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The usual formulation of time-dependent mechanics implies a given splittingY
5R3M of an event spaceY. This splitting, however, is broken by any time-
dependent transformation, including transformations between inertial frames. The
goal is the frame-covariant formulation of time-dependent mechanics on a bundle
Y→R, whose fibrationY→M is not fixed. Its phase space is the vertical cotangent
bundleV* Y, provided with the canonical 3-form and the corresponding canonical
Poisson structure. An event space of relativistic mechanics is a manifoldZ whose
fibration Z→R is not fixed. © 1998 American Institute of Physics.
@S0022-2488~98!02705-4#

I. INTRODUCTION

The symplectic technique is well known to provide an adequate mathematical formulat
autonomous mechanics, when Hamiltonians are independent of time.1–4 Its canonical example is a
mechanical system whose phase space is the cotangent bundleT* M of an event manifoldM . This
phase space is provided with the canonical symplectic form

V5dpi∧dyi ,

written with respect to the holonomic coordinates~yi , pi5q̇i! on T* M . A Hamiltonian H is
defined as a real function onT* M . The motion trajectories are integral curves of the Hamilton
vector fieldq5q i]

i1q i] i on T* M , which obeys the Hamilton equations

q cV5dH,
~1!

q i5] iH, q i52] iH.

The usual formulation of time-dependent mechanics implies a splittingY5R3M of the event
manifold Y and the corresponding splittingR3T* M of the phase space.5–10 The phase space i
provided with the pull-back pr2* V of the symplectic form onT* M . By a time-dependent Hamil
tonian is meant a real function onR3T* M , while motion trajectories are integral curves of th
time-dependent Hamiltonian vector field,

q:R3T* M→TT* M ,

which obeys the Hamilton equations~1!. The problem is that the above-mentioned splittings
broken by any time-dependent transformation, including the inertial frame transformations. T
fore, the form pr2* V on the phase space of time-dependent mechanics fails to be canonica11

We will formulate first-order time-dependent mechanics as a particular field theory, wh
event space is a fibered manifoldY→R, coordinated by (t,yi).5,12–14Unless otherwise stated, th
baseR is parametrized by the coordinatest with transition functionst85t1const. Relative to
these coordinates,R is equipped with the standard vector field] t and the standard 1-formdt,
which is also the volume element onR. This is not the case for relativistic mechanics.

The configuration space of time-dependent mechanics is the first-order jet manifoldJ1Y of
sections ofY→R, which is provided with the adapted coordinates (t,yi ,yt

i). There is the canonica
monomorphism,

l:J1Y�TY, l5] t1yt
i] i ,
27140022-2488/98/39(5)/2714/16/$15.00 © 1998 American Institute of Physics
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over Y. It is easy to see thatp0
1:J1Y→Y is an affine bundle modeled over the vertical tang

bundleVY→Y. For the sake of simplicity, we will identifyJ1Y with the corresponding subbundl
of TY. In particular, every connection on a bundleY→R can be identified with the horizontal lift

G:Y→J1Y,TY, G5] t1G i] i , ~2!

of the standard vector field] t by this connection. We will call~2! a connection in order to refer to
the standard properties of connections without an additional explanation.

The one-dimensional reduction of the polysymplectic Hamiltonian formalism13–16 provides
the adequate mathematical formulation of time-dependent Hamiltonian mechanics on the
endre bundlepP :P5V* Y→Y. The phase spaceV* Y is endowed with the canonical 3-form,

V5dpi∧dyi∧dt, ~3!

written with respect to the holonomic coordinates~t, yi , pi5 ẏi! on V* Y.
The following peculiarities of time-dependent Hamiltonian mechanics should be empha
~i! The form V ~3! defines the canonical degenerate Poisson structure on the phase

V* Y.
~ii ! A Hamiltonian is not a function on a phase space. As a consequence, the evo

equation is not reduced to a Poisson bracket, and integrals of motion cannot be defined a
tions in involution with a Hamiltonian.

~iii ! Hamiltonian and Lagrangian formulations of time-dependent mechanics are equival
the case of hyperregular Lagrangians. A degenerate Lagrangian requires a set of associated
tonians and Hamilton equations in order to exhaust all solutions of the Lagrange ones.

~iv! A complete connectionG on the event spaceY→R defines a reference frame so that o
can think of the differenceyt

i2G i(y) as being the velocity relative to the reference frameG. There
is one-to-one correspondence between the complete connectionsG and the trivializations ofY
→R.

For the sake of simplicity,Y→R is assumed to be a bundle with a typical fiberM . It is trivial.
Different trivializations,

Y>R3M , ~4!

differ from each other in fibrationsY→M , while the fibrationp:Y→R is once for all. Given a
trivialization ~4!, there are the corresponding splittings of the configuration and phase spac

J1Y>R3TM, V* Y>R3T* M .

If a fibration Z→R of an event spaceZ is not fixed, we obtain the general formulation
relativistic mechanics, including Special Relativity on the Minkowski spaceZ5R4. Its configu-
ration space is the first-order jet manifoldJ1

1Z of one-dimensional submanifolds ofZ. The bundle
J1

1Z→Z is projective, and one can think on its fibers as being spaces of nonrelativistic velo
Relativistic velocities are represented by elements of the tangent bundleTZ, while the cotangent
bundleT* Z plays the role of the phase space of relativistic mechanics.

All manifolds throughout are assumed to be paracompact and connected.

II. CANONICAL POISSON STRUCTURE

The Legendre bundleV* Y of time-dependent mechanics is provided with the canonical P
son structure as follows. Let us consider the cotangent bundleT* Y with the holonomic coordi-
nates (t,yi ,p,pi), which is the homogeneous Legendre bundle of time-dependent mechan
admits the canonical Liouville form

J5pdt1pidyi , ~5!

and the canonical symplectic form

dJ5dp∧dt1dpi∧dyi .
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The corresponding Poisson bracket on the spaceC`(T* Y) of functions onT* Y reads as

$ f ,g%5]pf ] tg2]pg] t f 1] i f ] ig2] ig] i f . ~6!

Let us consider the subspace ofC`(T* Y) that comprises the pull-backs of functions onV* Y
by the projectionT* Y→V* Y. This subspace is closed under the Poisson bracket~6!. Then there
exists the canonical Poisson structure,

$ f ,g%V5] i f ] ig2] ig] i f , ~7!

on V* Y induced by~6!.3 The corresponding Poisson bivector,

w~d f ,dg!5$ f ,g%V ,

on V* Y is vertical with respect to the fibrationV* Y→R, and reads as

wi j 50, wi j 50, wj
i 51.

A glance at this expression shows that the holonomic coordinates onV* Y are canonical for the
Poisson structure~7!, which is regular and degenerate.

Given the Poisson bracket~7!, the Hamiltonian vector fieldq f of a function f on V* Y,
defined by the relation$ f ,g%V5q f cdg, ;gPC`(V* Y), is the vertical vector field

q f5] i f ] i2] i f ]
i , ~8!

on V* Y→R. Hence, the characteristic distribution of the Poisson structure~7!, generated by
Hamiltonian vector fields, is precisely the vertical tangent bundleVV* Y of V* Y→R.

By virtue of the well-known theorem,4 the Poisson structure~7! defines the symplectic folia
tion on V* Y that coincides with the fibrationV* Y→R. The symplectic forms on the fibers o
V* Y→R are the pull-backs,

V t5dpi∧dyi ,

of the canonical symplectic form on the typical fiberT* M of V* Y→R with respect to trivializa-
tion morphisms.11

The Poisson structure~7! can be introduced in a different way. The Legendre bundleV* Y
admits the canonical closed 3-form~3!, which is the particular case of the polysymplec
form.14–16 Then every functionf on V* Y defines the corresponding Hamiltonian vector fieldq f

~8! by the relation

q f cV52d f∧dt,

while the Poisson bracket~7! is recovered by the condition

$ f ,g%Vdt5qgcq f cV.

III. HAMILTONIAN FORMS

In comparison with autonomous mechanics, Hamiltonian time-dependent mechanics is
lated in the terms of Hamiltonian connections and Hamiltonian forms.

We will say that a connection,

g5] t1g i] i1g i]
i , ~9!

on the phase spaceV* Y→R is locally Hamiltonian if the exterior formg cV is closed, i.e.,

LgV5d~g cV!50, ~10!

whereL denotes the Lie derivative.
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For instance, every connectionG on the event spaceY→R gives rise to the locally Hamil-
tonian connection,

G̃5] t1G i] i2pi] jG
i] j ,

on the phase space, such that

G̃cV5dHG , HG5pidyi2piG
idt. ~11!

Locally Hamiltonian connections constitute an affine space modeled over the linear sp
vertical vector fieldsq on V* Y→R that obey the same condition~10!, and are locally Hamil-
tonian vector fields as follows.

Lemma 1:Every closed formg cV on V* Y→R is exact.
Proof: Let us consider the decomposition

g5G̃1q, ~12!

whereG is a connection onY→R, while q satisfies the relationd(] cV)50. It is easily seen tha
q cV5s∧dt, wheres is a 1-form. Using properties of the De Rham cohomology groups o
manifold product, one can show that every closed 2-forms∧dt on V* Y is exact, and so isg cV.
Moreover, in accordance with the relative Poincare´ lemma, we can write locallyq cV5d f∧dt.

Definition 2: A 1-form H on the Legendre bundleV* Y is called locally Hamiltonian if

g cV5dH,

for a connectiong on V* Y→R.
By virtue of Proposition 1, there is one-to-one correspondence between the locally H

tonian connections and the locally Hamiltonian forms considered throughout modulo c
forms.

Definition 3: By a Hamiltonian formH on the phase spaceV* Y is meant the pull-back,

H5h* J5pidyi2Hdt, ~13!

of the Liouville form J ~5! on T* Y by a sectionh of the bundle

z:T* Y→V* Y. ~14!

Given a trivialization~4! of Y→R the Hamiltonian form~13! looks like the well-known
Poincare´–Cartan integral.2 However, the HamiltonianH in the expression~13! is not a function
as follows. Any connectionG on Y→R defines the Hamiltonian formHG ~11! on V* Y, and every
Hamiltonian form onV* Y admits the splitting

H5pidyi2~piG
i1H̃G!dt, ~15!

whereG is a connection onY→R and H̃G is a real function onV* Y, called the Hamiltonian
function.

Proposition 4:Locally Hamiltonian forms are Hamiltonian forms locally.
Proof: Given locally Hamiltonian formsHg andHg8 , their difference,

s5Hg2Hg8 , ds5~g2g8!cV,

is a 1-form onV* Y such that the 2-forms∧dt is closed and, consequently, exact. In accorda
with the relative Poincare´ lemma, this condition implies thats5 f dt1dg, wheref andg are local
functions onV* Y. Then it follows from the splitting~12! that, in a neighborhood of every poin
pPV* Y, a locally Hamiltonian formHg coincides with the pull-back of the Liouville formJ on
T* Y by the local section

~ t,yi ,pi !°~ t,yi ,pi ,p52piG
i1 f !
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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of T* Y→V* Y, where f is a local function onV* Y.
Proposition 5:Conversely, letH be a Hamiltonian formH on the Legendre bundleV* Y.

There exists a unique connectiongH on V* Y→R, called the Hamiltonian connection, such th
gH4V5dH.

Proof: Let us introduce the Hamilton operator,

EH5dH2l cV5@~yt
i2] iH!dpi2~pti1] iH!dyi #∧dt,

on the phase spaceV* Y. It is readily observed that this operator is an image of the global sec

gH5] t1] iH] i2] iH] i , ~16!

of the jet bundleJ1V* Y→V* Y. This is the unique solution of the first-order differential Hamilt
equations,

yt
i5] iH, pti52] iH, ~17!

on V* Y, and is a Hamiltonian connection for the Hamiltonian formH.
The integral curves of the Hamiltonian connection~16! are classical solutions of the Hamilto

equations~17!. Conversely, sincer (R),V* Y is closed, every classical solutionr :R→V* Y of the
Hamilton equations~17! can be extended to a unique Hamiltonian connection forH.

Hamiltonian connectionsgH ~16! form an affine space modeled over the linear space
Hamiltonian vector fields~8!.

Remark:The Hamilton equations~17! can be introduced without appealing to the Hamilt
operator. They are equivalent to the relation

r * ~ucdH!50,

which is assumed to hold for any vertical vector fieldu on V* Y→R.
With a Hamiltonian formH ~15! and the corresponding Hamiltonian connectiongH ~16!, we

have the Hamilton evolution equation,

dHt f 5gHcd f5~] t1] iH] i2] iH] i ! f , ~18!

on functions on the Legendre bundleV* Y. Substituting a classical solution of the Hamilto
equations~17! in ~18!, we obtain the time evolution of the functionf . Given the splitting~15! of
a Hamiltonian formH, the Hamilton evolution equation~18! is brought into the form

dHt f 5] t f 1~G i] i2] iG
j pj]

i ! f 1$H̃G , f %V . ~19!

A glance at this expression shows that the Hamilton evolution equation in time-dependen
chanics does not reduce to the Poisson bracket. This fact may be relevant to the quan
problem. Under quantization, the Poisson bracket on the right-hand side of the equatio~19!
becomes the operator one, while the second term remains classical and depends on the c
a reference frame.

IV. CANONICAL TRANSFORMATIONS

Canonical transformations in time-dependent mechanics are not compatible with the fib
V* Y→Y, in general.

Definition 6:By a canonical automorphism is meant an automorphismr overR of the bundle
V* Y→R that preserves the canonical Poisson structure~7! on V* Y, i.e.,

$ f +r,g+r%V5$ f ,g%V+r,

and, equivalently, the canonical formV ~3! on V* Y, i.e., V5r* V.
The bundle coordinates onV* Y→R are called canonical if they are canonical for the Poiss

structure~7!. Canonical coordinate transformations satisfy the relations
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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]pi8

]pj

]y8 i

]pk
2

]pi8

]pk

]y8 i

]pj
50,

]pi8

]yj

]y8 i

]yk 2
]pi8

]yk

]y8 i

]yj 50,
]pi8

]pk

]y8 i

]yj 2
]pi8

]yj

]y8 i

]pk
5d j

k .

By definition, the holonomic coordinates onV* Y are the canonical ones. Accordingly, holonom
automorphisms,

~yi ,pi !°S y8 i ,pi85
]yj

]y8 i pj D
of the phase spaceV* Y→Y induced by the vertical automorphisms ofY→R are also canonical

Proposition 7:Canonical automorphisms send locally Hamiltonian connections onto th
cally Hamiltonian ones~and, consequently, locally Hamiltonian forms onto each other!.

Proof: If g is a locally Hamiltonian connection forH, we have

Tr~g!cV5~r21!* ~g cV!5d„~r21!* H….

It should be emphasized that, in general, canonical automorphisms do not send Hami
forms onto Hamiltonian forms, but only locally.

Proposition 8: Let g be a complete locally Hamiltonian connection onV* Y→R, i.e., the
vector field~9! is complete. There exist canonical coordinate transformations that bring all
ponents ofg to zero, i.e.,g5] t .

Proof: A glance at the relation~10! shows that each locally Hamiltonian connectiong is the
generator of a local one-parameter groupGg of canonical automorphisms of the phase spa
V* Y→R. Let V0* Y be the fiber ofV* Y→R at 0PR. Then canonical coordinates ofV0* Y dragged
along integral curves of the complete vector fieldg satisfy the statement of the proposition.

In particular, letH be a Hamiltonian form~15! such that the corresponding Hamiltonia
connectiongH ~16! is complete. By virtue of Proposition 8, there exist canonical coordin
transformations that bring the HamiltonianH into zero. Then the corresponding Hamilton equ
tions reduce to the equilibrium ones. Accordingly, any Hamiltonian forH can be locally brought
into the form whereH50 by local canonical coordinate transformations.

Every canonical transformation admits a local generating function as follows. LetH be a
Hamiltonian form~13! on V* Y. Given a canonical automorphismr, we have

d~r* H2H !50,

r* H2H5dS,

whereS is a local function onV* Y. We can write locally

r* H5r idr i2H+rdt.

Then the corresponding coordinate relations read as

] iS5r j] ir
j2pi , ] iS5r j]

ir j , H82H5r i] tr
i2] tS.

Taken on the graph,

Dr5$„ p,r~p!…PV* Y3V* Y%,

of the canonical automorphism, the functionS plays the role of a local generating function. F
instance, if the graphDr is coordinated by (t,yi ,y8 i), we obtain the familiar expressionH8
2H5] tS(t,yi ,y8 i).

V. REFERENCE FRAMES

Every connectionG on the bundlep:Y→R defines a horizontal foliation onY→R whose
leaves are the integral curves of the nowhere vanishing vector field~2!. Conversely, letY admit a
horizontal foliation such that, for each pointyPY, the leaf of this foliation throughy is locally
determined by a sectionsy of V* Y→R throughy. Then, the map
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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G:Y→J1Y, G~y!5 j t
1sy , p~y!5t,

is well defined. This is a connection onY→R.
Given a horizontal foliation onY, there exists the associated atlas of constant local trivial

tions ofY such that every leaf of this foliation is locally generated by the equationsyi5const, and
the transition functionsyi→y8 i(yj ) are independent of the coordinatet.16,17 Two such atlases are
said to be equivalent if their union is also an atlas of constant local trivializations. The
associated with the same horizontal foliation. Thus, we have proved the following assertio

Proposition 9:There is one-to-one correspondence between the connectionsG on Y→R and
the equivalence classes of atlases of constant local trivializations ofY such thatG i50 relative to
the associated coordinates, called adapted toG.

Proposition 10:Every trivialization ofY→R yields a complete connection on this bund
Conversely, every complete connection onY→R defines a trivializationY>R3M such that the
associated coordinates are adapted toG.

Proof: Every trivialization ofY→R defines the horizontal liftG5] t onto Y of the standard
field ] t on R, which is obviously a complete connection onY→R. Conversely, letG be a
complete connection onY→R. This is the generator of the one-parameter groupGG that acts
freely onY. The orbits of this action are, of course, the integral curves ofG. Hence, we obtain a
projection,

pG :Y→Y/GG5M .

This projection together withp:Y→R defines a trivialization ofY.
One can say that a complete connectionG on an event spaceY→R describes a referenc

frame in time-dependent mechanics. Given a reference frameG, we have the corresponding co
variant differential,

DG : J1Y→VY, ~ t,yi ,yt
i !°~ t,yi ,ẏi5yt

i2G i !.

Let s be a~local! section ofY→R. One can think ofDG+J1s as being the relative velocity of th
motion s with respect to the reference frameG. Indeed,DG+J1s vanishes identically iffs is an
integral curve ofG.

Let us consider the Hamilton evolution equation~19!. For any connectionG in the splitting
~19!, there exist holonomic canonical transformations ofV* Y to the coordinates adapted toG that
bring ~19! into the familiar Poisson bracket form,

dHt f 5] t f 1$H̃, f %V .

VI. LAGRANGIAN POISSON STRUCTURE

In contrast with the Legendre bundleV* Y, the configuration spaceJ1Y of time-dependent
mechanics does not possess any canonical Poisson structure, in general. A Poisson stru
J1Y depends on the choice of a Lagrangian,

L5Ldt, L: J1Y→R. ~20!

We will use the notationp i5] i
t
L, p i j 5] i

t] j
t
L.

Every LagrangianL ~20! defines the Legendre map,

L̂:J1Y→V* Y, pi+L̂5p i . ~21!

The pull-back onJ1Y of the canonical 3-formV ~3! by the Legendre mapL̂ ~21! reads as

VL5L̂* V5dp i∧dyi∧dt.

By means ofVL , every vertical vector fieldq5q i] i1q̇ i] i
t on J1Y→R yields the 2-form

q cVL5$@q̇ jp j i 1q j~] jp i2] ip j !#dyi2q ip j i dyt
j%∧dt.
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This is one-to-one correspondence, if the LagrangianL is regular. Indeed, given any 2-formf
5(f idyi1ḟ idyt

i)∧dt on J1Y, the algebraic equations,

q̇ jp j i 1q j~] jp i2] ip j !5f i , 2q ip j i 5ḟ j ,

have a unique solution,

q i52~p21! i j ḟ j , q̇ j5~p21! j i @f i1~p21!knḟn~]kp i2] ipk!#.

In particular, every functionf on J1Y determines a vertical vector field,

q f5~p21! i j ] j
t f ] i2~p21! j i @] i f 1~p21!kn]n

t f ~]kp i2] ipk!#] j
t , ~22!

on J1Y→R in accordance with the relation

q f cVL52d f∧dt.

Then the Poisson bracket,

$ f ,g%Ldt5qgcq f cVL, f ,gPC`~J1Y!, ~23!

can be defined on functions onJ1Y, and reads as

$ f ,g%L5~p21! i j ~] i
t f ] jg2] i

tg] j f !1~]npk2]kpn!~p21!ki~p21!n j] i
t f ] j

tg.

The vertical vector fieldq f ~22! is the Hamiltonian vector field of the functionf with respect to
the Poisson structure~23!.

In particular, if the LagrangianL is hyperregular, that is, the Legendre mapL̂ is a diffeomor-
phism, the Poisson structure~23! is obviously isomorphic to the Poisson structure~7! on the phase
spaceV* Y.

The Poisson structure~23! defines the corresponding symplectic foliation onJ1Y that coin-
cides with the fibrationJ1Y→R. The symplectic form on the leafJt

1Y of this foliation is V t

5dp i∧dyi .18

We will see below that the Lagrangian counterpart of Hamiltonian forms is the Poinc´–
Cartan form,

HL5p idyi2~p i yt
i2L!dt.

This is the unique Lepagian equivalent of a LagrangianL that participates in the first variationa
formula. The Poincare´–Cartan form defines the morphism

ĤL :J1Y→T* Y, p+ĤL5L2p i yt
i , pi+ĤL5p i . ~24!

There is the relationL̂5z+ĤL , wherez is the canonical projection~14!.
Let

u5ut] t1ui] i , ut50,1, ~25!

be a vector field onY→R. The first variational formula provides the canonical decomposition
the Lie derivative,

L J1uL5~J1ucdL!dt5~ut] t1ui] i1dtu
i] i

t!Ldt,
~26!

dt5] t1yt
i] i1¯ ,

in accordance with the variational task.16,19 We have

J1ucdL5~ui2utyt
i !E i1dt~ucHL!, ~27!
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where

EL5~] i2dt] i
t!Ldyi∧dt ~28!

is the Euler–Lagrange operator forL. The kernel KerEL,J2Y of this operator defines the
second–order Lagrange equations onY,

~] i2dt] i
t!L50. ~29!

Definition 11:A connection,

j5] t1j i
]

] i 1j t
i ]

] ŷt
i ,

on the configuration spaceJ1Y→R is said to be a Lagrangian connection for the LagrangianL if
it obeys the condition

j cVL5dHL , ~30!

which takes the coordinate form

~j i2yt
i !p i j 50,

] iL2] tp i2j j] jp i2j t
jp i j 1~j j2yt

j !] ip j50,

relative to the adapted coordinates (t,yi ,yt
i ,ŷt

i ,ytt) on J1J1Y.
In order to clarify the meaning of~30!, let us consider the Lagrangian,

L̄5L1~ ŷt
i2yt

i !p idt,

on the repeated jet manifoldJ1J1Y. The corresponding Euler–Lagrange operator, called
Euler–Lagrange–Cartan one, reads as

E L̄5@„] iL2d̂tp i1] ip j~ ŷt
j2yt

j !…dyi1] i
tp j~ ŷt

j2yt
j !dyt

i #∧dt,
~31!

d̂t5] t1 ŷt
i] i1ytt

i ] i
t .

Then the condition~30! is equivalent to the one Imj,Ker E L̄, and leads to the first-order differ
ential equations on the jet manifoldJ1Y, called the Cartan equations,

] i
tp j~ ŷt

j2yt
j !50, ] iL2d̂tp i1~ ŷt

j2yt
j !] ip j50. ~32!

Integral curves of Lagrangian connectionsj for L provide classical solutionss̄:R→J1Y of these
equations.

The restriction ofE L̄ to the holonomic jet manifoldJ2Y defines the first-order Euler–
Lagrange operator whose kernel is the system of the first-order Lagrange equations,

ŷl
i 2yl

i 50, ~] i2dl] i
l!L50. ~33!

These are equivalent to the second-order Lagrange equations~29!, and represent their familia
first-order reduction.

It is easily seen that the first-order Lagrange equations~33! @and consequently the secon
order ones~29!# are equivalent to the Cartan equations~32! on the integrable sectionss̄5J1s of
J1Y→R. They are completely equivalent to the Cartan equations in the case of re
Lagrangians.
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ns.

the

of a

-

l-

2723J. Math. Phys., Vol. 39, No. 5, May 1998 Gennadi A. Sardanashvily

Downloaded
VII. DEGENERATE SYSTEMS

Let us consider the relations between the solutions of Hamilton and Lagrange equatio
Every Hamiltonian formH on the phase spaceV* Y defines the Hamiltonian map

Ĥ:V* Y→J1Y, yt
i+Ĥ5] iH.

Its jet prolongation reads as

J1Ĥ:J1V* Y→J1J1Y, ~yt
i ,ŷt

i ,ytt
i !+J1Ĥ5~] iH,yt

i ,dt]
iH!.

Following the general polysymplectic scheme, we say that a Hamiltonian formH on V* Y is
associated with a LagrangianL if H obeys the conditions14–16

L̂+Ĥ+L̂5L̂, ~34a!

pi]
iH2H5L+Ĥ. ~34b!

It follows from the condition~34a! that L̂+Ĥ is the projection operator toQ5L̂(J1Y),V* Y,
called the Lagrangian constraint space, andĤ+L̂ is the projection operator toĤ(Q),J1Y. Given
a Hamiltonian formH associated withL, the Lagrangian constraint space is defined by
coordinate relation,

pi5] i
t
L~ t,yj ,] jH!.

If a LagrangianL is hyperregular, there exists a unique Hamiltonian form associated withL.
Let a LagrangianL be semiregular, i.e., the preimageL̂21(p) of any pointpPQ is a con-

nected submanifold ofJ1Y. The following assertions issue from the corresponding theorems
polysymplectic formalism.14,16,20

Proposition 12:All Hamiltonian formsH associated with a semiregular LagrangianL coin-
cide on the Lagrangian constraint spaceQ, and the Poincare´–Cartan formHL is the pull-back of
any such a Hamiltonian formH by the Legendre mapL̂, i.e.,

p i yt
i2L5H~ t,yi ,p i !. ~35!

Proposition 13:Let a sectionr of the bundleV* Y→R be a solution of the Hamilton equa
tions~17! for a Hamiltonian formH associated with a semiregular Lagrangian densityL. If r lives
in the Lagrangian constraint spaceQ, the sections5pP+r of the bundleY→R satisfies the
Lagrange equations~29!, while its jet prolongations̄5Ĥ+r 5J1s obeys the Cartan equations~32!.
Conversely, let a sections̄ of J1Y→R be a solution of the Cartan equations~32! for a semiregular
LagrangianL. Let H be a Hamiltonian form associated withL so that the corresponding Hami
tonian map satisfies the condition

Ĥ+L̂+ s̄5J1~p0
1+ s̄!. ~36!

Then the sectionr 5L̂+ s̄ of V* Y→R is a solution of the Hamilton equations forH.
Proof: One can show that, in the case of a semiregular LagrangianL, the Euler–Lagrange–

Cartan operator~31! is the pull-back,

E L̄5~J1L̂ !* EH , ~37!

of the Hamilton operator for a Hamiltonian formH associated withL. In accordance with the
relation ~37!, if gH is a Hamiltonian connection forH, the composition,

J1Ĥ+gH :V* Y→J2Y, ~yt
i ,ŷt

i ,ytt
i !+J1Ĥ+gH5~] iH,] iH,dHt]

iH!,
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takes its values into the kernel of the Euler–Lagrange operatorEL . Then the morphismJ1Ĥ
+gH+L̂ restricted toĤ(Q) is a local Lagrangian connection onĤ(Q),J1Y. Conversely, the first
of the Hamilton equations~17! is satisfied due to the condition~36!, while the second one reduce
to the second of the Cartan equations~32! because of the relation~35!.

Since, by Proposition 13, solutions of the Lagrange equations for a degenerate Lagr
may correspond to solutions of different Hamilton equations, we can conclude that, ro
speaking, the Hamilton equations involve some additional conditions in comparison wit
Lagrange ones. Therefore, let us separate a part of the Hamilton equations which are defi
the Lagrangian constraint spaceQ in the case of almost regular Lagrangians.

Definition 14:A semiregular LagrangianL is said to be almost regular if~i! the Lagrangian
constraint spaceQ→Y is a closed imbedded subbundlei Q :Q�V* Y of the Legendre bundle
V* Y→Y; and ~ii ! the Legendre mapL̂:J1Y→Q is a bundle.

Let HQ5 i Q* H be the restriction of a Hamiltonian formH associated withL to the constraint
spaceQ. By virtue of Proposition 12, this restriction, called the constrained Hamiltonian form
uniquely defined, andHL5L̂* HQ . For sectionsr of the bundleQ→R, we can write the con-
strained Hamilton equations,

r * ~uQcdHQ!50, ~38!

whereuQ is an arbitrary vertical vector field onQ→R.14,16,21In brief, we can identify a vertical
vector fielduQ on Q→R with its imageTiQ(uQ) and can bring the constrained Hamilton equ
tions ~38! into the form

r * ~uQcdH!50, ~39!

where r is a section ofQ→R and uQ is an arbitrary vertical vector field onQ→R. These
equations fail to be equivalent to the Hamilton equations restricted to the constraint spaceQ.

The following two assertions together with Proposition 13 give the relations between C
Hamilton, and constrained Hamilton equations when a Lagrangian is almost regular.16

Proposition 15:For any Hamiltonian formH associated with an almost regular LagrangianL,
every solutionr of the Hamilton equations that lives in the Lagrangian constraint space
solution of the constrained Hamilton equations~39!.

Proposition 16:A sections̄ of J1Y→R is a solution of the Cartan equations~32! iff L̂+ s̄ is a
solution of the constrained Hamilton equations~39!.

In the spirit of a well-known Dirac–Bergmann algorithm for analyzing constrained system
symplectic mechanics, the Lagrangian constraint spaceQ plays the role of the primary constrain
one. However, we cannot extend this algorithm to time-dependent mechanics because the
bracket of a Hamiltonian and constraint functions fails to be defined.

At the same time, one can hope to find a complete family of Hamiltonian forms assoc
with a degenerate LagrangianL so that, for each solution of the Lagrange equations, there e
the corresponding solution of the Hamilton ones for some Hamiltonian form from this family
Proposition 13, ifL is semiregular, such a complete family of associated Hamiltonian forms e
iff, for every solutions of the Lagrange equations, there is a Hamiltonian formH from this family
such that

Ĥ+L̂+J1s5J1s.

In particular, a complete family of Hamiltonian forms associated with an almost regular qua
Lagrangian always exists.14–16

Note that, since Hamiltonians in time-dependent mechanics are not functions on a
space, we cannot apply to them the well-known analysis of the normal forms22 ~e.g., quadratic
Hamiltonians2! in symplectic mechanics.
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VIII. CONSERVATION LAWS

In autonomous mechanics, an integral of motion, by definition, is a function on the p
space whose Poisson bracket with a Hamiltonian is equal to zero. This notion cannot be ex
to time-dependent mechanics because the Hamiltonian evolution equation~19! is not reduced to
the Poisson bracket.

Let us start from conservation laws in Lagrangian mechanics. To obtain differential co
vation laws, we use the first variational formula~27!.16,19 On shell, this leads to the weak identit

J1ucdL'2dtT , ~40!

where

T 5p i~utyt
i2ui !2utL ~41!

is the current along the vector fieldu ~25!. If the Lie derivativeL J1uL ~26! vanishes, we have the
conservation law

0'2dt@p i~utyt
i2ui !2utL#.

This is brought into the differential conservation law,

0'2
d

dt
„p i+s~ut] ts

i2ui+s!2utL+s…,

on solutionss of the Lagrange equations. A glance at this expression shows that, in
dependent mechanics, the conserved current~41! plays the role of an integral of motion.

Every symmetry current~41! along a vector fieldu ~25! on Y can be represented as
superposition of the No¨ther current along a vertical vector fieldq and of the energy current alon
some connectionG ~2! on Y→R, whereu5q1G.19,23

If q is a vertical vector field, the weak identity~40! reads as

~q i] i1dtq
i] i

t!L'dt~p iq
i !.

If the Lie derivative ofL alongq equals zero, we have the integral of motionT 5p iq
i .

In the case of a connectionG ~2!, the weak identity~40! takes the form

~] t1G i] i1dtG
i] i

t!L'2dt„p i~yt
i2G i !2L…, ~42!

where one can think of

T G5p i~yt
i2G i !2L ~43!

as being the energy function with respect to the reference frameG. In particular, the energy
conservation law~42! written relative to the coordinates adapted toG takes the familiar form

] tL52dt~p i yt
i2L!. ~44!

To discover conservation laws within the framework of Hamiltonian formalism, we will
the following trick. Given a Hamiltonian formH ~13! on V* Y, let us consider the Lagrangian,

LH5~piyt
i2H!dt, ~45!

on the jet manifoldJ1V* Y. It is readily observed that the Poincare´–Cartan form of the Lagrangian
LH coincides with the Hamiltonian formH, and the Euler–Lagrange operator forLH is precisely
the Hamilton operator forH. As a consequence, the Lagrange equations forLH are equivalent to
the Hamilton equations forH. Therefore, let us apply the first variational formula~27! to the
Lagrangian~45!.19

Given a vector field~25! on the event bundleY, its canonical lift ontoV* Y reads as
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ũ5ut] t1ui] i2] iu
j pj]

i , ut50,1.

Substituting this vector field into the weak identity~40!, we obtain

2ui] iH2ut] tH1pidtu
i'2dt~2piu

i1utH!, ~46!

for the current

T̃ 52piu
i1utH. ~47!

In the case ofu5G, the weak identity~46! takes the form

2] tH2G i] iH1pidtG
i'2dtH̃G ,

whereH̃G5H2piG
i is the Hamiltonian function in the splitting~15!.

The following assertion shows that the Hamiltonian functionH̃G is the Hamiltonian counter-
part of the Lagrangian energy functionT G ~43! in the case of semiregular Lagrangians.16

Proposition 17:Let a Hamiltonian formH on the Legendre bundleV* Y be associated with a
semiregular LagrangianL on J1Y. Let r be a solution of the Hamilton equations~17! for H that
lives in the Lagrangian constraint spaceQ and s the corresponding solution of the Lagrang
equations forL. Then, we have

T̃ ~r !5T ~Ĥ+r !, T̃ ~ L̂+J1s!5T ~s!,

whereT is the current~41! on J1Y and T̃ is the current~47! on V* Y.
Therefore, we can treatH̃G as the energy function with respect to the reference frameG. In

particular, ifG i50, we obtain the well-known energy conservation law

] tH'dtH,

which is the Hamiltonian variant of the Lagrangian conservation law~44!.

IX. RELATIVISTIC MECHANICS

Let us consider a mechanic system whose event spaceZ has no fibrationZ→R or admits
different such fibrations. We come to relativistic mechanics where a configuration space is
manifold of one-dimensional submanifolds ofY that generalizes the notion of jets of sections o
bundle.16,24,25

Let Z be a manifold of dimensionm1n. The first-order jet manifoldJn
1Z of n-dimensional

submanifolds ofZ comprises the equivalence classes@S#z
1 of n-dimensional imbedded subman

folds of Z that pass throughzPZ and that are tangent to each other atz. It is provided with a
manifold structure as follows.

Let Y→X be an (m1n)-dimensional bundle over ann-dimensional baseX andF an imbed-
ding of Y into Z. Then there is the natural injection,

J1F: J1Y→Jn
1Z,

j x8s°@S#F„s~x!…
1 , S5Im~F+s!,

wheres are sections ofY→X. This injection defines a chart onJn
1Z. Such charts cover the se

Jn
1Z, and transition functions between these charts are differentiable. They provideJn

1Z with the
structure of a finite-dimensional manifold.

Hereafter, we will use the following coordinate atlases on the jet manifoldJn
1Z of submani-

folds of Z. Let Z be endowed with a manifold atlas with coordinate charts,

~zA!, A51,...,n1m. ~48!
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ThoughJn
0Z, by definition, is diffeomorphic toZ, let us provideJn

0Z with the atlas obtained by
replacing every chart (zA) on a domainU,Z with the charts on the same domainU that corre-
spond to the different partitions of the collection (zA) in collections ofn andm coordinates. We
denote these coordinates by

~xl,yi !, l51,...,n, i 51,...,m. ~49!

The transition functions between the coordinate charts~49! of Jn
0Z associated with the coordinat

chart ~48! of Z are reduced simply to exchange between coordinatesxl andyi . Transition func-
tions between arbitrary coordinate charts of the manifoldJn

0Z take the form

x̃ l5g̃ l~xm,yj !, ỹ i5 f̃ i~xm,yj !. ~50!

Given the coordinate atlas~49! of the manifoldJn
0Z, the jet manifoldJn

1Z of Z is endowed
with the adapted coordinates (xl,yi ,yl

i ). Using the formal total derivativesdl5]l1yl
i ] i , one can

write the transformation rules for these coordinates in the following form. Given the coord
transformations~50!, it is easy to find that

dx̃l5@dx̃ lga~ x̃ l,ỹ i !#dxa. ~51!

Then we have

ỹ l
i 5F S ]

] x̃ l 1 ỹ l
p ]

] ỹ pDga~ x̃ l,ỹ i !G S ]

]xa 1ya
j ]

]yj D f̃ i~xm,yj !. ~52!

Remark:Given a manifoldZ, there is one-to-one correspondence between the jets@S#z
1 at a point

zPZ and then-dimensional vector subspaces of the tangent spaceTzZ:

@S#z
1° ẋl

„]l1yl
i ~@S#z

1!] i….

The bundleJn
1Z→Z possesses the structure group GL(n,m;R) of linear transformations of the

vector spaceRm1n that preserve the subspaceRn. Its typical fiber is the Grassmann manifo
GL(n1m;R)/GL(n,m;R) of n-dimensional vector subspaces of the vector spaceRm1n. In par-
ticular, if n51, the fiber coordinatesy0

i of J1
1Z→Z with the transition functions~52! are exactly

the standard coordinates of the projective spaceRPm.
When n51, the formalism of jets of submanifolds provides the adequate mathematica

scription of relativistic mechanics as follows.
Let Z be a (m11)-dimensional manifold equipped with an atlas of coordinates (z0,zi), i

51,...,m, ~49! with the transition functions~50!, which take the form

z0→ z̃0~z0,zj !, zi→ z̃i~z0,zj !. ~53!

The coordinatesz0 in different charts ofZ play the role of the temporal ones.
Let J1

1Z be the jet manifold of one-dimensional submanifolds ofZ. This is provided with the
adapted coordinates (z0,zi ,z0

i ). Then one can think ofz0
i as being the coordinates of nonrelativist

velocities. Their transition functions are obtained as follows.
Given the coordinate transformations~53!, the total derivative~51! reads as

dz̃05dz̃0~z0!dz05S ]z0

] z̃0 1 z̃0
k ]z0

] z̃kDdz0.

In accordance with the relation~52!, we have

z̃ 0
i 5dz̃0~z0!dz0~ z̃ i !5S ]z0

] z̃ 0 1 z̃ 0
k ]z0

] z̃ kD S ] z̃ i

]z0 1z0
j ] z̃ i

]zj D .

The solution of this equation is
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z̃ 0
i 5S ] z̃ i

]z0
1z0

j 2] z̃ i

]zj D Y S ] z̃ 0

]z0
1z0

k ] z̃ 0

]zk D .

This is the transformation law of nonrelativistic velocities, which illustrates that the jet bu
J1

1Z→Z is not affine, but projective.
To obtain the relation between nonrelativistic and relativistic velocities, let us conside

tangent bundleTZ equipped with the induced coordinates (z0,zi ,ż0,żi). There is the morphism

r: TZ→J1
1Z, z0

i +r5 żi / ż0. ~54!

It is readily observed that the coordinate transformation laws ofz0
i and żi / ż0 are the same. Thus

one can think of the coordinates (ż0,żi) as being relativistic velocities.
The morphism~54! is a surjection. Let us assume that the tangent bundle is equipped w

pseudo-Riemannian metricg andQz,TzZ is the hyperboloid given by the relation

gmn~z!żmżn51, m,n50,1,...,m. ~55!

The union of these hyperboloids overZ,

Q5 ø
zPZ

Qz5Q1øQ2

is the union of two connected imbedded subbundles ofTZ. Then the restriction of the morphism
~54! to each of these subbundles is an injection ofQ into J1

1Z.
Let us consider the image of this injection in the fiber ofJ1

1Z over a pointzPZ. There are
coordinates (z0,zi) in a neighborhood aroundz such that the pseudo-Riemannian metricg(z) at z
comes to the Minkowski one,

g~z!5h5diag~1,21,...,21!.

In this coordinates the hyperboloidQz,TzZ is given by the relation

~ ż0!22(
i

~ żi !251.

This is the union of the subsetsQz
1 wherez0.0 andQz

2 wherez0,0. The imager(Qz
1) is given

by the coordinate relation

(
i

~z0
i !,1.

From the physical viewpoint, this relation means that nonrelativistic velocities are bound
accordance with Special Relativity.

In general, Lagrangian formalism fails to be appropriate to relativistic mechanics beca
LagrangianL5Ldz0 can be defined only locally. Its Hamiltonian formulation is more promisi

The phase space of relativistic mechanics is the cotangent bundleT* Z provided with the
holonomic coordinates~z0, zi , p05 ż0 , pi5 żi!. This admits the canonical symplectic form

V5dpm∧dzm, m50,1,2,3.

Hamiltonian relativistic mechanics is formulated as an autonomous Hamiltonian mechanics
symplectic manifoldT* Z. Every HamiltonianH on the phase spaceT* Z defines the Hamiltonian
map,

Ĥ: T* Z→TZ, żm+Ĥ5]mH.

Since relativistic velocities live in the hyperboloid~55!, we have the similar constraint,
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gmn

]H

]pm

]H

]pn
51, ~56!

on the phase spaceT* Z. Thus, relativistic mechanics is described as a Dirac constraint syste
the primary constraint spaceQ ~56!. Its solutions are integral curves of the Hamiltonian vec
field q on Q,T* Z that obeys the Hamilton equation

q c i Q* V52 i Q* dH. ~57!

It should be emphasized that, as follows from the relation~24!, the coordinate2p, but not a
HamiltonianH plays the role of a relativistic energy function. For example, let us write~i! the
Hamiltonian,

H52
1

2m
hmnpmpn ,

of a free relativistic massm in Special Relativity on the Minkowski spaceR4; ~ii ! the Hamil-
tonian,

H52
1

2m
hmn~pm2eAm!~pn2eAn!,

of a relativistic electric chargee in the presence of an electromagnetic fieldAm ; and ~iii ! the
Hamiltonian,

H52
1

2m
gmnpmpn ,

of a point massm in the presence of a metric gravitational fieldg. Substituting these Hamiltonian
into the equations~56! and ~57!, we obtain the well-known solutions of relativistic mechanics
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