
Hamiltonian simulation with nearly
optimal dependence on all parameters

Andrew Childs

CS, UMIACS, & QuICS
University of Maryland

Joint work with Dominic Berry (Macquarie) and Robin Kothari (MIT),
building on previous work also with Richard Cleve (Waterloo) and Rolando Somma (Los Alamos)

arXiv:1312.1414 / STOC 2014 arXiv:1412.4687 / to appear in PRL arXiv:1501.01715

http://arxiv.org/abs/1312.1414
http://arxiv.org/abs/1412.4687
http://arxiv.org/abs/1501.01715

“... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot

i
d

dt
|ψ(t)i = H|ψ(t)i

|ψ(t)i = e
−iHt|ψ(0)i

⇒

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state , produce
the final state (to within some error tolerance ²)

|ψ(0)i
|ψ(t)i

Local and sparse Hamiltonians

In any given row, the
location of the jth nonzero
entry and its value can be
computed efficiently (or is
given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each acts on k = O(1) qubitsH =

Pm

j=1
Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N £ N)

H =

Previous simulation methods

• Decompose Hamiltonian into a sum of terms that are easy to
simulate

• Recombine the terms by alternating between them

Product formulas

• Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

• Use phase estimation to obtain information about the spectrum
• Introduce phases to give the desired evolution

Quantum walk

�

e−iAt/re−iBt/r
�r

= e−i(A+B)t +O(t2/r)

..
.

�

e−iAt/2re−iBt/re−iAt/2r
�r

= e−i(A+B)t +O(t3/r2)

Complexity of previous simulation methods

Parameters: dimension N

evolution time t

sparsity d

allowed error ²

[Lloyd 96]: (for local Hamiltonians only)poly(logN) (kHkt)2/✏

[Aharonov, Ta-Shma 02]: poly(d, logN) (kHkt)3/2/
p
✏

(for any ± > 0)[Childs 04]: O
�

(d4 log4 NkHkt)1+δ/✏δ
�

[Berry, Ahokas, Cleve, Sanders 07]: O
�

(d4 log∗ NkHkt)1+δ/✏δ
�

[Childs, Kothari 11]: O
�

(d3 log∗ NkHkt)1+δ/✏δ
�

[Childs10; Berry, Childs 12]: O(dkHkmaxt/
p
✏)

New result: O
�

τ
log(⌧/✏)

log log(⌧/✏)

�

τ := d
2kHkmaxt τ := dkHkmaxt

Improved simulation algorithms

We have developed a novel approach that directly implements the
Taylor series of the evolution operator

• Implementing linear combinations of unitary operations

• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead

Linear combinations of unitaries

LCU Lemma: Given the ability to perform unitaries Vj with unit
complexity, one can perform the operation with
complexity . Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

U =

P
j βjVj

O(
P

j |βj |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i|ψi 7! sin θ|0iU |ψi+ cos θ|Φi

Implementing U with some amplitude

U =

X

j

βjVj (WLOG)βj > 0

|0i

|ψi

9

=

;

1

s
|0iU |ψi+

r

1�
1

s2
|Φi

h0|Φi = 0with

B B
†

Vj

j

Ancilla state: B|0i = 1p
s

X

j

p

βj |ji s :=

X

j

βj

Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a -
independent reflection suffices to do effective amplitude amplification.

|ψi

But the input state is unknown!

We also give a robust version that works even when U is not exactly
unitary.

W |0i|ψi = sin θ|0iU |ψi+ cos θ|Φi

Simulating the Taylor series

e
−iHt =

∞X

k=0

(−iHt)k

k!

≈

KX

k=0

(−iHt)k

k!

Taylor series of the dynamics generated by H:

Write where each is unitaryH =

P
`
α`H` H`

Then e
−iHt

≈

KX

k=0

X

`1,...,lk

(−it)k

k!
α`1 · · ·α`k

H`1 · · ·H`k

is a linear combination of unitaries

Decomposing sparse Hamiltonians

To express H as a linear combination of unitaries:

• Approximately decompose into terms with all nonzero entries equal
















0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 2 0 0

0 0 2 0 0 0

0 0 0 0 0 3

0 0 0 0 3 0

















=

















0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

















+

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

















+

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

















Ex:

• Remove zero blocks so that all terms are rescaled unitaries








0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0









=
1

2









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









+
1

2









−1 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0









Ex:

H =

Pd2

j=1
Hj• Edge coloring: where each Hj is 1-sparse

new trick: H is bipartite wlog since it suffices to simulate H ⊗ σx

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:

Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e−iA/re−iB/r)r = e−i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e
−iHt

≈

KX

k=0

(−iHt)k

k!
has error ² provided

K = O

✓

log(1/✏)

log log(1/✏)

◆

A discrete-time quantum walk for any H

[Childs 10]

Expand space from to . C
N

C
N+1

⊗ C
N+1

Walk operator is the product of two reflections:

• Swap: S |j, k i = |k, j i

span{|ψ1i, . . . , |ψN i}• Reflect about , where

|ψji := |ji ⌦

1
p

kHk1

N
X

k=1

q

H∗

jk |ki + νj |N + 1i

!

kHk1 := maxj

PN

k=1
|Hjk|

i.e., where2TT
†
− T |ji = |ψji

Another way to simulate an Hamiltonian H is to implement a
related discrete-time (Szegedy) quantum walk.

N ×N

Quantum walk simulation

Each eigenvalue ̧ of H corresponds to two eigenvalues
of the walk operator (with eigenvectors closely related to those of H)

±e
±i arcsinλ

Strategy: Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]

τ := dkHkmaxtComplexity: O(⌧/
√

✏)

Linear combination of quantum walk steps

Another approach: find coefficients so that

and implement this using the LCU Lemma

e
−iH

≈ T
†

KX

k=−K

βkU
k
T

By a generating series for Bessel functions,

e
−iλt =

∞X

k=−∞

Jk(−t) eik arcsinλ

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓

⌧

log(⌧/✏)

log log(⌧/✏)

◆

τ := dkHkmaxt

Lower bounds

No-fast-forwarding theorem [BACS 07]: Ω(t)

New lower bound: Ω(log(1/✏)
log log(1/✏))

• Query complexity of parity is even for unbounded error.

• The same Hamiltonian as above computes parity with unbounded
error by running for any positive time. Running for constant time
gives the parity with probability £(1/n!).

Ω(n)

• Query complexity of computing the parity of n bits is .

• There is a Hamiltonian that can compute parity by running for
time O(n).

Ω(n)

0 0 1 0 1 1 0

New lower bound: Ω(dt)

• Replacing each edge with Kd,d effectively boosts Hamiltonian by d.

Query complexity of sparse Hamiltonian simulation

Lower bound: Ω
�

τ +
log(1/✏)

log log(1/✏)

�

or for :α ∈ (0, 1] O
�

⌧
1+α/2 + ⌧

1−α/2 log(1/✏)
�

Quantum walk + LCU [BCK 15]: O

✓

⌧

log(⌧/✏)

log log(⌧/✏)

◆

• Gate complexity is only slightly larger than query complexity

• These techniques assume time-independent Hamiltonians (otherwise,
use fractional queries/LCU on Dyson series [BCCKS 14])

Notes:

Quantum walk + phase estimation [BC 10]: τ := dkHkmaxtO

✓

⌧

√

✏

◆

Outlook

Improved simulation algorithms

New quantum algorithms

Applications to simulating physics

• What is the cost in practice for simulating molecular systems?

• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation

• Faster algorithms for structured problems

• Simulating open quantum systems

• Improved algorithms for linear systems

• New applications of linear systems

• Other quantum algorithms from quantum simulation

