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Abstract. - In an edge-colored, we say that a path (cycle) is alternating ifit has length at least 2 (3)
and if any 2 adjacent edges of this path (cycle) have different colors. We give efficient algorithms
forfinding alternating factors with a minimum number of cycles and then, by using this result, we
obtain polynomial algorithms for finding alternating Hamiltonian cycles andpaths in 2-edge-colored
complete graphs. We then show that some extensions of these results to k-edge-colored complete
graphs, k > 3, are NP-complete. related problems are proposed. Finally, we give a polynomial
characterization of the existence of alternating Eulerian cycles in edge-colored graphs. Our proof
is algorithmic and uses a procedure that finds a perfect matching in a complete k-partite graph.

Keywords: Complexity, NP-completeness, graph, Hamiltonicity.

Résumé. ~ Dans un graphe arêtes-coloré, on dit qu 'un chemin (cycle) est alternant s'il est au
moins de longueur 2 (3) et si toute paire d'arêtes adjacentes de ce chemin (cycle) sont de couleurs
différentes.

Nous donnons des algorithmes efficaces trouvant des facteurs alternants comportant un nombre
minimum de cycles et, en utilisant ce résultat, nous obtenons des algorithmes polynomiaux pour la
recherche de cycles et chemins hamiltoniens alternants dans des graphes complets 2-arêtes-colorés.
Nous montrons ensuite que certaines extensions de ces résultats aux graphes complets k-arêtes-
colorés, k>3 sont NP-complets. D'autres problèmes similaires sont proposés. Enfin, nous donnons
une caractérisation polynomiale de Vexistence de cycles eulériens alternants dans des graphes
arêtes-colorés. Nous donnons une preuve algorithmique (constructive) qui utilise une procédure
trouvant un couplage parfait dans un graphe k-parties complet
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1. INTRODUCTION

We study in this paper the existence of altemating hamiltonian and Eulerian
cycles and paths in edge-colored complete graphs.

Formally, in what follows, K% dénotes an edge-colored complete graph
of order n, with vertex set V (K%) and edge set E (K%). The set of used
colors is denoted by \£ = {xi, X2, . . . } . If A and B are subsets of V (i££),
then AB dénotes the set of edges between A and B. An AB-edge is an
edge between A and B, Le., it has one extremity in A and the other one
in S. Whenever the edges between A and B are monochromatic, then their
color is denoted by x (AB). If A = {x} and B = {j/}, then for simplicity
we write xy (resp. x (XV)) instead of AB (resp. x (AB)). If x dénotes a
vertex of Kf% and Xî ls a color of \P, then we define the x^-degree of x
to be the number of vertices y such that x(xv) — X%- The x^-degree of x
is denoted by Xi (x)- Whenever, the edges of K% are colored by precisely
two colors, then, for simplicity, these colors are called red and blue and are
denoted by r and b, respectively.

A path P is said to be altemating if it has length at least two and
any two adjacent edges of P have different colors. Similarly, we define
altemating cycles and altemating Hamiltonian (Eulerian) cycles and paths.
An altemating factor F is a collection of pair-wise vertex-disjoint altemating
cycles Ci, C2, . . . , Cm , m > 1, covering the vertices of the graph. Ail
cycles and paths considered in this paper are elementary, Le., they go through
a vertex exactly once, unless otherwise specified.

The notion of altemating paths was originally raised by Bollobas and
Erdös in [4], where they proved that if IÏO set of k edges of K-% incident to a
same vertex are monochromatic, then K% contains an altemating Hamiltonian
cycle provided that n is greater than a constant c&. Results in almost the same
vein are proved in [6]. Also, in [1], necessary and sufficient conditions are
presented (see theorem 1 below). Ho wever, the problem of characterizing
altemating Hamiltonian instances K^, or at least establishing nontrivial
sufficient conditions for the existence of such cycles, is still open, whenever
the edges of Kf% are colored by more than two colors. Some further results
on altemating cycles and paths are proved in [2, 3, 11, 13, 14, 15],

This type of problems, except their proper theoretical interest, have many
applications, for example in social sciences (a color represents a relation
between two individuals) and in cryptography where a color represents a
specified type of transmission. Also, it tums out that the notion of alternance
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is implicitely used in some classical problems of graph theory. Let us think,
for example, to a given instance of Edmond's well-known algorithm for
finding a maximum matching. The edges of the current matching can be
colored red, any other edge can be colored blue, and then the searched
augmenting path is just an alternating path.

In section 2, we deal with Hamiltonian problems on 2-edge-colored
complete graphs Üf£. Namely, by using known results on matchings, we
obtain O (n3) algorithms for finding an alternating factor, if any, with a
minimum number of alternating cycles in K£. As an immédiate conséquence,
we obtain an O (n3) algorithm for finding alternating Hamiltonian cycles
and paths, or else for proving that such cycles or paths do not exist.
As a byproduct of this resuit, we obtain an O (n3) algorithm for finding
Hamiltonian cycles in bipartite tournaments (another algorithm for finding
Hamiltonian cycles in bipartite tournaments is proved in [16]). To see
why alternating cycles can be used in order to obtain cycles in bipartite
tournaments, let us consider a bipartite tournament B (X, Y, E) with
bipartition classes X, Y and arc set E (B). Let now K% dénote a complete
2-edge-colored graph obtained from B as follows: we define

V {Kc
n) = XUY and E (K*) = Eb (K

c
n) U Er (#£),

where:

Eb {Kl) = {xy\xy G E (B), x G X and y G Y} U {xy\x, y e X}

and

Er {Kc
n) - {xy\xy G E{B), x G Y and y G X} U {xy\x, y G Y}.

Now, it is easy to see that B has a Hamiltonian cycle if and only if K^
has an alternating Hamiltonian cycle.

The following results are used in section 2.

THEOREM 1. M. Bânkfalvi and Z. Bânkfalvi [1]: Let K%p be a 2-edge-
colored complete graph with vertex-set V (K^) — { x i , #2 , • - • , #2p}-

Assume that r (xi) < r{x2) < ••• < r(x2P). The graph K^p contains

an alternating factor with a minimum number m of alternating cycles if and

only if there are m numbers kt, 2 < kj < p — 2, such that, for each i,

i — 1,2. . . . . m , we have:

r (xi) -h r (x2) + • • - + r (xk.) + b (x2p) + b (x2p_i)

vol. 30, n° 4, 1996



4 2 0 A. BENKOUAR et al.

LEMMA 1. Manoussakis and Tuza [16]: Let B be a bipartite tournament.
Assume thaï B contains two pairwise vertex-disjoint cycles W\ and
W%. If there is at least one arc oriented from W\ to W2 and another
one oriented from W2 to W\> then B contains a cycle W such that
V{W) = V{Wi) U V(W2). Furthermore, findind W can be done in
O{\V{Wi)\\V{W2)\) time.

In section 3, we give sorne NP-complete results for Hamiltonian problems
on fc-edge-colored complete graphs, k > 3, and we propose related problems.

Finally, in section 4, we present algorithmic results regarding the existence
of alternating Eulerian cycles and paths in directed edge-colored graphs.

2. ALTERNATING HAMILTONIAN CYCLES AND PATHS IN 2-EDGE-COLORED
COMPLETE GRAPHS

In this section, we suppose that K% admits F , an alternating factor
consisting of m alternating cycles Ci, C2} . . . , Cm , m > 2. It turns out to
be convenient, for technical reasons, to divide the vertices of each alternating
cycle Ci into two classes Xi and YÙ where X% = {a^i, Xi2j . . -, XÎS} and
Yi — {î/ïi, î/i2, -•- , Vis) such that the edge Xijyij is red and the edge
yij rcj(j+i) is blue, for each j = 1, 2} . . , , s (where 2s is the length of the
cycle and j is considered modulo s). Furthermore, if Ci and C2 are two
cycles of F (if any) with classes Xi, Y\ and X2, Y% respectively, then we
say that Ci dominâtes C2 if either ail X\ C% edges are red and all Y\ G%
edges are blue or ail X\ Ci edges are blue and ail Y\ C2 edges are red.

In the first part of this section, we prove lemma 2 and we establish
procedure 1 for complete graphs whose vertices are covered by two pairwise
vertex-disjoint alternating cycles. These preliminary results are useful for
algorithm 1 given later.

LEMMA 2: Let Kf% be a 2-edge-colored complete graph, Assume that
there exist two pair-wise vertex-disjoint alternating cycles Ci, C2 in K^
covering all its vertices, Furthermore, assume that there are at least two
X1X2- (or X1I2- or Y1X2- or YiY2~) edges with different colors. Then K%
contains an alternating Hamiltonian cycle, which can be obtained in time
O{\V{CX)\\V{C2)\).

Proof: Assume first that there exist at least two X1Y2- or Y1X2-edges
having different colors.

Let 5 b e a bipartite tournament obtained from K^ as follows:

• its vertex set is defined as V (B) = XfUYf (Xf and Y' are the bipartition
classes of B)9 where X1 = X\ U X2 and Y' = Yi U Y2\
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• the arc-set of B is defined from E(K%) as follows: (i) delete each
colored edge inside the classes Xf and Y' of B\ (ii) let now x, y be two
vertices of B, x e Xf and y eYf; if the edge xy is a red one in K^, then
replace it by an arc oriented from x to y in B\ otherwise, if xy is blue,
replace it by an arc oriented from y to x in B.

Now, if there exist two X1Y2 (or YiX2)-edges with different colors
in Kf%, then, clearly, B satisfies the conditions of lemma 1 (given in the
introduction) and therefore it admits a Hamiltonian cycle. This Hamiltonian
cycle corresponds to an alternating Hamiltonian cycle of Kfx.

Assume next that there are at least two X\XÏ- or Y1Y2-edges with
different colors in Kft . In this case, define a bipartite tournament with
classes X' - X\ U X% and Y' = Y\ U Y% and edge-set as previously and
complete the argument as above. •

Let us now establish procedure 1 which, given a 2-edge-colored graph K%
and two alternating cycles Ci, C2 of orders t and s, respectively, such that
C\ dominâtes C2, it outputs either an alternating Hamiltonian cycle or else
a statement that ail X\X\ and X\C% edges are monochromatic. It is easy
to see that the complexity of procedure 1 is of O (t2).

Input: a 2-edge-colored graph K^ and two alternating cycles Ci , C2 such that Ci
dominâtes C2.
Output: Either an alternating Hamiltonian cycle or else that ail X\X\ and X\Ci edges are
monochromatic.

Assume w.l.ofg. that ail X\ Ci edges are red; we look now if there exists a blue edge Xi Xj,
where i ^ j and xi, Xj 6 X\\ if this is the case, then an alternating cycle of Kc;% is
the cycle yt^ xt^x . . . xj xi yl xt+x ... y^x y(

h x'h y^_x . . . y'k+1 x'k+1 yl-i, where yf
h is an

appropriate vertex of Y%.

Similarly, if there exists a red edge yt yt, where i ^ j and yr » y3 e Y\, then by using the same
arguments, one can find, once more, an alternating Hamiltonien cycle of K^-

Procedure 1.

The following lemma 3 will be used in algorithm 1 given later.

LEMMA 3: Let K^ be a 2-edge-colored complete graph containing an
alternating factor F consisting of cycles C1C2, . . . , Gm, m > 2. Assume
that Ci dominâtes C/+i for each i = 1, 2, . . . , m — 1. Assume, without
loss of gênerality, that ail X1C2 edges are red. Then, (i) there exists an
alternating Hamiltonian path with begin in Y\ and terminus in Cm such that
both first and last edges of this path are blue; (ii) if Ci dominâtes Cm and
the edges Xi Cm are blue, then K^ admits an alternating Hamiltonian cycle.
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Proof: (i) Since C\ dominâtes C% and ail X1C2 edges are red, then ail
Y1C2 edges are blue. We first find a path Pi with vertex set {xn} U V (C2)
such that its first edge is red and its last one is blue as follows: if all X2C3
edges are red, then Pi has begin x n and terminus #2?:» where the vertex
X2i is appropriately chosen in X2. On the other hand, if all X2C3 edges are
blue, then Pi has begin xn and terminus t/2«» where in this case yi% € Y%.
Assume w.l.olg. that Pi has begin x\\ and terminus y2i, where in this case
V2i £ Y}. Assume w.l.ofg, that Pi has being x n and terminus X2i> We next
find a path P2 with vertex-set {x2i} U V (C3) such that its first edge is red
and its last edge is blue as follows: if the X$ C4 edges are blue, then P2
begins at X2% and déterminâtes at y$j, where y$j is appropriately chosen in
I 3 . On the other hand, if the X3 C4 edges are red, then P% begins at X2i and
déterminâtes at x$j, where xzj E X3. Continuing in this way, that is trying to
pass from a cycle d to a cycle O?+i, 1 < i < m — 1, through a red edge, we
find paths P3, P4 and so on, until the last path P m _ i is found. We complete
the argument by setting P = (V (Ci)\{xn}) U Pi U P2 U . . . U P m _ i .

(ii) The alternating path of (i) together with a red edge between Y\ and
Cm define an alternating Hamiltonian cycle of Kft. M

DÉFINITION 1: From a given factor F = {Ci, . . . , Cm} of K^, one can
define a new graph D as follows: replace each cycle Ci of F by a new
vertex a and then add the arc CÎCJ, i ^ j , i, j = 1, 2, . . . , m, in D, if and
only if d dominâtes Cj in K%. Otherwise, one can add both arcs ctcj and
CjCj. Clearly, D is a semi-complète digraph. D is said to be the underlying
graph of if£, while C% is called the underlying cycle of C{. •

The following lemma is crucial, since it mathematically justifies the first
three steps of algorithm L

LEMMA 4: If D is strongly connected, then K£ admits an alternating
Hamiltonian cycle.

Proof: By induction on the number m of vertices of D; the case m — 2 has
been proved in lemma 2. Let D1 be a proper strongly connected subgraph, if
any, of D, Le., \V (Df)\ < \V (D)\. If Df exists, then the underlying cycles
of D1 can be contracted to one cycle in Kf% by induction. Now, K£ admits a
new factor with less than m cycles. Consequently, we complete the argument
by applying again induction on the underlying graph of this new factor.
Otherwise, if Df does not exist, then D consists of a Hamiltonian path, say ci,
C2> • • •, cm , with ail arcs directed from c?; to c ; , i < j , expect for the arc bet-
ween ci and Cm which is directed from cm to c\, However, in this particular

Recherche opérationnelle/Opérations Research



HAMILTONIAN PROBLEMS IN EDGE-COLORED,.. 423

case, we can easily find an alternating Hamiltonian cycle of K % by using ap-
propriate edges from Ci to Ci+i in K^, where i is considered modulo m. •

[1] Find a blue maximum matching Mj> and a red one Mr in K^\ if either \Mb\ < n /2 or
| M r | < n/2, then stop; üf£ has no alternating factor; otherwise, form an alternating factor
F by considering the union of M^ and Mr,

[2] Let Ci,, C2, . •., C m , m > 1, be the alternating cycles of F (in what follows, we shall
shortly write F —> Ci,, C2) . . . , Cm) , if m = 1, then we stop by setting y, - 1 and
R\ = Ci ; assume that m > 2; if for some i < j , i, j = 1, 2. . . . , m, neither C% dominâtes
Cj nor Cj dominâtes Ci, then by applying lemma 2 on the subgraph of K^ induced by
V (Ci) U V (Cj), we produce an alternating cycle, say C', with vertex set V (Ci) U V (Cj);
we set d «- C', C/, «- C/,+i for ail /i, j < h < m - 1, m <- m - 1, F <- Ci ,
C2, ... i Cm and then we go to the beginning of this step;
when this step terminâtes, if m = 1, then we set \x = 1, R\ = Ci and then stop the
algorithm; if m > 3, then we go to step 3, else we go to step 5.

[3] After step 2, the underlying graph D of K^ is clearly a tournament; now, we find the
strongly connected components Â , i = 1, 2, . . . , ̂  of D by using the algorithm of [12];
set \V (Di)\ — di\ if for each z, d{ = 1, z'.e., D is a transitive tournament, then go to step
4; otherwise, for each non trivial component Di of D, the algorithm of [12] produces a
Hamiltonian cycle denoted, say, by c\, c^, ..., cl

d.\ by using appropriate colored edges
bet ween each pair of the underlying alternating cycles C] and C*+ 1 , we define easily an
alternating cycle C% corresponding to each such component D% of D\ if î = 1, then we
terminale the algorithm by setting fj, = 1 and #1 = Ci ; on the other hand, if £ > 2, then
we set m -s— £, F <— Ci, C2, . . . , C m ; now, if £ = 2 and neither Ci dominâtes C2 nor
C2 dominâtes Ci, then we go back to the beginning of step 2; otherwise, we go to step 5.

[4] By the actual structure of K^ C2 dominâtes Cj for each 1 < i < j < m, ie., by lemma 4
the underlying graph is a transitive tournament; let Ci, C2. . . . , C m be an ordering of the
cycles such that Ci dominâtes Cj+i for each i = 1, 2, . . . , m — 1; assume, without loss
of generality, that the X1C2 edges are red; if for some cycle C t, > 2, the edges X^Cz+i
are blue, then we may interchange the Xi class by the Yi class in Ci without modifying
the ordering of the cycles; therefore, in the sequel, we assume that the edges X^Ci-j-i are
red for each i = 1, 2, . . . , m - 1;
we détermine, if any, the smallest integer hm, 1 < hm < m - 2, such that X ^ m Cm and
XhmCh+i (or, equivalently, Yhm Cm and Yhm Chm+i) are not monochromatic; by using
lemma 3, we find an alternating cycle C with vertex set

V(Chm) U V ( C , m + 1 ) U UV[Cm)\
set m <- m - / im + 1, C m *- C, C m <— C ^ ^ + Ï - I and go back to the beginning of this
step; if hm does not exist, then we try to find the minimum number / i m _ i corresponding
to the cycle C m _ i with the above property and then repeat this step, and so on.

[5] At the end of the previous step, clearly the edges XxCt are red, for all i = 2, .. . ' , m; we
look now if there is a blue edge e inside X\ X\ (or a red edge inside Y\ Y\)\
if e does not exist, then set fj, <— /J, + 1, R^ <— Ci; next, set m <— m — 1, d <— Cj+i,
i = 2, . . . , m - 1 and go back to the begining of this step;
if e exists, say in X±X\, set e <— xzx3\ by using the arguments of lemma 3, find
an alternating path in {1/1-1} U y (C2) U . . . U V ( C m ) with begin yi-y, terminus in
C m , and such that its first and last edges are both blue; then, by using the segment
yi—iXi — i...XjXiyiXi+} . . . y j_ i of Ci, define an alternating cycle with vertex set
V{Cl)UV(C2)U...UV(Cm).

Algorithm 1.
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Algorithm 1 finds an alternating factor with a minimum number of
alternating cycles in 2-edge-colored complete graphs in O(n^) steps. lts
input consîsts of a complete graph K% on n vertices whose edges are
colored red and blue and the output is either an alternating factor F^ of
Kn with a minimum number of alternating cycles iîi, . . . , i?M, \i > 1, or
else an answer that K% has no alternating factor at all. We suppose that K^
has an even number of vertices, since otherwise it has no alternating factor.
Furthermore, in the beginning, we initialize JJL to zero.

Algorithm 1 terminâtes within at most O (n3) opérations. Namely, finding
perfect matchings in step 1 needs no more than O (n2'5) opérations [7].
Each call of step 2 terminâtes within O (n2) opérations. In f act, we have
to check the domination relation of each pair of cycles Ci and Cj. Since
the cost for each pair is O (\V (d)\ |V"(Cj)|), the whole cost is bounded
by O ( ] T |V (d)\ \V (Cj)\) < O (n2). Also, step 3 costs O (n2) opérations,

Le., the complexity for finding the minimum number of cycles covering the
vertices of a tournament of order m — O (n) [12]. Since steps 2 and 3 are
called O (n) times, it follows that the whole of exécutions of these steps
requires a total amount of O (n3) opérations. Finally, steps 4 and 5 terminate
with at most O (n2), since the edges of K£ are examined a constant number
of times. It follows that the complexity of the whole algorithm is O(n3).
Moreover, we prove that when our algorithm terminâtes, then K^ has no
alternating factor with less than \i alternating cycles. This can be proved
by showing that conditions of theorem 1 are satisfied. Namely, we define
k% — ̂  Cjy i = 1, 2, . . . , /x - 1. It follows from the structure of K^ that

3<ï

the vertices with the kt smallest blue degrees and the k% smallest red degrees
are these of V (Ci) U V (C2) U V (C3) U . . . U V (d). By considering the
sum of these smallest degrees, we obtain

iyiiiy"i+ E

2

which is our assertion.
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From algorithm 1, we obtain the following concluding theorem 2.

THEOREM 2: There exists an O (n3) algorithm for finding Hamiltonian
cycles in a 2-edge-colored complete graph K^.

We conclude this section by giving a characterization of 2-edge-colored
complete graphs admitting alternating Hamiltonian paths.

THEOREM 3: Any 2-edge-colored complete graph Kfx has a Hamiltonian
path if an only if the graph K% has: (i) an alternating factor or, (ii) an
"almost alternating factor", that is a spanning subgraph which differs from
a factor by the color of exactly one edge e or, finally, (iii) an odd nùmber of
vertices and, furthermore, K% has a red matching (5) Mr and a blue one (6)

Yi 2
MO, each one having cardinality .

Proof: The necessity is obvious. Let now G be a 2-edge-colored complete
graph obtained from K^ depending upon the case (i), (ii) or (iii) as follows:

(i) define G = K*\

(ii) define G = K%9 but change the color of the edge e, that is color e
blue in G, if its color was red in K% and vice versa;

(iii) let x be the vertex of K% which is not saturated by M$; in
this case, define V (G) = V (K£) U {z}, where z is a new vertex and
E(G) = E (K%) U {zw\w e V (üf£)}; the edge zx is colored blue and any
other edge zw, (w G V (K^)\{x}), is colored red in G.

Let now F be an alternating factor of G consisting of alternating cycles
Ci y . . . , Cm y m > 1. If m = 1, then G has an alternating Hamiltonian cycle,
and therefore, in an obvious way, we can find an alternating Hamiltonian
path in K£- In what follows, assume that m > 2. Furthermore, by using
the arguments of algorithm 1, we can suppose that Ci dominâtes C3 foi* z,
j — 1, 2, . . . , m and i < j . Now, if G is obtained as described in (i) (resp.,
in (ii)), then by using the arguments of lemma 3, we may find an alternating
Hamiltonian path (resp., an alternating Hamiltonian path avoiding e) in Kfx.
On the other hand, if G is obtained as described in (iii), then we can see
that z belongs to Ci since b(z) = 1. Consequently, once more, we may
complete the proof by using the arguments of lemma 3. •

(5) A matching ail of edges of which are red.
(6) A matching ail of edges of which are blue.
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Relying on lemmas 2, 3 and 3, theorem 3, we deduce an O (n3) algorithm
for finding alternating Hamiltonian paths. The techniques used for this
algorithm are pretty much similar than the ones of algorithm 1 and thus it
(the algorithm) is omitted.

3. SOME NP-COMPLETENESS RESULTS

In this section, we consider the problem of finding Hamiltonian
configurations with specified edge-colorings in fc-edge-colored graphs, k > 3.
We prove that some of these problems are NP-complete.

Notation: Let p be an inter and * — {xi X2, • • *, Xfc} be the set of used
colors. A (xi X2 . • • Xk) cycle (path) is a cycle (path) of length pk such that
the séquence of colors (xi X2 • • • Xk) is a repeated p times.

THEOREM 4: The problem II; "given a 3-edge colored complete graph K^,
does there exist a Hamiltonian (xi X2 Xs) cycle in K^?" is NP-complete?

Proof: II is trivially in NP.
The réduction is from the directed Hamiltonian cycle problem (DHC, [10]).
Let us consider an instance D = (V, A) of DHC, We first split each

vertex vu i — 1, • • •, rc, of D into three vertices Vil9 VÎ2, VJZ. We color the
edge v^Vi2 by xi, the edge vl2vH by X2 and the edge VÎ3VJ1 by X3» only if
Vi Vj E D (of course, VJ is also splitted into VJ19 VJ2, VJ3). We complete the
graph by adding edges of color xi- Let us dénote by K^ the so-obtained
complete edge-colored graph.

If a Hamiltonian cycle H is given for D9 then it is easy to construct a
Hamiltonian (xi X2 X3) cycle for K^ as follows: first, we order, arbitrary,
the vertices of H in such a way that vi précèdes Vj in the ordering, if and
only if Vi is the predecessor of Vj in H; next, we consider the cycle Hc of
K^ where we have replaced every vertex vi of H by the path v^v^v^.

Let us now suppose that a Hamiltonian (xi X2 X3) cycle Hc is given
for Kc

n.

If the séquence of vertices in Hc is t ^ t ^ t ^ , . . . , i = 1, . . . , n, then
it is easy to construct a Hamiltonian cycle H for D by simply replacing
the séquence Vi±vi2viz by vi.

Let us now suppose that the séquence of vertices of Hc has not the form
just described. Then, it is easy to see that, for every i, the segment of Hc

colored by X2 and X3 1S °f t n e form Vi2vi3vj1, since, for every i and j
such that v% is predecessor of VJ in D, v%2viz and vi3v3l are the only edges

Recherche opérationnelle/Opérations Research



HAMILTONIAN PROBLEMS IN EDGE-COLORED... 427

colored by X2 an(* X3> respectively. Let us now see which can be the vertex
x "sending" an edge of color xi t 0 vi2 ( w e ^ a v e a l r e ady examined the case
where this vertex is vtl);

(i) if x — ffc2, k 7̂  i, then there must be an edge of Hc colored by X3
incident to v^, and this is impossible by the construction of K^ ;

(ii) if x = Vk3, k 7̂  i, then we must suppose that, in Hc, there exists an
edge, colored by X3, incident to t%3 ; by the construction of Kc

a, this edge has
to be of the form vixv^\ consequently, there must be an edge of Hc, colored
by X2, incident to v^, impossible by the way the edges of Kft are colored.

So, the only possibility, in view of the hypothesis on the feasibility of
Hc, is that x = vmi, m -fi i.

On the other hand, let us suppose that there exists an edge of Hc, colored
by xi> of the form vlzv3l (7); then, by the way the coloring of the edges
of K£ has been performed, v\3 has to be adjacent, in Hc, to the edge
Vi2 Viz colored by X2\ but then, vi2 has to be adjacent, in Hc\ to an edge
colored by X3> impossible given the way the coloring of the edges of K^
has been constructed.

The above remarks indicate that once a Hamiltonian (xi X2 X3) cycle Hc

has been found in Kc
a, one can, in any case, reconstitute a séquence, H,

of all of the vertices of D such that every two consécutive vertices are in
relation predecessor-successor, every vertex appearing once and only once
in H\ this can be done by simply examining every segment vl2 vlz VJX of
Hc and putting Vj and VJ aside in H\ then, H constitutes a Hamiltonian
cycle for D. •

THEOREM 5: The problem: "given positive integers p and fc, k > 4, and a
k-edge-colored complete graph K^ such that n = fep, does K^ contain a
(xi X2 • • • Xk) Hamiltonian cycle C? is NP-complete.

Proof: Our problem is in NP, since for a given cycle, we may deduce in
polynomial time if it has the required properties.

For the proof of the completeness, we transform DHC to our problem.

Consider any arbitrary instance of DHC by taking a directed graph
D (V, A) with vertex set V (D) and are set A (D). We have to construct a
fc-edge-colored complete graph K^sxxch that D has a Hamiltonian cycle G1

C) We recall that such an edge indicates that VJ is not successor of v% in D.
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if and only if Kf% has a (xi X2 * • • Xk) Hamiltonian cycle C such that the
séquence of colors (xi X2 • • • Xk) appears n/k times on C,

Set \V(D)\ = n', V(D) = {vu V2> . . . , vw} and n = kri. The
graph üf£ has vertex-set V(K%) = M {vij\l < j < &}, where the

fe vertices {vi j\l < j < k} of iT£ are associated to each vertex ^ of D\

E{Kc
n) = {xy\x, y e V (#£)}•

Every edge <u^ -u^i, i ^ j , 1 < j , i < n', is colored by Xk if and only if
Vi Vj is an arc of D\ otherwise, v^k VJA is colored xi- In addition, the edges
v^ 1 Vj.2, i "Ê'j, are colored Xfc» e a c h edge vtj Vij+uj = 1, 2, . . . , fc-1, is
colored Xj ? and any other edge of Kf% is colored xi • So, we have constructed
a complete graph K% on nf k vertices, its edges being colored by k colors.
Clearly, this construction is obtained in polynomial time.

Let us suppose now that a Hamiltonian cycle C1 is found in D. A cycle
C is easily constructed in Kfx by replacing each vertex vt (resp., each arc
vjVi+i) of Cf by the corresponding path vi_ i VÏ, 2 . •. v\m k-i vu k (resp. by the
corresponding edge t ^^ VJ+I, i) of if£. Clearly, C satisfies ail requirements.

Conversely, assume that if^ contains a Hamiltonian cycle C such that the
séquence of colors (xi X2 • • • Xk) appears n! times on C. We claim that we
may replace any ordered séquence of edges (si £2 • • • £k) on C with colors
(Xi* X2, --- , Xfc). respectively, by an arc V;VJ, i ^ j , of D and obtain
thereby a Hamiltonian cycle in D.

To prove this, we have to show by contradiction that the séquence
(ei £2 • — ek) of edges is identified by the path vi% 1 vi. 2 - • • v^ k-i ^i. Jt vj, 1
of vertices of Kf%. By the way K% is colored, if this identity breaks off
somewhere, this must arise either on e\ or on e^.

Suppose that ei is not the edge v^ 1 ̂ , 2 . We then distinguish five subcases
depending upon £1.

(à) ei = vj^p v^2y ^ i2 j , 1 < h j < TI7, 3 < p < k — l; since the vertex Vj,p
is non-adjacent to an edge colored by Xk in K^ we obtain a contradiction;

(b) e\ — Vj^k vit %,%i^ j , 1 < ij j < n ;; since e\ précèdes an edge, say ef
k,

with color Xk on C, by our construction we have ef
k = VJ^ up , i , 1 < p < n!\

however, vv^\ is non-adjacent to an edge with color Xfc-i» a contradiction;

(c) ei = Vj^2 v^2> ^ 7̂  j \ 1 ^ î> i < ^ ; ; since ei précèdes an edge e(
k,

with color Xit on C, we have e'fc = ^ .2 Vp.i, j 7̂  p5 1 < P £ ^!\ however,
as in case (b), we can see that v1}> 1 is non adjacent to an edge with color
Xfc-i> once more a contradiction;
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(d) ei — xvi^s, 1 < i < n\ where x € {vj,p\i ^ j , 1 < j < n*,
1 < p < k — l } ; i n this case, we have a contradiction, since in order to
complete our colored cycle, we have to go through the edge 1^3 ^ 2 , while
v^2 is non-adjacent to an edge with color X3i

(e) ei = vi2V^p, 3 < p < fc; then, necessarily, t ^ p t ^ 2 • • • f^p- i € C;
then, the other edge of C adjacent to vhp-i has to be colored by Xp-i» and
such an edge must not be edge v^p-i v^p (otherwise, the Hamiltonicity of C
collapses); on the other hand, by the construction K^, there is no edge, other
than Vi.p-i Vi^p, incident to t ^ - i anc^ colored by xp-i> a contradiction.

Let us now suppose that the identity breaks off on £&; so, the edge e& is
an edge ^^1 VJ^ i ¥" 3\ then, it is easy to see that, since VJ^ is not adjacent
to an edge colored by Xfc-i» this case can ne ver occur on the hypothesis
that C is (xi X2 • • • Xfc) Hamiltonian. •

From theorems 4 and 5, we get the following concluding theorem.

THEOREM 6: Deciding if an edge-colored complete graph Kfr admits a
(Xi X2 • • • Xfc) Hamiltonian cycle is NP-complete for k > 2 (and n a multiple
of k).

Also, an immédiate conséquence of theorem 5 is the following corollary.

CoROLLARY 1: The problem offinding a longest alternating cycle or path
with prescribed order in an edge-colored complete graph is NP-hard

By using arguments similar to those of the proof of theorem 5, we may
prove the following result on Hamiltonian paths.

THEOREM 7: The problem: "given rwo positive integers p and k, k > 4 and
a k-edge colored complete graph Kf% such that n — fcp+ 1, does K^ contain
a Hamiltonian (xi X2 • - • Xfc) P^tn P (resp* a Hamiltonian (xi X2 - • • Xk)
path P ' with specified extremities)?" is NP-complete.

In fact, even if the ordering prerequisite is relaxed, the Hamiitonicity
problem remains NP-hard, provided that a frequency on the occurrence of
the colors is maintained.

THEOREM 8: The problem PF: "given two positive integers p and ifc, k > 3
and a k-edge colored complete graph K% such that n = kp, does Kf% contain
an alternating Hamiltonian cycle C such that each color appears at least p
times on C?" is NP-hard.
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Proof: Let us suppose that a polynomial algorithm A solves PF. We
can deduce that DHP (where P stands for path), restricted to assymetric
digraphs, can be solved in polynomial time (we note DHP, even restricted
to assymmetric digraphs, is NP-complete).

Consider an instance G = (V, E) of DHP and label its vertices by
1, 2, . . . , n. If ij is an arc of G, then color the edge ij of the complete
graph under construction by j . For each color fc e {1, 2, . . . , n}, color
the edges of G = (V, (V x V\E)) by k and apply A on the so produced
instance G U G (the complete graph on |V| vertices), of PF (denoted by
K°) with p = 1.

Suppose that an alternating Hamiltonian cycle C is found by A on if*.
Then, since C uses at most one edge of G, C corresponds exactly to a
Hamiltonian path of G.

Conversely, assume that G contains a Hamiltonian path H and let k be
the first vertex of H. Then, by coloring G by fc, A yields a alternating
Hamiltonian cycle for K^ such that each color appears exactly once. •

LEMMA 5: Consider the problem Ii\: "given a 3-edge-colored complete
graph Kn and e — xy an edge of color xi in Kn* does there exist a
Hamiltonian (xi X2 Xs) cycle C in Kfx, such that e appears in C with x
adjacent to an edge of color X3 in C?"; TLi reduces to II.

Proof: We show that starting from an instance K^ of u i , we can construct
an instance K£ of II such that, if K% admits a Hamiltonian (xi X2 Xs) cycle
C, then K^ admits a Hamiltonian (xi X2 Xs) cycle C such that e — xy
(colored by xi) appears in C with x adjacent (in G) to an edge of color X3-

Given the graph K^, we replace the edge e = xy by five new vertices x,
xi, X2, xs and y, then, complete the graph by adding all the missing edges.

We color the new edges as follows:

X(xiz) = X2, V^ G Vr(if,cJ\{x, y, x\, x2

X{x2z) = Xi, Vz E V(Kn)\{x, y, x\, %2

X (xi £2) - X2, X (^1 ^3) = Xi, X (^1 ?/) = X2,

X (^2 ^ 3 ) ^ X 3 , X(^2 2/) = X1) X ( ^ 3 ï / ) = X 1 -
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In the so constructed graph K%9 it suffices to show that any (xi X2 Xs)
Hamiltonian cycle C contains the vertex-sequence xx\ X2 £3 y\ this property
means that, starting from C, we can obtain a (xi X2 xz) Hamiltonian cycle
C in K„ by just replacing the vertex-sequence x x\ X2 x$y of C by the
edge e = xy (colored by

Let us suppose that xx\ $ C. Then, given that x\ has only two adjacent
colors xi and X2 and, moreover, the only edge colored by x i adjacent to
xi, is the edge x\ x% (the edge xx\ being excluded), one can conclude that
x\xz G C. So, let us suppose that zx\x$zf G C, where x(zxi) — X2>
X {x\ xz) = xi and x (#3 z') = X3, and {2, 2/} Ç V ( ^ ) \ { x ) x2}. If this
is the case, then all of the edges adjacent to x% are colored by xi a n d,
consequently, vertex %% cannot make part of any alternating Hamiltonian
cycle of K^', consequently, since x (#1 #2) = X2 and x (#2 #3) = X3> o n e

of the z, zf must be x%\ (a) suppose that z1 = X2, so, zx\ x% X2 G C\ then,
the other edge of C incident to X2 has to be colored by X2, and the only
edge so colored is X2 x\\ but, in this case, zx\ x$ X2 x\ € C, a contradiction
since C is supposed Hamiltonian; (b) on the other hand, if we suppose that
z — X2, then with arguments exactly similar to the ones of case (a), we can
conclude that X3 X2 x\ x% zf G C, another contradiction. So, xx\ G C.

Let us now suppose that x\ X2 $ G. Then, since the remaining (except
x\ X2) edges adjacent to X2 are colored either by xi or by X3. and, moreover,
the only edge colored by X3 i s ^ e e<ige ^2^3 , we can suppose that
ZX2X3 G C, where x (2x2) = Xi» X (^2 ^3) = X3, and 2: G V {K%)\ then, the
only edge adjacent to £3 and colored by X2 is edge X3 x; so, ^^2 X3 x G C
and, by the previous discussion, zx2 #3 xx\ G C; consequently, in C, the
other edge adjacent to x\ has to be colored by X3 and such an edge does
not exist; we conclude then that x\ X2 G C.

Now, it is easy to see that, since xx\ X2 G C, the edge of C adjacent
to X2 has to be colored by X3 an<i the only feasible (from Hamiltonicity
point of view) edge adjacent to X2 in K% and colored by X3 is the edge

3; so, XX1X2X3 G C.

With the same arguments, the edge £3 y G C.

So, xx\ X2 x$ y G C and this concludes the proof of lemma 5. •

The above lemma 5 shows that we can force the (xi X2 X3) Hamiltonian
cycle to go through a given set A of edges of an edge-colored complete
graph in a certain order.
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THEOREM 9: Consider the problem II'; "given a 3-edge-colored complete
graph K% and a subset S C V(K^) of six vertices of K^* does there exist a
(Xi X2 X3) cycle in K^ containing the vertices of S?"; II' is NP-hard.

Proof: Consider first the following local cycle problem (LC, [9]) where,
given a directed graph G and two specified vertices a and b of G, we search
if there exists a cycle through the vertives a and b in G.

We know that LC is NP-complete. Moreover, it is easy to see that LC is
NP-complete even if G is bipartite (it suffices to add an intermediate vertex
on each are of G).

We consider now the following décision problem LC':

Instance: A directed bipartite graph G, two vertices a and b of G, and
an arc au of G.

Question: Does there exist a cycle of G through a and b using arc ait?

Clearly, LC' is NP-hard because if we have a polynomial algorithm A for
LC', then applying A on every instance (G, a, J>, au) (for every arc au of
G), we can solve LC for every instance (G, a, b) where G is bipartite.

We are going now to reduce LC' to II'. Let G — ((X, Y, A), a, &, au)
be an instance of LC' (X and Y are the color classes and A is the arc-set
of G). We can suppose without loss of generality that a G X.

Construct a 3-edge-colored complete graph Kf% in the following way;

1) VK$ = X U Y U Y', where \Y'\ - |Y|;

2) ail edges in X, Y, Y' are colored by %3, xi and X2> respectively;

3) for every arc xy in A (G) (where x G X and y G Y), color the
corresponding edge xy of K^ by xi'»

4) for every pair (x} y) of vertices of G, such that x G X, y G y and
^y 0 ^.(G), color the edge xy of if£ by X3',

5) add a perfect matching M in (y, y ' ) and color its edges by X2\ color
all the other edges between (y, y ' ) by xii f°r every vertex y of Y, we
dénote by y' its mate (8) with respect to the matching M;

6) for every vertex y G Y, if arc yx G A (G) (x G X), then color the
edge y1 x by X3» the rest of the (non-colored) edges incident to yf are
colored by X2\

(8) Given a matching M and an edge xy G M, we consider that x (resp., y) is the mate of y
(resp., x).

Recherche opérationnelle/Opérations Research



HAMILTONIAN PROBLEMS IN EDGE-COLORED... 433

7) replace the particular arc au of G by the component D of 5 vertices
designed in the proof of lemma 5 and set S — V (D) U {b}, More
precisely, we add three vertices xi, X2, £3 on the edge au with the colors
indicated in lemma 5, namely: for every z G V (üf£)\{a, u, # i , x%, £3},
X (ai z) ~ X2» X (z2 2) = XI» X (a* z ) = X3 and x ( ^ 1 ) = X ( ^ 2 ) = Xi»
X(ax3) = X2, x M = X3> X(^i^2) = X ( ^ i ^ ) = X2, X (^1 2:3) = xi»
x(^2^3) = X3 and x ( ^ 2 ^ ) = x ( ^ 3 ^ ) = Xi and we set 5 =
{a, #i , #2Î £3, w, 6}. This complètes the description of the instance of II'.

Now, we claim that G admits a cycle containing a and b and passing
through the arc au if and only if K% admits a (xi X2 X3) cycle containing 5 .

In fact, let C be a cycle of G containing a and b and passing through the
arc au. Then, replacing every séquence xyxf of C (where x, x1 e X and
y G Y) by the séquence xyy' x1 (where y1 is the mate of y with respect to
M), and replacing the particular edge au of C by the séquence az i £2 #3 w,
we obtain a (xi X2 X3) cycle of K% containing S.

Conversely, let C" be a (xi X2 X3) cycle of K^ containing S. From
the proof of lemma 5, we know that C' contains necessarily the séquence
ax\ X2 X3 u (because the only property used in the proof of lemma 5, is that
the involved cycle passes through all of the vertices of the component
of the lemma, here denoted by a, x\, £2, £3 and u). Let us write
Cf = (axi X2 £3 u)ziZ2 • • • zm\ then x (^^1) = X2 and z\ — uf (uf -G Y')
because uu1 is the only edge of color X2 incident to u\ therefore, uz2 G A (G)
because x izi zi) — X3- Now, repeating this argument m times, we find that
C" has the form Cl — (ax\ X2 £3 u) u! a\ b\ b^ . . . a^ bk bf

k, where a; G X,
b% G Y and 6' is the counterpart of bi in Y1). Hence, by définition of the
colors in ÜT£, the cycle G = aiiai &i . . . a& 6/- is a cycle of G containing a
and b and passing through the are au as claimed. •

We shall conclude this section with the two following open problems.

PROBLEM 1 : What is the complexity offinding an alternating Hamiltonian
cycle in a k-edge-colored complete graph, k > 3?

PROBLEM 2: Let x and y be two specified vertices in a k-edge-colored
complete graph, k > 2. What is the complexity of finding an alternating
Hamiltonian path between x, y in such a graph?
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Input: a complete fc-partite graph G
classes G\

Output: a

1.
2.
3.

,Gi; •. •, Gk satisfying

perfect matching M of

order the classes t?i, G2

M *- 0;

= (V, E) with an even number of vertices and with vertex
condition (a): \Gj:\ < ] T |Gj|, 1 < i, j < k.

G.

, . . , , Gt in decreasing order;

while M does not saturate all vertices of G do

put M < - M U e where t
delete the vertices £ and

; = xy is an edge between the two first classes;
y, as well as all of their incident edges;

define appropriately a new decreasing ordering of the classes of the obtained graph
end while

Procedure 2. Matching procedure.

4. EULERIAN ALTERNATING CYCLES AND PATHS

In this section, we study the existence of alternating Eulerian cycles in
edge-colored graphs. In what follows, a cycle (resp., a path) is not necessarily
elementary, Le., it goes through an edge once, but it can go through a vertex
many times.

In view of theorem 10 and algorithm 2, we establish procedure 2 that finds
a perfect matching in a specified family of complete fc-partite graphs.

Concerning the completeness of procedure 2, we first notice that G admits
a perfect matching since condition (a) guarantees that G satisfies Tutte's
well known condition ([5] page 76, theorem 5.4). Now, in order to prove
the correctness of the procedure, it suffices to show that after each step the
new obtained graph has always a perfect matching, Le., it satisfies (a).

The proof is by induction on n. It is clear that, for n — k, the procedure
is correct.

Suppose that it is correct for n — 2; we shall prove its correctness for n.

Assume that when we delete an edge xy, we find a new graph which admits
a class G'r satisfying |G>| > ^ |G-|. Then, we had either \Gr\ = ^ |Gj|,

or \GT\ = ] T \Gi\ - 1. Now, if \Gr\ = ^ \Gi\, then x belongs to \Gr

and y belongs to another class, a contradiction to our assumption that

\G'r\ > Y^ \
G
'i\'

 On the Other hand' if
 \

G
A 5Z

contradiction since n is even.
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The sorting in step 1 can be performed in O (|V| log \V\). In step 3, the
deletion of an edge entails the deerease of the cardinalities of only two
classes by one. The new sorting can be performed within O(log|F|) by
using a heap (in fact we have, eventually, to change the place of the two
classes, the cardinalities of which have been changed), and this reordering

will be performed at most -—- times, so the complexity of this opération for
the total of the exécutions of the while loop calls will be of O (\V\ log |V|).
On the other hand, the deletion of the edges incident to the selected one,
takes time O {\E\)9 once more time, for the whole of the itérations of the
while loop. Thus, the total time is of O (max{|£|, |V| log |V|}).

Input: an edge colored graph Gc satisfying the hypotheses of theorem 10.
Output: an aîternating Eulerian cycle.

1. for every vertex v of Gc do apply procedure 2 to Gv endfor

i <- 1;
m «— 1;

2. P <- y0 yx

while there exists MVrn (ym_i y m) $ E(P) do
P <- P u { M y m ( y m J l î / m ) } ;
m <— m + 1;
mark that ym belongs to P
endwhile

Ci «- P ;
QC ^_ Qc\£(Ci) (ie., we delete the edges but not their extremities)

3. if E(GC) is not empty, then find an edge wz in E{GC) endif

i <- i + 1;

yo *- w\

2/1 *- z\
go to step 2;

4. we stack a cycle and we start walking around it until a vertex that is an intersection
point with another cycle is found;
we stack the new cycle and we start walking now around it by preserving the
alternance of colors on the point we have changed the cycle we are walking (we
notice hère that this préservation is always possible);
we continue this procedure until a cycle is entirely walked out in which case is
unstacked;
we continue in this way until the stack becomes empty;
The above walk détermines an Eulerian cycle.

Algorithm 2.

THEOREM 10: Let Gc be an edge colored graph of order n. Then, there
exists an aîternating Eulerian cycle in Gc if and only if it is connected,
for each vertex x and for each color i, the total degree of x is even,
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and, Xi (x) < y ^ Xj ix)- Moreover, algorithm 2 finds such a cycle in

O(max{n \E\, n2 logn}).

Proof: Let us notice that the necessary condition is obvious.

Let us prove the sufficient one.

For every vertex v and every edge e incident to v, we will associate an
edge denoted by Mv(e) incident to v such that xie) ¥" x(Mv(e)). This
association guarantees that each time we visit v through the edge e, we can
leave v through Mv (e). In order to détermine such an association, for each
vertex v, we define a new graph Gv such that the vertices of Gv are the
edges adjacent to v. Furthermore, two vertices are connected in Gv if their
corresponding edges in Gc have different colors. It is clear that associating
e to Mv (e) is the same as finding a perfect matching in Gv. We remark
that Gv vérifies condition (a) and that Gv is a complete fc-partite graph.
Consequently, procedure 2 produces always a perfect matching in Gv.

It is easy to see that algorithm 2 is correct for small values of \E (Gc)\.
Let us now prove, by induction on \E (Gc)|, that the algorithm cornes up
with an Eulerian cycle. Applying steps 1 and 2 (in step 2, we suppose that
2/0 %f\ is an edge of G°) of the algorithm, we obtain an alternating cycle C.
If E (C) = E (Gc), we have the desired walk. If not, then it can easily be
seen that the induction hypothesis is preserved in each connected component
of G = (V, (E\E(C)). So, each connected connected component of Gc

admits an alternating Eulerian cycle. Consequently, after step 3, the cycles
Ci, C2, . . . , Ci represent an edge-decomposition of Gc. In step 4, we
clearly visit ail cycles Ci, C2, . . . , Ci, since Gc is connected. Finally, at
the end of step 4, we find an Eulerian cycle, since by stacking-unstacking a
cycle, we preserve that its edges are visited only once.

Concerning the complexity of the algorithm, step 1 uses n = \V\ times
procedure 2, requiring thus a total time of O (max{n \E\: n2 log n}). Steps 2
and 3 are both performed in O (\E\) steps, since each edge is visited once.
In step 4, since the walk of a cycle is performed following its edges, the
total time for all of the walks will take O(|J5|); on the other hand, each
cycle will be treated at most 2 times by the stacking-unstacking opération;
so, the total time complexity of step 4 will be of O (\E\). It follows that the
whole time complexity of algorithm is of O (maxjn \E\. n2 logn}). •

A similar algorithm can be used to obtain the following theorem in the
case of directed edge-colored graphs.
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THEOREM 11: Let Dc be an edge-colored digraph. Then there exists
an alternating Eulerian walk in Dc if and only if (i) Dc is strongly
connected, (ii) for each vertex x and for each color i, d+ (x) — d~~ (x)
and df (x) < Y^ dj (ir), where for every vertex x of Dc\ d + (x) (resp.,

d~ (x)) dénotes the external (resp.y internai) degree of x and df (x) (resp.,
d~~ (x)) dénotes the external (resp., internai) degree of color i of x.

5. CONCLUSIONS

The starting point of our work was Bânkfalvis' theorem [1] mentioned in
the introduction. In f act, in [1] the given characterization is not algorithmic.
In this paper, we have shown how to exploit their results to obtain polynomial
algorithms for finding alternating Hamiltonian cycles and paths in 2-edge-
colored complete graphs. As a byproduct, we obtain an efficient algorithm for
the Hamiltonian circuit problem in bipartite tournaments. Moreover, we have
studied the case of /c-edge-colored complete graphs (k > 3) and we have
established a number of NP-completeness results when additional conditions
on the frequency of occurrence of the colors in the Hamiltonian cycles and
paths are imposed. The genera! problem (when no frequency constraints are
imposed) remains open. However, our feeling is that this latter problem is
computationally "easy".

Finally, in the last section of the paper, we have studied the problem of
the existence of alternating Eulerian cycles in edge-colored graphs. We have
given a polynomial characterization of the existence of such cycles and,
moreover, a constructive proof for this characterization.
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