Hamiltonian simulation with nearly optimal dependence on all parameters

Andrew Childs

CS, UMIACS, & QuICS University of Maryland

Joint work with Dominic Berry (Macquarie) and Robin Kothari (MIT), building on previous work also with Richard Cleve (Waterloo) and Rolando Somma (Los Alamos)

arXiv:1312.1414 / STOC 2014 arXiv:1412.4687 / to appear in PRL arXiv:1501.01715

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics?

Computational chemistry/physics

- chemical reactions
- properties of materials

Implementing quantum algorithms

- continuous-time quantum walk (e.g., for formula evaluation)
- adiabatic quantum computation (e.g., for optimization)
- linear/differential equations

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H|\psi(t)\rangle$$

$$\downarrow$$

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time t, and an initial state $|\psi(0)\rangle$, produce the final state $|\psi(t)\rangle$ (to within some error tolerance ϵ)

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the state, but by performing measurements on the state, it can answer questions that (apparently) a classical computer cannot

Local and sparse Hamiltonians

Local Hamiltonians [Lloyd 96]

$$H = \sum_{j=1}^{m} H_j$$
 where each H_j acts on $k = O(1)$ qubits

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries per row, $d = \operatorname{poly}(\log N)$ (where H is $N \times N$)

In any given row, the location of the *j*th nonzero entry and its value can be computed efficiently (or is given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with $d=2^k m$

Previous simulation methods

Product formulas

- Decompose Hamiltonian into a sum of terms that are easy to simulate
- Recombine the terms by alternating between them

$$(e^{-iAt/r}e^{-iBt/r})^r = e^{-i(A+B)t} + O(t^2/r)$$
$$(e^{-iAt/2r}e^{-iBt/r}e^{-iAt/2r})^r = e^{-i(A+B)t} + O(t^3/r^2)$$
$$\vdots$$

Quantum walk

- Define an easy-to-implement unitary operation (a step of a quantum walk) whose spectrum is related to the Hamiltonian
- Use phase estimation to obtain information about the spectrum
- Introduce phases to give the desired evolution

Complexity of previous simulation methods

Parameters: dimension N sparsity d

evolution time t allowed error ϵ

[Lloyd 96]: $poly(log N) (||H||t)^2/\epsilon$ (for local Hamiltonians only)

[Aharonov, Ta-Shma 02]: $\operatorname{poly}(d, \log N) (\|H\|t)^{3/2}/\sqrt{\epsilon}$

[Childs 04]: $O((d^4 \log^4 N ||H||t)^{1+\delta}/\epsilon^{\delta})$ (for any $\delta > 0$)

[Berry, Ahokas, Cleve, Sanders 07]: $O((d^4 \log^* N ||H||t)^{1+\delta}/\epsilon^{\delta})$

[Childs, Kothari II]: $O((d^3 \log^* N ||H||t)^{1+\delta}/\epsilon^{\delta})$

[Childs I0; Berry, Childs I2]: $O(d\|H\|_{\max}t/\sqrt{\epsilon})$

New result: $O(au rac{\log(au/\epsilon)}{\log\log(au/\epsilon)})$ $au := d^2 \|H\|_{\max} t$ $au := d\|H\|_{\max} t$

Improved simulation algorithms

We have developed a novel approach that directly implements the Taylor series of the evolution operator

New tools:

- Implementing linear combinations of unitary operations
- Oblivious amplitude amplification

Dependence on simulation error is $\operatorname{poly}(\log(1/\epsilon))$, an exponential improvement over previous work

Algorithms are also simpler, with less overhead

Linear combinations of unitaries

LCU Lemma: Given the ability to perform unitaries V_j with unit complexity, one can perform the operation $U = \sum_j \beta_j V_j$ with complexity $O(\sum_j |\beta_j|)$. Furthermore, if U is (nearly) unitary then this implementation can be made (nearly) deterministic.

Main ideas:

• Using controlled- V_j operations, implement U with some amplitude:

$$|0\rangle|\psi\rangle \mapsto \sin\theta|0\rangle U|\psi\rangle + \cos\theta|\Phi\rangle$$

Boost the amplitude for success by oblivious amplitude amplification

Implementing U with some amplitude

$$U = \sum_{j} \beta_{j} V_{j}$$
 (WLOG $\beta_{j} > 0$)

Ancilla state:
$$B|0\rangle=\frac{1}{\sqrt{s}}\sum_{j}\sqrt{\beta_{j}}|j\rangle$$
 $s:=\sum_{j}\beta_{j}$

$$\left| \begin{array}{c} |0\rangle - \overline{} \overline{$$

Oblivious amplitude amplification

Suppose W implements U with amplitude $\sin \theta$:

$$W|0\rangle|\psi\rangle = \sin\theta|0\rangle U|\psi\rangle + \cos\theta|\Phi\rangle$$

To perform U with amplitude close to 1: use amplitude amplification?

But the input state is unknown!

Using ideas from [Marriott, Watrous 05], we can show that a $|\psi\rangle$ -independent reflection suffices to do effective amplitude amplification.

With this oblivious amplitude amplification, we can perform the ideal evolution with only about $1/\sin\theta$ steps.

We also give a robust version that works even when \boldsymbol{U} is not exactly unitary.

Simulating the Taylor series

Taylor series of the dynamics generated by H:

$$e^{-iHt} = \sum_{k=0}^{\infty} \frac{(-iHt)^k}{k!}$$

$$\approx \sum_{k=0}^{K} \frac{(-iHt)^k}{k!}$$

Write $H = \sum_{\ell} \alpha_{\ell} H_{\ell}$ where each H_{ℓ} is unitary

Then
$$e^{-iHt} \approx \sum_{k=0}^K \sum_{\ell_1,\ldots,\ell_k} \frac{(-it)^k}{k!} \alpha_{\ell_1} \cdots \alpha_{\ell_k} H_{\ell_1} \cdots H_{\ell_k}$$

is a linear combination of unitaries

Decomposing sparse Hamiltonians

To express H as a linear combination of unitaries:

- Edge coloring: $H=\sum_{j=1}^{d^2} H_j$ where each H_j is 1-sparse new trick: H is bipartite wlog since it suffices to simulate $H\otimes\sigma_x$ d^2 -coloring: $\operatorname{color}(\ell,r)=(\operatorname{idx}(\ell,r),\operatorname{idx}(r,\ell))$
- Approximately decompose into terms with all nonzero entries equal

Remove zero blocks so that all terms are rescaled unitaries

Why poly $(\log(1/\epsilon))$?

Lowest-order product formula:

$$(e^{-iA/r}e^{-iB/r})^r = e^{-i(A+B)} + O(1/r)$$

so we must take $r = O(1/\epsilon)$ to achieve error at most ϵ

Higher-order formulas exist, but they only improve the power of ϵ

The approximation
$$e^{-iHt} \approx \sum_{k=0}^K \frac{(-iHt)^k}{k!}$$
 has error ϵ provided

$$K = O\left(\frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right)$$

A discrete-time quantum walk for any ${\cal H}$

Another way to simulate an $N \times N$ Hamiltonian H is to implement a related discrete-time (Szegedy) quantum walk.

Expand space from \mathbb{C}^N to $\mathbb{C}^{N+1}\otimes \mathbb{C}^{N+1}$.

Walk operator is the product of two reflections:

- Swap: $S|j,k\rangle = |k,j\rangle$
- Reflect about $\operatorname{span}\{|\psi_1\rangle,\ldots,|\psi_N\rangle\}$, where

$$|\psi_{j}\rangle := |j\rangle \otimes \left(\frac{1}{\sqrt{\|H\|_{1}}} \sum_{k=1}^{N} \sqrt{H_{jk}^{*}} |k\rangle + \nu_{j} |N+1\rangle\right)$$

$$\|H\|_{1} := \max_{j} \sum_{k=1}^{N} |H_{jk}|$$

i.e., $2TT^{\dagger}-\mathbb{1}$ where $T|j\rangle=|\psi_{j}\rangle$

Quantum walk simulation

Each eigenvalue λ of H corresponds to two eigenvalues $\pm e^{\pm i \arcsin \lambda}$ of the walk operator (with eigenvectors closely related to those of H)

Strategy: Use phase estimation to determine and correct the phase

Complexity: $O(\tau/\sqrt{\epsilon})$ $\tau := d\|H\|_{\max} t$

Linear combination of quantum walk steps

Another approach: find coefficients so that

$$e^{-iH} \approx T^{\dagger} \sum_{k=-K}^{K} \beta_k U^k T$$

and implement this using the LCU Lemma

By a generating series for Bessel functions,

$$e^{-i\lambda t} = \sum_{k=-\infty}^{\infty} J_k(-t) e^{ik \arcsin \lambda}$$

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: $O\bigg(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\bigg)$ $\tau := d\|H\|_{\max}t$

Lower bounds

No-fast-forwarding theorem [BACS 07]: $\Omega(t)$

- Query complexity of computing the parity of n bits is $\Omega(n)$.
- There is a Hamiltonian that can compute parity by running for time $\mathcal{O}(n)$.

New lower bound: $\Omega(\frac{\log(1/\epsilon)}{\log\log(1/\epsilon)})$

- Query complexity of parity is $\Omega(n)$ even for unbounded error.
- The same Hamiltonian as above computes parity with unbounded error by running for any positive time. Running for constant time gives the parity with probability $\Theta(1/n!)$.

New lower bound: $\Omega(dt)$

• Replacing each edge with $K_{d,d}$ effectively boosts Hamiltonian by d.

Query complexity of sparse Hamiltonian simulation

Quantum walk + phase estimation [BC 10]: $O\left(\frac{\tau}{\sqrt{\epsilon}}\right)$ $\tau := d\|H\|_{\max} t$

Quantum walk + LCU [BCK 15]:
$$O\left(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\right)$$

or for
$$\alpha \in (0, 1]$$
: $O(\tau^{1+\alpha/2} + \tau^{1-\alpha/2} \log(1/\epsilon))$

Lower bound:
$$\Omega\left(\tau + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right)$$

Notes:

- Gate complexity is only slightly larger than query complexity
- These techniques assume time-independent Hamiltonians (otherwise, use fractional queries/LCU on Dyson series [BCCKS 14])

Outlook

Improved simulation algorithms

- Optimal tradeoff for sparse Hamiltonian simulation
- Faster algorithms for structured problems
- Simulating open quantum systems

Applications to simulating physics

- What is the cost in practice for simulating molecular systems?
- How do recent algorithms compare to naive methods?

New quantum algorithms

- Improved algorithms for linear systems
- New applications of linear systems
- Other quantum algorithms from quantum simulation