Hamiltonian simulation with nearly
optimal dependence on all parameters

Andrew Childs

CS, UMIACS, & QuICS
University of Maryland

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Joint work with Dominic Berry (Macquarie) and Robin Kothari (MIT),
building on previous work also with Richard Cleve (Waterloo) and Rolando Somma (Los Alamos)

arXiv:1312.1414 / STOC 2014 arXiv:1412.4687 / to appear in PRL arXiv:1501.01715

http://arxiv.org/abs/1312.1414
http://arxiv.org/abs/1412.4687
http://arxiv.org/abs/1501.01715

“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by

golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics!?

Computational chemistry/physics
* chemical reactions
* properties of materials

Implementing quantum algorithms

e continuous-time quantum walk (e.g., for formula evaluation)
e adiabatic quantum computation (e.g., for optimization)

e linear/differential equations

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

.d
i [(8) = Hlw (1)

B(t)) = e[(0))

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢, and an initial state |¢(0)), produce
the final state |¢/()) (to within some error tolerance ¢)

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot

Local and sparse Hamiltonians
Local Hamiltonians [Lloyd 96]

H =3 "", H;j where each Hj acts on k= O(1) qubits

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N X N)

In any given row, the H =3 mEaEa" s mEEEEcE
location of the jth nonzero mER
entry and its value can be o
computed efficiently (or is o

= =
given by a black box) - ;

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2Fm

Previous simulation methods

Product formulas

* Decompose Hamiltonian into a sum of terms that are easy to
simulate
* Recombine the terms by alternating between them

(6—1At/r6—iBt/r)"° _ 6—@(A+B)t + O(tz/T)

(e~ iAl/2re=iBt/re—iAt/2r) T = o=i(A+B)t 4 (43 /1?)

Quantum walk

* Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

e Use phase estimation to obtain information about the spectrum

* Introduce phases to give the desired evolution

Complexity of previous simulation methods

Parameters: dimension [V sparsity d
evolution time ¢ allowed error €

[Lloyd 96]: poly(log N) (||H|[t)*/e (for local Hamiltonians only)
[Aharonov, Ta-Shma 02]: poly(d,log N) (||H||t)*/?/+/e

[Childs 04]: O((d"log* N||H||t)'°/€e’) (for any § > 0)

[Berry, Ahokas, Cleve, Sanders 07]: O((d*log” NHH|\t)1+5/65)
[Childs, Kothari | 11: O((d”log* N||H|[t)'°/€°)

[Childs 10; Berry, Childs 12]: O(d||H ||maxt/V€)

New result: O(Tlog)fo(;(f/)e)) T i=dHH H maxt 7 = d||H||maxt

Improved simulation algorithms

We have developed a novel approach that directly implements the
Taylor series of the evolution operator

New tools:

* Implementing linear combinations of unitary operations
e Oblivious amplitude amplification

Dependence on simulation error is poly(log(1/¢)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead

Linear combinations of unitaries

Given the ability to perform unitaries V; with unit
complexity, one can perform the operation U = Z BV, with

complexity O(» _, [5;]). Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

Main ideas:

* Using controlled-V; operations, implement U with some amplitude:
0)[2)) — sin B|0YU |1p) + cos 0| P)

* Boost the amplitude for success by oblivious amplitude amplification

Implementing U with some amplitude

U=>» B;V; (WLOG B; > 0)

Ancilla state: B|0) =

fz\ﬁ‘] si=>» B

BT

}io>w>+\/1

with (0|®) = 0

Oblivious amplitude amplification

Suppose W implements U with amplitude sin 6:
W10)|y) = sin8|0)U|v) + cos 6|P)

To perform U with amplitude close to 1: use amplitude amplification?

But the input state is unknown!

Using ideas from [Marriott,VWatrous 05], we can show that a |¢)-
independent reflection suffices to do effective amplitude amplification.

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin 6 steps.

We also give a robust version that works even when U is not exactly
unitary.

Simulating the Taylor series

Taylor series of the dynamics generated by H:

it N (—iH)"
€ =) |
k=0

- (—iHt)*
NZ L
k=0

Write H =), oy Hy where each Hy is unitary

IR~ (—it)"
Then e %Z Z X Ozgl-ﬂoznggl---

k=0 61,...,lk
is a linear combination of unitaries

Decomposing sparse Hamiltonians

To express H as a linear combination of unitaries:

* Edge coloring: H = Z?Zl H; where each Hj is 1-sparse

new trick: H is bipartite wlog since it suffices to simulate H ® o,
d2-coloring: color(¢,r) = (idx(¥, r), idx(r, £))

* Approximately decompose into terms with all nonzero entries equal

/0100 00 01 0000 000000 000000
EX'(100000\ /100000\ 000000\ (000000\
000200|_f000100[|0OO0O0T10O0f f0OO0OO0O0ODO
002000 001000 001000 000000
00000 3 000001 000001 000001
\0o 00030 \oooo10o \oooo10/ \oooo1 o0

* Remove zero blocks so that all terms are rescaled unitaries

Ex: (0 0 0 0 1 0 0 0 1 0 0 0
"fo oo o] 1fo1 00| 1[0 -1 00
000 1]-32loo0oo0o 1|73l 0 o0 01
0 0 1 0 0 0 1 0 0 0 1 0

Why poly(log(1/€))?

Lowest-order product formula:
(e—z’A/re—iB/r)r _ e—z'(A—l—B) 4 O(l/?“)

so we must take r = ((1/¢) to achieve error at most ¢

Higher-order formulas exist, but they only improve the power of €

K
. ~ th
The approximation e/t ~ 2 has error € provided

h=0 <1o§i(gl</1€/)e>>

A discrete-time quantum walk for any H

Another way to simulate an N X NN Hamiltonian H is to implement a
related discrete-time (Szegedy) quantum walk.

Expand space from C"to CN ™1 @ CV T,

Walk operator is the product of two reflections:
* Swap: 5|7, k) = |k, j)
* Reflect about span{|i1), ..., |Yn)}, where

— k) +v;|N
;) (w\mlz H [B) + 151 + >)

N
|HI[y :=max;),y [Hjp|
ie, 2TTT — 1 where T|j) = |1);)

[Childs 10]

Quantum walk simulation

Each eigenvalue A\ of H corresponds to two eigenvalues | oEt arcsin A

of the walk operator (with eigenvectors closely related to those of H)

Strategy: Use phase estimation to determine and correct the phase

Complexity: O(7/ve) 7 :=d| H||maxt

[Childs 10], [Berry, Childs 12]

Linear combination of quantum walk steps

Another approach: find coefficients so that
K
e~ 0 Z BLURT
k=—K
and implement this using the LCU Lemma

By a generating series for Bessel functions,

—fL)\t E : Jk zk: arcsin A\

k=—0o0

Coefficients drop off rapidly for large k, so we can truncate the series

log(7/€) >
log log(7/¢€)
7 = d||H || maxt

Query complexity of this approach: O (7’

Lower bounds

No-fast-forwarding theorem [BACS 07]: Q(¢)
* Query complexity of computing the parity of n bits is Q2(n).
* There is a Hamiltonian that can compute parity by running for

time O(n).

) T 1 0 1 1 0

0

New lower bound: Q(log)i(;(/f/)e))

* Query complexity of parity is {2(n) even for unbounded error.

* The same Hamiltonian as above computes parity with unbounded
error by running for any positive time. Running for constant time
gives the parity with probability ©(1/n!).

New lower bound: €2(dt)
* Replacing each edge with K44 effectively boosts Hamiltonian by d.

Query complexity of sparse Hamiltonian simulation

Quantum walk + phase estimation [BC [0]: O (%) 7 := d||H || maxt

| log(T/€)
Quantum walk + LCU [BCK 15]: O(T orlog(r /€)>

or for a € (0, 1]: O(THO‘/2 + pia/2 log(1/€))

log(1/¢€))
loglog(1/¢€)

Lower bound: Q(T |

Notes:
* Gate complexity is only slightly larger than query complexity

* These techniques assume time-independent Hamiltonians (otherwise,
use fractional queries/LCU on Dyson series [BCCKS [4])

Outlook

* Optimal tradeoff for sparse Hamiltonian simulation
* Faster algorithms for structured problems
* Simulating open quantum systems

* What is the cost in practice for simulating molecular systems!?
* How do recent algorithms compare to naive methods?

* Improved algorithms for linear systems
* New applications of linear systems
* Other quantum algorithms from quantum simulation

