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Quantum dynamics of the radical pair mechanism is a major driving force in quantum biology,
materials science, and spin chemistry. The rich quantum physical underpinnings of the mecha-
nism are determined by a coherent oscillation (quantum beats) between the singlet and triplet
spin states and their interactions with the environment, which is challenging to experimentally ex-
plore and computationally simulate. In this work, we take advantage of quantum computers to
simulate the Hamiltonian evolution and thermal relaxation of two radical pair systems undergoing
the quantum-beat phenomena. We study radical pair systems with nontrivial hyperfine coupling
interactions, namely, 9,10-octalin+/p-terphenyl-d14 (PTP)− and 2,3-dimethylbutane (DMB)+/p-
terphenyl-d14(PTP)− that have one and two groups of magnetically equivalent nuclei, respectively.
Thermal relaxation dynamics in these systems are simulated using three methods: Kraus channel
representations, noise models on Qiskit Aer and the inherent qubit noise present on the near-term
quantum hardware. By leveraging the inherent qubit noise, we are able to simulate noisy quantum
beats in the two radical pairs better than with any classical approximation or quantum simulator.
While classical simulations of paramagnetic relaxation grow errors and uncertainties as a function
of time, near-term quantum computers can match the experimental data throughout its time evo-
lution, showcasing their unique suitability and future promise in simulating open quantum systems
in chemistry.

I. INTRODUCTION

Quantum computation is an emerging and rapidly growing field with transformative potential for high-performance
computing. Chemistry is considered one of the most promising applications of quantum computing, due to the
inherently quantum nature of chemical systems. Spin chemistry, in particular, was recently introduced as a new
promising application of quantum computing [1, 2]. This research area has potential applications in quantum biology,
artificial photosynthesis, solar materials design, organic light-emitting diodes and spin-based quantum computing
[3–7], yet it remains understudied from the quantum computing applications standpoint.

There is a long history of interdisciplinary connections between spin chemistry and quantum computation. On one
hand, spin chemistry expertise has contributed significantly to the development of quantum hardware, especially to
spin-based qubit implementations [4, 5, 8–14]. On the other hand, quantum theory has been applied to spin chemistry
problems such as the magnetoreception phenomenon found in birds. [15–28]. Since electrons and qubits are both
spin-1/2 systems, we aim to utilize quantum computers to simulate spin chemistry quantum dynamics that may be
out of reach for classical digital computers. In our recent study, we showed that the thermal relaxation of a radical
pair undergoing the quantum-beat phenomena can be efficiently simulated on a quantum computer [1]. This inspired
further quantum computing studies of more complex radical pair systems with nontrivial nuclear interactions, and
the development of methods to simulate their full Hamiltonian.

The key mechanism for magnetic and spin effects in free radical recombination kinetics is the Radical Pair Mechanism
(RPM), which is based on the principle of total spin conservation in chemical reactions and singlet-to-triplet time
evolution of a radical pair quantum state (Fig. 1a). Entangled radical pair oscillatory behavior results in “quantum
beats” (Fig. 1b) [29–31]. In a laboratory setting, a quantum beats experiment starts with a pulse of ionizing
radiation passed through a dilute organic solution, which results in solvent (S) ionization as shown in equation 1.
A spin-correlated radical pair is formed as a result of subsequent electron transfer reactions involving the solute
molecules [29, 31]. As shown in equation 2, radical cations are formed when electrons are transferred from electron
donor (D) solute molecules to ionized solvent cations. At the same time, radical anions are generated when electron
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acceptor (A) solute molecules capture electrons from the environment (equation 3).

S → S·+ + e− (1)

D + S·+ → D·+ + S (2)

A+ e− → A·− (3)

Geminate radical pairs retain the spin state of their precursor and are found in either a singlet or triplet state. Due
to hyperfine couplings and unequal Larmor precession rates under an external magnetic field, singlet-to-triplet spin
state oscillations take place that affect the spin-selective recombination product yield. Depending on the radical pair’s
spin state, different products are obtained:

S [A·− +D·+]→ singlet products (4)
T [A·− +D·+]→ triplet products (5)

Oscillations of the singlet state population of radical pairs in a magnetic field are experimentally detected by measuring
the recombination product fluorescence signal and its dependence on time. In each experiment, the fluorescence
intensity is measured in the presence and absence of an external magnetic field, and the ratio of the two dependencies
is taken. The resulting plot is referred to as a Time-Resolved Magnetic Field Effect (TR MFE) curve (Fig. 1c).
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FIG. 1: (a) Formation and spin state evolution of an entangled singlet-triplet radical pair; (b) Vector diagram
representing singlet-to-triplet oscillations in a radical pair in strong magnetic field (adapted from [1]); (c) An example
of simulated time-resolved magnetic field effect (TR MFE) plotted as a ratio of high-field and low-field recombination
kinetics as a function of time for the DMB+/PTP− radical pair.

In this study, we introduce new ways of encoding spin interactions on a quantum computer and implement Hamilto-
nian simulation for two radical-pair systems: namely, 9,10-octalin+/p-terphenyl-d14(PTP)− and 2,3-dimethylbutane
(DMB)+/p-terphenyl-d14(PTP)−, using a quantum simulator and real quantum hardware. These radical pairs are
chosen for the increasing complexity of groups of magnetically equivalent nuclei. The 9,10-octalin radical cation has a
single group of magnetically equivalent nuclei. It is therefore one of the simplest type of systems with multiple nuclei
exhibiting hyperfine coupling. [32]. In contrast, the DMB radical cation is a system with two groups of magnetically
equivalent nuclei described by two hyperfine coupling constants and is an example of the most complex theoretical
system for which there is a general analytical solution [33]. We neglect the hyperfine coupling constants in PTP−

since experimentally it is perdeuterated which makes its hyperfine coupling constants negligible.

On quantum computers, the RPM simulation problem can be modeled as the time evolution of an entangled two-spin
system with magnetic interactions (external magnetic field and/or magnetic nuclei present in the radicals). In this
model, spin-correlated radical pairs are represented by electron-spin qubit pairs initialized in the maximally entangled
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singlet state [5, 11, 12]. The spin-selective recombination of radical pairs can be treated as a quantum measurement
that collapses the wave function into either the singlet or triplet eigenstate [15, 18, 22, 34–44].

To effectively simulate the dynamics of electron spins in radical pairs, the information of the relative orientation of
the electron spin as a function of time is needed. This requires constructing an accurate Hamiltonian model for the
coherent time evolution of the system while simultaneously accounting for the effects of the external environment. The
two main effects governing the time dependent decay of quantum beats are paramagnetic relaxation and temperature.
Classically, the effects of the paramagnetic relaxation on the singlet state population of radical pairs can be most
easily described by equations that are based on semi-classical considerations only i.e. perturbation expansion where
higher-order terms are neglected. While the analytic description of radical-pair oscillations at very short times without
relaxation is classically possible for two or less groups of magnetically equivalent nuclei, the approximation breaks
down when environmental effects and longer simulation times are considered. By utilizing quantum computers, we
can take advantage of the inherent qubit noise to induce paramagnetic relaxation on long time scales. The current
near-term quantum hardware has gate and qubit errors, but rather than considering this a disadvantage, we can
leverage it to effectively model the time-dependent decay of radical pairs undergoing the quantum-beat phenomena.

II. TECHNIQUES

A. Quantum chemistry calculations

First-principles calculations of the g-tensor and HFC constants were carried out with the ORCA 4.2.1 package [45].
The 9,10-octalin and DMB radical cations were optimized at the unrestricted ωB97xd/6-311g(d,p) [46] level of theory.
The minimum of the 9,10-octalin radical cation was found in a twisted chair-like geometry. The hyperfine coupling
constants were calculated for all hydrogen atoms using the B3LYP functional [47] and the polarized triple-zeta (def2-
TZVPP) basis [48] for carbon, and the special double zeta EPR-II (Barone’s Basis for EPR calculations) basis [49]
for hydrogen atoms. All calculations were in gas phase.

(a) 9,10-octalin radical cation (b) DMB radical cation

FIG. 2: Structure of the (a) 9,10-octalin radical cation with a single group of magnetically equivalent nuclei and the
(b) 2,3-dimethylbutane (DMB) radical cation with two groups of magnetically equivalent nuclei. The bond order
between the central carbon atoms in both molecules is decreased relative to their neutral states. These radical cations
are formed by the removal of an electron from the highest occupied molecular orbital (HOMO) which becomes a singly
occupied molecular orbital (SOMO) resulting in a longer net bonding.

Bagryansky et al. [33] performed Time-Resolved Magnetic Field Effect (TR MFE) studies of the DMB+/PTP−

radical pair and found that there were two possible sets of proton HFC constants {a1, a2} with different signs that
fit the experimental data equally well: {a1(12H) = 1.66mT , a2(2H) = 0.65mT} or {a1(12H) = 1.77mT , a2(2H) =
−0.68mT}. Since no further studies for the HFC constants of this radical cation were performed, Bagryansky et al.
were unable to conclude which set of parameters was correct. Our DFT calculations allowed us to determine the
correct set of experimental HFC constants, which we utilized in our quantum simulations of the spin dynamics in the
DMB+/PTP− radical pair.
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B. Basis states selection and Hamiltonian construction

To map the Hamiltonian evolution onto a quantum computer, we need to find Hamiltonian eigenstates and the
corresponding eigenenergies. The most natural choice of a basis is one which preserves all Hamiltonian symmetries
and spans the Hilbert space.

1. System with one group of magnetically equivalent nuclei: 9,10-octalin+/ PTP−radical pair

The 9,10-octalin radical cation can be modeled as a system with eight spin-1/2 nuclear degrees of freedom and one
spin-1/2 electronic subsystem. All nuclear components can be approximated to interact with the electronic subsystem
with the same HFC constant a. Overall, the simulated Hamiltonian consists of three interactions:

H = Hhfc +HB1
+HB2

(6)

Hhfc in equation 7 denotes the HFC interactions of the nuclei of the radical cation with its electronic subsystem,
and HB1 and HB2 in equation 9 contain the effect of the external magnetic field on the electronic subsystems of the
radical cation and anion, respectively.

Hhfc =

8∑
n=1

an In · S1 = a Itotal · S1 (7)

=
a

2

[
(Itotal + S1)2 − I2total − S2

1

]
(8)

HB1,2 =
µBg1,2

~
B · S1,2 =

µBg1,2
~

BzSz1,2 =
µBg1,2

2~
BZ1,2 (9)

In equations 7 through 9, In is the nth nuclear spin in the radical cation, S1 and S2 are the electron spin in the radical
cation and anion, respectively, a is the hyperfine coupling constant in frequency units, B is the external magnetic
field, µB is the Bohr magneton, g1 and g2 are the g-factor of the unpaired electron in the radical cation and anion,
respectively, Bz is the unidirectional magnetic field strength along the z-axis in units of Tesla, and Szi is simply the
Pauli-Z operator divided by a constant of 2 acting on the ith electron.

Due to spin conservation laws, the electronic subsystem of the radical pair undergoing the coherent time evolution
starts in the singlet state. The nuclear subsystem with N nuclei is initiated in the maximally mixed state, where all
2N basis states are equally likely. In density matrix formalism, the initial state is expressed as:

ρ0 =
1

2N
⊗ |S〉 〈S| , where |S〉 =

|↑↓〉 − |↓↑〉√
2

. (10)

The final basis states are formed by multiplying the eight equivalent nuclear spin states by the two individual electronic
spin states. In this basis, the obtained Hamiltonian is block-diagonal with block of size of at most 2×2. It is
straightforward to diagonalize such Hamiltonian and obtain the eigenvalues and eigenstates. However, the initial
state ρ0 of the system (equation 10) is not an eigenstate. To correct for that, the electronic spins, entangled in the
singlet state, need to be re-expressed in the eigenstate basis using the theory of Clebsch-Gordan coefficients [50].
On the quantum computer we use a unitary transformation to achieve this. Every pure nuclear initial state becomes
coupled with the initial singlet state of the electronic subsystem. We find that the singlet state couples to two and only
two of the blocks of the original Hamiltonian. By identifying and enumerating the number of degenerate pure initial
states, we run the Hamiltonian simulation on a very small subset of the basis states. We then classically post-process
the simulation outcomes to account for the maximally mixed initial state. These observations allow us to construct
and further simplify our Hamiltonian simulation circuits, the details of which are discussed in Appendix B 3.
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2. System with two groups of magnetically equivalent nuclei: DMB+/PTP− radical pair

Unlike the 9,10-octalin+/PTP− radical pair characterized by a single HFC constant, the DMB+/ PTP− radical pair
comprises two different groups of magnetically equivalent nuclei. HB1 and HB2 are the same as in equation 9, while
Hhfc from equation 7 needs to be changed as follows:

Hhfc =

[
a1

2∑
n=1

In + a2

14∑
n=3

In

]
· S1 (11)

=

2∑
k=1

ak
2

[
(Itotal,k + S1)2 − I2total,k − S2

1

]
(12)

Hamiltonian solutions for a radical cation with more than one HFC constant carry additional technical challenges. In
this case, the overall symmetry is the spin sum of all the electron and nuclear spins. We choose a basis consisting of
the tensor product of the two groups of nuclear and two individual electronic spin states. Due to the effects of the
magnetic field, the basis of individual spins is more convenient than total spin states. In this basis, the Hamiltonian
is block diagonal, but the size of the blocks is larger than in 9,10-octalin+ since the blocks have more self-interaction
terms.

For the Hamiltonian simulation on a quantum computer, we can not simply select representative states and then build
their weighted average to account for the maximally mixed nuclear initial state as is done for 9,10-octalin+. This is
because every nuclear initial state |I1,m1〉 |I2,m2〉 produces a different outcome, which requires O(N4) simulations
in contrast to O(N) for the single-HFC-constant case. To circumvent that, we partition the Hamiltonian into several
decoupled sections with high degeneracy, and make use of quantum state purification to simulate the maximally mixed
initial state on each partition. In the final classical post-processing step, we combine the singlet state probability
distributions to obtain the outcome for the overall maximally mixed nuclear initial state (Appendices B 2 and C).

C. Hamiltonian simulation

To describe the time evolution of a system, we have to express its Hamiltonian as a unitary operator U = e−iHt. Since
the Hamiltonian is exponential in size, simulating quantum dynamics classically is very challenging. On a quantum
computer this problem can be avoided if the unitary can be efficiently compiled into a sequence of discrete gates. On
IBM’s programmable quantum computers, composed of superconducting circuits, such gates are implemented with
microwave pulses of different frequency and duration. Generic Hamiltonians that act on three or more qubits can
be compiled into a gate sequence consisting of local single-qubit operations and two-qubit controlled-not (CNOT)
gates using the isometry decomposition method [51] available in Qiskit [52]. Additionally, we introduce Hamiltonian
simplification techniques, such as KAK decomposition [53–55], that result in partitioned Hamiltonians acting on one
or two qubits only (Appendix B 3).

D. Open system dynamics simulations

To simulate an open quantum system we employ three different approaches, namely, quantum channel Kraus repre-
sentation, Qiskit Aer noise models and a real quantum hardware (ibm lagos) with its inherent noise profile.

1. Kraus method

A quantum channel can be considered as a unitary transformation acting on the total Hilbert space that includes
both the system and environment (E) degrees of freedom [56]. Unitary time evolution (U) acting on an initial density
matrix ρ0⊗ |0〉 〈0|E that contains some pure state |0〉E in environment (E), can be represented as U(ρ0⊗ |0〉 〈0|E)U†.
It has an equivalent representation with a set of Kraus operators {Ki} acting only on ρ0 according to the equation:

ρ =
∑
i

Kiρ0K
†
i such that

∑
i

K†iKi = 1. (13)
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The two different representations of a quantum channel become equivalent when the environment is traced out using
a partial trace operation as follows:

TrE{U(ρ0 ⊗ |0〉 〈0|E)U†} =
∑
i

Kiρ0K
†
i (14)

The quantum channel Kraus strategy entails constructing an explicit circuit for the infinite temperature amplitude
damping and dephasing channels with the corresponding T1 and T2 parameters [56]. The Kraus operator representation
can be implemented on a quantum computer using ancilla qubits that account for the environment. In our previous
work [1] we showed that the amplitude damping and dephasing noise channels commute with the electronic part of
the Hamiltonians of interest. Since noise is present only in the electronic subsystem, we can implement the coherent
time evolution and the noise channels separately. Notably, decaying both qubits at a rate T1,2 has the same effect as
decaying only one qubit at rate T1,2/2.

There are different quantum circuits that can implement the infinite-temperature amplitude damping and dephasing
Kraus operators. The circuit implementation in Fig. 3 makes use of the fewest number of ancilla qubits [1]. In this
implementation, the two CNOT gates and the controlled-X rotation account for the standard amplitude damping
channel that decays |↑〉 to |↓〉. The probabilistic X gate on the ancilla qubit that is present in the circuit with
probability 1/2 converts the zero-temperature amplitude damping channel to infinite-temperature. This is achieved
by changing the direction of the amplitude decay from |↑〉 → |↓〉 to |↓〉 → |↑〉 in half of the circuit runs. We compute
the weighted average of all configurations of the probabilistic gates for the total thermal relaxation simulation with
the desired T1 and T2 parameters.

amplitude damping

dephasing

temperature

[2cm]q0 X H

U

H

q1

q2 X Rx(φx) (Z)pz

|0〉 (X)p= 1
2

FIG. 3: Quantum circuit with Kraus method implementation using probabilistic gates (indicated with parentheses).
Qubits q0 and q2 represent the electronic subsystem and q1 stands for an exemplary nuclear subsystem. The last
qubit is appended as an ancilla. The singlet state on the electronic qubits is initiated by applying the Pauli-X
(X), Hadamard (H) and CNOT gates. The unitary U represents the coherent time evolution of the spin system.

For thermal relaxation simulations, the corresponding parameters as functions of T1 and T2 are px = 1 − e−
t

T1 ,

pz = 1
2

[
1 − e−t

(
1
T2
− 1

2T1

)]
and φx = 2 sin−1(

√
px) [1]. X gate is applied with probability 1/2 and Z gate with

probability pz.

2. Noise simulations with Qiskit Aer

In our second strategy to simulate an open quantum system, we use the thermal relaxation error noise model as
available in Qiskit Aer. This model can assign noise to individual gates in a circuit, and is parameterized by relaxation
time constants T1 and T2, the gate duration and the excited state population at equilibrium. In this approach, we
insert a noisy identity gate into the circuit as shown in Fig. 4, which is customized with the desired T1 and T2
relaxation parameters. The gate duration is adjusted to match the time point for which the simulation is run. The
excited state population ratio at the equilibrium is set to 1/2 to account for the infinite temperature effects.
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[2cm]q0 X H

U

H

q1

q2 X I

FIG. 4: Quantum circuit with thermal relaxation error noise model implementation as available in Qiskit Aer. Noise
is assigned to the identity gate I by specifying the desired T1 and T2, the gate time and the excited state population
at equilibrium.

3. Inherent qubit noise from quantum hardware

The third strategy involves simulation of the thermal relaxation of the electronic subsystem of the radical ion pairs
by utilizing the inherent noise present in real quantum hardware [1]. In this method, we classically combine several
different measurement results to match the T1 and T2 values of the radical ion pairs to those of the quantum hardware.
In general, the radical ion pairs decay with T1 and T2 values on the order of nanoseconds, whereas the decay constants
for the IBM quantum hardware are typically on the order of microseconds. To correct for that we run additional
circuits which measure the decay of the quantum hardware with the use of multiple identity gates that introduce
artificial delay (Fig. 5). Additionally, an even number of X gates, referred to as “echo pulses”, are inserted in
between the identity gates [1]. Echo pulses serve as an error mitigation technique for a hardware calibration drift that
introduces phase accumulation over long simulation times. Echo pulses flip |↓〉 to |↑〉 during half of the simulation
run-time allowing the undesired phase accumulation to cancel (Appendix D).

q0 X H I
N
8 X I

N
4 X I

N
4 X I

N
4 X I

N
8 H

q1 X I
N
8 X I

N
4 X I

N
4 X I

N
4 X I

N
8

FIG. 5: Quantum circuit with echo pulses implementing the inherent qubit noise method. N denotes the total number
of identity gates.

E. Classical post-processing

To compare our quantum simulation results with the experimental data, we perform classical data post-processing that
accounts for the device characteristics from the wet lab experiments [33]. The rate of radical pair recombination in the
singlet state is experimentally evaluated by measuring the fluorescence signal produced by the charge recombination
of radiation-generated radical pairs. Fluorescence intensities I(t) as a function of the singlet state probability S(t) of
the geminate radical pairs, are recorded at high and zero magnetic fields and reported as a ratio of the two IB(t)/I0(t).

In order to compare the simulated high-field SB(t) and zero-field S0(t), we let F (t) denote the geminate radical pair

lifetime approximated as F (t) = 1/(t+ t0)
3
2 [33], where t0 depends on the chemical environment. If the experimental

equipment is assumed to be ideal and the fluorescence time is ignored, the intensities at high and zero magnetic fields
are captured by the equation:

ĨB,0(t) = F (t)

[
θSB,0(t) +

1

4
(1− θ)

]
(15)

where θ denotes the experimentally determined geminate pair recombination rate, and SB,0(t) is the input from
our quantum simulations. However, in an experiment, a nonzero fluorescence time is observed, and the recording
device has a finite setup response time. To account for these effects, we first define τf , the fluorescence time, as a
measure of how long it takes for fluorescence to decay by a factor of 1/e. This decay is captured by the expression
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E(t) = exp(−t/τf ). The finite experimental setup response time [33] can be approximated as follows:

G(t) =

{
1
tg
, − tg2 ≤ t ≤

tg
2

0, otherwise
(16)

Since the mentioned effects obey linearity and time-invariance, the observed intensities can be expressed as the
convolution sum:

IB,0(t) = E(t) ∗ ĨB,0(t) ∗G(t), (17)

resulting in the observed ratio:

R =
IB(t)

I0(t)
=
E(t) ∗ ĨB(t) ∗G(t)

E(t) ∗ Ĩ0(t) ∗G(t)
. (18)

III. RESULTS

A. Hyperfine coupling constant calculations

Quantum chemistry calculations were performed to optimize molecular geometries and obtain a good estimate of the
HFC constants for the 9,10-octalin and the DMB radical cations. Computed hyperfine couplings for each hydrogen
atom in both radical cations are shown in Table Ia for 9,10-octalin+ and Table Ib for DMB+ in Appendix A. Due to
different electronic environments found in the “double half-chair” 9,10-octalin radical cation, three different sets of HFC
constants are observed: ca. 0.01mT (γ-protons), 1.62mT (axial β-protons) and 4.72mT (equatorial β-protons). In
experiment, the β-equatorial and β-axial hydrogens are averaged out due to intramolecular ring-flips with an isotropic
average in good agreement to experimental values. The calculated electronic barrier for axial and equatorial hydrogen
flip in 9,10-octalin is ca. 4.4kcal/mol, which renders axial and equatorial protons indistinguishable among half-chair
ring conformations at room temperature, and results in averaging-out of the differences between the equatorial and
the axial hydrogen HFCs. Experimentally, the HFC of 2.5mT to only one group of 8 equivalent protons is observed
[57].

Erel = 0.0 Erel = 4.4

FIG. 6: Optimized ground state geometries of 9,10-octalin (left) and its twisted configuration (right). The relative
electronic energies (in kcal/mol) represent the ring flip barrier rendering axial and equatorial protons indistinguishable.
Since no imaginary frequencies were found for the twisted geometry, we conclude that 4.4kcal/mol is the least amount
of energy needed to flip between axial and equatorial protons and more energy would be required for the ring flip
transition state.

For the DMB radical cation, we compared our calculations to the experimental Time-Resolved Magnetic Field Effect
(TR MFE) results obtained by Bagryansky et al. in an n-hexane solution of 0.1M of DMB and 30µM of p-terphenyl-
d14 (PTP) [33]. The HFC constants of the individual hydrogens in the DMB radical cation span a wide range of
values (Table Ib). Interestingly, the experimental TR MFE is equally well fitted by two different sets of proton HFC
constants with very close absolute values, but different signs. Since no additional experimental EPR data is available
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to determine which set of values is correct, our quantum chemical calculations serve as first evidence in support
of the positive set of HFCs with a1(12H) = 1.66mT and a2(2H) = 0.65mT . These experimental HFC constants
are in good agreement with the computed values of 1.23mT and 0.12mT , respectively. Slight deviations from the
experimental values can be attributed to the fact that experiments were carried out in solution while our calculations
were performed in the gas phase.

B. System with one group of magnetically equivalent nuclei: 9,10-octalin+/PTP− radical pair

The singlet state probability time evolution of the 9,10-octalin+/PTP− radical pair simulated on Qiskit Aer using
the partitioned Hamiltonian simulation method (Appendix B 3) and the Kraus circuit for thermal relaxation is in
excellent agreement with the analytic solution obtained by Bagryansky et. al [32] (Fig. 7 and Fig. 8). In general, in
order to simulate the time evolution for 9,10-octalin+ at an arbitrary magnetic field, simulation and averaging of 25
states is needed. However, it can be shown that the number of initial states can be reduced to just 5 under certain
assumptions (Appendix B). To that end, simulation results at zero and high magnetic fields for five pure nuclear
initial state |I,m〉 for which there is a different probability pattern, are shown in Fig. 7. While at zero-field distinct
probability curves are observed for nuclear initial states with different quantum numbers I, at high-field, it is the
different magnetic numbers |m| that result in distinct probability curves. Notably, oscillation frequencies depend on
the HFC constant as well as the initial nuclear state.
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FIG. 7: Singlet state probability time evolution of individual pure nuclear initial states of 9,10-octalin+ with I =
4, 3, 2, 1, 0 (|m| = 4, 3, 2, 1, 0 for all valid I), at zero (first row) and high (second row) magnetic field. The hyperfine
coupling constant of 9,10-octalin was experimentally found to be a = 24.9G. High magnetic field experiments were
conducted at B = 0.3T , and the g-factors of 9,10-octalin and PTP were approximated to be g1 = g2 = 2.0028. At
zero magnetic field, thermal relaxation has T1 = T2 = 9ns and at high field T1 =∞, T2 = 9ns. Simulations were run
on Qiskit Aer using the partitioned Hamiltonian simulation method (Appendix B 3), and noise was simulated using
the Kraus method.

Since chemistry experiments are performed at room temperature, which corresponds to effectively infinite temperature
for a Hamiltonian system, the actual nuclear initial state is the maximally mixed state, where all states are equally
likely. As such, to simulate the experimental time evolution, we classically build the weighted average of these
different probability curves using the total nuclear state counts from Table V. These probability curves at zero and
high magnetic fields are depicted in Fig. 8 and show great agreement between theoretical and experimental results.

Notably, the weighted averaging of the singlet state probability curves from Fig. 7 is made possible by the specific
basis selection during the Hamiltonian construction step. An alternative strategy allows us to initiate and simulate the
Hamiltonian for the maximally mixed nuclear state (Appendix B 2), but requires one ancilla qubit to be added to the
circuit per nuclear qubit. This might be problematic for near-term quantum hardware where qubits are considered as
an expensive resource. For systems with one group of magnetically equivalent nuclei such as 9,10-octalin, this concern
can be circumvented by a careful basis selection. However, for systems with two or more groups of magnetically
equivalent nuclei, the state counting arguments no longer apply, and the mixed-state initiation method needs to be
employed as a subroutine to reduce the total number of simulated nuclear initial states.
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FIG. 8: Time dependence of the singlet state probabilities at zero (left) and high (right) magnetic field for the
maximally mixed nuclear initial state of 9,10-octalin+. Different pure nuclear initial states with I = 4, 3, 2, 1, 0
(|m| = 4, 3, 2, 1, 0) from Fig. 7 were averaged using the weights from Table V.

The singlet state probability evolution simulated on the quantum hardware with the inherent qubit noise match the
experimental data better than simulator results, especially for longer times. The hardware and simulator results
obtained for the IB(t)/I0(t) ratio are compared with two sets of the experimental data obtained by Bagryansky et al.
[32] (Fig. 9). Experimental parameters a, T1, T2 and the classical post-processing parameter θ are determined by data
fitting. Specifically, the HFC constant a is obtained by fitting the time point at which the global maximum (second
peak) occurs. This data-fit a is found to be within a reasonable error range from our gas-phase quantum chemistry
calculations. Interestingly, deviations between the hardware, simulator and experimental data can be observed at times
less than 10ns. The positions of the initial experimental and simulated peaks match reasonably well, but deviations
in the peak intensity are observed. In the experiment, the first 10ns are not considered reliable, because the peaks
observed during the initial 10ns are due to non-magnetically sensitive light emitted by other decaying excited states
that are generated in the same radical pair solution upon initial irradiation. Radical pairs are typically separated
by ca. 100nm in solution, and due to the relatively slow diffusion mechanism that facilitates radical recombination,
exhibit longer lifetimes. Starting at ca. 8ns, the main experimental peaks are very successfully simulated by the
quantum hardware. The better match of hardware results to experimental data especially at later time points can be
attributed to the fact that the simulator is considering the T1 and T2 relaxation only and can not account for other
types of uncharacterized noise inherently present on the hardware.
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FIG. 9: Fluorescence intensity at high and zero magnetic field (IB(t)/I0(t) ratio) for 9, 10-octalin+ as simulated with
Kraus operators (in blue) vs. measured experimentally (in green and red) vs. simulated with quantum hardware (in
orange). The experimental data was obtained from Bagryansky et al. [32]. Hardware experiments were run on the
ibm lagos quantum computer using the inherent qubit noise for thermal relaxation with full Hamiltonian simulation.
Classical post-processing constants were θ = 0.35, τf = 1.2ns, t0 = 1ns, tg = 1ns.



11

C. System with two groups of magnetically equivalent nuclei: DMB+/PTP− radical pair

The Hamiltonian simulations of the DMB+/PTP− radical pair with the maximally mixed nuclear initial state were
performed using, for the first time, the hyperfine coupling value as suggested by quantum chemistry calculations. The
simulations show different singlet state probability patterns at zero and high magnetic fields, and under thermal noise
(Fig. 10). At zero field, three sharp minima are observed at times ca. 2ns, 20ns and 40ns, respectively, followed
by a peak at ca. 45ns and another small minimum at ca. 59ns. We pay close attention to the simulated peak and
minimum pattern since it is determined by the HFC constants in our system. This pattern of peaks is a fingerprint
of the system, which is why quantum beats have been developed into a spectroscopy technique [29–32].

In the presence of paramagnetic relaxation introduced via the Kraus method, damping of oscillations is observed (Fig.
10). The singlet state probability decays as a function of time with a more rapid decay observed at zero magnetic field
compared to high field. This is because experimentally, at zero field, T1 and T2 decay rates are nonzero, but at high
field T1 decay is negligible compared to T2 decay. Additionally, the relaxation did not shift the peaks and minima
found in the noiseless simulation, but only reduced their amplitudes. Notably, at high field, convergence is reached
when the singlet state population is 0.5, while at zero field, with all four spin states equally possible, the convergence
is found at 0.25.
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FIG. 10: Time dependence of the singlet state probabilities under Hamiltonian evolution with and without thermal
relaxation at zero and high magnetic field for the maximally mixed nuclear initial state of DMB+. Experimental
constants are a1(2H) = 6.5G, a2(12H) = 16.6G; T1 = T2 = 20ns at zero field, and T1 = 2000ns, T2 = 20ns and
g1 = g2 = 2.0028 at high magnetic field of B = 0.1T . Simulations were run using the partitioned mixed-state
Hamiltonian simulation method with Qiskit Aer, and noise was simulated using the Kraus method.

The hardware simulations for the DMB+/PTP− radical pair were performed differently from the 9,10-octalin+/PTP−

radical pair. This is because the DMB+/PTP− radical pair, having many more magnetically active nuclei, is not
feasible to be completely treated by Hamiltonian simulation on the current quantum hardware (Fig. 16 in Appendix
C). Instead, we obtained the coherent time evolution S(t) of the singlet state probability from the simulator and
mapped the decay from the decoherence of the qubits over time.

To compare our quantum simulator and hardware results with the experimental data obtained by Bagryansky et al.
[33], we computed the ratio of fluorescence decay curves at high and zero magnetic fields IB(t)/I0(t). As shown in Fig.
11, our quantum hardware and simulator curves are in very good agreement with experimental data, with respect to
both the intensity and location of the peaks. The excellent agreement for times less than 10ns is due to a different
solvent system used in the DMB+/PTP− radical pair experiment from that in 9,10-octalin+/PTP−, which does not
cause the excess fluorescence due to energy transfer from solvent to solute.
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FIG. 11: Fluorescence intensity decay (IB(t)/I0(t) ratio) for DMB+ as simulated with a quantum simulator (in
blue) and ibm lagos quantum computer (in orange) vs. measured experimentally (in green). Experimental data was
obtained by Bagryansky at al. [33] and digitized [58]. Simulator results were obtained from the data depicted in Fig.
10. Classical post-processing constants were θ = 0.132, τf = 1.2ns, t0 = 1ns, tg = 1ns.

IV. CONCLUSIONS

In this work, we demonstrate that quantum computers are naturally excellent platforms for the simulation of coherent
time evolution and thermal relaxation effects in radical pairs undergoing the quantum-beat phenomena. The Hamil-
tonian simulations of the coherent time evolution of the radical pairs with exact parametrization of hyperfine coupling
constants, different g-factors, and an arbitrary magnetic field strength, result in an exact analytic solution for systems
with one or two groups of magnetically equivalent nuclei. We compare three different thermal relaxation simulation
methods, i.e. Kraus channels, customizable Qiskit Aer noise models and the inherent qubit noise on quantum hard-
ware, and find that the inherent qubit noise is able to reproduce the experimental results most accurately. Our results
suggest that many sources of noise contribute to thermal relaxation of radical pairs and, surprisingly, this type of
noise is inherently found in qubits, but not as much in noise models obtained with quantum simulators using only T1
and T2 noise (or any other of the currently built-in noise sources) or classical simulation methods. These results open
up new ways to explore more complex spin-chemistry systems with nontrivial interactions and demonstrate that the
inherent qubit noise can be an advantage over a classical computer for simulating open quantum systems in chemistry.
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Appendix A: Hyperfine coupling calculations for the 9,10-octalin and 2,3-dimethylbutane radical cations

In this section, we provide additional data on the hyperfine coupling constant calculations for the two radical cations
studied.

Atom ID (Aiso/~) (MHz) (Aiso/~) (mT)

4 37.9699 1.617
5 110.874 4.7210
7 0.2224 0.0095
8 0.2173 0.0093
10 0.2194 0.0093
11 0.2208 0.0094
13 37.9519 1.616
14 110.887 4.7216
16 110.886 4.7215
17 37.9483 1.616
19 0.2189 0.0093
20 0.2213 0.0094
22 0.2219 0.0094
23 0.2178 0.0093
25 110.874 4.7210
26 37.9735 1.6169

(a) 9,10-octalin+

Atom ID (Aiso/~) (MHz) (Aiso/~) (mT)

2 2.9621 0.1261
3 114.3359 4.8684
4 29.0369 1.2364
6 16.7892 0.7149
7 116.2778 4.9511
8 11.1075 0.4730
10 2.9763 0.1267
11 114.325 4.8680
12 28.9945 1.2346
14 11.1384 0.4743
15 16.7314 0.7124
16 116.3005 4.9521
18 22.9339 0.9764
20 22.9435 0.9769

(b) 2,3-dimethylbutane+ (DMB)

TABLE I: Hyperfine coupling constants of the hydrogen atoms in the (a) 9,10-octalin+ and (b) 2,3-dimethylbutane+

radical cations as calculated using ORCA [45]. Labeled hydrogen atoms are shown in Fig. 12.
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(a) 9,10-octalin+ (b) 2,3-dimethylbutane+

FIG. 12: Optimized structure of the (a) 9,10-octalin and the (b) 2,3-dimethylbutane radical cations with labeled
hydrogen atoms.

Appendix B: Hamiltonian simulation of the 9,10-octalin+/PTP− radical pair

1. Full Hamiltonian construction

The full Hamiltonian matrix for 9,10-octalin+/PTP− radical pair system represents 2 unpaired electrons and 8 proton
hyperfine couplings. When we map this Hamiltonian onto a quantum computer, we reserve one qubit per spin-1/2
particle in the system, i.e. 10 qubits, including all degeneracies.

The overall Hamiltonian consists of three interaction terms: hyperfine coupling and the external magnetic field on
the electronic subsystems of the radical cation (B1) and anion (B2), respectively, H = Hhfc + HB1

+ HB2
. The

external magnetic field terms HB1
and HB2

act independently on the electronic subsystems (cation and anion) in the
radical pair, and, therefore, are diagonal in a basis obtained when the electronic subsystems are multiplied as a tensor
product of two individual spin states. On the other hand, the total-spin states of 9,10-octalin+, where 8 nuclear and
1 electronic spins are added together, are the eigenstates of Hhfc. Therefore the total Hamiltonian in either of the
two bases will have off-diagonal elements. When we map to the quantum computer we use the first basis set.

To compute the eigenenergies and eigenstates we count the number of total-spin states using the quantum mechanics
rules of spin addition as shown in Table II. There are 29 = 512 states representing the degrees of freedom in the
9,10-octalin radical cation.

Number
Spin

0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

1 1

2 1 1

3 2 1

4 2 3 1

5 5 4 1

6 5 9 5 1

7 14 14 6 1

8 14 28 20 7 1

9 42 48 27 8 1

TABLE II: Spin addition to count the total-spin states of 9,10-octalin. To progressively count the number of states
with a given total spin, we start with a single spin-1/2 particle. Since adding another spin-1/2 both increases and
decreases the spin by 1/2, we iteratively add all 8 nuclear spin-1/2s, and finally the remaining electronic subsystem
in the last row.

For the first term in Hhfc (equation 7) out of 512 states and using row 9 of Table II, we have:
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42 · 2 = 84 states with 〈1/2| (Itotal + S1)2 |1/2〉 = 1/2 · 3/2 = 3/4
48 · 4 = 192 states with 〈3/2| (Itotal + S1)2 |3/2〉 = 3/2 · 5/2 = 15/4
27 · 6 = 162 states with 〈5/2| (Itotal + S1)2 |5/2〉 = 5/2 · 7/2 = 35/4
8 · 8 = 64 states with 〈7/2| (Itotal + S1)2 |7/2〉 = 7/2 · 9/2 = 63/4

1 · 10 = 10 states with 〈9/2| (Itotal + S1)2 |9/2〉 = 9/2 · 11/2 = 99/4.

Similarly, for the second term in Hhfc (equation 7), we refer to row 8 of Table II. Note that the multiplicity of 2 is
due to the appended electronic spin-1/2.

14 · 1 · 2 = 28 states with 〈0| I2total |0〉 = 0 · 1 = 0
28 · 3 · 2 = 168 states with 〈1| I2total |1〉 = 1 · 2 = 2
20 · 5 · 2 = 200 states with 〈2| I2total |2〉 = 2 · 3 = 6
7 · 7 · 2 = 98 states with 〈3| I2total |3〉 = 3 · 4 = 12
1 · 9 · 2 = 18 states with 〈4| I2total |4〉 = 4 · 5 = 20.

The third and last term in Hhfc (equation 7) is S2
1, which trivially acts on the electronic spin-1/2 and is 1/2 · 3/2 =

3/4. As a constant, it acts in the same way on every row of the Table II. For the following, we use the notation
|(Itotal + S1) : Itotal〉 to denote a quantum state of 9,10-octalin with total spin Itotal + S1 including the nuclear and
electronic subsystems, and whose “parent” total nuclear spin is Itotal. We obtain 9 different eigenenergies of Hhfc as
shown in Table III. These would be the 9 eigenenergies of the total Hamiltonian with B = 0.

|(Itotal + S1) : Itotal〉 | 12 : 0〉 | 1
2

: 1〉 | 3
2

: 1〉 | 3
2

: 2〉 | 5
2

: 2〉 | 5
2

: 3〉 | 7
2

: 3〉 | 7
2

: 4〉 | 9
2

: 4〉

counts 28 56 112 80 120 42 56 8 10

(Itotal + S1)2 3
4

3
4

15
4

15
4

35
4

35
4

63
4

63
4

99
4

I2total 0 2 2 6 6 12 12 20 20

S2
1

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

Hhfc/a 0 -1 0.5 -1.5 1 -2 1.5 -2.5 2

TABLE III: Component eigenenergies of Hhfc in the total spin eigenbasis that includes 9 spin-1/2s of the 9,10-octalin
radical cation.

Since the initial state ρ0 (equation 10) of the system is not an eigenstate, we use the theory of Clebsch-Gordan
coefficients to re-express the electronic spins, entangled in the singlet state, in the eigenstate basis. On the quantum
computer we use a unitary transformation to achieve this. Every pure nuclear initial state becomes coupled with the
initial singlet state of the electronic subsystem. By identifying and enumerating the number of degenerate pure initial
states, we run the Hamiltonian simulation on a very small subset of the basis states. We consistently order them as
in Table IV. The magnetic interaction terms of the Hamiltonian HB1 and HB2 are already diagonal in this basis.

The resulting Hamiltonian matrix can be simulated on a quantum computer without any simplifications. Let 1n
denote an identity matrix of size n × n, CGi the Clebsch-Gordan table in block matrix format for spin addition
i⊕ 1/2, and bi = µB

2~ giB. Λi are the total-spin basis eigenvalues arranged in the diagonal. Values under the brackets
refer to the exact degeneracies. The resulting Hamiltonian appears in equations B1 and B2.

H̃hfc =



CG4︸︷︷︸
×1

CG3︸︷︷︸
×7

CG2︸︷︷︸
×20

CG1︸︷︷︸
×28

CG0︸︷︷︸
×14





Λ4︸︷︷︸
×1

Λ3︸︷︷︸
×7

Λ2︸︷︷︸
×20

Λ1︸︷︷︸
×28

Λ0︸︷︷︸
×14





CG4︸︷︷︸
×1

CG3︸︷︷︸
×7

CG2︸︷︷︸
×20

CG1︸︷︷︸
×28

CG0︸︷︷︸
×14


(B1)

H = a12 ⊗ H̃hfc − b11512 ⊗ Z − b2Z ⊗ 1512 (B2)
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Component eigenenergies Λi of Hhfc/a are arranged consistent with the state ordering in Table IV.

Λ4 = diag{2, 2,−2.5, 2,−2.5, 2,−2.5, 2,−2.5, 2,−2.5, 2,−2.5, 2,−2.5, 2,−2.5, 2} (B3)

Λ3 = diag{1.5, 1.5,−2, 1.5,−2, 1.5,−2, 1.5,−2, 1.5,−2, 1.5,−2, 1.5} (B4)

Λ2 = diag{1, 1,−1.5, 1,−1.5, 1,−1.5, 1,−1.5, 1} (B5)

Λ1 = diag{0.5, 0.5,−1, 0.5,−1, 0.5} (B6)

Λ0 = diag{0, 0} (B7)

PTP electronic 9,10-Octalin nuclear 9,10-Octalin electronic

|↑〉 |4, 4〉 |↑〉
|↓〉

|4, 3〉 |↑〉
|↓〉

|4, 2〉 |↑〉
|↓〉

...
|4,−4〉 |↑〉

|↓〉
|3, 3〉 |↑〉

|↓〉
...
|3,−3〉 |↑〉

|↓〉
|2, 2〉 |↑〉

|↓〉
...
|2,−2〉 |↑〉

|↓〉
|1, 1〉 |↑〉

|↓〉
|1, 0〉 |↑〉

|↓〉
|1,−1〉 |↑〉

|↓〉
|0, 0〉 |↑〉

|↓〉
|↓〉 repeat repeat

...
...

TABLE IV: Basis state ordering for quantum computer simulations. Degeneracies are omitted for simplicity, and the
exact state counts can be found in Table II. Nuclear states are written as total spin states |I,m〉.

For 9,10-octalin+, there are 25 states that need to be averaged under arbitrary magnetic fields. It can be shown
mathematically that for zero magnetic field, only states with different values of I produce different S(t) curves.
Similarly, for high magnetic fields under the equal g-factor assumption, only states with different magnetic numbers
|m| need to be considered. This reduces the number of initial states that need to be simulated from 25 to 5.
Corresponding state counts are shown in Table V. To initiate the quantum circuit in a selected nuclear state, we
identify the state number in the basis ordering, convert it to binary, and use X gates to flip the corresponding qubits
into |1〉. Table VI can be used as a reference to select particular initial states, provided that the basis states have
been ordered according to Table IV. The quantum circuit for the exemplary single instance of |I = 4,m = 2〉 ⊗ |S〉
from Table VI is shown in Figure 13.
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|m| = 0 |m| = 1 |m| = 2 |m| = 3 |m| = 4 zero field

I = 0 1× 14 14

I = 1 1× 28 2× 28 84

I = 2 1× 20 2× 20 2× 20 100

I = 3 1× 7 2× 7 2× 7 2× 7 49

I = 4 1× 1 2× 1 2× 1 2× 1 2× 1 9

high field 70 112 56 16 2 total: 256

TABLE V: State counts obtained in accordance with row 8 of Table II. Each cell indicates the number of total nuclear
states |I,m〉 in the total-spin basis.

|I,m〉 |4, 4〉 |4, 3〉 |4, 2〉 |4, 1〉 |4, 0〉

decimal 0 1 2 3 4

binary 00000000 00000001 00000010 00000011 00000100

|I,m〉 |4,−1〉 |4,−2〉 |4,−3〉 |4,−4〉 |3, 3〉

decimal 5 6 7 8 9

binary 00000101 00000110 00000111 00001000 00001001

|I,m〉 |3, 2〉 |3, 1〉 |3, 0〉 |3,−1〉 |3,−2〉

decimal 10 11 12 13 14

binary 00001010 00001011 00001100 00001101 00001110

|I,m〉 |3,−3〉 |2, 2〉 |2, 1〉 |2, 0〉 |2,−1〉

decimal 15 58 59 60 61

binary 00001111 00111010 00111011 00111100 00111101

|I,m〉 |2,−2〉 |1, 1〉 |1, 0〉 |1,−1〉 |0, 0〉

decimal 62 158 159 160 242

binary 00111110 10011110 10011111 10100000 11110010

TABLE VI: Selecting representative initial states. For example, |I = 4,m = 2〉, is the second basis state starting the
count from 0 in Table IV, and can be initiated as 2 = 00000010 ≡ IIIIIIXI where the the qubit ordering uses the
convention of q8q7...q1.

[4cm]q0 X H

U = e−iHt

H

q1

q2 X

q3

q4

q5

q6

q7

q8

q9 X

FIG. 13: Circuit for the Hamiltonian simulation of a specific nuclear case of |I = 4,m = 2〉. In this unsimplified
method, one qubit is reserved per one spin-1/2 particle. q0 is reserved for the electronic subsystem of 9,10-octalin
and q9 for PTP. q1 through q8 represent the nuclear subsystem. Initial states can be selected by inserting X gates
according to the bit-string representation of the corresponding nuclear initial state. Hamiltonian is provided in matrix
format to Qiskit HamiltonianGate class for efficient gate decomposition.
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2. Mixed state initiation

It is possible to run the time evolution on the exact maximally mixed initial nuclear state without having to run mul-
tiple simulations on different initial states. Although beneficial, this method does not allow for circuit simplification,
and requires as many additional ancilla qubits.

To initiate a maximally mixed (nuclear) state on a quantum circuit, we make use of quantum state purification
techniques. Quantum state purification [56] states that any mixed state can be represented as a pure state if it is
entangled with an appropriate ancilla system A. Specifically, the purification of the maximally mixed state is the
maximally entangled state:

|Ψ〉 =
1√
2N

2N−1∑
n=0

|n〉 |n〉A , (B8)

which allows us to recover the maximally mixed state when we trace out the ancilla system A:

ρ0 =
1

2N
⊗ |S〉 〈S| = TrA

{
1

2N

2N−1∑
n=0

2N−1∑
m=0

|n〉 |n〉A 〈m| 〈m|A
}
⊗ |S〉 〈S| (B9)

The circuit that initiates |Ψ〉 for 9,10-octalin+ with N = 8 is shown in Fig. 14.

q0 X H

U = e−iHt

H

q1

q2

q3

q4

q5

q6

q7

q8

q9 X

qA1 H

qA2 H

qA3 H

qA4 H

qA5 H

qA6 H

qA7 H

qA8 H

FIG. 14: Mixed state Hamiltonian simulation circuit. We maximally entangle the nuclear qubits with an ancilla
system of the same size.
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3. Simplifications to the Hamiltonian simulation circuit

For 9,10-octalin+/PTP− radical pair Hamiltonian simulation, 5 qubits are enough (instead of 8) to represent the 25
nuclear states |I,m〉 of the 9,10-octalin+/PTP− radical pair. However, to make sure our Hamiltonian matrix is of 2n

size (25 = 32), we append 7 · 2 zeros (since 32 − 25 = 7) to achieve the right size. The desired initial state can be
selected from Table VII.

H̃hfc =


CG4

CG3

CG2

CG1

CG0

014




Λ4

Λ3

Λ2

Λ1

Λ0

014




CG4

CG3

CG2

CG1

CG0

014

 (B10)

H = a12 ⊗ H̃hfc − b1164 ⊗ Z − b2Z ⊗ 164 (B11)

where 1n (0n) denotes an identity (zero) matrix of size n × n, CGi the spin addition tables in block matrix format
for adding i⊕ 1/2, bi = µB

2~ giB, and Λi are the component eigenenergies arranged in the diagonal.

|I,m〉 |4, 4〉 |4, 3〉 |4, 2〉 |4, 1〉 |4, 0〉

decimal 0 1 2 3 4

binary 00000 00001 00010 00011 00100

|I,m〉 |4,−1〉 |4,−2〉 |4,−3〉 |4,−4〉 |3, 3〉

decimal 5 6 7 8 9

binary 00101 00110 00111 01000 01001

|I,m〉 |3, 2〉 |3, 1〉 |3, 0〉 |3,−1〉 |3,−2〉

decimal 10 11 12 13 14

binary 01010 01011 01100 01101 01110

|I,m〉 |3,−3〉 |2, 2〉 |2, 1〉 |2, 0〉 |2,−1〉

decimal 15 16 17 18 19

binary 01111 10000 10001 10010 10011

|I,m〉 |2,−2〉 |1, 1〉 |1, 0〉 |1,−1〉 |0, 0〉

decimal 20 21 22 23 24

binary 10100 10101 10110 10111 11000

TABLE VII: Selecting initial states for the Hamiltonian matrix that omits degeneracies.

There is another approach that results in the lowest possible number of qubits, but it requires additional circuits per
initial state of interest to be constructed. This observation follows from the structure of Clebsch-Gordan matrices for
spin addition i⊕1/2. Specifically, the Hamiltonian consists of diagonal blocks of size at most 2×2 and any pure initial
state of form |I,m〉⊗ |S〉 interacts with at most 2 blocks. The two diagonal blocks that the initial state interacts with
are chosen and separate circuits are built for each of those cases. Recalling that we only need one representative nuclear
initial state for different values of I (|m|) at zero (high) magnetic field, the simplest partitioning of the Hamiltonian
is parameterized in a way where x, y are Clebsch-Gordan coefficients, and λ1, λ2 are component eigenenergies. For
simplicity, it is sufficient to parameterize the evolution of nuclear states of form |I,m = I〉 . Corresponding parameters
are shown in Table VIII.
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Hhfc = a

1
x y
y −x

λ1 λ1
λ2

1
x y
y −x

 (B12)

H = 12 ⊗
([

Hhfc

0

]
+ 12 ⊗

b1
2

[
−1

1

])
+
b2
2

[
−1

1

]
⊗ 14 (B13)

|I,m〉 x y λ1 λ2

|4, 4〉
√

1/9
√

8/9 2 −2.5

|3, 3〉
√

1/7
√

6/7 1.5 −2

|2, 2〉
√

1/5
√

4/5 1 −1.5

|1, 1〉
√

1/3
√

2/3 0.5 −1

|0, 0〉 - - 0 0

TABLE VIII: Partitioned Hamiltonian parametrization. Hamiltonian simulation given any nuclear initial state
|I,m = I〉 of the 9,10-octalin radical cation, can be set up by inserting the corresponding Clebsch-Gordan coeffi-
cients x, y and the eigenenergies λ1, λ2 into equation B12.

The Hamiltonian can also be expressed as a linear combination of Pauli matrices. For each Pauli tensor product, an
explicit circuit is constructed, and Trotterization is performed on the non-commuting terms for the overall Hamiltonian
simulation.

H =

[
λ1
4

+
λ1 + λ2

4

]
III +

[
λ1
4

+
(λ1 − λ2)(x2 − y2)

4

]
IZI +

[
λ1
4
− (λ1 − λ2)(x2 − y2)

4
− b1

2

]
IIZ (B14)

+

[
λ1
4
− λ1 + λ2

4

]
IZZ +

(λ1 − λ2)xy

2
IXX +

(λ1 − λ2)xy

2
IY Y − b2

2
ZII

Additionally, the Hamiltonian can be decoupled into two terms, Hhfc + HB1
and HB2

, that act on different qubits.
The first term is acting on two qubits, and its corresponding unitary can be decomposed into three sets of CNOT
gates and four sets of local operations using the KAK decomposition [53–55]. The second term is implemented with
a Z-rotation gate (Fig. 15).

Hhfc +HB1

HB2

q0 X H U3(θa, φa, λa) U3(θc, φc, λc) U3(θe, φe, λe) U3(θg, φg, λg) H

q1 U3(θb, φb, λb) U3(θd, φd, λd) U3(θf , φf , λf ) U3(θh, φh, λh)

q2 X RZ(θ)

FIG. 15: KAK decomposition circuit for the partitioned Hamiltonian simulation. Hhfc + HB1
acting on q0, q1 is

decomposed into the U3 parameters using two qubit cnot decompose function in Qiskit. HB2
is a Z-rotation on q2.

Appendix C: Hamiltonian simulation of the 2,3-dimethylbutane+/PTP− radical pair

The 2,3-dimethylbutane (DMB) radical cation has two groups of magnetically equivalent nuclei, 2 protons with the
hyperfine coupling (HFC) constant a1 and 12 protons with a2. The Hamiltonian setup for radical cations with two
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groups of magnetically equivalent nuclei comes with a technical challenge - the construction of a different basis set for
the Hamiltonian matrix compared to that of 9,10-octalin radical cation. Methods discussed here build upon Appendix
B. The simplest basis set in which the Hamiltonian can be mapped onto a quantum computer and its corresponding
state ordering are listed in Table IX. Notably, the component eigenbases of both H1 and H2 include the electronic
spin-1/2 in their respective total-spin states making Hhfc = H1 +H2 not diagonal in this basis. To circumvent that
we obtain the component eigenenergies of H1 by adding the electronic spin to nuclear spin I1 first and then transform
our bases using Clebsch-Gordan coefficients. We repeat this for H2 with I2 and obtain the basis and eigenenergies
shown in Table IX.

Given that the nuclear initial state is the maximally mixed state, we need run this Hamiltonian for every different
|I2,m2〉 |I1,m1〉 initial state combination. In this basis every nuclear initial state produces a different measurement
outcome S(t). For a radical cation with N nuclei, this increases the required number of simulations from O(N)
to O(N4). Fortunately, because of the underlying symmetries of the full Hamiltonian, it block-diagonalizes into
subsections corresponding to conserved quantum numbers. This enables us to partition the Hamiltonian matrix into
blocks that we can simulate separately. To run Hamiltonian simulation on a quantum computer, we append all-zero
sub-matrices to round up the size of the matrices to the nearest power of 2, if needed. We make use of the mixed
state method for each block to avoid the polynomial increase in complexity. Eventually, the effect of the appended
zeros can be removed, and the probabilities obtained from different simulations can be combined with the correct
degeneracies using classical post-processing steps.

The Hamiltonian matrix construction for I2 = 1 is shown below as an example. Let H ′ be the part of the Hamiltonian
Hhfc +HB1

acting on the 24 states with I2 = 1 from Table IXf.

H ′ = a1 × U1 Λ1 U1 + a2 × U2 Λ2 U2 −
b1
2
× 112 ⊗ Z (C1)

Using the matrix elements λ1 and λ2 from Table IXf, we have the matrices Λ1 and Λ2 shown in equation (C2). In
this, and in the matrices shown subsequently, the matrix elements not shown should be assumed to be zeros.

Λ1 = 13 ⊗



0.5
0.5
−1

0.5
−1

0.5
0

0


, Λ2 =



0.5
0.5

. . .︸︷︷︸
×3

−1
0.5

. . .︸︷︷︸
×7


. (C2)

Now let CGi denote a Clebsch-Gordan table of spin addition i⊕ 1/2 as follows.

CG1 =



1 √
1
3

√
2
3√

2
3 −

√
1
3 √

2
3

√
1
3√

1
3 −

√
2
3

1


, CG0 =

[
1

1

]
(C3)

Due to our choice of state ordering, U1 from equation (C1) can be set as U1 = 13 ⊗
[
CG1

CG0

]
In contrast, U2 is

more complex, because it is composed from spin addition corresponding to the same |I1,m1〉. In general, there is no
compact mathematical expression for U2, because it is the unitary matrix that mixes the electronic state with the
nuclear states |I2,m2〉 as seen in Table IXf. Therefore, it is best described by the pseudocode shown in Procedure 1.
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|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|6, 6〉 |1, 1〉 |↑〉 0.5 3
|↓〉 0.5 3

|1, 0〉 |↑〉 -1 3
|↓〉 0.5 3

|1,−1〉 |↑〉 -1 3
|↓〉 0.5 3

|0, 0〉 |↑〉 0 3
|↓〉 0 3

|6, 5〉 |1, 1〉 |↑〉 0.5 -3.5
|↓〉 0.5 3

|1, 0〉 |↑〉 -1 -3.5
|↓〉 0.5 3

|1,−1〉 |↑〉 -1 -3.5
|↓〉 0.5 3

|0, 0〉 |↑〉 0 -3.5
|↓〉 0 3

...
|6,−6〉 |1, 1〉 |↑〉 0.5 -3.5

|↓〉 0.5 3
|1, 0〉 |↑〉 -1 -3.5

|↓〉 0.5 3
|1,−1〉 |↑〉 -1 -3.5

|↓〉 0.5 3
|0, 0〉 |↑〉 0 -3.5

|↓〉 0 3

(a) I2 = 6

|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|5, 5〉 |1, 1〉 |↑〉 0.5 2.5
|↓〉 0.5 2.5

|1, 0〉 |↑〉 -1 2.5
|↓〉 0.5 2.5

|1,−1〉 |↑〉 -1 2.5
|↓〉 0.5 2.5

|0, 0〉 |↑〉 0 2.5
|↓〉 0 2.5

|5, 4〉 |1, 1〉 |↑〉 0.5 -3
|↓〉 0.5 2.5

|1, 0〉 |↑〉 -1 -3
|↓〉 0.5 2.5

|1,−1〉 |↑〉 -1 -3
|↓〉 0.5 2.5

|0, 0〉 |↑〉 0 -3
|↓〉 0 2.5

...
|5,−5〉 |1, 1〉 |↑〉 0.5 -3

|↓〉 0.5 2.5
|1, 0〉 |↑〉 -1 -3

|↓〉 0.5 2.5
|1,−1〉 |↑〉 -1 -3

|↓〉 0.5 2.5
|0, 0〉 |↑〉 0 -3

|↓〉 0 2.5

(b) I2 = 5

|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|4, 4〉 |1, 1〉 |↑〉 0.5 2
|↓〉 0.5 2

|1, 0〉 |↑〉 -1 2
|↓〉 0.5 2

|1,−1〉 |↑〉 -1 2
|↓〉 0.5 2

|0, 0〉 |↑〉 0 2
|↓〉 0 2

|4, 3〉 |1, 1〉 |↑〉 0.5 -2.5
|↓〉 0.5 2

|1, 0〉 |↑〉 -1 -2.5
|↓〉 0.5 2

|1,−1〉 |↑〉 -1 -2.5
|↓〉 0.5 2

|0, 0〉 |↑〉 0 -2.5
|↓〉 0 2

...
|4,−4〉 |1, 1〉 |↑〉 0.5 -2.5

|↓〉 0.5 2
|1, 0〉 |↑〉 -1 -2.5

|↓〉 0.5 2
|1,−1〉 |↑〉 -1 -2.5

|↓〉 0.5 2
|0, 0〉 |↑〉 0 -2.5

|↓〉 0 2

(c) I2 = 4

|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|3, 3〉 |1, 1〉 |↑〉 0.5 1.5
|↓〉 0.5 1.5

|1, 0〉 |↑〉 -1 1.5
|↓〉 0.5 1.5

|1,−1〉 |↑〉 -1 1.5
|↓〉 0.5 1.5

|0, 0〉 |↑〉 0 1.5
|↓〉 0 1.5

|3, 2〉 |1, 1〉 |↑〉 0.5 -2
|↓〉 0.5 1.5

|1, 0〉 |↑〉 -1 -2
|↓〉 0.5 1.5

|1,−1〉 |↑〉 -1 -2
|↓〉 0.5 1.5

|0, 0〉 |↑〉 0 -2
|↓〉 0 1.5

...
|3,−3〉 |1, 1〉 |↑〉 0.5 -2

|↓〉 0.5 1.5
|1, 0〉 |↑〉 -1 -2

|↓〉 0.5 1.5
|1,−1〉 |↑〉 -1 -2

|↓〉 0.5 1.5
|0, 0〉 |↑〉 0 -2

|↓〉 0 1.5

(d) I2 = 3

|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|2, 2〉 |1, 1〉 |↑〉 0.5 1
|↓〉 0.5 1

|1, 0〉 |↑〉 -1 1
|↓〉 0.5 1

|1,−1〉 |↑〉 -1 1
|↓〉 0.5 1

|0, 0〉 |↑〉 0 1
|↓〉 0 1

|2, 1〉 |1, 1〉 |↑〉 0.5 -1.5
|↓〉 0.5 1

|1, 0〉 |↑〉 -1 -1.5
|↓〉 0.5 1

|1,−1〉 |↑〉 -1 -1.5
|↓〉 0.5 1

|0, 0〉 |↑〉 0 -1.5
|↓〉 0 1

...
|2,−1〉 |1, 1〉 |↑〉 0.5 -1.5

|↓〉 0.5 1
|1, 0〉 |↑〉 -1 -1.5

|↓〉 0.5 1
|1,−1〉 |↑〉 -1 -1.5

|↓〉 0.5 1
|0, 0〉 |↑〉 0 -1.5

|↓〉 0 1

(e) I2 = 2

|I2,m2〉 |I1,m1〉 s1 λ1 λ2

|1, 1〉 |1, 1〉 |↑〉 0.5 0.5
|↓〉 0.5 0.5

|1, 0〉 |↑〉 -1 0.5
|↓〉 0.5 0.5

|1,−1〉 |↑〉 -1 0.5
|↓〉 0.5 0.5

|0, 0〉 |↑〉 0 0.5
|↓〉 0 0.5

...
|1,−1〉 |1, 1〉 |↑〉 0.5 -1

|↓〉 0.5 0.5
|1, 0〉 |↑〉 -1 -1

|↓〉 0.5 0.5
|1,−1〉 |↑〉 -1 -1

|↓〉 0.5 0.5
|0, 0〉 |↑〉 0 -1

|↓〉 0 0.5
|0, 0〉 |1, 1〉 |↑〉 0.5 0

|↓〉 0.5 0
|1, 0〉 |↑〉 -1 0

|↓〉 0.5 0
|1,−1〉 |↑〉 -1 0

|↓〉 0.5 0
|0, 0〉 |↑〉 0 0

|↓〉 0 0

(f) I2 = 1, 0

TABLE IX: Basis state ordering for the DMB radical cation. s1 is the electronic spin on the radical cation, and λ1,2
are the eigenvalues of the two parts of Hhfc corresponding to different groups of magnetically equivalent nuclei.



24

Procedure 1 Setting up U2

for x, y in zip(vertical nonzero indices of CG1, horizontal nonzero indices of CG1) do
x′ ← x+ (x//2)× 6
y′ ← y + (y//2)× 6
U2[x′][y′]← CG1[x][y]
U2[x′ + 2][y′ + 2]← CG1[x][y]
U2[x′ + 4][y′ + 4]← CG1[x][y]
U2[x′ + 6][y′ + 6]← CG1[x][y]

end for

Note that H ′ is of size 24×24. As mentioned above, all-zero matrices need to be inserted to round up the Hamiltonian
size to the nearest power of 2.

H =

H
′

08
H ′

08

+
b2
2

−124 08
124

08

 (C4)

We run H on a mixed state circuit as shown in Fig. 14 of Appendix B 2 and obtain the outcome SI2(t) for I2 = 1.

S1(t) =

12∑
n=1

sn1 (t)

16
+

4∑
m=1

1

16
(C5)

In the sum above, n counts the nuclear basis states, and m keeps track of the appended zeros. After measuring all
SI2(t), we can recover S(t), utilizing Table X. In equation (C6), in each parenthetical term, the effect of the appended
zeros is subtracted away, and then the correct degeneracy is multiplied.

S(t) =

[(
S6(t)− 12

26

)
· 26 · 1 +

(
S5(t)− 20

26

)
· 26 · 11 +

(
S4(t)− 28

26

)
· 26 · 54 +

(
S3(t)− 4

25

)
· 25 · 154 (C6)

+

(
S2(t)− 12

25

)
· 25 · 275 +

(
S1(t)− 4

24

)
· 24 · 297 +

(
S0(t)− 0

22

)
· 22 · 132

]
/ 214

Number
Spin

0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6

9 42 48 27 8 1

10 42 90 75 35 9 1

11 132 165 110 44 10 1

12 132 297 275 154 54 11 1

TABLE X: Spin addition to count the total-spin states of the 12 magnetically equivalent protons of DMB. Counts
continue from the last row of Table II.

The unitary matrices for the DMB+/PTP− radical pair Hamiltonian evolution are efficiently simulated using Qiskit
Aer (Fig. 11). On a quantum hardware, however, the full Hamiltonian simulation in the presence of the inherent qubit
noise is currently not feasible. That is because when generic decomposition methods are used to decompose these
unitaries into one and two-qubit gates available on the hardware, the circuit depth exceeds currently implementable
limits. Instead, we obtain the coherent time evolution S(t) of the singlet state probability from the simulator, and
encode it in a Z-rotation gate as shown in Fig. 16. The noise is simulated using either the inherent qubit noise or the
Kraus method.
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q0 X H

noise

H

q1 X Rz(θ(t))

FIG. 16: Quantum circuit simulating the thermal relaxation of the DMB+/PTP− radical pair system using the
inherent qubit noise. S(t) is obtained using the simulator and then encoded into the Z-rotation gate on the hardware.

The rotation parameter is θ(t) = 2 cos−1(
√
S(t)). Thermal relaxation can be added to the circuit using the Kraus or

inherent noise simulation methods.

Appendix D: Details of thermal relaxation simulation leveraging inherent qubit decoherence

To match the decay rates of the quantum computer with that of the experiment, we have to perform several steps.
First, we let the set {S, T0, T+, T−} denote the undamped, coherent singlet and triplet state measurement probabilities
respectively. Next, we simulate the Hamiltonian on the hardware for any nuclear initial state |k〉 of consideration
without accounting for the noise. This simulation is inherently noisy since it is run on a real quantum hardware,
and we obtain the corresponding set of probabilities {S̃k, T̃0,k, T̃+,k, T̃−,k}. Finally, we replace the Hamiltonian circuit
with a set of identity gates that have the same duration as the Hamiltonian circuit. This allows us to identify the
noise that was present during the Hamiltonian simulation. We set the corresponding probabilities {S′, T ′0, T ′+, T ′−}
and solve the correction equations [1] to recover the undamped statistics {Sk, T0,k, T+,k, T−,k} as follows:

T+,k = (T̃+,k − T ′+)/(1− 4T ′+) (D1)

T−,k = (T̃−,k − T ′−)/(1− 4T ′−) (D2)

Ak = S̃k − T+,kT ′+ − T−,kT ′− (D3)

Bk = T̃0,k − T+,kT ′+ − T−,kT ′− (D4)

Sk = (AkS
′ −BkT ′0)/(S′2 − T ′20 ) (D5)

T0,k = (BkS
′ −AkT ′0)/(S′2 − T ′20 ) (D6)

To incorporate the desired noise that imitates decoherence in lab experiments, we construct a circuit shown in
Fig. 5 that simulates the desired T1 and T2 decay of the radical ion pairs. Since the radical ion pairs in the lab
experiments decay faster than qubits on the quantum hardware, we append N identity gates as wait cycles. Choosing

N =
Tqubit

TRP tidentity
t at every time point (t) makes the circuit wait long enough so that the qubit decay matches the

decay of the radical ion pairs. Note that Tqubit denotes the arithmetic average of T1 and T2.

Additionally, an even number of X gates (aka echo pulses) are inserted in between identity gates to correct for a hard-
ware precession drift over time. Echo pulses flip |↓〉 to |↑〉 during half of the runtime allowing the phase accumulation
to cancel instead of compound, and also mimic an amplitude damping channel under infinite temperature.

For the lab experiments conducted at zero field, it was found that T1 = T2 = TRP , which matched well with T1 ≈ T2
found in qubits. For high field experiments, we considered an approximation that T1 = ∞ and utilized the Kraus
method from Fig. 3 without amplitude damping. To that end, we denote a set of probabilities with the desired T1
and T2 decay {S′′, T ′′0 , T ′′+, T ′′−}, and compute the noisy singlet state probabilities Snk for each nuclear initial state |k〉
with the desired noise parameters as shown below:

Snk = SkS
′′ + T0,kT

′′
0 + T+,kT

′′
+ + T−,kT

′′
− (D7)
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