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mentation of the geometric constraint algorithm of Gotay, Nester and Hinds with
special emphasis on the relevant functional analytic aspects of the problem. This
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pretation of the physical degrees of freedom and the nature of the constraints when
both gauge symmetries and boundaries are present.
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I. INTRODUCTION

The study of field theories in the presence of boundaries has received some atten-
tion in the past, in particular regarding the interpretation of boundary conditions as con-
straints in their Hamiltonian formulations. This has an obvious importance for quantiza-
tion as constraints must be incorporated in one way or another. Numerous investigations
about this problem have appeared in the literature; see for example [1-10] and references
therein. Some of these works, in particular those devoted to study the integrability (ex-
istence and uniqueness problems) of the Yang-Mills equations in bounded domains, take
into consideration the relevant functional analytic issues [7, 8]. However the details of
the Hamiltonian formulation, in particular its systematic derivation and the role of the
constraints, are missing. These kind of questions, on the other hand, have been addressed
by other authors for simpler field theories [1, 2]. The problem with these papers is that
they consider these issues from a rather formal point of view that avoids the discussion
of important mathematical points. We feel that this precludes the correct identification
of the physical degrees of freedom and the geometric classification of the constraints, in
particular the role of boundary conditions. It is the purpose of this paper to fill in these
gaps.

We will consider two types of field theories in the presence of boundaries: free scalar
tields and electromagnetism (a gauge theory). Although scalars provide the simplest
tield theories, their careful study is useful in order to highlight a number of non-trivial
issues associated with infinite dimensional systems. In particular, the fact that the sym-
plectic form —one of the main elements of the Hamiltonian formulation- is weakly non-
degenerate, the necessity to precisely describe the domains of the Hamiltonian vector
fields that define the dynamics (very specially, their closure in the appropriate topolo-
gies), and the interpretation and classification of the constraint manifolds. These func-
tional analytic details play a crucial role in the geometric constraint algorithm for sys-
tems with an infinite number of degrees of freedom [11]. The electromagnetic field re-
quires extra care in its treatment because it has a (degenerate) presymplectic form. It is
hence useful in order to study issues related to the presence of gauge symmetries. The
fact that both models are linear, partially simplifies the analysis that we carry out here,
however, we feel that the correct understanding of these cases is a necessary first step
towards the consideration of more complicated models such as non-linear field theories
in the presence of boundaries (Yang-Mills, general relativity, brane models,...).

The identification and interpretation of physical degrees of freedom for field theories
is a relatively subtle problem because functional analytic issues must be unavoidably
taken into account. Naively one thinks of the configuration of the system as given by
fields thought of as functions from space (or spacetime) to the set of real or complex num-
bers (or some finite dimensional vector space when considering tensor fields). In many
situations, little attention is paid to the concrete smoothness properties of these fields. A
common attitude is to believe that for sensible physical systems it is always possible to
specify the mathematical conditions that render all the formal computations correct and
all the relevant objects well defined. Although this turns out to be the case in many oc-
casions, important physical features can be missed if these conditions are not explicitly
considered. One such issue is, precisely, the identification of the independent degrees of
freedom. There are situations, relevant for field theories, in which the precise description
of the degrees of freedom may be important and unavoidable. For example, the holo-



graphic models, where they are associated with hypersurfaces (or boundaries) of space-
time, come immediately to mind. Another interesting example is provided by quantum
black hole models, in particular those that make use of inner boundaries for their descrip-
tion [12-14]. A precise determination and understanding of the quantum states requires
the obtention of the independent classical configurations of the system, i.e. of its classical
degrees of freedom. Finally, the existence of boundary degrees of freedom is common in
condensed matter systems (see, for example, [15, 16]).

The interplay between the presence of boundaries and gauge symmetries is an inter-
esting subject —that actually motivates part of the present work— because it seems natural
to interpret boundary conditions as constraints on the field configurations. Constraints in
the Hamiltonian formulation come in different guises that receive different treatments, in
particular with regard to quantization. Here the classification of constraints as second or
tirst class plays an important role [17]. From a quantum point of view a popular approach
is the so called Dirac quantization that requires the quantization of concrete mathematical
expressions for the first class constraints and the identification of the kernels of the result-
ing operators. The vectors in these kernels play the role of physical states. Of course there
is always the possibility of attempting to describe (in a manageable form) the so called
reduced phase space and avoid some problems, in particular those related to gauge in-
variance and the arbitrariness of the particular description of the constraint manifold in
terms of constraint functions. However, although this is possible on general grounds, it
is very hard to do in practice. In any case, understanding the precise geometrical nature
of the constraint submanifold in phase space is a necessary first step towards this goal.

The standard approach to get the Hamiltonian description for singular Lagrangians
relies on the celebrated Dirac algorithm [17]. Although this method provides a conve-
nient way to deal with mechanical systems with a finite number of degrees of freedom it
is much harder to use for field theories, in particular, if functional analytic issues have to
be taken into account. In the late sixties and seventies, these difficulties lead to an effort
to achieve a geometric (i.e. intrinsic, coordinate independent, and global) understanding
of Hamiltonian systems that culminated in the development of the Gotay-Nester-Hinds
(GNH) geometric constraint algorithm [11, 18, 19] that we will use in the present paper.
This approach has many advantages because it provides a very clear geometric point of
view that makes it possible to incorporate, in a natural way, analytic aspects that are im-
portant both for regular and singular systems. In particular the relevant functional spaces
can be identified in a systematic way in each step of the algorithm. It also generalizes the
Dirac algorithm in some respects, for instance, its starting point is (M, w, &) where (M, w)
is a presimplectic manifold and « is 1-form that defines the dynamics (usually, « is the
exterior derivative of the Hamiltonian). Hence, it can be used not only to deal with the
standard Hamiltonian formulation, where M is taken to be the primary constraint sub-
manifold, but also leads to a purely symplectic-Lagrangian approach that may be useful
for some physical applications. In this paper we will consider both points of view.

The structure of the paper is the following. After this introduction, Section [l dis-
cusses the general approach that we will use. In particular we review the GNH algorithm,
the geometric classification of the constraint submanifolds, and discuss the variational,
Hamiltonian and symplectic-Lagrangian points of view. After this, Sections [IIl and [V]
study in detail the scalar and the electromagnetic fields in the presence of boundaries
subject to several important types of boundary conditions. We will carefully discuss here
the constraint manifolds —where the boundary conditions play a central role- and their



classification as first or second class. We end the paper in Section [V with the discussion
of the main results and our conclusions. We provide several appendices where relevant
background material is explained in some detail for the convenience of the reader. Ap-
pendix [Al introduces the functional spaces that are used throughout the paper and fixes
notation. Appendix [Bl compiles the proofs of several results that are necessary for the
implementation of the GNH algorithm for the electromagnetic field. Finally, Appendix
[Cl discusses the abstract wave equation [20], which provides the framework for a wide
class of free field theories.

II. GENERAL FRAMEWORK

The goal of this section is to describe, in some detail, the general framework that we
will use in the examples provided by the scalar and electromagnetic fields in the presence
of boundaries. We will follow three different approaches to the study of the dynamics of
these models: the variational, the Hamiltonian and the symplectic-Lagrangian. As men-
tioned in the introduction, field theories with an infinite number of degrees of freedom
must be described with the help of infinite dimensional manifolds. Here, following [18],
we will use Banach manifolds (see Appendix[A). Many mathematical subtleties in this
case stem precisely from the need to use these infinite dimensional spaces. We carefully
discuss these issues in the following.

I.1. The variational Lagrangian approach

The variational Lagrangian approach is an essentially analytic point of view that pro-
vides a way to obtain the evolution equations for a classical system in many important
instances. It consists of the following steps:

¢ The identification of the configuration space Q. For standard mechanical systems
this is a finite dimensional differentiable manifold. In the field theories that we will
discuss in this paper these configuration spaces will be Banach manifolds (actually,
real Hilbert spaces).

e The introduction of the Lagrangian L as a real differentiable function] L : © — R
on a domain ® C TQ (generically, in infinite dimensional systems, the topology of
© will not be the one induced from TQ). In finite dimensional systems one usu-
ally has ® = TQ. A common feature shared by the concrete models that we study
in the following is the fact that their Lagrangians cannot be defined on the whole
of TQ. This happens because the field equations for these models involve spatial
derivatives and require some additional smoothness conditions on the fields in Q.
The appropriate subsets of TQ, suitable to describe the dynamics, are constructed in
terms of manifold domains D of the configuration manifold Q [21]. In this framework
the domains © are of the form © = TpQ = [Jyp TQQ and are (generalized) subbun-
dles of TQ. When Q is a Banach space the tangent bundle is the product TQ = Q x Q
and the manifold domains have the form TpQ := D x Q, where D are Banach spaces
in their own right that can be considered as dense subspaces of the configuration

! We will not consider here time-dependent Lagrangians (that should be defined on TQ x R).



space Q. We will describe in detail the manifold domains for each of the models
that we consider in the paper.

¢ Fixing two points Q;,Q, € Q that define the initial and final configurations of
the system at two time instants t; < t,. We consider a set of possible trajecto-
ries (parametrized curves) joining them @ : [t;,t,] C R — Q, i.e. satisfying the
conditions ®(t;) = Q1, ®(t;) = Q,. In practice we will need to impose some addi-
tional, physically motivated, smoothness conditions on @ (by demanding, for ex-
ample, that the trajectories and the corresponding velocities are continuous). These
are required to make mathematical sense of the particular form of the action that
defines the dynamics (if it involves times derivatives, for instance) and also to be
able to characterize its stationary points through the Euler-Lagrange equations. For
a finite dimensional mechanical system a standard and convenient choice [22] is
C(Q1, Qz, [t1, ta]) == {®@ € C¥([ty, t2], Q)P (t1) = Q1, @(t2) = Q,}. This space can be
endowed with an appropriate Banach manifold structure [23] and provides a very
convenient setup to study the problem of finding the stationary points of the action.
In the case of field theories, however, one is forced to use spaces of curves with a
more complicated structure. This is a consequence of the fact that the Lagrangians
involve field derivatives and it is often necessary to simultaneously consider sev-
eral types of Hilbert spaces with different topologies.

¢ Introduce the action S : C(Q1, Q2, [t1, t2]) — R as the function.

(@) = Jtz L(®(1), d(1))dt .

tH

We will follow the standard custom of referring to the action as a functional to high-
light the fact that it depends on curves.

¢ Finally, look for stationary points of this function. These are defined as those curves
in the domain of S where the action is differentiable and the differential is zero. The
stationary curves, ® € C(Q, Qy, [ti, t,]), are the physical trajectories connecting Q;
at t; and Q; at t, corresponding to the dynamics defined by the action. These are
solutions to second order differential equations.

The second order differential equations that describe the dynamics of the system in
this context can be studied with the standard analytic tools in order to derive existence,
uniqueness and regularity results, find their solutions or, at least, get a sufficient under-
standing of their behavior.

II.2. The Hamiltonian approach and the GNH algorithm

The road from the Lagrangian to the Hamiltonian frameworks in classical mechanics
—as explained in the standard textbooks—- is a well-trodden one. By defining a suitable
momentum variable and performing a Legendre transform, one arrives at the Hamilto-
nian formulation where the equations of motion take a pleasingly simple canonical form
and the dynamics is encoded in a single function, the Hamiltonian.



Hamiltonian dynamics is defined in the cotangent bundle T*Q of the configuration
space. For Banach manifolds T*Q carries a canonical, weakly non-degenerate, symplectic
form Q € A%(T*Q) i.e. such that the vector bundle map

b T(T*Q) — TH(T*Q) : X — H(X) = ixQ

is injective. When b is a linear bundle isomorphism the symplectic form is said to be
strongly non-degenerate. This happens if Q is reflexive and, in particular, for finite
dimensional mechanical systems [21]. Notice, however, that even if Q is reflexive (as
in the examples that we consider in the paper) it may be unavoidable to work in a
manifold domain of Q. This means that the phase space will actually be of the form
T59Q = Ugep T6Q C T*Q and, hence, the symplectic form that one has to use (the pullback
of the canonical form in T*Q to T;Q) will generically be only weakly-nondegenerate.

From a geometric point of view [22], the transition from the Lagrangian to the Hamil-
tonian formulations is carried out by means of the so called fiber derivative FL of the
Lagrangian L:

FL:TpQ — T5Q, w— FL(w),

defined by

d

(vI[FL(w)) := —| L(w+1tv)

dt|,_,
where (-|-) is the natural pairing between elements of TQ and T*Q over the same base
point. The fiber derivative is used to define the canonical momenta and the Hamiltonian.
In fact, when it exists, the Hamiltonian H can be written in a purely geometric, coordinate
independent, way as

Ho FL(w) = (w|FL(w)) —L(w), weTpQCTQ.

For the so called regular (hyperreqular) systems the fiber derivative is a local (global) dif-
feomorphism. In the remaining cases the Lagrangian is said to be singular.

In order to obtain a Hamiltonian description of the dynamics defined by a given La-
grangian one would naively consider the following two steps:

e The determination of the Hamiltonian vector field X € X(T;Q) associated with the
Hamiltonian of the system. This is obtained as the solution to the equation

ixQ =dH, (IL.1)
where ix denotes the interior product of X and Q.

* The obtention of the integral curves of X that describe the time evolution of the
system (by projection onto the configuration space Q).

In the case of finite-dimensional, (hyper)regular, mechanical systems equation (ILI) is
rather trivial because the domain of the Hamiltonian is T*Q and the canonical symplectic
form can be easily seen to be strongly non-degenerate. However, for singular finite sys-
tems this is usually not the case because the domain of the Hamiltonian is a proper subset
of T*Q and, hence, the pull-back of the canonical symplectic form to it may be degenerate.
As a consequence, the resolution of requires some attention.



A common situation that one encounters in regular field theories is that the symplectic
form in T;,Q is only weakly non-degenerate. In this case one must study if the 1-form dH
lies in the range of the b map in order to be able to solve equation (ILI). If it does not, a
possible approach to the problem is to restrict (ILI) and define the Hamiltonian dynamics
of the system in an appropriate subset of the phase space. This is part of the content of
the algorithm developed by Gotay, Nester and Hinds in [11,19] to deal with a wide class
of field theories.

Before we discuss it, some comments are in order. If the range of the fiber derivative
FL(TpQ) is a proper submanifold of T;Q, according to its definition, the Hamiltonian

H:FL(TpQ) C T;Q - R

is only defined there. FL(TpQ) is known in the literature as the primary constraint mani-
fold and is the starting point of the algorithm developed by Dirac in [17]. An important
element in Dirac’s approach to the quantization of constrained systems was his insistence
in working in the full phase space T*Q. His main idea was to find conditions (constraints)
defining physical configurations, turn a certain generalization of the Poisson brackets (the
so called Dirac brackets) into commutators, quantize the constraints and select appropri-
ate physical states by considering their kernels. The insistence on working in the full
phase space required the extension of the Hamiltonian from the primary constraint sur-
tace to the full T*Q. This can usually be done in many ways. It is actually advantageous to
consider a large family of possible extensions and then restrict them, if necessary, to guar-
antee the consistency of the dynamics on an appropriate subset of the primary constraint
manifold. In practice, this is done by choosing a particular extension of the Hamiltonian
and adding to it a linear combination of independent functions, all of them vanishing
on this primary constraint manifold, with arbitrary coefficients (Lagrange multipliers).
An inconvenient feature of this approach is that it is local and lacks a clear geometric
justification.

The approach that we will follow —based in the Gotay-Nester-Hinds (GNH) algorithm-
will be slightly different, definitely more geometrical, and global. Our goal will not be a
Dirac-like description in the full phase space but, rather, the identification of a suitable
geometric domain in T;Q (in practice, a new phase space) where the dynamics is well
defined, together with the identification of the vector fields whose integral curves will
give the time evolution of the system. This is enough for the description of the reduced
phase space and is a possible starting point for quantization.

GNH algorithm for finite dimensional systems: We consider first the case in which Q
is a finite dimensional smooth manifold (and hence we will assume that D = Q). Let the
presymplectic system (M, w, dH) consisting on the primary constraint submanifold

M :=FL(TQ) C T*Q,

the pull-back w of the canonical symplectic form Q in T*Q to M, and the uniquely defined
Hamiltonian H : M — R.

The goal of the GNH algorithm is to find the maximal submanifold N C M where the
equation

(ixw —dH)|x =0, (IL.2)

2 Although, as we have mentioned in Section [[} the original algorithm is developed to be used in a more
general context, it can be easily adapted to the usual Hamiltonian framework, as we discuss here, by
following the ideas introduced in [18].



can be solved and gives rise to first order evolution equations on N, in the sense that the

solutions to are vector fields X : N — TN.
We start by defining M; := M = FL(TQ) and considering the set

My :={meM,; : dH(m) € range(p(m)) =d(T M) =: TmJ\/[?} C My,

where the map b is defined here as b(m) : T,M; — T M; : X — ixw. Itis clear that M, is
the set of points for which the equation

ixw —dH =0 (IL.3)

can be solved. For convenience, in the finite dimensional case, we will assume M;, M,
and all M, that will be defined below, to be an embedded submanifolds of T*Q. The solu-
tion will be a map of the form X : M, — TM, and will be generically non-unique and not
tangent to M, (i.e. X(m) & T,,M,). The failure to be tangent to M, means that any consis-
tent dynamics must be restricted to a new submanifold M; C M, where X is tangent to
Mz:

Mz :={m e M, : dH(m) € T, M5} € M, € M;.

If in addition to be tangent to M,, the vectors X that solve at this stage the equation
(ixw —dH)|y, =0

are also tangent to M; the dynamics can be consistently defined there, if not the procedure
must be iterated until it gives a suitable manifold. The previous procedure amounts to
building the sets

My :={m € My : dH(m) € T,M2} C My € My C --- C My,
obtaining the general solution to
(ixw —dH) [y, =0

and finding (if it exists) the smallest n > 1 such that M,,.; = M,,. If this is possible, the
manifold N := M, and the (generically non-unique) vector fields X : N’ — TN that solve
([L2) constitute the Hamiltonian description of the system.

Notice that in the finite dimensional case we have assumed that no topological com-
plications arise in the chain

N=M,CcM,1C---CM;=McCTQ

as the topologies are the natural ones induced by the manifold structure of T*Q. It is
important to point out that some of the possible arbitrariness in the vector fields X that
solves at the first stage of the algorithm may disappear during the process of finding
the sets My. If some of it remains at the end we will have a gauge freedom in our model.
It is also interesting to highlight the different origins and geometrical meaning of the
primary constraint submanifold M, := FL(TQ) and the others M, k > 2, that just beg to be
called secondary constraint submanifolds.

GNH algorithm for infinite dimensional systems: In the infinite-dimensional case the
situation is subtler due to a number of issues. To list a few of them:



e First, we need to choose the class of infinite dimensional real manifolds that we
will use to model the system. In the following, we will assume that Q is a Banach
manifold (and, hence TQ and T*Q are also Banach manifolds). Notice that norms in
infinite dimensional vector spaces are not necessarily equivalent, hence, it is impor-
tant to specify upon which particular Banach space a Banach manifold is modeled.

* The preceding procedure is not guaranteed to terminate and its naive generaliza-
tion to the infinite dimensional case may lead to difficulties. In fact this happens
even for such simple models as the free scalar field [18]. In particular, the final
arena for the dynamics may end up not being a Banach manifold (although in many
cases it is a Fréchet manifold). A way to avoid some of these problems, introduced
by Gotay in [18], consists in relaxing the strict tangency requirement of the finite-
dimensional case to increase the chances that the procedure ends in a finite number
of steps. Specifically, the requirement X : N — TN will be relaxed to X : N — TN as
explained below (see also the discussion of the integral curves of the abstract wave
equation in Appendix[C).

¢ The natural topologies of the intermediate spaces M that will appear in the con-
struction must be carefully taken into account.

* Notice that in the infinite dimensional case, even for regular systems, if the sym-
plectic form is only weakly non-degenerate the resolution of equation will
generically lead to restrictions on the domain of the vector fields X necessary to
guarantee that dH is in the image of the b map.

To generalize the preceding construction to the infinite-dimensional case let us con-
sider (M, w,dH) where M = FL(TpQ) C T3Q, w is the pullback of the canonical sympec-
tic form in T*Q to M, and H : M — R the Hamiltonian. We will assume M; := M to be a
Banach manifold modeled on a Banach space F; and also that

M, :={m e M, : dH(m) € T,M’} c M,

can be endowed with a Banach manifold structure, with model Banach space F,, such
that the inclusion j, : M, — M, is smooth (with the topologies on M; and M, given by
the respective Banach manifold structures). Notice that, although M, C M, as sets, in
general the topology of M, is not the induced topology from M;. Hence, in general, M,
is not an embedded submanifold of M;. As in the finite dimensional case, the definition
of M, must be understood as the solvability condition for X in the equation

ixw —dH =0. (IL4)

The solutions X : M, — TM; to (IL4) satisfy X(m) € Tj,mM;. Now, there may be points
m € M; for which X(m) ¢ sz(m)ﬁz C T,mM,. Here M, = cly, (2 M) € M, is the
topological closure of j,M, in M;, that we will assume to be an embedded submanifold
of M. If this is the case, we will say that the vector field X does not define first order
evolution equations on M,, and we will further restrict the set of points and the possible

vector fields to o,
My:={meM,: dH(m) e M, },

where B o _ B
TM; = TMali, o0, C TMG,  TM, =D (TMZ) Cbh(TM,).
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We will assume that M3 can be endowed with a Banach manifold structure, with model
Banach space F;, such that the inclusion M; 25 M, is smooth. In general, given the
Banach manifolds My, with Banach model spaces F, we will assume that

M1 :={m € My : dH(m) € TJ\/[kb}

can be endowed with Banach manifold structures with model Banach spaces Fy.; in such
a way that

Jk+1
Mt 255 My 25 -0 B M, 225 G,

is a chain of smooth injective immersions j; : M; — M;_;. Here we have used the notation

_ _ _ b _
TMk = TMk|]20"'OJk(Mk) C TM] s TMk =D (TMk> C b(TM])

where ﬁk = Clj\/[1 ()2 0:--0 ]k(Mk)) C M.

If it exists, the smallest n > 1 such that M, .1 = M, # () provides the maximal gen-
eralized submanifold N := M,, € M, with smooth inclusion j = j; o --- 0, and the
(generically non-unique) vector fields X : N — TN C TM that constitute the Hamiltonian
description of the system. If it does not, the system may be inconsistent or one could be
forced to define the dynamics outside the class of Banach manifolds. We will not need to
consider these situations in the present paper.

Geometric classification of the constraint submanifolds: The generalized submanifold

N L M of the presymplectic manifold (M, w) given by the GNH algorithm consists of
those states which are physically realizable.

The intrinsic classification of the constraint submanifolds of a presymplectic manifold
was developed by Tulczyjew [24] and Sniatycki [25]. This classification scheme general-
izes the local classification of the submanifolds of a strongly symplectic manifold given
by Dirac in terms of constrain functions. In particular, in this classification, constraint
submanifolds can be first class, second class, isotropic, Lagrangian or mixed:

e First class submanifolds: N 2 M is said to be a (generalized) first class submanifold
of a presimplectic manifold (M, w) if TN+ C TN.

e Second class submanifolds: N % M is said to be a (generalized) second class subman-
ifold of a presimplectic manifold (M, w) if TN+ N TN = {0}.

e Isotropic submanifolds: N % M is said to be a (generalized) isotropic submanifold of
a presimplectic manifold (M, w) if TN C TN*.

e Lagrangian submanifolds: N %5 M is said to be a (generalized) Lagrangian submani-
fold of a presimplectic manifold (M, w) if TN = TN*.

e Mixed submanifolds: N - M is said to be a (generalized) mixed submanifold of a
presimplectic manifold (M, w) in the rest of the cases.

Here we have used the notation:

TNt :={Z ¢ TM|y : wn(Z,X) =0, VX € TN} where TN:=).(TN).
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IL.3. The symplectic-Lagrangian point of view

Although there are analytic and geometric elements both in the Lagrangian and
Hamiltonian descriptions of mechanics that we have sketched above, it is clear that
the Lagrangian variational approach has a very analytic flavor whereas the Hamiltonian
approach is basically geometrical. The Hamiltonian framework relies heavily on the
geometry of the cotangent bundle T*Q and the naturally defined geometric structures
present there (in particular the symplectic form). It is important to point out that such
canonical structures do not exist in the tangent bundle. However this does not prevent
us from having a geometric description of the dynamics in the tangent bundle similar to
the Hamiltonian one. The key idea is to transfer the canonical symplectic form from T*Q
to TpQ by pulling it back with the help of the fiber derivative to define Q; := FL*(). Note
that this pullback is always well defined (though generically presymplectic) regardless
of the particular properties of FL. The role of the Hamiltonian function on the cotangent
bundle is now played by a closely related function on T»Q known as the energyﬁ

E:TpQ = R: w— (WFL(w)) —L(w).

With these ingredients the process of defining the dynamics in geometric terms on the
tangent bundle is similar to the one that we followed in the Hamiltonian case. It suffices
to exchange the roles of (FL(TpQ), w, H) with (T»Q, O, E) and use the GNH algorithm as
explained above.

Notice the similarity between the symplectic Lagrangian approach and the Hamilto-
nian approach, as far as the GNH algorithm is concerned. This can be seen especially at
the level of the equations that must be solved to obtain the respective Hamiltonian vec-
tor fields. Of course the difficulties associated with their solution are of the same type
and, hence, the techniques needed to deal with them can be applied in both frameworks.
Other issues such as the second order problem [18] must be eventually addressed but
will not play a significant role in the present paper.

ITII. THE SCALAR FIELD IN THE PRESENCE OF BOUNDARIES

This section is devoted to the detailed study of the free scalar field in a bounded space
region. By free we mean that the dynamics is given by the (linear) wave equation. The
presence of boundaries requires the careful consideration of the conditions that the fields
must satisfy on them in order to guarantee that their evolution is completely determined
by initial data. As mentioned in the introduction, one of the goals of this paper is to
clarify the possible interpretation of boundary conditions as constraints. To this end it is
necessary to use the appropriate mathematical tools. In the present case these issues can
be satisfactorily addressed within the framework provided by the differential geometry
of infinite dimensional manifolds, in particular those modeled on Banach and Hilbert
spaces. The geometric interpretation of the constraint manifolds, and their classifica-
tion according to the traditional first/second class division, will require the discussion
of a number of relatively subtle functional analytic issues that are not relevant for finite
dimensional mechanical systems and, for this reason, are usually neglected in formal
approaches to this subject.

3 Notice that E = Ho FL.
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In the following we will separately consider the three approaches explained in the pre-
ceding section: the variational, the Hamiltonian and the Lagrangian-symplectic. Before
doing so we establish the basic set up for the problem. To this end let us consider R™
endowed with the Euclidean metrid] ey (and covariant derivative V; such that Vie; = 0)
and the corresponding volume n-form that we denote as vol;. Let us take an open, con-
nected, bounded region £ C R™ with a smooth boundaryfi 9%.

The scalar fields that we are interested in are real functions with domain X. The con-
figurations of the system that we want to study will be scalar fields i.e. real functions
subject to smoothness conditions that originate in the fact that they are required to be
solutions (classical or weak) to partial differential equations (PDE’s) involving both time
and space derivatives. We will consider Dirichlet and Robin boundary conditions (the
Neumann boundary conditions are contained in the latter).

Our starting point will be the Dirichlet Lagrangiar@ L, : H(Z) x [2(£) — R, defined
by

1

Lo(Q,V) = 5 (W V)i — (90, 9Q)z, (1)

and the Robin Lagrangian L : H'(£) x [?(£) — R, given by

L(QV) = 2 (v V)s —

7 <§Q, §Q>fz + J' (AQ|az + ngyaz)VOIaz y (IIIZ)

2 oL
where

<LL1,LL2>L2 = J wuy VOI): y <1?L1,112>Ez = J 111 : 112 VOl): .

z z

The domains that we have chosen are the “largest” natural ones with the appropri-
ate mathematical structure, in particular they are Hilbert manifolds such that the La-
grangians are smooth functions on them. Here and in the following H*(Z) denotes the
s-Sobolev Hilbert space on ~ and

HH(Z) :={u € H'(Z) : ufos = f}

where ufys denotes the image of the trace operator y acting on u (see Appendix[A). The
trace y : H'(£) — L*(9%) is a bounded operator that, restricted to continuous functions
gives their boundary values [27]. Notice that f must be an element of the image of y and
H}(X) is also an affine Hilbert space (it is a closed affine subspace of a Hilbert space). We
will take the functions A, B € C*°(0X) and require B < 0 for technical reasons that will be
clear later. If A = B = 0 the L, reduces to the Neumann Lagrangian L, : H'(£) x L*(£) —
R, hence we will not discuss this case separately.

The preceding Lagrangians describe non-homogeneous boundary conditions. No gen-
erality is lost in the analysis that we present here by restricting to the homogeneous case,
hence in the following we will take f = 0 for the Dirichlet case and A = 0 for the Robin
one.

* The results of the paper can be easily generalized to curved spatial manifolds. We will refrain from doing
so here as this generalization does not change our conclusions regarding the treatment of boundary
conditions.

5 We restrict ourselves to the C™ case but most of our results can be extended, with minor modifications,
to manifolds with less regular boundaries, for example Lipschitz [26].

© We are using the Minkowski metric with signature (+, —, —, —).
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In order to make contact with the general discussion of Section [[Il we introduce the
manifold domains that we use in the following. First, as the L*(Z) scalar product plays a
central role in the definition of the Lagrangian is natural to start by choosing Q = L*(X)
as configuration space. However, the term (VQ, ﬁQ)p in the Lagrangian forces us to
restrict ourselves to a manifold domain D of L?(X) where the derivatives are well defined
and belong to L*(£). This leads us to consider Dp = H}(Z) and Dy = H'(X) for the
Dirichlet and Robin cases, respectively. Hence, the velocity phase spaces have the form
T, Q = HY(Z) x L*(X) and Tp, Q = H'(X) x L*(X).

III.1. Dirichlet boundary conditions

We will study the dynamics of a free scalar field defined on a bounded domain ~ C R"
of the type specified above subject to boundary conditions of the Dirichlet type:

O—AD =0 in (t;,t)) xZ (I11.3)
®=0 in (t,t,) x0X (I11.4)
®(t1) = Q1, O(t2) = Q;. (IIL.5)

where Q1, Q; € H?(Z) N HJ(X).

II1.1.1.  Variational approach

The action is defined on the space of curves

GD(Q])QZ) [thtZ])
={® € CO([ty, ta], H*(Z) N HY(Z)) N C'([ty, tal, HH(E)) N C*([ty, o], LA()) : @ (1) = Qi, i = 1,2}

with tangent spaces at ® € C,(Q1, Qa, [t1, t2]) of the type
TCDGD(Qh QZ) [thtZ]) - GD(O) O) [thtZ]) .

The tangent vectors 6 € Ty C,, are sometimes referred to as variations.
The action S;, : €, (Q1, Qa, [t1, t2]) — R is given by

So (D) = r Lo(@(t), d(t))dt = % Jtzdt L(dﬂ — VO - VO)vols .

In this domain the action S, is differentiable [23]. The differential of S;, can be computed
in a straightforward way as

t2 . .
4Su(@) 5= 1| S(@ A8 :J dtJ (05— V- V5)vols (I1L6)
dA A=0 t r
_ J b (,)5(t2)vols — j b (4)5(t))vols
) )y

t2 t2 -
+JdtJ' (—(D+A(D)5 VOlz—JdtJ' (ﬁVCD 5)’3[V0132,
z ox

t t



14

where 7l - VO denotes the (outward) normal derivative of @ at the boundary of Z. In the
space of curves that we are considering we have

1) 1%)
dS(®) -6 = J dtJ (—® 4+ AD)5 voly = —J (D(t) — AD(t),5(t))2dt,
t )X t

where we have used 5(t)[,; = 0and 5(t;) = 6(t,) = 0. Hence, the condition dS(®)-6 =0
for all the vectors € T Cp, implies that

O—AD =0 in (t;,t)) xZ.

Notice that the Dirichlet boundary conditions have been incorporated by choosing the
appropriate domain for the action, in this case Cp. In fact, if we replace H}(Z) by H'(X) in
the definition of C,, the critical points of the action would satisfy the wave equation with
Neumann conditions originating from the surface integrals appearing in (IIL6).

II1.1.2.  Hamiltonian approach

We will show that the Hamiltonian dynamics of the scalar field with Dirichlet bound-
ary conditions takes place in the second class (generalized) submanifold

No = (HA(Z) N H}(£)) x H(Z)
of the weakly simplectic manifold (M, wy), where
MD = ND = H(])(Z) X LZ(Z)

and wy, is the pullback to M, of the strong, canonical, symplectic form on L*(X) x L*(Z).
The (uniquely defined) Hamiltonian vector field that gives the dynamics of the system is

Xp :Np = TN, =Np x Myt X(Q,P) = ((Q,P), (P,A,Q)).
Here A, : H*(£) N H)(Z) — L?(X) denotes the scalar Dirichlet Laplacian.

In the following we will use the GNH algorithm explained above. The first element
that we need is the fiber derivative. In the present case, and taking into account that
the domain of the Lagrangian is H}(Z) x L*(X), we have that FL, : H}(Z) x [*(Z) —
L2(Z) x L*(£)*

FLo(Q, V) = (Q, (V,-)12) € [X(E) x [2(Z)*.

As [*(X)* is isomorphic, according to Riesz’s theorem, to L?(X) we consider FL;, : H}(Z) x
L?(Z) — L*(XZ) x L*(X) given by FL,(Q, V) = (Q,V), in other words FL;, is simply the
inclusion of H)(Z) x [*(X) into L*(£) x L*(X). The primary constraint manifold is M; :=
HJ}(Z) x L*(£) understood as a generalized submanifold of [*(£) x L?(£) in the sense that
its topology is not the induced one but the natural one for H}(£) x L[*(%).

The space L?(£) x L?(Z) carries a canonical, strongly non-degenerate, symplectic formf]
given by

Q(Q,P)((q1,p1), (q2>p2)) = <q1 ) pZ)LZ - <q2>p1>L2

7 This is so (see [21]) because L?(£) is a Hilbert space and, hence, is reflexive.
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where Q, P, qi,pi € L?(X). The pullback w := FLY Q) of O to M;, that we must use in the
GNH algorithm is weakly symplectic.

(U(Q,P)((th]), (qZ)pZ)) - <q1)p2>l_2 - <q2)p1>l_2

with Q, q; € H)(Z) and P,p; € L(X).
The Hamiltonian H, : M; — R is

1 - —
HD(Q» P) = z (<P> P>L2 + <VQ> vQ>f2)
and its differential dH, : M; — £(M;, R) is given by

dHy(Q, P)(q,p) = (P, )12 + <6Q)6q>f2

for ¢ € H)(Z) and p € L*(X).
Vector fields on M, are maps

XMy = My x M2 (Q, P) = ((Q, P), (Xo(Q, P), Xp(Q, PJ)).
It is immediate to get
(le)(Qa P)(q,P) = <XQ>p>L2 - <q> XP>L2 .

We have to find now a submanifold M, with smooth injective inmersion M, 22 M, such
that the equation
(ixw — dH)’Jz(Mz) =0

can be solved. This is equivalent to considering (ixw — dH)|,,)(q,p) =0 forall (q,p) €
M;. This last condition is

<P,P>]_2 + <§Q>§q>fz = <XQ>p>L2 - <q)XP>L2> V(q,p) S Hé(Z) X LZ(Z) . (IIL.7)

This is a linear, non-homogeneous equation for (Xq, Xp). At this point we have to find
out the conditions that (Q, P) € H}(Z) x L*(£) must satisfy in order to guarantee that the
equation can be solved and then obtain its most general solution.

The best way to proceed is to start by considering q = 0, so that (IIL.7) becomes (P —
Xq,P)1z = 0 for all p € L*(X). We deduce two things from this last equation: the first is
that Xg is fixed to be Xq(Q, P) = P as a consequence of the Hahn-Banach theorem. The
second is that, as X is required to be an element of H}(Z), P itself must be restricted to
be in H}(X).

By taking now p = 0 we are led to solve the equation (VQ, §q>fz = —(q, Xp)2 for
all ¢ € H)(Z). As the right hand side is the scalar product (q,Xp);2 we need to find
out the conditions that Q € H}(Z) must satisfy to guarantee that the left hand side can
also be written as the L?(X) scalar product of an element of L*(£) and q (remember that
Xp € [2(Z)). It is straightforward to see that the right condition is to require that VQ €
I:l(div, ) or, equivalently, Q € H'(A, £) (see Appendix[A), so that in order to guarantee
the solvability of the equation we must take Q € H'(A, £)NH](Z). This allows us to write
(VQ, §q>fz = —(AQ, q)12 and the equation that we must solve becomes (AQ —Xp, q);2 =
0 for all ¢ € H}(X). By using now that H}(X) is dense in L*(X), extending the previous
condition by continuity to L?(X), and employing the Hahn-Banach theorem we conclude
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that Xp(Q,P) = AQ € L*(X). It is important to mention at this point that in the case
of manifolds £ with smooth boundary H'(A, £) N HJ(X) = H?(Z£) N HJ(X), hence, in the
following, we will take Q € H*(Z) N H}(X).

At this stage we have found that

M, == (H*(Z) N HY(Z)) x Hy(X)
and a Hamiltonian vector field given by
(Xq, Xp) : My = My, (Q,P) — (P,AQ).
We have to obtain now M; = {m € M, : X(m) € T,,M,}. To this end we need to compute

M, = cl(12My) =l (HENHD) x HY)) = ey (HENHY) x cl2HY = H) x T2 =M.
HixL 0 0 H} 0 0 0

It is obvious that cl;2H} = L? because the smooth functions with compact support C3°(Z)
are a subset of H} (it is actually dense by the definition of H}) and C$°(X) is dense in
[?(%). Likewise, as C(L) € H*(£) N H}(X) and CL (L) is dense in H}, we conclude that

clyy(H* N Hy) = Hj and, hence, M, = Hj x L*. Now it is straightforward to see that

for every m € M, we have X(m) € T,,M,, that is, for (Q,P) € (H> N H}) x H} we have
(P, AQ) € H]} x L%. We conclude, then, that M3 = M, and the GNH algorithm stops giving
N:= Mz.

Several comments are in order now. The first one is about the condition of tangency
of the Hamiltonian vector field X(Q,P) = (P,AQ) to the closure of M, in the GNH al-
gorithm. It is well known that, in the absence of boundaries, the GNH algorithm with
the requirement of strict tangency does not stop because, in each step, one is forced to
introduce Sobolev spaces of increasingly higher order of regularity [18]. In the presence
of boundaries one finds, in addition, a sequence of conditions on the boundary of the
spatial manifold of the type

Qloz =0, Ploz = 0, AQloz =0, APlos =0, ...,A*Qlos = 0, A*Plyz =0, ... (I11.8)

This means that the final description for the states (Q, P) would require the introduction
of the Fréchet manifold C®(X) x C>(Z) (with the countable collection of semi-norms
inherited by its definition as the intersection (-, H*(Z)) and, in addition, an infinite set
([IL8) of subsidiary conditions at the boundary (this set of conditions is discussed in [28]
for the case of the wave and heat equation).

The second comment is that the integral curves of the field X are solutions to the first
order equations

Q=P
P=AQ

with initial data (Qy, Py) € (H*(Z)NH} (L)) x H)(Z): Notice that, in the previous equation,
A = A, is just the Dirichlet Laplacian A, : H*(£) N H}(Z) — [*(X). These equations lead
immediately to Q — AQ = 0 and are equivalent to (IIL3)-L5) (see Appendix[Cwhere,
in this specific case, D(—A,) = H*(Z) N H(L) and D(v/—A,) = H}(Z)). Notice also
that the vector field X has been completely fixed by the GNH algorithm, i.e. there is
no arbitrariness in its determination, hence, in this case the boundary conditions do not
imply the existence of gauge symmetries in the system, as expected. From a geometric
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point of view it is important to mention that the submanifold M, % M, is second class
because ker(b) = {0}. Finally, it is possible to show (see [28] and Appendix [C) that the
vector field is integrable and defines a Co-flux in M,, with the tangents to the integral
curves belonging to M, = Mj.

1I1.1.3.  The symplectic-Lagrangian approach

As the fiber derivative in this case is just the inclusion H}(Z) x [?(X) 5 12(Z) x [3(Z),
the pullback of the canonical symplectic form of L?(£) x L?(X) to the velocity phase space
Tp,Q = H)(Z) x [*(X) that defines Q is precisely equivalent to the pullback to M; that
we used before. Actually, as we use L*(X) instead of its dual, the symplectic-Lagrangian
approach in this case is identical to the Hamiltonian one described in the preceding sec-
tion.

III.2. Robin boundary conditions

We study now the dynamics of a free scalar field defined on a bounded domain of
Y C R" subject to boundary conditions of the Robin type:

O—-—AD=0 in (t,t)) xZ

R-VO =BD® in (t,t) x 0%

O(t)) = Qr, O(t2) = Q;.
with Q;, Q, € H3(X).

111.2.1.  Variational approach

The action is defined on the space of curves

Cr(Q1, Q2, [t1, ta])
={® € C°([ty, ta], H*(Z)) N C'(Ity, ta), H'(Z)) N C*([ty, o], LA(£)) : (1) = Qi 1= 1,2}
with tangent spaces at ® € C:(Q1, Qy, [t1, 1,]) given by
ToCr(Q1, Q2 [t1, t2]) = Ci(0,0, [t1, t2]) .
The action Si : Cx(Q1, Qz, [t1,t2]) — Ris

1%) . 1 1%) . . . 1 1%)

SR((D) :J LR(q)(t),q)(t))dt: —J dtJ ((I)Z—Vd)Vd))volz—i——J dtJ B®2|azvolaz.
t 2 t > 2 t oL

In this domain the action Sy is differentiable. The differential of S; at such @ acting on a

vector d € TpCr(Q1, Q2, [t1, t2]) can be computed in a straightforward way as

rto . . 1
dSR((D) 0= dtJ' ((D 5 —VOo- v5)V01): + J dtJ B(D5|az VOlaz
z

Jtg t [

rt2 15 .
- dtJ (—d + AD)S voly +J dtJ (BO—1-V)5| volss
)X

Jtg t oL

b + A, 5 dt + J (BO(t) — i - TO(L), 5(6) 1205,dt,

Ji 4
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where 7l - V@ denotes the (outward) normal derivative of ® at the boundary of £ and
we have used 6(t;) = 6(t,) = 0. Hence, the condition dS(®) - 6 = 0 for all the vectors &
implies that

O—-AD =0 in (t,t) xZ, (I11.9)

- VO(t)pr = BO(t)or - (I11.10)
The first condition (IIL9) is obtained by considering variations §(t) € H}(X) c H'(X).
Once this necessary condition is obtained the second set of equations (the boundary con-
ditions[IL10) come from variations with §(t) € H'(X) (that may not vanish at 9X). Notice
that the Robin boundary conditions appear now as conditions on the critical points of
the action (variational equations) and are not incorporated in the functional space C; (as

happened in the Dirichlet case). It is also worth pointing out that the Neumann boundary
conditions correspond to the choice B = 0.

1I1.2.2.  Hamiltonian approach

We will show now that the Hamiltonian dynamics of the scalar field with Robin
boundary conditions takes place in the second class (generalized) submanifold

Ne = H3(Z) x H'(Z), H3(%):={Q € H(Z): (BQ -1 VQ)losr = O},
of the weakly simplectic manifold (Mg, wy), where
Me =Ny = H'(Z) x L*(X)

and wy, is the pullback to My of the strong, canonical, symplectic form on L*(Z) x L*(Z).
The Hamiltonian vector field

XR:NRHT_ﬂR:NRXMR: X(Qap):((Qap)a(RARQ))-
is defined in terms of the scalar Robin Laplacian A : H3(£) — L*(Z).

We study the Hamiltonian formulation by using the GNH algorithm. The fiber deriva-
tiveis now FL : H'(Z) x [2(Z) — L2(Z) x L2(X)*

FL(Q, V) = (Q, (V; )12) € L*(Z) x L*(D)*.

As we did before, we identify L*(Z)* with [*(X) and consider FL; : H'(Z) x [*(£) —
L?(X) x L*(X). By doing this FL; is the inclusion of H'(Z) x L*(Z) into L*(X) x L*(X). The
primary constraint manifold is M; := H'(X) x () understood as a generalized subman-
ifold of 12(X) x L2(%).

The pullback of the canonical symplectic form of L*(£) x L*(£) to M, is the weakly
symplectic given by

(,U(Q, P)((q1>p1)> (q2>p2)) = <q1>p2>L2 - <q2>p1>L2 y

with Q, g; € H'(Z) and P, p; € L?(X). The Hamiltonian Hy : M; — R is

1 L
HR(Q) P) = E((R P)LZ(Z) + <VQ> VQ>EZ():) + <bQ>bQ>L2(aZ))
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where we have made use of the fact that B < 0 to write —B = b? with b > 0. Itis impor-
tant to notice that this condition on B guarantees the non-negativity of the Hamiltonian.
Also, as we are considering B € C*(9X) we also have b € C°(3%).

The differential dH, : M; — £(M;, R) is given by

dH.(Q,P)(d,p) = (P, P)izis) + (VQ, Va)pz(5) — (BQ, q)12(0x) -

for ¢ € H'(£) and p € L*(X). As before, if we denote the vector fields on M; by
XMy —= My x My 2 (Q, P) = ((Q, P), (Xo(Q, P), Xp(Q, P))),

it is immediate to get ixw

(le)(Qa P)(q,P) - <XQ>p>L2 - <q> XP>L2 .

We have to find now a submanifold M, with smooth injective inmersion j, : M, — Mj;
such that the equation
(ixw — dH)’Jz(Mz) =0

can be solved. This is equivalent to considering (ixw — dH)|,v,)(q,p) = 0 forall (q,p) €
M;. This last condition is

(P,p)izis) + (VQ, 6‘1){2(;) — (BQ, q)r205) = (X@s P)r2(z) — (4 Xp)12(5)

for all (q,p) € H'(Z) x L*(£). This equation cannot be solved in general for arbitrary
values of (Q, P) € H'(Z) xL*(X). A direct reasoning, that parallels the one used in the case
of the Dirichlet boundary conditions, tells us that Xq = P with P € H'(X). Furthermore
we must require Q € H?*(Z) where, as before, we have made use of the regularity of the
boundary 93X to trade the Sobolev space H'(A, £) for H*(X) (see chapter 5 of [29]). The
condition that remains to be solved is

(—=AQ, q)r2(x) — (BQ —1 - vQ, Drzes) = —(q, Xp)r2z) Vg € H'(Z).

From this it is obvious that Xp = AQ and also that (BQ — i - VQ)Jsz = 0. Hence we have
that M, := H3(Z) x H'(Z) where

H3(Z) ={Q € H3(X) : (BQ — - VQ)lor = 0}.

With the induced topology, H3(Z) is a closed linear subspace of H?(Z) and, hence, a
Hilbert space. At this stage we have found that

M, = H3(Z) x H'(Z),
(Xqy Xp) : Mz — My : (Q,P) = (P,AQ).

We have to obtain now Mz = {m € M, : X(m) € T, M,}. To this end we need to
compute

M, = cl(32M;) = elprz (HF x HY) = el (H3) x clpzH = H' < L2 = M.

It is obvious now that cl;-H' = L? because C$°(Z) € H' and C3°(X) is dense in L(X).
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The argument to prove that cl;;H3 = H' is slightly more subtle and goes as follows.
Let us consider the following scalar product in H'(Z)

(V) sy = (W, V) 2y + (b, V) 20r) + (VL VW)

with associated norm denoted as [|[v|[[;;1(5). It is straightforward to prove the equivalence
of the norms ||| - [/l (z) and || - [|j1(x) because Hv||]24](z) < VI, ) and

2 2 2 2 2 2
VIl (£) = ||V||H1(z) + ||bV|aZ||L2(a2) < ||V||H1(Z) + (H})%Xb) ||V|aZ||L2(a2)

< [l sy + (max D)y Pl = (1 (max DY) M e

as a consequence of the compactness of 0X and the continuity of the trace operator. Now
the subspace H3(Z) will be dense in H'(X) iff (H3(X))* = {0} (with respect to the scalar
product (-, )1(x))- In order to compute (H3(Z))* we take an orthonormal basis of eigen-
states uy, k € N, of the Laplace operator with Robin boundary conditions and eigenvalues
—A#, and make use of the known fact that for sufficiently regular 0 these eigenfunctions

are smooth, i.e. u, € C*(X), Vk € N. The condition
0 = (i, V() = (Wi Vizs) + (b, V) zar) + (Vi V) o

=(1+ Aﬁ)(uk,v)Lz(z) + (buy, bv) 1255 +J Vit - Vug
ox

= (] —+ )\i)<uk)v>l_2(£) + (buk, bV>]_2(az) — J bzvuk
ox
= (] + )\i)<uk)v>l_2(£) )

for all k € N implies v = 0 and we conclude that (H3(£))+ = {0} so that cl;;;H3 = H'. We
have then M; = M, , and the GNH algorithm stops giving N := M,.

As before, the integral curves of the Hamiltonian vector field X(Q,P) = (P, A:Q) re-
produce the evolution given by the wave equation with Robin boundary conditions. In
particular, the conditions discussed for the abstract wave equation in Appendix [C] are
satisfied in this specific case where D(—A;) = H3(Z) and D(v/—A;) = H'(X). Finally, the
submanifold M, 3 Mj is, again, a second class submanifold of (M, w).

111.2.3.  The symplectic-Lagrangian approach

As the fiber derivative is the inclusion H'(Z) x [2(X) 5 L2(X) x L2(X), as in the case of
Dirichlet boundary conditions, the symplectic-Lagrangian approach is exactly the same
as the Hamiltonian approach discussed above.

IV. THE ELECTROMAGNETIC FIELD IN THE PRESENCE OF BOUNDARIES

We study now the electromagnetic field defined on a bounded region. The main dif-
ference between this example and the case of the scalar field discussed in the preceding
section is the presence of a gauge symmetry. We will explore here how the boundary
changes the constraint analysis for the system. We will follow the same scheme used
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in the discussion of the scalar field and consider different types of boundary conditions
that are the natural generalizations of the Dirichlet and Neumann ones. In particular
the Dirichlet case has a clear physical interpretation as it corresponds to the perfect con-
ductor boundary conditions. This is dealt with by a suitable choice of domain for the
Lagrangian. The Neumann boundary conditions, on the other hand, behave as those of
the scalar Robin case in the sense that the Hamiltonian GNH analysis provides additional
conditions on the boundary values of the fields. Of course we will find also the expected
constraints associated with the usual gauge symmetry of electromagnetism.

The electromagnetic field will be represented by a U(1) connection on the 4-manifold
[t1, t2] x £, we will restrict ourselves to connected manifolds £ with boundary and, hence,
represent them as a 1-form field A : [t;, 1] x £ — Al([t1, 1] x ). For ease of comparison
we will use the metric to transform 1-forms into vectors fields and use a 3-vector notation
in the following.

We will consider two types of Maxwell Lagrangians, L, : H)(Z) x L?(£) — R and
Ly : H'(Z) x L?(£) — R given by

Lon(Q V) = 3 (Vs Ve + (VQu, Vi £ 5 (VQu, TQ ) — 5 (9 x G, 9 x Q)
The preceding Lagrangians are defined in an fixed inertial frame of the Minkowski space-
time and we are using the notation

L3(2) :=1%(2) x [3(Z), H'(Z):=H () x H(curl, £), H(Z) :=H], (X) x Ho(curl, )

The different functional spaces that we use in this section are described in Appendix[Al
As in the case of the scalar field, the configuration space is taken to be Q := L*(X).

The presence of derivatives in some terms of the Lagrangian forces us to consider the

manifold domains D, := H}(Z) and Dy := H'(X) and, hence, Ly, x : Tp,, ,Q — R.

IV.1. The perfect conductor boundary conditions

We will study here the dynamics of the electromagnatic field on a bounded domain
¥ C R3, with a smooth boundary, subject to the perfect conductor boundary conditions.

—

In terms of A = (Aperp, A), the Maxwell equations are

A+VA,L —AA+V(V-A)=0 in (t,t) xZ
V. (A+VAL) =0 in (t,t) X £
AxA=0 in (t;,t) x 0%

AL =0 in [ty t:) x 0%

Alt)=Qi, AL(t) =Qu1, A(t2)=Qs, AL(t) =QL
with Q; € H(curl, £) and Q. ; € H2 (£) N H], ().

IV.1.1. Variational approach

The action is defined on the space of curves

Co(Qr, Qay [tr, ta]) ={A € C2([ty, ta], ) N CL([ty, ta], £) N CE ([tr, ta], £) : A(t) =Qy, i=1,2}}
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where
€2 ([tr, tal, £) == CO([ty, tal, (HA(Z) N HY, (£)) x Hj(curl, 1)),
Cy ([, tal, X) == C'([ty, ta, LE(X) % (Ho(curl, £) N H(div, )
C2 ([tr, tal, X) := C?([t, ta], [A(5)) .

The tangent spaces at A € C,(Q1, Q2, [t1, t2]) are TAC,(Q1, Q2, [t1, t2]) = €5 (0,0, [t, t2]).
The action S;, : €, (Q1, Qa, [t1, t2]) — R is given by

A SR 1 - -
= J <_<A> A>f2 + <VAJ_> A)fz + —<VAJ_, VAJ_>

. L9 A9 /%) dt.
t

N
NI—‘

The differential of S, at A acting on a vector 6 € TACp(Q1, Qa, [t1, t2]) can be computed in
a straightforward way as

<11

t2 R = = '_', - - .
dSD(A)~6:JdtJ (—SL(AAL+V~A)+6-(AA— (V- ) VAJ_))VOI;,
>

t

where we have used that 5, (t) € H} | (£) and S(t) € I:lo(curl, Y) foreach t € [ty, to].
Hence, the condition dS,(A) - = 0 for all the vectors & € TAC,, implies

A+VA, —AA+V(V-A) =0 in (t,t)) x =
V- (A+VA,L) =0 in (t,t) x £

These are just the Maxwell equations in X subject to the perfect conductor boundary
conditions in 90X introduced in the definition of the domain for the action (and the La-
grangian).

IV.1.2.  Hamiltonian approach

We will show that the Hamiltonian dynamics of the electromagnetic field with perfect
conductor boundary conditions takes place in the first class (generalized) submanifold

Ny :={(Q,P) : Q. € H}, (%), Q € H3(curl, £), P € Ho(curl, £) N H(div,%), V- P = 0}
of the presimplectic manifold (M, wy), where
M, = Hy(Z) x TX(£)

and wy, is the pullback to M, of the strong, canonical, symplectic form on L*(£) x L?(%).
The class of Hamiltonian vector fields that defines the dynamics of the system is given by

Xo :Np = TNy =Np x Mp 1 (Q,P) = ((Q,P), ((Xqu(Q, P),Xq(Q,P)), X3(Q,P)))

where
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and Xq 1 (Q, P) is any (continuous) function.

As in the previous cases, we study the Hamiltonian formulation with the help of the
GNH algorithm. The fiber derivative FL,, : H})(Z) x L*(£) — L*(Z) x L*(X)* is given by
the expression

FLo(Q, V) = (Q, (V+ VQu, proj(-))i=) € H)(Z) x LA(Z)*,

where proj(a, @) = d. As in the case of the scalar field, we will use the Riesz representa-
tion theorem to swap L?(Z)* for L?(£) in which case the fiber derivative becomes

FL,(Q,V) = (Q, (0, V+VQL)) € Hy(Z) x LX(Z).
The image of H}(Z) x L?*(Z) under the fiber derivative is
My = H}(Z) x ({0} x [2(Z)) = HY(Z) x [2(%).

The pull-back to M; of the canonical symplectic form in L*(£) x L*(%) is

w(Q) ﬁ)((q1)ﬁ1)> (q2>ﬁ2)) - <q1)ﬁ2>fl - <q2)ﬁ1>f2

with (Q, 13), (gi, Pi) € HY(Z) x fz(Z). Notice that, at variance with the scalar field case,
this symplectic form is degenerate on the primary constraint submanifold M.
The energy is now

1 1 5 o 1 - -
0o FLo(QV) = 5(V, Vi +5(V x G, V x Q) — 5(VQL, VQu)z,

and the Hamiltonian H;, : M; — R and its differential are given by

Ho(QuP) = 3 (B, Pl — (B, ¥Qu)a +5(9 < G,V x Q)
Ho(Q, P) <l3> —(VQu, Pz — (P,

Vector fields on M; are maps X : M; — M; x M; : (Q, 13) — ((Q,l;), (XQ(Q,l;),)zﬁ(Q,l;)))
and, hence, . . . . .

in(Qa P)(qaﬁ) = <XQ(Q> P))ﬁ)[? - <Xﬁ(Q> P)) q>f2
We have to find now a submanifold M, with smooth injective immersion j, : M, — Mj

such that the equation
(ixw - dH)|J2(M2) =0

can be solved. In order to do this we have to find the general solution to the equation
(Xo,B)z: — (X, @2 = (P = VQu, B2 — (B, V) +(V % Q,V x d)pa

forall ((q.,q),p) € H) x [2. We have to find first the conditions on (Q,P ) P) that guarantee
that the previous equation can be solved and then get the solutions for the vector field

(XQ, 5). This defines the submanifold
M, :={(Q,P) : Q. € H}, (%), Q € Hi(curl, £), P € Hy(curl, £) N H(div, ), V - P = 0}

that is obtained as follows:
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¢ Consider first the case q;, =0and p = 0. This forces us to take Q € ljlg(curl, L) and
then solve (using the boundary conditions and Green’s theorem in the form (A.T))

_<>Z]3> q)fZ = <ﬁ x Q» V x q>f2 = <6 x V X Q» q>f2> vq € ﬁO(CurLZ) )
to get Xz = —V x V x Q, which is always in 2.

¢ We consider now the situation where q, = 0 and § = 0 and find >2Q =P—-VQ,. As
)ZQ € ﬁo(curl, Y ) we require that P— ﬁQL € ﬁ(curl, Y)and i x (13 — ﬁQL)!az =0.
However, Q, € H}, (£) implies that ﬁQ 1€ I:l(curl, ¥) and the condition Q | [z =0
implies 1 X 6QJ_|az = 0. This means that the constraint 1 x (l3 — ﬁQl)laz =0is

equivalent to 1 x lglaz = 0 and, hence, we will require that Pc ﬁo(curl, 2).

* Finally, if § =p = 0 the condition (P, ﬁqﬁp — 0 implies that 0 = V - P e [2(%)
and, hence P € ﬁo(curl, )N ﬁ(div, ) satisfying the additional condition V-P=0.
In this process the component Xq, is left arbitrary.

We have then found the continuous vector field X : M, — M, x M, given by

Xo(QP)=F-VQ,,
R5(Q,P) = —¥ x ¥ x G.
and Xq, : M; — H/, any arbitrary continuous function.
We have to check now if the vector fields obtained in the previous step are tangent to

the closure of M, in M. If this is so the GNH algorithm terminates because we would
have M; = M,. We will see that this is the case. First, notice that (see Appendix [B)

M, = cly, (My)
= clyy (H3(Z) x Hj(curl, £)) x clp ({P € Ho(curl, £) N H(div, X)) : V- P = 0})
=H}(Z) x ([}, (Z) & IF, (%))

We have to find those points (Q, 13) € M, for which the vector field X is tangent to M,,
i.e. such that

XQL(Q>]3) € ng(zﬁ
Xq(Q,P) =P —VQ. € Hy(curl, ),
X3(Q,P)=-VxVxQel} (D)al? (I).

These conditions are satisfied in the whole of M,. The first two can be trivially checked
whereas the last one is proved in Appendix[Bl We see then that the GNH algorithm stops.
We have identified the submanifold M, where the dynamics is well defined as well as the
form of the Hamiltonian vector fields whose integral curves give the dynamics of the

system.
The presence of arbitrary functions in X signals the existence of gauge symmetries. In

fact, the (generalized) submanifold M, 2 M, of (My, w) is a first class submanifold. In
order to see this we have to check that TM3 C j,,(TM,), where

TMy ={Z € TMily, : Wh,(Z,Y) =0, VY € j2.(TM,)}.
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To this end we show that
ZeTMy & Zgu € HY, (X)), Zg € VHY(E) € Hj(curl, X), Zs =0 € Cy ()

where . L . o
Cp(X) :={P € Ho(curl, X) N H(div,X) : V - P = 0}.

The vector fields Y € 5,.(TM;) can be thought of as maps
Y M, = My x My 2 (Q,P) = ((Q, P), (Yo(Q,P), Y5(Q,P))),

that is, (Q,P) € My, Yqu1(Q,P) € H}, Y5(Q,P) € H3(curl, %) and Y3(Q,P) € Cyo(X),
whereas vector fields Z € TM; IM2 are now maps

Z:M; — My x My (Q,P) = ((Q,P), (Zo(Q, P), Z5(Q, P)))

with (Q,P) € My, Zq.(Q,P) € H},, Z5(Q,P) € H(curl, L) and Z(Q,P) € [*(%). The
condition that defines TM; is

w(Q, P)((Zqy Zp), (Yo, V) = (Z, Yo — (Z5, Yg)i2 = O,

for all the possible values of the fields Y written above. This leads to the following two
conditions

Ny

aell

{ )
{ )

The first one implies that Z} = 0 because 680(2) is dense in [2(£) and 680(2) C
HZ(curl, £). The second condition implies that ZQ e CL = Ij%D = VH]. Finally there
is no condition on Zg,. As 0 € Cp(Z) it only remains to check that VH} C H3(curl, I).
This amounts to showing that for every ¢ € H}(Z), ﬁ(p € ﬁz(curl, Y), and the trace

(A x V)las is defined and it is zero. It is straightforward to prove that this is indeed the
case.

=0, V\?(jeljl%(curl,Z),
=0, WYszeCo(Z).

l:‘)l

)

Ny
Q1
{
- el
—
N

Y

IV.1.3.  Symplectic Lagrangian approach

In the symplectic Lagrangian approach there is no primary constraint surface. To begin
with we must pull-back the canonical symplectic form from L?(X) x L?*(Z)* to the Hilbert
space M; := H}(Z) x L*(%). By doing this we obtain

Q15 (Q,V)((q1,v1), (q2,v2)) = (Va1 + Vo, G1)pz2 — (Vi + V1, G2
The energy and its differential are given by
Lo 1 & 4 L L
Eo(Q,V) = 5(V, V) + 5V x Q, ¥ x Q)2 — 5(VQ, VQu )z
+(VxQVx @) —(VQL Vai)
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For a vector field
Y:Hj x L — (Hy x L?) x (H} x L*) : (Q, V) — ((Q, V), (Yo(Q, V), Yv(Q, V)))

we have L o -
iyQi, (Q,V)(q,v) = (YQ> Vq. +‘7>E2 - (VYQl + Yv, q)fz -

We must find now a Banach manifold M,, with smooth injective immersion M, 22
H}(X) x L?(X), such that we can solve the equation

(i‘YQLD - dED)’]z(Mz) =0.

This amounts to finding the general solution of the equation
<VQ) 6qJ_ +\7>]'_'2 - <6YQJ_ +VV) q>f2 = <\7) \_;>E2 + <6 X Q) 6 X q>f2 - <§QJ_> 6qJ_>E2 , (IV.1)

forall g, € H},, G € Ho(curl,£),v, € 12 (L) and v € [2(ZX). This is solved sequentially as
in the case of the Hamiltonian formulation to get the submanifol

M, ={Q. € H(Z)NHy, (%), Q € Hi(curl, £),
V. e L(%), V € Hy(curl, £) N H(div, ), V- (V+VQ.) = 0}

and VQ = \7, \7\/ =V x V x Q — ﬁYQ 1; with Yg, and Yy, arbitrary within the spaces
where they are defined (H], (£) and L?(X) respectively).

The condition V- (V+VQ, ) = 0 involves both V and Q. This is mildly inconvenient
when checking that the GNH algorithm stops at this stage. However, it suggests a simple
way to proceed. Let us introduce

My ={Qu € H(Z) NHY, (), Q € H3(curl, £),
P, € L%, P € Ho(curl, £) N H(div, £), V- P = 0}

and the linear isomorphism F : M, — M, : (Q, V) — (Q, (V., V+VQ,)). Notice that this
is well defined because Q | [ps = 0 implies 1 x ﬁQ Loz = 0. Also, under this map the field
Y : M, — M, transforms into X : M, — M, given by >ZQ = ﬁ—ﬁQL, )Zﬁ — _VxVx Q with
Xo. and Xp, arbitrary within the spaces where they are defined. At this point we can use
the results that we obtained in the study of the Hamiltonian formulation to guarantee that
the GNH algorithm stops and also that the generalized submanifold M, is first clasd].

As we can see the Hamiltonian and the symplectic-Lagrangian formalisms are very
similar. The primary constraint submanifold in the Hamiltonian formulation corresponds
to the points in M, with P, = 0. Within this submanifold the only difference is that the
Q. fields live in different spaces@ and the presence of an extra arbitrary vector field com-
ponent Xq, due to so called second order problem [18]. Notice, however, that in order to
avoid the second order problem [18] it suffices to fix its value to Xo, = P, (or, equiva-
lently, Yo, = V).

8 As in the case of the scalar field we make use of the fact that under the regularity conditions that we are
imposing on the boundary 9% we have H} (£) NH' (A, £) = Hé():) NH2(Z).

? See, however, the footnote at the end of Subsection [V.2.21

10 Notice, however, that the Q| are physically irrelevant.
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IV.2. Neumann boundary conditions

We will study here the dynamics of the electromagnatic field on a bounded domain
I C R subject to boundary conditions that generalize the Neumann boundary condi-
tions for the scalar field:

A+VA, —AA+V(V-A)=0 in (tt) x L (IV.2)
V- (A+VAL) =0 in (t,t) x = (IV.3)

A (A+VAL)=0 in (t),t) x 9L (IV.4)

Aix (VxA)=0 in (t;,t) x 0% (IV.5)

Alt) =Qi, AL(t) =Qui, A(t)=Qz, ALlt2) = QL (IV.6)

with Q; € H2(curl, £) and Q; € H! (X).

IV.2.1. Variational approach

The action is defined on the space of curves

Cu(Qr, Qay [ty ta]) = {A € C%([ty, to], Z) N CL([ty, ta], £) N CA([tr, ta], £) : A(t) =Qy, i=1,2}}

where
e?x;([thtl]vz) = CO( )HZ(Z))
L[t ta], ) == C'([tr, ta], L2 (Z) x (H(curl, £) N H(div, X))
2 ([ty, ta, £) := C2([ts, ta], [A(Z)) .

and we have used the notation H2(X) := H2(X) x H2(curl,Z). The tangent spaces at

A € Cy(Qr, Qa [tr, t2]) are TACK(Q1, Qo [t1, t2]) = Cx (0,0, [ty, t2]).
The action Sy : €y (Q1, Qy, [t1, t2]) — R is given by

e

1 - B
(V x A,V x A>fz) dt,

t /1. . > 5 1 - .
= J <_<A> A>E2 + <VAJ_)A>f2 + §<VAJ_> VAJ_>f2 - i

t 2

and is differentiable in its domain. The differential of Sy at A acting on a vector & €

AGN (Q]) QZ) [thtZ]) 18

<l

t2 N . - = - o .

dSN(A)~6:J dtJ (=0 (AAL+V-A)+8- (AA—A—-V(V-A)—VA)))vols,
t >

1o .

t2 - -
—|—J' dtJ 6J_( (A—I—VAJ_)NaZvolaz—f—J dtJ' 6-(T_fXVXA)|a):VOIa):
0x 0x

t tH

Hence, the condition dSy(A) - = 0 for all the vectors 6 € ToCy implies equations ([V.2)-

IV.e)
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IV.2.2.  Hamiltonian approach

We will show that the Hamiltonian dynamics of the electromagnetic field with Neu-
mann conditions takes place in the first class (generalized) submanifold

Ny :={(Q,P) € H}(£) x (H(curl,£) N Ho(div, L)) : V-P=0, @ x (V x Q)lss =0}
of the presimplectic manifold (M, wy), where
My =H'(Z) x [3(%)

and wy is the pullback to M, of the strong, canonical, symplectic form on L*(£) x L*(X).
The class of Hamiltonian vector fields that defines the dynamics of the system is given by

Xut Ny = TNy =Ny x My (Q,P) = ((Q, P), ((Xqu(Q, P), Xo(Q, P)), X5(Q, P)))
where
Xo(Q,P)=P-VQ., X:3(Q,P)=-VxVxQ,
and Xq . (Q, P)is any (continuous) function.

In order to make use of the GNH algorithm, let us consider first the fiber derivative
FLy : H'(Z) x L*(£) — L*(£) x L*(L)* given by the expression

FLu(Q,V) = (Q, (0, V+VQ.)) € H'(Z) x LA(%),

where we have used the Riesz representation theorem to identify L*(£)* and L*(Z). The
image of H'(X) x L?(X) under the fiber derivative is

M;:=H'(Z) x ({0} x [3(2)) = H'(Z) x [X(%).

The pull-back of the canonical symplectic form in L?(£) x L*(£) to M; is

— —

w(Q,P)((q1, 1), (42, 2)) = (G1,P2)i2 — (G2, Po) i

with (Q, P), (i, ;) € H'(Z) x [2(Z). The energy is now

| [P IR I
§<V> V>f2 + §<V X Q> V x Q>f2 - §<VQJ_>VQJ->I? y

and the Hamiltonian Hy : M; — R and its differential are given by

Hy o FL(Q, V) =

Q,P <l3 Pher = (P, VQu)p + 5(V x Q,V x Q)pa.
(Q> < > <VQJ_> ) - <P> vql>f2 + <V X Q> V X q>f2 .

Vector fields on M; are maps X : M; — M; x M; : (Q, 13) — ((Q,l;), (XQ(Q,l;),)zﬁ(Q,l;)))
and, hence,

ixw(Q,P)(q,p) = (Xa(Q,P), P2 — (X3(Q,P), §)r -
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We have to find now a submanifold M, with smooth injective immersion j, : M, — M;
such that the equation
(in - dHN)|]2(M2) =0

can be solved. In order to do this we have to find the general solution to the equation
<>2Q>ﬁ>f2 - ()25, q)EZ = <ﬁ_ ﬁQl)ﬁHZ - <ﬁ) 6qJ->f2 + <6 X Q) V x ﬁ>tz .

forall ((q., d),P) € H'(Z) x [2(Z). The conditions for (Q, P) that guarantee that the pre-

vious equation can be solved and the solutions for the vector field (Xq, X;) are obtained
by following the same steps that we have detailed in the case of the Dirichlet boundary
conditions. We get the submanifold

—

M, :={(Q,P) € HX(Z)x (H(curl, £)NH(div, £)) : V-P = 0, f-Plos = 0, Ax (VxQ)lss = 0},

where H2(Z) = H! (£) x H2(curl, £), and the continuous vector field X : M; — M, x M,
is given by

XQ(Q>ﬁ) = ]3_ 6QJ_>

>Z,3(Q,13) =-VxVxQ.
with Xq, : M, — H! an arbitrary continuous function.

We check now that the vector fields obtained in the previous step are tangent to the
closure of M, in M;. To this end we must first compute (see Appendix[B)

M, = cly, (M) = H'(Z) x (L (Z) @ [4 (X)),

and then find the points (Q, P) € M, such that the field X is tangent to M,. i.e. such that

These conditions hold for (Q, P) € M,, hence the GNH algorithm stops at this stage. The
only non-trivial condition to check is the third (which is proved en Appendix[B).

We end this section by showing that the generalized submanifold M, 2% M; is first
class, as in the case of the Dirichlet boundary conditions. Proceeding as before we first
show that

ZeTMy & Zg, e H (2), Z
where
Cyn:={P € H(curl,£) N H(d1v, $):V-P=0, 1Pl =0},
Fr :={Q € H¥(curl, £) : @ x (V x Q)los
The two conditions that must be satisfied now are
(Z5,Y5)r2 =0, VY5 € Fy(D),
(Zg) V)2 =0, W5 Cy(D).
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The first one implies that Zﬁ = 0 because 68"(2) is dense in fZ(Z) and 680(}:) C I?N(Z).
The second condition implies that Z e Cl = szL — VH'. There is no condition on Zg,.

As0 e Cy(Z (X) we just have to check that VH' C Fy (X), which is straightforward. Hence,
we can conclude that TM, is first clasd].

IV.2.3.  Symplectic Lagrangian approach

The analysis of the symplectic Lagrangian approach for the Neumann problem is very
similar to the one that we presented for the Dirichlet case so we will only highlight those
points where the computations differ from the ones that we gave for that case (keeping in
mind that we will be working here with different functional spaces). The most important
difference concerns the analogous of equation (IV.1) that becomes now

<VQ) 6qJ_ +\_;>f2 - <§YQJ_ + V'V) q)EZ - <\7)\7>f2 + <6 X Q) 6 X q)EZ - <§QJ_) 6qJ_>]f2 )

forall q, € H\(X), § € H(curl,Z), v, € [2() and vV € [4(X). In order for it to have a
solution we have to restrict ourselves to the generalized submanifold

M, ={Q. € H3(£),Q € H*(curl, £),V, € L% (£),V € H(curl, ) N H(div, X),
V- (V4 VQU) =0, - (V4+VQu)lor =0, 1L x (V x Q)lor =0}
The form of the various components of the vector field Y are the same as for the Dirichlet

boundary conditions, i.e. YQ =V, Yy =—V xV x Q VYQ 1; with Yg, and Yy, arbitrary
within the spaces where they are defined (H' (£) and L?(X) respectively). The rest of the
discussion is essentially the same so we leave it here.

V. CONCLUSIONS

The main result of the paper is the rigorous analysis of the Hamiltonian and symplectic-
Lagrangian formalisms for scalar and electromagnetic fields in the presence of bound-
aries. By using the GNH algorithm we have been able to provide a precise description of
the infinite dimensional manifolds where the dynamics is defined and the Hamiltonian
vector fields whose integral curves give the time evolution for these systems. These type
of results complement the traditional analysis of the PDE’s describing the dynamics of
these models (the wave and Maxwell equations with appropriate boundary conditions,
see, for example [29]) and mesh nicely with them. The physical relevance of the present
work is due to the fact that the Hamiltonian framework is a convenient starting point to
quantize these field theories.

The (generalized) constraint submanifolds that we have found crucially depend on
the boundary conditions that define each of the models. The details of their obtention
highlight the similarities and differences between the different models and provide an
instructive perspective on the incorporation of boundaries to more complicated systems
that we plan to exploit in the future. From a geometric point of view these submanifolds

!1 Notice that, strictly specking, TM3 ¢ j2. TM: because of the component Zg, € H! (£) ¢ H2 (£). This
minor problem can be easily solved in several ways, for example modifying the manifold domain D by
allowing only fields Q € H? (£) or generalizing the first class condition to TN+ € TN := TN|.
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have been found to be second class in the case of the scalar field and first class for the
electromagnetic field. This is an intrinsic characterization with an invariant geometric
(i.e. coordinate independent) meaning.

The geometric point of view that we are emphasizing here, specifically the structure of
the Hamiltonian vector fields and the Hodge decomposition, provides a natural descrip-
tion of the reduced phase space of the electromagnetic field. In particular, the points
((Qh, QT), (ﬁh, ﬁT)) of the reduced phase space correspond to the transverse and har-
monic sectors of the Hodge decomposition (associated with the specific boundary condi-
tions). In all the cases the evolution equations reduce to

QTZﬁﬂ ﬁT=—§X§XQT=AQT> thﬁm Pr=0

where the Laplacian corresponds to the boundary conditions used. The general features
of these equations are discussed in Appendix[Clin general context provided by the ab-
stract wave equation. In practice it is convenient to work with a parametrization in terms
of the eigenfunctions and eigenvalues of the Laplace operator. This description provides
a natural avenue to the Fock quantization of these models. It is important to mention,
however, that the eigenvalues and eigenvectors of the Laplacian in the presence of suffi-
ciently irregular boundaries present peculiarities that are absent in the case of the regular
boundaries that we have considered here. This is a generalization of the present work
that may lead to interesting results when these types of models are quantized. Another
type of generalization can be obtained by considering general spatial Riemannian man-
ifolds and not just subsets of R®>. We expect that the methods used here can be used to
understand these more complicated systems.

We have obtained both the Hamiltonian and Lagrangian-symplectic descriptions both
for scalar and electromagnetic fields. The main difference between both points of view
is due to the so called second order problem [18] that, in the case of the electromagnetic
tield, introduces an extra indeterminacy in the Hamiltonian vector fields. Once this is
solved by imposing the natural “second order conditions” both descriptions are essen-
tially equivalent.

We want to add several comments regarding the GNH algorithm. The starting point in
the description of the systems that we have considered is the domain of the Lagrangian.
The GNH algorithm —in both its Hamiltonian and symplectic Lagrangian flavors— for or-
dinary mechanical systems with a finite number of degrees of freedom has a simple and
clear geometric meaning and basically consists in checking the tangency of the vector
field that defines the dynamics of the system to a certain submanifold of the manifold
domain or the cotangent bundle where the full dynamics is defined. If the algorithm
is directly generalized to field theories (with an infinite number of degrees of freedom)
with the requirement of strict tangency of the vector fields, some problems may appear
—actually they do appear— even for such simple systems as the scalar field. One is already
mentioned in Gotay’s thesis [18] and, in essence, it is the fact that the algorithm leads to
a submanifold of the original domain of the Lagrangian that is the intersection of an infi-
nite countable collection of submanifolds. When no boundaries are present these are just
higher order Sobolev spaces whereas in the presence of boundaries one gets, in addition,
an infinite chain of boundary conditions. The problem in this case is that the final mani-
fold is not Banach but just a Fréchet manifold which, from a mathematical point of view,
makes things harder (many theorems have been proved only in the context of Banach
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manifolds). In any case it is not impossible that one can work in these types of functional
spaces.

The solution to this difficulty incorporated in the GNH algorithm is to relax the condi-
tion of strict tangency and accept tangency to the closure of the submanifolds that appear
in the process of determining the Hamiltonian dynamics. This approach obviously re-
duces to the standard one for systems with a finite number of degrees of freedom but
is different in the infinite-dimensional case. In the examples considered in the paper (as
well as in the absence of boundaries for scalar and electromagnetic fields) it leads to the
stop of the GNH algorithm in a few steps. From a practical point of view the main dif-
ficulty introduced by this generalization is the need to explicitly determine the closures
of the submanifolds given by the algorithm. This task relies on a sufficient knowledge of
the functional spaces involved.

We have not said anything about the integrability of the Hamiltonian vector fields
that we have obtained although this is a crucial consistency requirement. The GNH al-
gorithm just provides the Hamiltonian description but, especially for field theories, the
integrability problem is both hard and important. The standard example in this respect is
provided by the “Euclidean scalar field” (obtained by substituting the Lorentz metric for
the Euclidean metric or switching the sign in the (VQ, §Q>E2 term of equations ([IL1)) and
([IL.2). Although there are no obstructions to the implementation of the GNH algorithm
—one gets a constraint submanifold and a Hamiltonian vector field- it is known that the
problem of getting the integral curves is ill possed [18]. This result is closely related to
the fact that the field equation in this case reduces to the Laplace equation for which the
initial value problem is ill posed. In the cases considered in the paper the Hille-Yoshida
theorem, as well as the general arguments about the abstract wave equation discussed in
Appendix[C| provide ways of checking the actual existence of integral curves.
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Appendix A: Functional spaces used in the paper: a compilation of important results

Throughout this paper, following [18], the term generalized submanifold of a given Ba-
nach manifold M refers not only to embedded submanifolds (see, for example [30, 31])

but also to any pair (N, N - M) (with smooth j) which is a Banach immersed submani-
fold, a manifold domain or a submanifold domain:

(i) N X M is a Banach immersed submanifold of M if both j and j, are injective and
j«(TN) splits in TM.

(ii) N - M is a manifold domain of M if both j and j. are injective and have dense
range.

(iii) N - M is a submanifold domain of M if N = cly¢()(N)) is an embedded submani-
fold of M and (N, ) is a manifold domain of N.
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We compile in this appendix the definitions and the properties of the functional spaces
used in the paper. A useful reference where many of these results appear is [26]. In the
following, £ C R™ is an open set with smooth enough boundary.

C5°(R™) is the space of infinitely differentiable functions in R™ with compact sup-
port.

C§°(Z) is the space of infinitely differentiable functions with compact support in Z.
We will denote C°(Z) := C(Z)™.

CR(T) i={flz : f € CP(RM)}

L?(£) is the Hilbert space of square integrable functions on £ (with respect to the
Lebesgue measure voly) with the usual scalar product denoted as (-, -)12(s) or (-, )12
when there is no possibility of confusion. For clarity we will use the notation L? (X)
when we refer to the L. components of the fields in the understanding that this is
just L2(L£). We will also denote fz(Z) ;= L?(£)". In this case the scalar product is
given by

(L, V) :J i - vvols .
>

It is important to remember that C$°(X) is dense in L*(X), i.e. cl;2CP(Z) = L*(X).

H'(Z) is the Sobolev space of once differentiable functions on £ with scalar product
given by

(W, v)m = (U, )2 + (Vu, V), .
This is a Hilbert space.

An important operator when considering boundaries and boundary conditions, as
we do in this paper, is the so called trace operator (denoted here by ). This is the

unique, linear and continuous extension of the mapping u — ulys defined on C§°(X)
as an operator y from H'(£) into L?(3%).

HJ(Z) = clpC(X). This is a proper subspace of H'(£). By definition CP(£) is
dense in H}(Z). This space is precisely the kernel of the trace operator defined
before. We will use the notation H}, (X) as explained above.

We introduce now several functional spaces defined with the help of the div and curl
operators that are specifically needed to study the electromagnetic field (from now on
n=23):

e H(div,X) :={Q € [%(Z) : V- Q e [%Z)). This is a Hilbert space with the scalar

product given by
<Q1> Qz>ﬁ(div) = <Q1> QZ>EZ + <6 ) Qh V- QZ>L2 .

A trace-like operator can be defined in this space (see theorem 2.5 of [26]). This
is the linear and continuous extension of the mapping Q — (i - Q)lor defined on

C3°(X) as an operator from H(div, £) into H "/2(dZ). Here # denotes the exterior
unit normal to the boundary.
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For every v € l:l(div, ¥) and every u € H'(X) we have the useful Green’s formula

{

—

-V, u)fZ(z) + (v, Vu)fz(z) = (1 V)laz, Uloz)r2(0x) = J'azw‘ njuvolps .

<

(see theorem 2.5 of [26]). Here volsz denotes the volume form induced on 0% by
the Euclidean metric in R®. The traces used in the previous formula are properly

defined in the respective spaces. Notice the inclusion H'(Z) := H'(£)? ¢ H(div, Z).

ﬁo(div, I) = liai 680(}:). By definition 680(}:) is dense in ﬁo(div, 7).

v)
The map Q — (- Q)Iaz is continuous, hence, since ﬁo(div, ) is a closed subspace
of H(div, X), it is a Hilbert space.

ﬁo(div, Y) can be characterized as the kernel of the trace operator defined in

H(div, %), i.e.
Ho(div, Z) = {Q € H(div,Z) : (1L - Q)los =0}
This means, in particular that ﬁo(div, Y) is a proper subset of ﬁ(div, ).

H'(A,Z):={Q e H'(Z): AQ € 12(£)} ={Q € L2(£) : VQ € H(div, 2)}.

An important property of this space associated with the Laplace operator is that if
¥ is compact with smooth boundary then H}(Z) N H'(A,£) = H}(Z) N H3(L) (see
[29], theorem 1.3, chapter 5).

H(curl, I) := {Q € [3(Z) : V x Q € [¥(£)}. This is a Hilbert space with the scalar
product given by

(Q1, Q2)fijeary = (Q1, Q)2 + (V x Q1, V x Qa)pa -

There is a trace-like operator that can be defined in this space (see theorem 2.11 of
[26]). This is the linear and continuous extension of the mapping Q — (Q x )lys
defined on C$°(Z) as an operator from H(curl, £) into H/2(3%). Here fi denotes
the exterior unit normal to the boundary.

For every v € l:l(curl, Y) and every u € H'(£) we have

—
—

(V X, W25y — 5,V X Dpagg) = (5 X Wlog, Wos) 205 = J T - (V x 11) volpg .
o

This is a useful form of the Green’s formula that allows us to perform “integrations
by parts” when needed (see theorem 2.11 of [26]).

Another useful Green’s formula (see theorem 3.31 of [32]) is the following: For
every v € l:l(curl, Y)and every u € l:l(curl, Y ) we have

(V % ¥, Wpagg) — (3, V X Dpagg) = —(F x Do, (0% Doz X Mgy - (AD)

Notice that the traces used in the previous formulas are properly defined in the
respective spaces and also the inclusion H'(X) C H(curl, I).
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o ﬁo(curl, r) =y 68"(}:). By definition 680(}:) is dense in ﬁo(curl, 2).

(curl)

The map Q — (Q X 1|5 is continuous, hence, since ﬁo(curl, Y ) is a closed subspace
of ﬁ(curl, Y), it is a Hilbert space.

ﬁo(curl,Z) can be characterized as the kernel of the trace operator defined in
ﬁ(curl, ), ie

Ho(curl, ) ={Q € H(curl, £) : (Q x @i)lor = 0}.

o H(curl,£):={Q e [*(£):V x Q € [¥(X),V x V x Q € [3(2)},
={Q e H'(curl,£): V x V x Q € [2(%)},
={Q e H'(curl,£): V x Q € H'(curl, £)}.
This is a Hilbert space endowed with the scalar product

—

<Q1> QZ>H2 (curl) <Q1> Q2>L2 <_' V X Qhﬁ X QZ>E2 + <6 X 6 X Qh

<
X

V x Q)

In this space we have the traces Q — (Q x 1)|ox and V x Q — ((V x Q) x M)[ps.
These are continuous operators in H?(curl, £).

o Hi(curl, £):={Q € H¥(curl, %) : (i x Q)lor = O} = H*(curl, £) N Ho(curl, X).
Owing to the continuity of the trace used in its definition, this is a closed subspace
of I:lz(curl, 2) and, hence, a Hilbert space too.

Appendix B: Additional mathematical details for the electromagnetic field

In the main body of the paper we study the electromagnetic field with two types of
boundary conditions: the relative and absolute boundary conditions [29] that we refer
to as Dirichlet and Neumann boundary conditions respectively. These are not the most
general ones but are natural, physically important and sufficient to illustrate the points
that we want to discuss in the present article.

A vector field U defined in X satisfies Dirichlet (relative) boundary conditions if

—

X iy =0, V-l =0.
Similarly, a vector field v satisfies Neumann (absolute) boundary conditions if
R-V0pr =0, A X(VXV)|r=0.

As in the main text [5r denotes the action of the trace operators and, of course, the vector
tields must be defined in functional spaces where the traces make sense.

The implementation of the GNH algorithm requires the analysis of the closures of cer-
tain (generalized) submanifolds. This is crucial, in particular, to find out if the algorithm
stops. In the case of electromagnetism, this kind of analysis is greatly facilitated by the use
of the Hodge decomposition associated with the vector Laplace operators corresponding
to the boundary conditions. It is also useful to consider orthonormal bases defined by
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the eigenstates of the different Laplace operators (in fact, these can be used to derive the
Hodge decomposition). A comprehensive account of these results can be found in [29]
in the more general setting of arbitrary differential forms in Riemannian manifolds with
boundary.

The Hilbert space fZ(Z) can be written as an orthogonal direct sum as
P =0, (D el (D) el @) =6 /(D) e (D) el (5.

Here the subindexes D and N denote the Dirichlet and Neumann boundary conditions
and h, T and L refer to the harmonic, transverse and longitudinal parts. The latter are
defined as follows:

I;ﬁD (X) = span{ty : &D)kq: 0}, LﬁN () = span{Vy : A = 0},
E‘ZFD(Z) = cle(span{V x V X ka Aok 7 0}, (Z) = le(span{V x V X vk wk 7 O
Lt (Z) = clp2 (span{V(V - i) x 70}, 1D = Ir2(span{V (V - V) 7é 0}),

where {tiy : k € N}and {vi, : k € N} are orthonormal bases of elgenvector of the D1r1ch1et
and Neumann vector Laplacians,

AD'LLk = —A(D)kuk, ANVk = —A(N)kvk,

and —\7,  their corresponding eigenvalues (notice that AQ :=V(V-Q)—V xVxQ). For

0% regular enough, 1, Vi, € C®(I). The [? orthogonality of the subspaces appearing in
the preceding decompositions follows from straighforward computations that take into
account the relevant boundary conditions. It is well known that the dimension of the

harmonic subspaces fﬁD (X) and fﬁN (£) is finite. We will denote by {t,* : k = 1,...,a}
and {\" : k = 1,..., b} our bases for fﬁD (£) and fﬁN (X), respectively. On the other hand,
if Ap vk # 0, we can decompose

Ty —uk” +uk” = A2 V(V i) + A4V x V x T,

Ve =V W = —A(j)kV(ﬁ V) + Afj}kﬁ XV X V.
Whenever i,"" # 0 and v\~ # 0, it is straightforward to prove that the transverse and

longitudinal vector fields ;""" and V"' are also eigenvectors of the Dirichtlet and Neu-

mann Laplacians with eigenvalues —A7, ., respectively. Hence, the Hilbert subspaces

2,12 and [ can be generated in terms of harmonic, transverse and longitudinal Laplace
eigenvectors as follows:
EﬁD(Z) =span{ti,"” : k=1,...,a}, EﬁN(Z) =span{V," : k=1,...,b},
E%D(Z) = clp2(span{d,"” : k € N}), I;%N (£) =clp2(span{V,"” : k € N},
L (Z) =dp(span{i” : ke N}), L} (I)=clp(span{v,” : ke N}).
It is also possible (and convenient) to characterize these spaces without mentioning the
spectra of the Laplace operators. For example, it is straightforward to show that
[(3) = VH'(D),
N( o1} (Z) = (VH'(D)* = (Ve [}(Z) : V- V=0, i Vloz =0},
(
(2) @ LﬁD( ) = (VHY(£)*

D

12 Although it is not strictly necessary to introduce modes, they provide a convenient physical picture of
the electromagnetic field in bounded media.
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We discuss now, in turn, the closures of the relevant sets appearing in the analysis
of the GNH algorithm for the Dirichlet and Neumann boundary conditions in standard
electromagnetism. The procedure that we will use is a generalization of the one followed
for the scalar field. It is important to notice, nonetheless, the need to introduce the right
functional spaces (associated, in particular, with the curl and divergence operators) and
the fact that the Hodge decomposition is non-trivial in this case.

1. Dirichlet boundary conditions
a. Submanifold closure

The only non-trivial closure in this case is cl, (Cp (X)) where
Co(Z)={P e Ho(curl ) ﬁH(le, Y):V- 13 0}
={P ¢ H(Curl, )N H(d1v, ):V-P=0,n X Plpz =0}.

First, notice that ™" € C,(Z) for all k. Hence

L (D) @2 (D) C cp(ColD).
If we show now that f%D c Cp(Z)*, we can conclude that clfz(éD(Z)) = Co(D)t ¢
([})- =1} (£) ® L% () and, hence,

clp (Co(2)) =T, (2) & 17, (2).
This is straightforward because, for all Pc éD (X), we have

— — - =

(P,V(V- i)y = (V- P,V - i) +J (R-P)(V - t)los volas =0,
()X

where we have used the fact that V - P = 0 and tiy, satisfies the Dirichlet boundary condi-
tions.

b. Tangency of vector fields

Let

Rp :={V x V x Q Q S Hz(curl )} ={V x V x Q Qe l:lz(curl,Z), X Q|a>: =0}.
We will show that

First notice that, for all V x V x Q Ry,

=

(VxVxQV(V-i)p=| (VxQ): (i xV(V- i)z volor =0

because the Dirichlet boundary conditions imply (1 x ﬁ(ﬁ i) |os = 0. Therefore
[ (Z) CRE = cp(Ry) (D) =1 (2) @ 13, (%)

and we can conclude ~ . .
Ro C L2 (D) @2 (2).
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2. Neumann boundary conditions

In this case there are two non-trivial closures to compute:

-

clp, (Cy) = clp{P € H(curl, £) N H(div,Z) : V- P
Clﬁ(curl)(FN) = clﬁ(cuﬂ){(j € ﬁz(curl, )i nx (ﬁ X

The first is similar to the computation performed in the Dirichlet case; it suffices to
exchange 1y by Vi.. By proceeding this way we get

dp(Cy) =0 (D) @[3 (2).

—

In order to compute clj . (Fn) we start by pointing out that all the eigenstates of the
Neumann Laplacian ¥, belong to Fy. Then, if v € F., we have that

for every V. The condition (V, Vi + V x V x V)2 = 0 implies

o (hTL

for all v, ) 50 that v = 0. We conclude then

a. Tangency of vector fields

Let

—

Ry = {ﬁ X

<

xQ: Qe M(cur,5), i x (V x Q)loy = 0}.
Then, forall V x V x Q € Ry,

— —

(VxVxQ,V(V- %)) :J V(V %) - (A x (V x Q)las volas = 0,
0

where we have used 11 x (ﬁ X Q)|az — 0. Therefore
[ () CRE = cp(Ry) (D) =1 (2) @ 13,(5)

and we can conclude
Ry CLE (D)@ LE (X).
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Appendix C: The abstract wave equation

The wave equation plays a central role in the description of the dynamics of field theo-
ries in Physics This fact is more than a useful analogy because it is possible to introduce
and study an abstract wave equation that encompasses many relevant linear models [20].
This means that in addition to having the possibility of considering many different kinds
of fields (scalar or vector fields, for instance) we can also discuss, in the same setting, all
the different boundary conditions that they must satisfy. These conditions are important
input needed to describe the relevant physics and from a mathematical point of view
they are necessary to have well posed problems.

The mathematical ingredients of the construction that we give in this section are the
following;:

* A real, separable, Hilbert space J with scalar product (-, -)s. In all relevant exam-
ples this space will be of the form L*(Z, E) where £ is a finite dimensional manifold
with a sufficiently smooth boundary (for example piecewise smooth). E is a finite
dimensional vector bundle on X equipped with a Riemannian metric (in the present
paper we always have E = £ x R™ and we use the Euclidean metric.)

¢ A Laplace-like operator. Specifically a non-negative, unbounded, self adjoint oper-
ator] —A. defined on an appropriate dense domain of }{. An important issue here
is related to the different topologies involved. On one hand we have the natural
topology in J{. Furthermore, the domain must be endowed with a topology of its
own in such a way that —A. becomes continuoud™. This topological space will be
denoted as D(—A.). This topology is not the one induced by that of J{. In order
to have the possibility of considering the set D(—A.) as a topological subspace of
H we introduce a continuous, injective immersion j : D(—A.) — H and think of
the immersed domain as the image under j. When there is no danger of confusion
we will denote this topological subspace of H either as j(D) or D. Notice also that
cl()(D(—=Ac))) = H. In the following we will need to consider also the square root
of —A. and its domain —that differs from both D(—A.) and H. This new domain is
endowed also with a specific topology. We will have the following chain of contin-
uous injective immersions

D(—Ac) 25 D(vV/—Ac) 25 K.
The relationship between the different inclusion maps is now cl(j,(D(—A.))) =
D(v—Ac) and cl(31(D(vV—Ac))) = H. Notice that ) =37 0;.

* The following decomposition must be true J{ = ker(—A.) ®range(—A.) where @ is
the direct orthogonal sum (with respect to the scalar product (-, -)5) and ker(—A.)
is finite dimensional. A natural class of operators satisfying these conditions are the
so called Fredholm operators.

13 This is the case, for example, for waves in elastic media as well as in theories with a more “fundamental”

flavor such as electromagnetism, the only basic interaction described by a free theory.
14 The subindex in the symbol A. is introduced to remind the reader of the fact that boundary conditions

must be taken into account and are a fundamental part of the mathematical definition of the operator.
15 The domain D of a unbounded operator A in a Hilbert space H can be endowed, for example, with the

graph topology defined by the norm |x||p = [Ixll3¢c + [|Ax]|3¢. With respec to this topology the operator
A : D — H is obviously continuous.
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We can write now the wave equation as
O —-—AD=0 (C.1)

supplemented with appropriate initial conditions. This is an evolution equation in the
Hilbert space J. Its solutions are, hence, curves in J{ parametrized by the time variable
t € [t1, 2] (O denotes, as usual, the second derivative with respect to t). Some regularity
conditions on the curve @ must be imposed. These are:

O € C*(It, ta], H) N C' (Ity, ta], D(V—Ac)) N CO([ty, ta], D(—AL)) -

The conditions ® € C?([ty,t,],H) and ® € D(—A.) guarantee the existence of ® and
—Ac® as elements in H. The remaining conditions ® € C°([ty, t,], D(—A.)) and ® €
C'((t1,t2), D(vV—A¢)) are much less obvious and, in fact, can only be understood a pos-
teriori as necessary conditions to guarantee the integrability of (C.I). This issue can be
understood by invoking the Hille-Yoshida theorem or, alternatively, by considering the
integrability of the Hamiltonian vector field that describes the dynamics. The preceding
requirements imply that the initial conditions must have the form ®(ty) = Qo € D(—A)
and ®(ty) =V, € D(V—A).

It is useful to rewrite the wave equation as a first order system. A natural way to

do that is the following
QY _( 01 Q
V] A0 V)

The curves (Q(t), V(t)) provide solutions ®(t) = Q(t) to and also their time deriva-
tives ®©(t) = V(t). This equation can be interpreted as the equation for the integral curves
of the linear vector field X : D(—A.) x D(v/—Ac) = D(V—Ac) x H given by

X(Q,V) =(V,AQ).

Notice that the domain and the range of the vector field are not the same. As written, this
field is continuous because we are using the natural topologies of D(—A.) and D(v/—A.).
On the other hand if the domain D(—A) x D(1/—A.) is seen as the subset j)(D(—A.)) x
1 (D(V—=Ac)) C H x H (with the induced topology) this field is not continuous. This type
of behavior is characteristic of field theories and does not appear in mechanical systems
with a finite number of degrees of freedom.

The integral curves of X(Q, V) can be written in closed form as

Q) _ (1t Ter Q
(vm ) - (o 1 ) (rﬂiervf) 2
cos vV/—Act (vV—Ac)'siny/—Act Man Qo
* —(v—A¢) sin/—Act cos/—Act MeanVo /) °

In this expression (Qo, Vo) € D(—Ac) x D(v/—A.) are the initial data for the field and its
tirst time derivative. The operators Iy and IT,,, are the orthogonal projectors associated
with the orthogonal decomposition H{ = ker(—A.) @ range(—A.). The functions of the
Laplacian A. appearing in are defined with the help of the spectral theorem. We
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want to emphasize here that is not a formal expression but, in fact, the actual so-
lution to the problem. In particular it is valid for all the boundary conditions leading to
Laplacian operators satisfying the conditions that we have made explicit above.

Let us discuss now some important regularity features of the solution (C.2). First of
all, these curves are defined and continuous in the domain D(—A.) x D(v/—A.). However,
it is important to notice that the tangent vectors

<Q(t)> _ <O 1 ) (ﬂkerQO)
V(t) 00 TTer Vo
—siny/—Act (v—Ac) " cos vV—Act V=ATTan Qo
* —(v/—A¢) cosv/—Act —sinv—Act V=AM an Vo | -

are not contained (in general) in D(—A.) x D(v/—A.) but rather in the closure

CI(JZD(_AC) X )13( V _AC)) = D( V _AC) x H.

Strictly speaking they are not tangent to the domain of the vector field but, rather, to its
closure as defined above. Again this phenomenon is characteristic of field theories and
does not show up in mechanical systems with a finite number of degrees of freedom.

We close this section with several comments. First we want to point out that although
the continuity of the integral curves can be proved by relying on the explicit form of the
solution that we have obtained, it is actually a consequence of powerful results such as
the Hille-Yoshida theorem that applies to more general equations than the ones discussed
here (non-linear, in particular).

The usual way to arrive at a first order formulation is to derive the vector field from
a geometric (symplectic) approach, such as the Hamiltonian formulations obtained by
using the Dirac or GNH algorithms. These methods provide the Hamiltonian vector
tields —-whenever they exist— associated with the field equation under consideration. It
is important to realize that the existence of these fields does not necessarily imply the
existence of integral curves with reasonable smoothness properties. In fact, the reason
why we have required —A. to be non-negative is related to this fact. It is well known,
for example, that the change —A. by A. turns the wave equation into an elliptic problem.
The Hamiltonian vector field in this case is simply X(Q, V) = (V; —=A:Q) and is perfectly
well defined in the same functional spaces used above, however its integral curves are ill
defined.
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