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“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by

golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)



Why simulate quantum mechanics!?

Computational chemistry/physics
* chemical reactions
* properties of materials

Implementing quantum algorithms

e continuous-time quantum walk (e.g., for formula evaluation)
e adiabatic quantum computation (e.g., for optimization)

e linear/differential equations



Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.
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Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢, and an initial state |¢(0)), produce
the final state |¢/()) (to within some error tolerance ¢)

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot



Local and sparse Hamiltonians
Local Hamiltonians [Lloyd 96]

H =3 "", H;j where each Hj acts on k= O(1) qubits

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N X N)

In any given row, the H =3 mEaEa" s mEEEEcE
location of the jth nonzero mER
entry and its value can be o
computed efficiently (or is o

= =
given by a black box) - ;

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2Fm



Previous simulation methods

Product formulas

* Decompose Hamiltonian into a sum of terms that are easy to
simulate
* Recombine the terms by alternating between them

(6—1At/r6—iBt/r)"° _ 6—@(A+B)t + O(tz/T)

(e~ iAl/2re=iBt/re—iAt/2r) T = o=i(A+B)t 4 (43 /1?)

Quantum walk

* Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

e Use phase estimation to obtain information about the spectrum

* Introduce phases to give the desired evolution



Complexity of previous simulation methods

Parameters:  dimension [V sparsity d
evolution time ¢ allowed error €

[Lloyd 96]: poly(log N) (||H|[t)*/e (for local Hamiltonians only)
[Aharonov, Ta-Shma 02]: poly(d,log N) (||H||t)*/?/+/e

[Childs 04]: O((d"log* N||H||t)'°/€e’) (for any § > 0)

[Berry, Ahokas, Cleve, Sanders 07]: O((d*log” NHH|\t)1+5/65)
[Childs, Kothari | 11: O((d”log* N||H|[t)'°/€°)

[Childs 10; Berry, Childs 12]: O(d||H ||maxt/V€)

New result: O(Tlog)fo(;(f/)e)) T i=dHH H maxt 7 = d||H||maxt



Improved simulation algorithms

We have developed a novel approach that directly implements the
Taylor series of the evolution operator

New tools:

* Implementing linear combinations of unitary operations
e Oblivious amplitude amplification

Dependence on simulation error is poly(log(1/¢)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead



Linear combinations of unitaries

Given the ability to perform unitaries V; with unit
complexity, one can perform the operation U = Z BV, with

complexity O(» _, [5;]). Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

Main ideas:

* Using controlled-V; operations, implement U with some amplitude:
0)[2)) — sin B|0YU |1p) + cos 0| P)

* Boost the amplitude for success by oblivious amplitude amplification



Implementing U with some amplitude

U=>» B;V; (WLOG B; > 0)

Ancilla state: B|0) =

fz\ﬁ‘] si=>» B

BT

}io>w>+\/1<b>

with (0|®) = 0



Oblivious amplitude amplification

Suppose W implements U with amplitude sin 6:
W10)|y) = sin8|0)U|v) + cos 6|P)

To perform U with amplitude close to 1: use amplitude amplification?

But the input state is unknown!

Using ideas from [Marriott,VWatrous 05], we can show that a |¢)-
independent reflection suffices to do effective amplitude amplification.

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin 6 steps.

We also give a robust version that works even when U is not exactly
unitary.



Simulating the Taylor series

Taylor series of the dynamics generated by H:

it N (—iH)"
€ =) |
k=0

- (—iHt)*
NZ L
k=0

Write H = ), oy Hy where each Hy is unitary

IR~ (—it)"
Then e %Z Z X Ozgl-ﬂoznggl---

k=0 61,...,lk
is a linear combination of unitaries



Decomposing sparse Hamiltonians

To express H as a linear combination of unitaries:

* Edge coloring: H = Z?Zl H; where each Hj is 1-sparse

new trick: H is bipartite wlog since it suffices to simulate H ® o,
d2-coloring: color(¢,r) = (idx(¥, r), idx(r, £))

* Approximately decompose into terms with all nonzero entries equal

/0100 00 01 0000 000000 000000
EX'(100000\ /100000\ 000000\ (000000\
000200|_f000100[ |0OO0O0T10O0f f0OO0OO0O0ODO
002000 001000 001000 000000
00000 3 000001 000001 000001
\0o 00030 \oooo10o \oooo10/ \oooo1 o0

* Remove zero blocks so that all terms are rescaled unitaries

Ex: (0 0 0 0 1 0 0 0 1 0 0 0
"fo oo o] 1fo1 00| 1[0 -1 00
000 1]-32loo0oo0o 1|73l 0 o0 01
0 0 1 0 0 0 1 0 0 0 1 0



Why poly(log(1/€))?

Lowest-order product formula:
(e—z’A/re—iB/r)r _ e—z'(A—l—B) 4 O(l/?“)

so we must take r = ((1/¢) to achieve error at most ¢

Higher-order formulas exist, but they only improve the power of €

K
. ~ th
The approximation e/t ~ 2 has error € provided

h=0 <1o§i(gl</1€/)e>>




A discrete-time quantum walk for any H

Another way to simulate an N X NN Hamiltonian H is to implement a
related discrete-time (Szegedy) quantum walk.

Expand space from C"to CN ™1 @ CV T,

Walk operator is the product of two reflections:
* Swap: 5|7, k) = |k, j)
* Reflect about span{|i1), ..., |Yn)}, where

— k) +v;|N
;) (w\mlz H [B) + 151 + >)

N
|HI[y :=max; ),y [Hjp|
ie, 2TTT — 1 where T|j) = |1);)

[Childs 10]



Quantum walk simulation

Each eigenvalue A\ of H corresponds to two eigenvalues | oEt arcsin A

of the walk operator (with eigenvectors closely related to those of H)

Strategy: Use phase estimation to determine and correct the phase

Complexity: O(7/ve) 7 :=d| H||maxt

[Childs 10], [Berry, Childs 12]



Linear combination of quantum walk steps

Another approach: find coefficients so that
K
e~ 0 Z BLURT
k=—K
and implement this using the LCU Lemma

By a generating series for Bessel functions,

—fL)\t E : Jk zk: arcsin A\

k=—0o0

Coefficients drop off rapidly for large k, so we can truncate the series

log(7/€) >
log log(7/¢€)
7 = d||H || maxt

Query complexity of this approach: O (7’



Lower bounds

No-fast-forwarding theorem [BACS 07]: Q(¢)
* Query complexity of computing the parity of n bits is Q2(n).
* There is a Hamiltonian that can compute parity by running for

time O(n).

) T 1 0 1 1 0

0

New lower bound: Q(log)i(;(/f/)e))

* Query complexity of parity is {2(n) even for unbounded error.

* The same Hamiltonian as above computes parity with unbounded
error by running for any positive time. Running for constant time
gives the parity with probability ©(1/n!).

New lower bound: €2(dt)
* Replacing each edge with K44 effectively boosts Hamiltonian by d.



Query complexity of sparse Hamiltonian simulation

Quantum walk + phase estimation [BC [0]: O (%) 7 := d||H || maxt

| log(T/€)
Quantum walk + LCU [BCK 15]: O(T orlog(r /€)>

or for a € (0, 1]: O(THO‘/2 + pia/2 log(1/€))

log(1/¢€) )
loglog(1/¢€)

Lower bound: Q(T |

Notes:
* Gate complexity is only slightly larger than query complexity

* These techniques assume time-independent Hamiltonians (otherwise,
use fractional queries/LCU on Dyson series [BCCKS [4])



Outlook

* Optimal tradeoff for sparse Hamiltonian simulation
* Faster algorithms for structured problems
* Simulating open quantum systems

* What is the cost in practice for simulating molecular systems!?
* How do recent algorithms compare to naive methods?

* Improved algorithms for linear systems
* New applications of linear systems
* Other quantum algorithms from quantum simulation



