle variable © 1s analytically continued into

the complex 8-plane, where natural boundaries are found at constant absalute

values of Im 8. The boundaries represent the appearance of chaotic motion in

the complex plane. Two independent numerical methods based on Fourler

analysis 1n the angle varlable were used, one based on a varilation-

annihilation method and the other on a double expansion.

further checked by direct solution of the complex equations of motion. The

numerically simpler, but intrinsically complex, semipendulum and semistandard

map are also studied. We conjecture that natural boundaries appear iIn the

analogous analytic continuation of the invarlant tori or KAM surfaces of
general uonintegrable systems.
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1. Introduction

Arnol'd's proof [1] of the Kolmogorov—Armol'd-Moser (KAM) theorem on the
persistence of invariant tori when integrable Hamiltonian systems are
perturbed requires the Hamiltonian function to satisfy analyticity
conditions. When these are satisfied he proves the existence of iunvariant
tori that are analytic within a band around the real axis when expressed
parametrically as functions of the complex canonical angle variables 6.

We investipate this domain of anmalyticity numerically and illustrate it
graphically fer one of the simplest nonintegrable systems, the standard
map {2}, This is the discrete time analog of the vertical pendulum. Thus,
the latter is the 1limit of the former. Now the vertical pendulum is
integrable and its motion can be expressed in terms of the Jacobi elliptic
functions. This convenlent integrable 1limit helps us to understand the
behavior of the standard map in the complex plane.

The real invariant tori of both systems are closed curves 1n the two-
dimensional phase space of the coordinate q and the conjugate momentum p.
Each curve can be represented parametrically by expressing q and p as periodic
functions of the angle variable 6 of period 27.

For the pendulum, with continuous time t, and with a canonical chojce of

the angle variable 6, the dependence upon time is glven by the relation
0 =wt+§ (mod 2n) , (1.1)
where w 1s the angular frequency for motion on the invariant curve and § is a

phase shift that will frequently be set to zero for convenience. The system

cycles around the invariant curve continuously, completing one cycle in the

by,
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period T = 25/w . The constants of integration for the equation of morion

are w and 8§, We consider only real values of w, but § may be complex. The

analytic continuarion depends onl- trivially on §, but may have a complicated

dependence on w« In this paper we are concerned with rotational motion only,
" so that the kinetic energy of the pendulum never vanishes.

For discrete time t, whose values are normally taken from the integers,
the orbit is described by repeated application of an area preserving map from
(qt, pt) to (qt+1, pt+1) in the phase plane. The sequence of poinrs given by
all integral t way or may not lie on a continuous invariant curve. When they
do, the invariant curve 1s the closure of the set of all the points. The
auccessive values of the angle variable at the discrete times t are given by
Fg. (1.1). The system does not cycle the invariant curve continuously but
through a succession of points, equally spaced in the angle variable 6.
Examples are found in {3].

We are concerned with the analytic properties of the parametric function
q(8), named the Lagranglan representation of the {unvariant curve. The
properties of p(8) follow from those of q(®) through the equation of mation

and will not be considered. According to Arncl d, q{8) should be analytic in

a domain

leIl {p>o0 , (1.2)

provided y is held fixed. Here 01 1s the imaginary part of @.

For cases of interest we determine this domain numerically, with the
usual reservations that have to be made for any numerical work 1in this
field.

The considerable walue of numerical exploration of noninregrable

systems in the real phase space suggests that a similar method may be of value

-



in the complex 6 plane, despite the reservations. The principal numerical
methods are based, like the KAM proof, on a Fourier expansion of q{®), but we
use, 1In addition, a Lagrangian variational principle for the function q(8)
{a].

The Lagrangian L(th, qt) of an area preserving map vields the

Lagrangian functional for the orbit segment between times tj and t),

1
9 = 2 Lq, > qt) , (1.3)

and the usual stationary principle defines the map. Of particular interest

are Lagrangians given by the difference between kinetic and potential terms,

1 2
Lggaa,) =5 (apyy — ) -~ Vg . (1.4

The Lagrange equation of the map is then

§7q, S M th +q (1.5)

t-1

]

F(qt) = - V‘(qt) . (1.6)

This defines 62qt in time representation, and also F(q).

When Qy) ~ 4, 18 congidered as a physical momentum, this 1s a discrete
equation of motion for a particle acted upon by a succession of impulses
Flq,).

There is a variatiomal principle for the function q(8), defiming the

invariant curve in the Lagrangian representation. It is [4]

S




=0, Y= f de Lig(e + w),q(®)] (1.7

yielding the angle Lagrange equation

62q sz q(8 + w) - 29(8) + q(8 ~ w) = Flq(e)] . (1.8)

Notice that the 52 operator incorporates the angular frequency w that labels

the curve. This equation 1is to be solved with the condition
q(8 + 2x) = 2w + q8) , (1.9)

that will be named the coperiodicity of q and 8. This is the usual condition
for rotational motion, continuous or discrete. It determines the solution up
to a phase shift in 6. ‘This phase shift is additive to that of Eg. (l.l}
since the origins of both 8 and t can be chosen arbitrarily.

For any integer value of the discrete time t, the corresponding value of
the angle varisble & is given by Eq. (l.1J), 3just as in the contlnuous case,
but unlike that case only a countable set of 6 appear in any given orbit. By
the copericdicity, any value of @ outside the range -w<@<n 1s equivalent to a
value within that range. The values of 8 corresponding to an orbit with
irrational w/2n form a dense set in the range.

In the absence of any perturbing impulse F, q(8) is a linear function
representing uniform rotaticn in the variable q, except in the trivial case
when it is a constant. The . coperiodic solution 1s g = & ~ n for this
unperturbed case, where n is a constant phase shift, that can be complex for
complex solutions. It is often convenient to choogse the real part of this

phase shift so that q is pure imaglnary when 8 vanishes, when q and 8 are said



to be in phase. For those solutions with g and 6 real together the phase

shift is chosen so that q vanishes when 8 vanishes.
We are interested in the perturbations of these rotational splutions by

the introduction of the impulse F. The coperiodic solution q{8) ther has the

form

q(e) =8 + x(8) , (1.10)

where yx{(8) is periodic in 8.

In the Fourler representation the equation of motion, Eq. (1.8), takes

the form
Dy =-F , no (1.11)
n’n n
where
1
= — - 1.12
XoZ 35 © 98 x(8) exp(-in8) , ( )
1 .
Fns 37 o d8 F[6 + x(8)] exp(-ing) , (1.i3)
and
Dn = 4 sinz(nmIZ) =4 sinz(nwu) . (1.14)

The suffix n representing a Fourier component or mode must be distinguished

from a suffix t representing a discrete time. The factors D, provide the
-1

Fourier representation of the dzoperator, and the frequency v = w/2r = T = is

sometimes preferable to the aungular frequency w.

fm
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The solution of the equation for the coefficients Xq Eq. (1.11), is the
basis for analytic continuation into the complex 8- plane. The factors D, are
the famous small denominators that have caused so much trouble in classical
dynamics., Their magnitude 1s discussed in Section 4.

In the limit of small w and F, azq in Eq. (1.8) can be approximated by
uzdzq/dez, giving a system with continuous time. This system is discussed in
Section 2. Sections 3 and 5 are devoted to the analytic continuation of maps
and a discussion of the singularities that mark the boundary of analyticity.
Results of numerical computations for the standard map are given in Section 6,

and further discussion and conclusions are presented in Section 7.

2. PReal and Complex Pendulums and Maps

The Llagrangian and Hamiltonian for the vertical pendulum have the form

L(q,q) = % &2 + acosq , (2.1a)
1 2
H{q,p) = 7P ~—acosq . (2.1b)

The Lagrangian solutions q(8), where 8 and t are related by Eq. (1.1), can be
expressed in terms of elliptic functions, but before doing so it is useful to
consider & related system that can be solved in terms of elementary
functions, This 1is the semipendulum, obtained from the vertical pendulum by
omitting one of the exponentlal components of the cosine, giving the
Lagrangian and Hawmiltonian

1«2

L(q,q) =59 + %—-exp(iq) , (2.2a)

[



H(q,p) = ;— p2 —% exp (1q) . (2.2b)

This is an intrinsically complex system, and for this reason 1s not normally
considered.
The angle Lagrange eguation for an invariant curve of frequency w is
2 qu

W 7 = %ﬁ expiiq(e)) , (2.3
de

whose solution in the upper half plane, with q coperiodic with 8, is

(50-m)] - (2.4)

There is a line of logarithmic singularities at & = n + 2nr, for every integer
r. The continuation of the coperiodic solution into the lower half plane is
rot unique, but 1if the branch cuts run straight down from each singularity
they define positions of jumps in q. Note that Eq. (2.4) Is not coperiodic in
the lower half plane.

The Iinteresting solutions are those with complex n. In order to obtain

agreement with the vertical pendulum along the line of singularities we choose
2
n=1i1lnalbu" . (2.5)

Then q is in phase with 8. Further, the Fourier coefficients of



x(8) = q(3) - 8

2
=1 In(l —E—zexp 18)
biy

are imaginary and vanish for nonpositive n.

For the vertical pendulum the angle Lagrange equation is

m ——%—* - a sin q(8) . (2.6)
de

The solution of this equation is given by the amplitude of the Jacobi elliptic

function

q(8) = am[K(k)(8 - n)/n]

= -1 In{en[K(k}{® - n)/x] + 1 sn[K(k)}(8 - n)/wl}2 ) (2.7
where the parameter k of the elliptic functions satisfies

K K) = nlalu’ (2.8)

and K(k) is the complete elliptic function. In this case g and § are in phase

and are real together when n = 0. The elliptic functions cn and sn have poles

at

8 =% 1n(K'/K) + 2nr (2.9)
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for integer r, whose residues add along the lower line, and cancel along the

upper. Here K' =K (,/T-_kz). For small values of o

K s bl

K'= - 3 In k2/16 , (2.10)
and along the lower line of singularities

6 =1 1n (a/bul) + 20t , (2.11)

agreeing with the location of the singularities of the semipendulum with the
choice of constants given above.

The logarithmic singularities of q(8) form a periodic rectangular mesh in
the complex 6 - plane, symmetrically disposed about the real axis. The real
periodicity 1is 2r and the imaginary periodicity is 2¢vK'/K. Along the two
lines of singularities nearest the real axls, the semipendulum and its complex
conjugate are good approximations. For small a the vertical pendulum solution
is well approximated near the real axis by the two neilghboring rows of
singularities and, hence, by the sum of the two semipendulum salutions. A
similar approximation can be used for maps.

In every case the Fourier expansion on the real axls converges to an
analytic function up to the nearest row of singularities on eilther side, or
throughcut a half plane {f there is only one line of singularities. The
situation 13 similar for maps.

The two periodicities of the elliptic functions correspond to rotational

and vibracional motion. We are 1nterested in those cases for which the
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rotation 1s real, so the vibration is complex. Notice that by considering the

complex solutions for rotational wmotlon, a new type of motion, vibrationm,

appears. We will see that a similar effect appears for maps.

The map corresponding to the vertical pendulum 1is the standard map with

Lagrangian

o1 2
[ACPRp qt) =5 (4.4 qt) +a cos q , (2.12)
and equation of motion

82 = q(8 + w) - 29(8) + q(8 — w) = - & sin q(B) (2.13)

in the angle representation. This Is a real map, and we seek solutions q(8)

for which q(8) is real when 8 s -al.

The map corresponding to the semipendulum is the semistandard map with

Lagrangian

D Y A 1
Ly 9p) = 5(apyy - 9)" v e Ua) (2.16)

and equation of motion

6% = 3% expliq(e)] , (2.15)

in the angle representation. This 1s dintrinsically complex. We seek

solutlons that are analytic in the entire positive half piane, so that they

have vanishing Fourier coefficients for negative frequencies. This allows us

ta obtain the Fourier coefficients by means of a recursion algorithm.
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The semistandard map is a limit of the standard map in the same way that

the semipendulum is a limit of the vertical pendulum.

et

3. Analytic Continuation for Maps

Suppuse the Fourier series

g{8) =8 + y ¥, €Xp (ia@)
n

’ (3.1)

represents a solution of the difference equation

62q = q(6 + w) - 29 (8) + q(8 - w) = Flq(8)] , (3.2)

!
t
i
i
1
:
1
i
;

with the property that q(8) is coperiodic and in phase with 8. Here F(z) is

an entire function nf z. The values of Im(8) = 81 for which the series (3.1)

is absclutely convergent define a domaiu of analyticity of q(8).

If the series converges for some finite value of 8 and if the components
with negative n are zero, then the domain of anal,ticity is bounded below by a ;
straight line 0; = p_ parallel to the real axis. If the components with
positive n are zero, then the domain is bounded above by 8 = p+, whereas if
q(8) 1is a real function of 8, the domain is bounded above and below at 9 =
+|pl and is symmetric about the real axis. *

The difference equation and the perliodicity condition relate values of
q{(8) along a line of constant 6;. We need only consider those values in the

interval -x < eR < n. Thus in Fig 1, where 8y = 9, + w and 8c = by + w, the

difference equation relates q(BA), q(6g), 4(8¢), whereas q(8g") = q(8p - 2%)

o bk

is related to q(8;) by the periodicity condition.

HiE
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If the frequency v = w/2n is rational, then only a finite number of
points in the interval are related to one another, and these constitute a
complex periodic orbit., Here we are concerned with irratiomal v, so that the
difference equation and periodicity condition relate an infinite number of

" points that are dense in the interval. If their closure defines a continuous
function 4(8) on the {nterval 8; = constant, -n < BR ¢ 7, then this function
is the Lagrangian representation of a complex invariant curve.

The slngularities along the boundary of analyticity mst be weak. By
this we mean the following: First note that since the forcing function F(z)
is entire it must have an essentifal singularity or higher order pole at
infinity. Thus if q(@8) diverges, q(8 + w) must have a stronger singularity,
q(6 + 2u) an ever stronger singularity, and so on to monstrosity. Such
behavior is intultively unlikely. On the other hand, 1f q(8) is finite and
continuous at the singularity, F(z) can be Taylor expanded, and the degree of

singularity 1s propagated unchanged from 6 to 8 + nw. However, since w/2% is

irrational, the singularity 1s propagated to every polnt, so the line of

singularities forms a mnatural boundary. This contrasts with the isolated

silogularities of the solutions of the corresponding systeme with continuous
time, such as the semipendulum and vertical pendulum.

There 1is another distinction between the analytic properties of a
difference equation like Eq. (3.2) with real u and the differential equation

formed by replacing 52 with w2d2/d62. The difference equation only relates

directly q(8) for counstant 01 because the difference operator is not invariant
under rotation in the complex plane. By contrast, the differential operator
is invariant under votations and tbe differential equation may be rolved in
any complex directiom. Since the difference equation cannot be used directly

to extend the solution into the complex plane, we use the Fouriler expansion

for this purpose.
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Following the behavior of the singularity along an orbit 1s quite

in. tructive. In the neighborhood of a singularity q(8) can be expanded
. Dy -
q(8) = q(eo) +q (0 Bo) +oeve (3.3)

where q(l) is singular but vanishes at 6 = 8o+ Imserting this in Eq. (1.8)

ylelds separate equations for the singular and nonsingular terms,

a(e, +w) - 2q(6_) + a(8_ - w) = Fla(s )] , (3.4)

and
q(l)(e -8, w) - {2+ F'[q(eo)]}q(l)(e - eo)
+qPe-o-w=0 . (3.5)

The latter 1s an infinite linear homogeneous set of equations for the q(l) (8
- 8, + nw). All the q(l) must have the same dependence on 6, so the form of
the singularity 1s conserved. However, the multiplicative constant in this
function varies along the orbit.

The relation between these coefficlents 1s given by the eigenvector with
vanishing eigenvalue of the infinite tridilagonal matrix of the coefficients of

Eq. (3.5), whose rows have nonzero elements.

(1, - 2 - F'[q(eo + ], 1) . (3.6)

¥
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In the limit of vanishing F' the spectrum of the matrix is entirely continuous
with eigenvalues extending from zero to four. Along a line of constant 81 in
the range of analyticity of q(8), a displacement inm 6 ylelds another orbit.
Then q'(e0 + nw), where prime denotes derivative, 1s an eigenvector of Eq.
(3.5) with vanishing eigenvalue, which 1is established by differeuntiating Eq.
(3.4). Clearly this eilgenvector 1s not square summable, so the vanishing
eligenvalue is in the continuum. At the boundary of anmalyticity the derivative
does mnot exist, and Lhe corresponding continuum elgenvector disappears.
However, our calculations clearly show a square summable eigenvector with
vanishing elgenvalue, which 1is therefore discrete, Thus the boundary of
analrticity corresponds to the emlssion of a discrete eipenvalue out of the

bottom of the continuum, The coefficients of the singularities are

proportional to this elgenvector.

i» Fouriar Coefficients and Fibonacci Numbers

Before going on to consider the analytic structure of the solution for
the standard map, we need tc conslider the problem of small denominators,
particularly for the frequency v equal to the golden mean.

The magnitude of the Fourier coefficient X of Eq. (Ll.11) depends

critically on the size of the corresponding denominator

Dn =4 sinz(wnv) . (4.1}
There 1s & sequence of values of n such that nv becomes arbitrarily close to a
sequence of integers. Thus D, can become arbitrarily small and the Fourler

coefficient X, ©an become very large, hindering the convergence of the Fourier

Sums



16

Clearly the behavior of Dy, for these values of n 1s related to the

ratlional approximations

NM = v , (4.2)

for which there are many number theoretic results [5]. The size of D, is
determined by |Mv - ¥| and the asymptotic rate of decrease of this guantity

with M can be used to classify irrationals. In this paper we are interested

in the reciprocal of the golden mean, (VT - 1)/2. This is a quadratic

irrational and satis:ies, as shown for example Iin Theorem 7.8 of {5},

[Mv - Nl > cI/M (4.3)
for all nonzero integers N and M, with C(v) a rfinite constant.

The values of M that provide successive minima of the denominatars can be

found by considering the continued fraction expansion of v,

° a—%':‘ [ao, al’.-.] . (4-4)

The a, are positive Integers, except for a, that may vanish.

It is a standard result from the theory of continued fractlions that the
truncations of the continued fraction representation of v provide the best
rational approximations to v. Thus, these truncations also yield the smallest

denominators D,. 1In particular, consider the rational number

\)i = [ao, al,nal,ai] = Ni/Mi . U‘-S)

B
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Then we have

v =yl <lv-nwml o, (4.6)
for all N and M for which M < Mi' For the reciprocal of the golden mean,

vae =35 =D = 10,1, 1,1,000] (4.7
the successive truncations of this continued fraction are given by

v, =F,__/F (4. 8)
where the Fy satisfy the recursion

Fann TF ¥ P (4.9
with the initial conditiomns

FO = 0, Fl =1 . (4.10)

This set of Integers are known as Fibonaccl numbers.

It is shown in Chapter 6 of [5]1 that

[Fpu, = Fygl == , (14 (4.11)

and hence we have

&
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D, =Ty, (e . (4.12)

A brief but nonrigorous derivation of Eg. (4.11), suitable for exteasion, is
presented 1in Appendix 1. Equation (4.12) is a close approximation aven for
quite moderate values of 1.

Another result in [5) (Theorem 6.2) shows that C(v) of Eq. (4.3) must
satisfy C(v) < 1/Y5 . Thus, the inverse of the golden mean frequency produces
the largest possible small denominators Dn. These denominators show strong
minima at the Fibonacci numbers n = Fi' which produce strong peaks at the
corresponding Fourier coefficients Xy 8% i1llustrated in Fig. 2. This figure
also shows that the peaks are nearly equally spaced in the logaritkm of the
mode number, as expected from Eq. (4.8).

Using musical notation, we can label these periodically spaced peaks, or
resonances, do” on the scale of Faurier coefficients. The other elements of
the chord also correspond to small denominators, though not so small as the
neighboring "do.” They represent subsidiary resonances, and can be discerned
in Fig 2.

The "sol” defines the 3/2 resonance, and can be defined on the present

scale by
S _ oS s 4.1
vy Fi—llFi , (4.13)
where
5 = . 4.14
Fi = Fi + Fi—2 ( )

!
H
3
i
!
i
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The numbers Ff satisfy the Fibonaccl recursion Eq. (4.9) with a different
initial condition, so they are pgeneralized Fibonacel numbers. Following

closely the derivation in Appendix 1 it follows that

[vS -\,Slgi\"‘_“ (4.15)
i+1 i’ F2 ’
i
and
—
s '
1“A vil =5 . (4.16)
i

Similarly, the other element of the major chord, "mi," is defined through the

generalized Fibonaccl numbers

m
FisF +F 4. (4.17)

with the result

. (4.18)

This line of reagoning can be continued indefinitely, but these members of the
ma jor chord yield the smallest denominators in each period of the Fibonaceil
numbers. The corresponding pattern of two strong secondary peaks between

successive primary peaks 1s shown clearly in the Fourlier coefficients of

Fig. 2.
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5. Nature and Position of the Singularities

The general behavior described in this section 1s valid for both the

standard and semistandard maps. We are not able to prove the statements here,

but the detailed numerical results obtaired by computer make it unlikely that
they are wrong.

The dependence of the Fourier coefficlents X, on the mode number n is
complicated, so we excavate the layers of detall one by one. First, there is
an overall exponential dependence, whose expenent determines the “ower

boundary p- for negative n. To be speclfic, we consider positive n and the

lower boundary. Then the infinite sum

Xy exp(*nBI) , (5.1)

1.~8

n=1

converges exponentially for eI >p , and diverges for SI < p  where

the X, are determined by Eq. (l.11). Some of the fine points in the numerical

determination will be discussed in Section 7.

Next, we investigate the position and nature of the singularities on the

boundary.

In order to investigate the singularities we first normalize the Fourier

coefficlents so that the new coefficients a, represent the expansion along the

boundary line. They are

a =X, exp(-np ) , (5.2)

the new coefficients have a ragged dependence on n. For large n, they are

bounded above and helow by powers of n, so we have
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n

Itm L (lna)+0 . (5.3)
+ ® 7 n

Next, we use the faet that all the a, are positive. This follows
directly from the recursion relation for the semistandard map and is found
numerically for the standard map. It follows that the maximum value
of x(8) occurs at 8 = 0 and it is here that we find the principal singularity.

Another important aspect of the coefficients a, is that thelr sum

Converges,

z a {w , (5.4)

This convergence can be understood as follows. The magnitudes of the peaks of
the Fourier serles, at wmode numbers that are Fibonacel numbers, fall off as
n"l, while the magnitudes of the winima fall off roughly as n—3. This 1s
consistent with the corresponding denominators falling as n—2 for Fibonacci
numbers, but approaching finite values along other sequences of values of n,
in the limit of large n.

The nl dependence of the peaks does not lead to divergence since the
distanece betwsen peaks increases exponentially with mode number. An analytic
treatment, counting the contribution from all the subsidiary peaks at
generalized Fibonaccl numbers, is outside our present abilitles, but the
computer clearly shows the convergence of the sum of the 4, This implies
that q(8 ) is bounded at § = 1p- and, by extension, all along the natural

bouudary. So the singularities are weak, as stated in Section 3.

The simplest slngularity whose coefficients fall off as a power of n is a

power of & ,
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a8y = ¢tM + P18+ | (5.5)

where q(G> and q(l) are constants, and B 1s positive sjince q(8 ) is bounded.

To calculate g, consider a fractional derivative of gq,

0 =
D_q(0) )

e~ 8
<

X nta . (5.6)
This has the property that DYq(O) converges for y < B, but diverges
for y > 8. Thus qu(e) is continuous for y < 8, discontinuous but bounded
for vy = 8, and unbounded for y > B.

It is not convenient to use this formalism directly to calculate g, since
it is a difficult numerical problem to distinguish convergent series trom

those that are slowly diverging. Another approach 1s to consider the sequence

generated by

a_ . (5.7)
n

The additional derivative produces

Dy Q8) = &(8) , (5.8)
with a Fourler spectrum that 1s asymptotically flat, Thus in the limit of
large j, S_1 + 0 for y<g, and Sj + = for y>@.

The appropriate quantity to examine 1s the logarithm of Sj' Two
considerations lead to this result. First, because of the periodic nature of
the Fourier coefficlents that was developed in Section 4, it is appropriate to

evaluate Sj at approximately geometrically increasing values of j. In Table 4
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the chosen values are one less than Flbonacci numbers, so that In 18

propartional to vA;n . Second, Sj is expected to Lave a power dependence on )

of the form jB—Y. Thus the logaritim of Sj is expected to depend linearly on
n

n, for large n, when B#y. This provides a reference for testing convergence,

6. Computations and Results

In this section results are given for the Fourier coefficients of the
invariant curves, for the dcmain of analyticity and the critical a for which

this domain shrinks to zero, and for the form of the singularities on the

natural boundary.
First, the recursion for generating the Fourler coefficients of the

semistandard map 1is given. By changing the independent and dependent

variables to

u z o exp(18) , (6.1)
and

g =iy , (6.2)
the map takes the form
d°g = glu exp(fw)] - 2g(u) + glu exp(~ iw)]

= - 3w emizw] , (6.3)
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eliminating the explicit dependence on the perturbation parameter g. The
Fourler series in 6 becomes a Taylor serles in u that can be evaluated temm by

term.

Let

g(u) = ] b ouw (6.4)

and

exp g(u) = (6.5)

i
n
=
=3
=}

Then, substituting the expansions in Eg. (6.4) and equating coefficients 5f u"

we obtain
Db =4 (6.6)
nn 7 €a-1 -

where the D  gare the divisors of Eg. (l.14). For irratianal frequencies v

= w»/2n none of the divisors vanishes, so we can divide by them and evaluate

the bn coefficients 1in terms of Cp-1° Because the coefficient ¢ is a

n~1
function of bl’ veuy b“__1 , » this provides us with an explicit recursion
formula for the bn » The expression for the e in terms of the bn are glven
in Appendix 2. This appendix alsc¢ {ncludes the extension of the procedure to
obtain a double expansion for the standard map. The existence of such
convergent fixed-frequency expansions was pointed out by Moser [6].

To study the analytic structure we need large numbers of coefficients, so

we have used a computer to obtain the first 2600 terms bn. The recursion

algorithm is simple and, because all quantities evaluated are positive, there

Je——"
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is no subtraction of large quantities. The only errcrs are rounding errors

and they should be negligible.

The bn coefficients are shown in Fig. 2, which i1s a log-log plot. They
may be interpreted as the Fourier coefficients for the semistandard map with
a= 1.

For small mode numbers, the peaks and valleys generally fall off with

mode number because here the real axis is close to the natural boundary on

which the coefficients have a power dependence on mode number according to
Section 5. At the other end, large mode numbers show exponentfally increasing
behavior since the natural boundary 1is slightly above the real axis. Note

that the exponential dependence is also exponential on a log-~log scale.

The vaiues of the Fourier coefficients for the semistandard map at

Fibonaccl numbers up to

Fig = 2584 were used to obtain the critical
perturbation parameter
a = 0.979666¢«« (Semistandard) (6.7)

at which the natural boundary lies on the real axis. The filrst 13 Fourier

coefficlents and the first 18 I;‘ibuuacci Fourier coefficients are presented in
Table I.

The positive Fourier coefficients of the standard map for o = 0.9 were

obtained both by the variation-annihilation (VA) method of Appendix 3, which

is a direct 1iterative method for solving FEgq. (1.11), and by the double

expansion (DE) method of Apreudix 2. The VA method converged to 5 places for

the first 160 modes and to 3 places for all modes up to 190. The DE method

gave complete agreement up to the accuracy with which it was carried. The

first 15 Fourier coefficients and the first 12 Fibonacel Fourier coefficients

ii\
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are presented in Table II,

The data from these calculations can be used to determine the position of
the singularities or natural boundaries, as a function of a, for each of the
cases considered in this paper. This is most convenlently expressed in terms

of

Qzal exp (7). (6.8)

For the semipendulum and semistandard map this quantity is independent of a.

For the vertical pendulum
exp (p )} = exp (- wK'/K)

is called the nome [7]. Values of Q are given in Table III. These values are

nearly constant for the pendulum and standard map. Interestingly, the former

decrease slowly with o, while the latter increase slowly.

The DE method was also used at a = 0.2, 0.9 and 0.95 to generate

Figs.3-5.

The figures illustrate the properties of the complex function q(8), in

particular the natural boundary q(eég + 1p). Conventionally, complex functions

are illustrated by the mapping of a square mesh in the complex plane of one

variable into the complex plane of the other [8]. We restrict ourselves to

the mapping of a set of horizontal parallel lines of constant 8y in the &-

plane with convenlent spacing of 687, except for 87y = p, the natural

boundary. There are several reasons for this. The imapes of the horizontal

lines are much easier to compute using fast Fourfer transform methads on the

expansion coefficients. Further, the images of the horizontal lines are

complex orbits in the g-plane.

)

e M ey o e 0
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Figure 4, 1llustrates the trasition from smooth invariant curves for
small values of 6y, to irregular angular behavior near and on the natural
boundary. Near the real axis they resemble functions that have isolated
singularities, but npear the boundary small peaks appear everywhere. As a
increases, the domains of analyticity shrivk in both the B-plane and the q-
plane. At o = 0.971635... the domain of analyticity has shrunk to zero and
there is nothing left to 1llustrate. For convenlence, the qp scale is changed @~ -
to compensate for this shrinkage, Further, as shown 1in Figs. 3-5, the

, relative size of the secondary and higher peaks increases with g. From other
computations, mnot I1llustrated, we have seen that the approach to smooth
i behavior, away from the natural boundary, is more rapid when the secondary
i

peaks are smaller.

Next, Eq. (5.7) was evaluated to determine the critlcal value, B, of Eq.

(5.5), for the semistandard map. This determines the nature of singularity.

Values of Sj of Eg. (5.7) for a Lew modes preceeding Fibonaceci numbers are

given in Table 1V, for y = 5/6. This sequence shows one-sided, approximately

exponential convergence, so 8 1s close to 5/6, with an error of the order of a
few in the fourth decimal place. Close examination of the trend of Sj at
y other peaks and valleys of the spectrum gives consigtent results.

. Similar results for the singularity parameter, 8, could be computed for

the standard map. However, many fewer coefficients are available here,

leading to larger errors. We have not been able to determine if g8 has a

significant dependence on a.
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7. Discussion

We have been led to carry out some detailed computations by arguments of
a general gnature, but the computations themselves have been limited to two
maps and one frequeﬁcy. For these the results are quite definite, but the
extension to other maps and frequencies and to more general Hamiltonian
systems must be considered as tentative.

For each map there 1s a significant domain of analyticity in the complex
8- plane, bounded by natural boundaries parallel to the real 9 axis. The
natural boundary 1s itself an invariant curve with marglnal stability. It
consists of an infinite number of weak singularities of approximately 95/6
type. The analyticity domain shrinks with increasing parameter @, and the
boundaries reach the real axls when o reaches its critical value, where the
invariant curves for real @ break up. For the standard map this wmeans that
the domain of analyticity shrinks to nothing.

We conjecture that this pg-neral type of behavior is found for 35ll
nonintegrable systems with analytic Hamiltonians. It represents the
appearance of irregular or chaotic motion in the complex plane. For other
maps the brnad structure and position of the boundary will depend on the
nature of the map, Now numerical analytic continuation is delicate, so the
nature of this contipnuation for arbitrary wmaps must be considered here. The
problem is that our method of determining the boundary depends in principle on
the behavior of coefficients in the limit of large mode numbers, but only a
finite number of coefficients 1is evaluated. There Is always the possibility
of strange behavior beyond the horizon of computation that completely changes

the nature of the analytic continuation.

|
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This can be understood as follows. A crucial quantity 1is the Fourier

dependence of the forcing function, F(q) that appears on the right of Eq.

(1.8),
F() = ¥ f_exp(ing) . (7.1)

In perturbation theory, when the fn are small, the Fn of Eg. (1.13) are
approximately equal to the f . In this paper we have considered the case that
there are only one or two complex conjugate, nonvanishing fn' We then found
an exponential dependence in the response, the coefficients b, of Section 6,
illustrated in Fig. 2. First, consider the generalization of these results to
those maps for which the f fall off exponentially with a more ctapld decay

than that which we have calculated for the decay of the b . Then these higher

coefficients, f,, should have an imperceptible effect on the b,-

Next, comsider the cases with slower decay of the f . TIf the phases of
the £, are such that they enhance the F , then the b, will not fall off faster
than the fn, since the latter decay i1s already obtained in perturbation
theory. It 1s clear that the nonlinear coupling, of the type that has been
calculated in this paper, will then cause the bn to £zll off wmore slowly than
the f . Then the asymptotic limit is similar to that of this paper, in that
the higher £ are unimportant in determining the domain of analyticity.

On the other hand, it is always possible for the phases of the fn to he
se cleverly chosen that the bn vanish beyond some mode number. Then the
domain of analyticity would cover the whole plane.

Thus, there are two Bsources of difficulties

for numerical analytic

continuvation in the general case. Our methods require the Fourier

coefficients of the forcing function, f of Eg. (7.1), to fall off rapidly and
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the function 1itself to be analytic. Otherwise the domain of analyticity of
the invariant surfaces that we calculate will be greatly overestimated. On
the other hand, our calculations can underestimate the domain if it happens
that there are exact cancellations that cannot be reproduced error-free on a
computer. Neither of these problems affects the results calculated in this
paper, since very simple forcing functions were used.

The next generalizatlion of our results to be considered is the choice of
frequency v. The periodicity of the Fourier coefficients illustrated in Fig.
2 depends on the frequency being a quadratic number [5]. Then the continued
fraction expansion 1s periodic. This class of numbers 1is a convenient and not
overly restrictive generalization of the golden mean. Irratiomals that are
not quadratic numbers yield denominators that fall off faster than those
considered here, so that the corresponding invariant curves will have smaller
domaing of anmalyticity. A full exploration of this is outside the scopé of
this paper.

We expect natural boundarles to be a general property of the solutions of
nonintegrable Hamiltonian systems. In particular, we have considered the
analytic properties of the phase space coordinates as functions of the angle
variables that parameterize the 1lnvariant tori of these systems. For systems
with continuous time and mere than one degree of freedom, the dependence on
angle varfables must be distinguished carefully from the dependence on time.
For {irrational frequency ratios, which is all that we consider, the linear
dependence Bk = wkt + 6k of the angle variables on time produces ergodic (but
not chaotic!) helical motion around the torus. We have nothing to say about
analytic extension into a complex plane away from the real direction of
increasing time, but we expect the functions extended away from any other
divection on the torus to have domalns of analyticity limited by natural

boundaries.

T e e
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An intriguing aspect of this calculation 1is its relation to previous
results for periodic orbits with rational frequencies that are close to the
golden mean frequency that has been studled here [2). To the extent that the
frequencies of the perlodic orbits are close to the golden mean frequency, the
corresponding orbits will be close also. The orbits that were chosen for the
previous calculation had periods that were given by Fibonacci numbers. A
stability parameter, called the residue, was calculated for these orbits.
When the residue lies in the range 0 < R < 1 the orbit is stable, otherwise it
is unstable. Computations showed that the sequence of resldues, evaluated for
orbits whose perlods were successive Fibonacci numbers, exhibited exponential
behavior similar to the exponentlal behavior of the Fourier coefficlents that
have been calculated here. Most remarkably, the respective rates of
exponentiation agreed to 4.5 figures for the standard map with a = 0.9. It
appears that the position of the boundary of analyticity can be calculated
equally well from either the Fourler coefficients of the invariant tori, or by
considering the nature of nearby periodic orbits. The accuracy of the two

methods is comparable. The precise relation between the two methods remains

to he clarified.
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TABLE 1

Fourier Coefficients for the Semistandard Map

W M N B W N e

11
12
13

14
15
21
34
535
89

144
233
377
610
987
1597

2584

1.43896.107!
3,94203.1072
3.17787.1072
4.78000. 1073
1.68898.1072
3.82884.107
1.23504.1073
1.20339.1072
1.70340.10™3

1.66579.1072
9.93908.10™%

2.546580107%
7.81123.1073

1.30650.107°
5.81732.107%
5.84993.1073
4.64003,1073
4,45935.1073
5.50689, 107

1.05747.1072
4,05817.1072
4.83883,107 1
3.58270.107 1
5.11774.107%
8.75800.10" 7

34640710718

e ———
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TABLE 11
Fourler Coefficients for the Standard Map, a = 0.9

n
n b, /a

1,4547. 107!
4,4006.10~2
3.3107.10"2
6.4870.1077
1.8315.1072
443241073
2.8997.107°
1.2880.1072
1.9330.1073

g
I
5
1
,

[Y-T- - BN I S R T

10 2.1073.1073

11 1.5728.1073
3 12 1.1816.1073
E 13 8.6020.1077
; 14 1.4520.1073

15 8.2053.107%

21 6.6448+1072
: 3 5.6573.1073
L 55 6.1089.1073
% 89 9,164421073
.

144 2.4088. 1072

I
!
i



0.0
0.1
0.9
0.971635
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TABLE TII
Values of Q
semipendulum  pendulum semistandard
map

0.043404 0.043404 1.020756
0.043404 0.043401 1,020756
0.043404 0.043143 1.020756
0.043404 D.043100 1.020756

TABLE IV

Selected Values of 1n(Sn)

n 1n(s,)

232 -1.9235
376 -1.9212
609 ~-1.9194
986 -1.9182
1596 ~1.9172

2583 -1.9164

standard map

1.020756
1.020793
1.026602
1.029193

‘
r.

s
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APPENDIX I: Asymptotic Form of Small Denominators

Here we derive the asymptotic form Eg.
for the inverse golden mean frequency.

First note that

2
ST S ©5 4
L FiFin

Now, from the recursion relation, Eq. (4.9)

or, eliminating Fi-l instead of Fyug
2 2L.F . F .

i i T Fi 1+1°1

Hence

so that

(4.11) of the small denominaators

(Al. 1)

(A1.2)

(Al.3)

(Al.4)



18
1+1
4, = (-1)
and
141
v b =1
el TV TEE
oy,
. u (Al.5)
-2
1
Hence
. j+1 2
Vaw TV T L DT v /R,
i=1
141 Yau
= (D 3.3
iy, OF,
it (Al.6)
/5 FiZ

which agrees with Eq. (4.1).

e e A T e T T

P
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APPENDIX II: Double Expansion Method

In this appendix we consider rteal, coperiodic, in-phase solutions q(8)
and x(8) of Eq. (2.13) and Egs. (1.10) - (l.14) along the real @ axis for real
values of the parameter a. The Fourier coefficients of these solutions of the
standard map can be expressed as a power series in az by a double exparsion
method that is a modified form of perturbation theary. Each .cefff{cient of
the double expansfon 1s obtained as an explicit

function of lower

coefficients.

First, the equations for the semistandard map Eg. (2.15) discussed in

Section 6, are completad, which also {llustrates a basic technique used
here. A simple recursion formula for the c—coefficients of that section is

provided by expanding

L explal)] = s g(0)] exple()] (2. 1)
to obtain
1 n
¢, == mzl mboc _ (A2.2)

The standard map 1s more complicated. Following the notation of Section

6, we set

-
e

a exp(i8)

it

u = aoxp (-18) . (A2.3)
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em—" T BEEL s o

Then, since y depends on the perturbation parameter a and is an odd function

of 6, we can write

1x(a,@) = gla,u) - glayu’) (a2.4)

where a series expansion of g(a,u) contains only positive powers of u. On

substituting into the standard map Equation (2.13), we obtain,
7 *
8" [gla,u) - glo,u )]

1 *
= -3 uexp glo,u) exp [-g(a,c )]

—

+ 2" e gla)] exp gayu’) (42. 5)

The left side 1s the difference of two power series, in «a, u and a, u*. with

identical coefficients, so the right side can also be expressed in this way.

On the right we can set w® = uz, suggesting that we try an expansion of the

form

gla,u) = 5§ br(lr)u2run

n=o n=l
= X azrg(r)(u) . (AZ- 6)
n=o

The function g(o) satisfles (6.3), the semlstandard wap, ylelding

pe) =y (A2.7)
n n

N T

(S




41

Since g(a;u) and g(a,u*) are related, we need only consider the former. This

satisfies the equation
2 1 *
§g(u,u) = — 3 Ten{exp [~ gla,u )]u exp gla,u)
* *
- u exp gla,u ) exp[~ gla,u}]} , (A2.8)

where Tcn 1is the truncation operator that removes all terms in the expansion
. %
for which the power of u  is greater than the power of u.

Introducing the notation

exp [+g(g,u)] = y z cf\r):l:ﬂZrun (A2.9)
r=o n=o

for the expansion of the =xponentials, and using the convention -

CEf)I -=q, (A2.10)

we find that

Ten{exp!- g(a,u*)]u exp gla,u)}

.3 L3 ZJ - L L3 -
=J§D MZO ¢ Uszo kzo nzo 8- -k- “)cr(\k) fon{r):l (A2.11a)

* *
Ten|u exp gla,u Jexp [~g(a,u)]

=1 1 o™ ] 1
J=o0 M=o j=o0 k=0 n

-8

&)+ (-
8(J - 1 -k - n)k < . (AZ.l1b)
o n~1 “mn
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Substituting into Eq. (A2,8) yields

(Jn_1 Oy o1 - (k)= (+ _ &M+ (§)-
Dy by 2JEn5U ok mmle™ oty m el o, )

(A2.12)

The iteration scheme is completed by giving an expression for the ¢
coefficients in terms of lower order b coefficients. Generalizing Eq. (A2.1)
to include powers of a ylelds the generalization of Eq. {A2.2),

J M
I+ _ (1 G-z
Moy T =1 T mb e, UT . (A2.13)
j=o n=1
On using these equatlons iteratively, first the semistandard

approximation, béo)

is obtalned up to some value M of n. Then the first M-1
quantities bil) can be evaluated, and successively M-j terms of bgj) . The

maximum value J of J is determined by convergence criteria. The fipures were

obtalned by this method, with M = 258 and J = 21.
Note that solutions of Eq. (2.6), the pendulum, can be obtained by the

same method described here with the denominators of Eq. (1.14) replaced by

nf\P) = n? . (A2.14)
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APPENDIX I1II: Variation—-Annihilation Method

Here an iterative scheme is given for solving Eq. (l.11) with the

condition that q and 8 are coperiodic, That is, Eq. (l.11) will be rewritten

" in such a form that, after evaluating the right hand side using approximate

values for the quantities y,, the left side can be solved ylelding more
accurate values of Xpe In particular, a way is gilven for circumventing the
problems that arise when the denominator D, of Eq. (l.14) is small. The

difficulty is that, when

D < IaFn/axnl (A3. 1)

then small errors in Xn are magnified when Eq. (1.11) is used directly for
iteration. More precisely, perturbations around the solution of FEq. (1,11)

satisfy the matrix relation

Gx.n =n§': Gn,nt Gxn| > (a3.2)
where
aF
-1 _n
Gn,n' Dn axn, * (A3.3)

A necessary condition for the stability of the {iteration is that the

eigenvalues of G all have magnitude less then unity. Small denominators, D

work against this condition. 1In this appendix a variation of Eg. (l.1l) is

given,
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Dan == Fn 3 (A3.ll)

such that the numerators, aFn/aXn, , are small when the denomirators are

small.

The function ﬁn that does the job is

No
F =F + in™ . .
n n Z_ I Xy <Dn-n"xn—n" + Fn—n") (43.5)
n"= -N
n
The endpoints of the summation, N,, can be chosen to optimize the

calculation. Typically, N, vanishes for most values of n, ard is appreciably
larger than unity only for those values of n for which Dn is very small. Note

that Frl satisfies the reality condition

L= F_ (A3.6)

when this condition is satisfied by F, and yx,, and that Eq. (A3.4) is
satisfied when Eq. (l.11) is satisfied.

The operator that produces Eq. (A3.4) and Eq. (A3.5) from Eq. (1.11)
eliminates, or annihilates [9], large terms. Thus the method described in
this appendix will be called the Variation-Annihilation Method. It will now
be shown that large terms are indeed annihilated in Eq. (A3.5).

The first step in showing that the appropriate derivative of %n is small
is to establish a relation that will be used in the demonstration. The

derivative of Eq. (1.8) with respect to § is

ln.

- -4 d - - dF dq
5 q{e + w) - 2 Fr3 q(8) Y q(8 - w) aq @6 (A3.7)

au
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The Fourier transform of this relation yields, with the aid of Eqs. (1.10) ~

(1.1
= = B! - ' '
inD F! r{l' in' x ., F!_ (43.8)
where
o1 - drF
F! = Z“fde exp(~ 1n8) 59 (43.9)

and the first term on the right of Eq. (A3.8) arises from the secular term 9

in Eq. (1.10). Furthermore, note that from Eq. (1,13)

aF
n

= l - dF !
T ’sz‘” exp(~ 1n0) g exp(in’e)

= p!
Fn-n‘ . (A3.10)
Then
aF aFn Nn BFn_n..
= =——+i(-n")yx__ D, + J in"y o
3Xn| axnv a=n’ n n"=-N a 3)(“-
+ in' (D
tn'( n-n'Xp~n" + Fn—n')
N
n
= F + " v _—t
n~n' n=§N in X “Fn-n'-n" + i(n n )xn—n'Dn'
T
+ in (Dn—n'xn"n' + Fn—n')
=N
1 n "
= tln-n')y (D, - Do) = I in X F fen e
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- in" "Fl L+ p + 11
S . Xy F e tege * 10 ( nen'Xp-n' * F D) (a3.11)

with the aid of Eq. (A3.8) and Eq. (A3.10).
To show that this 1s small, first consider

‘Dnv = Dt ‘= 2 \1 ~cos n'w - 1+ cos (n-n"u

sin nw/2 sin(Zn' - n) w/2

-5 pl/2
n

sin(2n' - n) w/Z\ . (A3.12)

so that this term is small when D is small. The residual sums in Eq. (A3.1D)
are small for sufficiently large N, since the Fourier coefficients fall off
raplidly for large mode numbers. Finally, the last term in this equation is
small when Eq. (A3.4) 1s converged for those values of n for which y, is
appreciable. Thus each of the four terms of a};‘n/axn, is small when D, 1is
small.

The factor of Eg. (A3.12) is not as small as the denominator of the
matrix G of Eq. (A3.3) for the critical values of n. Thus the matrix has some
large entries even for the dimproved iteration Eq. (A3.4). However,
experimentally, this iteration worked beautifully. Perhaps the nearly random
narure of the second factor of Eq. (A3.12) is of some assistance,

The improved iteration described here surely will not yield convergence
for every F(gq). To date it has been applied only to the standard map, for
which the Lagranglan of Eq. (l.7) yields a minimum principle. Methods for
finding periodic solutions at which the lagranglans are saddle points have
been given bv Bountis and Helleman [10], showing that it may be possible to

treat cases for which invariant torl occur at saddle points.
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