
Hammer: An Android Based Application for

End-User Industrial Robot Programming

Carlos Mateo, Alberto Brunete, Ernesto Gambao, Miguel Hernando

Centre for Robotics and Automation (CAR UPM-CSIC)

Universidad Politecnica Madrid

Madrid, Spain

Email: ernesto.gambao@upm.es

Abstract—This paper presents a novel tablet based end-user
interface for industrial robot programming (called Hammer).
This application makes easier to program tasks for industrial
robots like polishing, milling or grinding. It is based on the
Scratch programming language, but specifically design and cre-
ated for Android OS. It is a visual programming concept that
allows non-skilled programmer operators to create programs.
The application also allows to monitor the tasks while it is
being executed by overlapping real time information through
augmented reality. The application includes a teach pendant
screen that can be customized according to the operator needs
at every moment.

Keywords—industrial robot; end-user programming; android
OS;

I. INTRODUCTION

Currently only about 3% of the overall industrial robots
employed in industry are used for machining. This is quite in
opposition to the market potential and benefits of the industrial
robot machining applications. It has been widely recognized
that inherent 5+ axis machining capability combined with
flexibility, large work envelope, multiple station capability and
appropriate HMI is a flexible solution that allows end-user to
expand the range of machining applications at a price much
competitive to that of employing a traditional CNC machine
[1]. With the recent dynamic cost reduction and performance
optimization of modern industrial robots, the price of a com-
parable robotic solution is typically 1/5-1/3 of the cost of a
CNC machine. Integration of two or more robots into flexible
multi-stationed and multi-tolled robotic machining cells may
result in significantly lower cost investments in comparison to
employing large CNC machines. Based on several studies, the
two underlying technical limitations for a widespread adoption
of robotic machining are insufficient robustness of robotic
structures (insufficient precision and stiffness) and lack of
efficient programming tools that transfer CAD models into
robot motion.

The work presented in this paper has been developed in the
Hephestos project framework [12]. Hephestos’ main objective
is to develop novel technologies for the robotic hard material
removal that will provide standard industrial robots with ad-
vanced techniques in production planning, programming and
real-time control, and make available a promising and practical
use of industrial robots for machining applications that is not
possible at present.

One of its objective is to improve and make robot planning
and programming efficient and promising for batch production
of all scales. And to optimally combine standard planning
tools, robot and process models with sensory feedback and
human knowledge and experience in order to reduce the
planning and programming costs by means of intuitive novel
programming methods (e.g. manual or sensor guided).

In this sense, it is necessary a new tool to integrate
novel and efficient intuitive on-line programming methods
(e.g. programming by demonstration, manual-guidance, force-
based shapes tracking, etc.), as well as sensory feedback
about actual machining state in order to support re-planning
and reprogramming. APIs must provide a human-interface
for technological instructions and rules to obtain a more
efficient and feasible programming. Also, an augmented reality
programming environment would facilitate testing, evaluation
and optimization of manufacturing programs and system real-
time machining performance based on real robotic system and
virtual interaction metal-removal task models (virtual force
sensor).

The application presented in this paper is a simple (but
powerful), intuitive and efficient robot programming environ-
ment that can be used by a non-skilled programmer and that
can be easily integrated with the robot control and sensor
systems. It provides a safe and flexible human-machine in-
terface for dynamic cooperation to support on-line program-
ming, efficient work-piece alignment, as well as human expert
knowledge inclusion for an efficient programming.

II. RELATED WORK

A big effort has been put in the development of advanced
human-robot interface systems for industrial robot environ-
ments. New technologies and techniques such as voice [2] or
gesture recognition [3] [4] have contributed to the development
of new HMI systems.

Taking into account real industrial programming environ-
ment needs, the use of advanced graphical user interfaces
(GUI) is considered the most appropriate way for human-
robot interaction in the programming phase. Modern portable
devices such as PADs or tablets that include very precise and
high resolution touch screens are available in the market at
a very reduced cost. These devices are very appropriate in
developing simple drag-and-drop introduction of commands,
simplifying the programming procedures and reducing the



efforts in these tasks. There are also rugged tablets designed
for dirty environments. Additionally, these devices can be
easily connected to other computer systems, allowing a simple
integration with the robot control and sensor systems. GUIs
offer simplicity and a high degree of flexibility allowing to
show the operator only what he really needs and reducing
efforts and possible errors. In the other side, voice and gesture
recognition cannot be simplified in a similar way and do not
offer, in general, good performance in real industrial noisy and
often populated environments.

The application presented here is based on the concepts of
Google App Inventor and Scratch [15]. They are educational
programming languages and multimedia authoring tools that
can be used by anyone familiar with computer programming
to create software applications. They use a graphical interface
that allows users to drag-and-drop visual objects to create an
application.

Another application that is based on Scratch is Catroid
(now Pocket Code) [5], a free and open source visual program-
ming system that allows casual and first-time users starting
from age eight to develop their own animations and games
solely using their Android phones or tablets. Catroid also
allows wireless control of external hardware such as Lego
Mindstorms robots via Bluetooth, Bluetooth Arduino boards,
as well as Parrot’s popular AR. Drone quad-copters via Wi-Fi.
This application is not for industrial robots.

Other projects that uses Android applications to commu-
nicate with robots are [6] and [7]. Delden et al. [6] introduce
an android platform that communicates with robots over a
Bluetooth connection, so a user can control several robots at
the same time, so the user does not have to obtain access
to each robot teach pendant or terminal. Yepes et al. [7]
present an Android OS based application that communicates
with an industrial robot Kuka KR-6 through USB to Serial
connection, to control it with the on-board accelerometers, and
gyroscopes of a tablet or smart-phone, intended to be used in
telemedicine procedures. Arduino Uno micro-controller board,
RS232 Shifter SMD and mobile device were used to develop
this work. But these two systems are not programming tools.

About the suitability of using Android devices to control
robots, Neira et al. [8] presents a flexible solution that can be
incorporated in most of the Android devices in the market, im-
plemented and tested in a manufacturing scenario by creating
adaptive interfaces for different types of user based on the user
roles, tasks, the state of the system and the context. Nicolae
et al. [9] studies the utilization of PDAs and mobile phones
as human machine interface (HMI) in controlling various sys-
tems, and analyses the limitations of balancing processing load
between process controller and Android device’s resources,
concluding that it is possible.

Regarding tablets as teach pendants, Jan et al. [10] pro-
pose a smart phone based teaching pendant that provides a
user friendly interactive control input method to the robot’s
operator. The operator can not only give commands to the
end effector, but during the continuous mode operation, the
operator can pause, repeat and restart the subtasks of whole
operation remotely. The two way network socket communica-
tion running on threads also gives a real time feedback data
for detailed monitoring.

Augmented reality tablet applications are considered in
[11]. It presents an idea of augmented reality based teaching
pendant on smart phone and stating that incorporation of
augmented reality into smart-phone based teaching pendant
will help user to program industrial robot more intuitively.

It is possible to conclude that although the use of Android
tablets as teach pendants has yet to take off, several projects
mentioned in the state of the art have proven its feasibility.

III. APPLICATION DESCRIPTION

Programming a robot is nowadays a hard task because
a knowledge of each robot programming language and its
set of instructions is needed. The primary goal of Hammer
is to reduce all this work to find a simple intuitive block‘s
language which let any person who has basic programming
knowledge to make a program which will be send to the robot
without needing to know its specific language. In this way
it is possible to program robots without learning every robot
specific language.

The Hammer App is based on end-user programming
techniques, and more specifically on visual programming. It
has been programmed for Android devices. It is able to run
on any Android device, but it is especially designed for tablets
running android from version 4.0 (Ice-cream sandwich).

As previously mentioned, the application has been based
on the concepts of Google App Inventor and Scratch, but
applied to robotic control and HRI, and specifically adapted to
robot machining tasks. The application is designed for on-line
programming/reprogramming and to be intuitive, easy-to-use
and simple; easy use of learn by demonstration methods; easy
connection with the robot control and sensors systems; and
safety system integration

Another functionality provided by Hammer is direct and
inverse kinematic control through a virtual interface similar
to a teach pendant. It allows visualization of a simulated
robot world and generation of paths and points to use in the
programming interface previously mentioned.

Finally it should be mentioned that algorithms of aug-
mented reality have been implemented to allow showing robot
execution data overlapped in the images provided by the
device‘s camera, e.g. visual representation of the force and
torque vectors of the end effector.

The app has three main parts that will be described
in more detail in the following sections: customized teach
pendant, robot programming IDE and augmented reality based
monitoring system.

IV. ROBOT PROGRAMMING IDE

A. Description

The main feature of Hammer is to allow robot program-
ming in an intuitive way, because Hammer internally would
encode these instructions and would translate them into spe-
cific robot language.

Once the program is created, it can be executed in a
simulation in the same device, or sent to other simulation
software (e.g. in the Hephestos project it is used EasyRob



Fig. 1. Scratch View

software [13]) which would execute the program with its own
models.

The programming interface is structured in 5 main parts as
shown in Fig. 1:

• Instructions palette: this part contains the visual blocks
(i.e. instructions) grouped in 6 sections: movement,
robot, relational operators, variables, control and user
commands. These sections and their instructions will
be described in the programming language section.

• Action bar: allows to save the created program or
configure the port’s connection to a computer running
third-party simulation software.

• Canvas: this is where the program is developed, and
where the instruction blocks are placed by drag and
drop from the palette. Once in the canvas, blocks can
be moved over each other to get linked.

• Variables: contains the created variables that can be
used in the program. It shows the variable‘s name and
its value. Variables can be deleted by a long tap.

• Buttons: executes the instructions of the program.
There are two different ways: External execution, to
send the program to the robot or to an external simu-
lator (EasyRob) software to execute it, and Simulate,
to show a simulation of the program generated in the
device.

B. Loading Environment

A 3D environment created using XML files can be loaded
into the Hammer application. It is possible to load CAD mod-
els with their own paths and points associated. Associations
have to be declared in the XML file.

Fig. 2 shows the loading environment interface. It is
structured in the following parts:

• XML list: shows the available XML files to load in
the 3D canvas.

• 3D Canvas: shows the XML environment loaded. If
an object is selected, the paths and points associated
to it in the path list are also displayed.

Fig. 2. Loading Environment View

• Path list: displays the paths and points of the selected
object. By sliding this section to the right and left,
different lists can be selected. If one of the list’s items
is selected, it will be shown in the 3D canvas.

C. Programming language

The programming language is based on visual program-
ming with blocks that are divided in 6 groups. To create the
program, blocks have to be dragged and dropped in the canvas,
and then grouped to get linked. Control blocks can be linked
in two ways: by dropping at the top side of the current block
to add it into the loop, or by dropping at the bottom side to
add it after the execution loop.

1) Move instructions: They are used to set the point or
path the robot has to execute:

• SETPATH: Once the appropriate block has been
dropped in the canvas, if the user presses on it a menu
will be shown to select one of the available paths, at
the same time that it is displayed in a 3D canvas.

• SETPOINT: It has the same function of SETPATH but
in this case a point will be set instead of a path.

2) Robot instructions: They are used to execute robot
specific tasks, like deburring, grinding, polishing, etc. At the
moment there are two instructions:

• INITIAL POSITION: This block sets the robot initial
position, and his default speed. To set these parame-
ters, double click the button and a menu will be shown
to write the values.

• DEBURRING: it allows performing deburring opera-
tions over a specific path of one of the 3D environment
parts. Several parameters can be defined (e.g. depth).

3) Relational operator instructions: They can only be used
with the control blocks. They are operations like greater than,
lower than, equals or always. To set the parameters, double-
click the button and a menu will be shown with the variables
available to choose.

4) Variables instructions: Once a variable is created, it
can be modified during program execution. Their value can
be changed, and they can be added, subtracted, multiplied or
divided to other variables or scalars.



Fig. 3. Program B

5) Control structures: They allow to use control structures
like repeat, if, do-while and while to modify the instruction‘s
execution flow. To set the loop execution condition a relational
operator block has to be dropped over it. In the repeat case,
double click to set the number of times the loop is repeated.

6) User Commands instructions: This group contains in-
structions that interact with the user.

• START: this is the block that indicates the beginning
of the program. If a program doesn’t start with this
button, it will not be executed.

• LOOP BREAK: this button allows the user to control
the execution of a control loop, asking for confirma-
tion to continue the execution loop.

D. Programming examples

Here are some example programs created:

Fig. 3 shows a while loop that is executed while the
variable i is lower than 3. Inside the loop a path called
demopath1 is executed. In each iteration the user is asked for
confirmation to continue the loop and the variable i is increased
by 1. Once the while condition is false, the loop ends and the
path called path1 is executed.

Fig. 4 shows that the robot initial position has been set
at position (0,3,5) with 0.5 m/s speed. Then a repeat loop
is executed three times. Inside the loop a path called Test is
executed. In each iteration the user is asked for confirmation
to continue the loop and then the robot moves to the point P2,
executes the Test3 path and does a deburring operation with
the depth associated to the variable dep. After that dep will be
increased by 0.01.

V. CUSTOMIZED TEACH PENDANT

Another function that Hammer has implemented is a virtual
teach pendant that provides the user with a reduced version of
a teach pendant that can be configured depending on the task
it is being performed.

Fig. 4. Program A

Fig. 5. Customized teach-pendant View

This customized teach pendant includes a simulated robot
environment where the operator can save environment points
or planning paths without the need of the real robot. It also
shows a simulation of the robot executing the programmed
task. An image of the interface can be seen in Fig. 5.

The customized teach pendant has 5 main parts:

• Action bar: allows changing the mode from articular
to Cartesian coordinates.

• Robot control: depending in the mode articular or
Cartesian, the joints or the TCP will be moved. There
is a 3D canvas to display the robot movements.

• Record and simulation buttons: These buttons are used
to record points (Record Point), paths (Record Path)
or execute a simulated path (Simulate Path). A path
is recorded by saving a set of points in a row. It is
possible to adjust the speed of the simulation pressing
the speed button to set the desired speed.

• Stop/Rearm button: If this button is pressed while a
simulation is executing, the simulation stops. If it is
pressed again, the simulation continues execution.



Fig. 6. Articular Mode

Fig. 7. Cartesian Mode

• Path list: This is a slide list displaying the saved paths
and points.

A. Robot control

The robot can be controlled in two modes: articular mode
and Cartesian mode.

Articular mode offers the possibility to control each of the
robot joints through the incremental buttons shown in Fig. 6.
In this case the robot is a Comau model with 6 degrees of
freedom so it has 6 buttons, one for each joint.

Cartesian mode allows to control the inverse kinematic of
the robot so the robot’s TCP can be moved along the X, Y and
Z axes through one incremental button for each axis (Fig. 7).
On the right side there are three buttons to modify the origin
of the coordinate system, respect of which the points will be
saved.

B. Points and trajectory generation

Points and trajectories can be defined using the teach
pendant. The robot TCP position can be saved in the points
list with an automatically generated name by pressing the save
point button. Names can be changed double-clicking the point.

To generate a path, the last points generated are shown in
the 3D canvas (Fig.??). After pressing the save path button,
the path is saved in the path list.

Fig. 8. Auxiliary path generation

Fig. 9. Path 3D representation

When the points and the paths are saved in their respective
list a preliminary view of each one is shown when pressing
one point or path (Fig. 9).

VI. AUGMENTED REALITY BASED MONITORING SYSTEM

Hammer provides a monitoring system based on aug-
mented reality algorithms to display task-specific information
in real time. These algorithms have been implemented through
the Vuforia library [14].

A Vuforia SDK-based AR application uses the display of
the mobile device as a ”magic lens” or looking glass into an
augmented world where the real and virtual worlds appear to
coexist. The application renders the live camera preview image
on the display to represent a view of the physical world. Virtual
3D objects are then superimposed on the live camera preview
and they appear to be tightly coupled in the real world.

Hammer uses Vuforia to implement local detection of
targets and extended tracking, keeping track of targets and
maintaining a consistent reference for augmentations even
when the targets are no longer visible in the camera view.

As an example, this feature has been used to monitor the
robot‘s force vector. Fig. 10 shows a demo in which the force
components of the TCP in X, Y, and Z are displayed, as well
as the resulting vector. Values are color-coded (red,green,blue)
to represent the magnitude of the applied force. This feature
allows the user to observe at all times the force applied to the
sensor during the execution of the task the robot is executing.



Fig. 10. Augmented reality example: showing force vector

VII. INTERFACE TO OTHER SYSTEMS

When the robot program has been finished, the user has
three options: execute it in the application simulation environ-
ment, execute it in the real robot, or execute it in a third partner
simulation software (i.e. EasyRob software [13] is already
implemented).

EasyRob is designed to run DLL (dynamic link libraries)
from third partners. A DLL has been developed to allow
a continuous communication between the Hephestos robot-
programming tool and EasyRob software. This DLL imple-
ments two main services:

• TCP/IP and UDP/IP socket communications with the
android application, to receive and send commands
from the application and the computer via Wireless
(Wi-Fi).

• Communication between the DLL module and Easy-
Rob, to transmit the commands received from the tool
to the robot in EasyRob, and thus visualize the robot
movements.

The DLL module has been developed in C++. At the moment
it runs only in Windows based PCs.

VIII. CONCLUSION AND FUTURE WORK

A new Android based application for industrial robot pro-
gramming has been presented in this paper. Its main features
and functionalities have been described. The application has
a robot programming IDE based in visual programming to
allow operators with limited programming knowledge to build
programs or modified existing ones with ease. The application
can also be used to control the robot as a customized teach
pendant, and a monitoring tool with augmented reality features.

As this is a first prototype, future work will focus on
the development of the programming language (based on
Scrach) and the integration with COMAUs robots instruction
set (so far a reduce set of instructions is used). In a next step
programming by demonstration will be included, allowing the
operator to move the real robot with his hand, see the corre-
sponding movement in the application simulation environment,
and saving points and paths in the application.

As it has been discussed in the related work section, the use
of Android tablets in industrial robot working environments is
growing and it is providing a new tool for small batch industrial
applications that need fast and easy to use tools to program
the robots.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 314739 (Hep-
hestos).

REFERENCES

[1] J. DePree and C. Gesswein, Robotic Machining White Paper Project,
Halcyon Development, October 31, 2008.

[2] A. Rogowski, ”Robotized cell remote control using voice commands
in natural language,” 15th Int. Conf. on Methods and Models in Au-

tomation and Robotics (MMAR). 23-26 Aug. 2010. pp.383,386. DOI:
10.1109/MMAR.2010.5587204.

[3] S. Ganapathyraju, ”Hand gesture recognition using convexity hull defects
to control an industrial robot,” 2013 3rd Int. Conf. on Instrumenta-

tion Control and Automation (ICA). pp.63,67, 28-30 Aug. 2013. DOI:
10.1109/ICA.2013.6734047.

[4] J. Lambrecht, H. Walzel, and J. Kruger, ”Robust finger gesture recogni-
tion on handheld devices for spatial programming of industrial robots,”
IEEE Int. Workshop on Robots and Human Interactive Communications.
pp.99,106, 26-29 Aug. 2013. DOI: 10.1109/ROMAN.2013.6628462.

[5] Slany, W., ”A mobile visual programming system for Android smart-
phones and tablets,” 2012 IEEE Symp. on Visual Languages and Human-

Centric Computing (VL/HCC) pp.265,266, Sept. 30 - Oct. 4 2012. DOI:
10.1109/VLHCC.2012.6344546.

[6] S. Van Delden and A. Whigham, ”A bluetooth-based architecture for
android communication with an articulated robot,” Int. Conf. on Collab-

oration Technologies and Systems (CTS). 2012. pp.104,108, 21-25 May
2012. DOI: 10.1109/CTS.2012.6261035.

[7] J.C. Yepes et al., ”Implementation of an Android based teleoperation
application for controlling a KUKA-KR6 robot by using sensor fusion,”
Health Care Exchanges (PAHCE), 2013 Pan American, pp.1,5, April 29
2013-May 4 2013 DOI: 10.1109/PAHCE.2013.6568286.

[8] O. Neira, A.N. Lee, J.L.M. Lastra and R.S. Camp. ”A builder for
Adaptable Human Machine Interfaces for mobile devices,” 11th IEEE

International Conf. on Industrial Informatics (INDIN). pp.750,755. 29-
31 July 2013. DOI: 10.1109/INDIN.2013.6622978.

[9] M. Nicolae, L. Lucaci and I. Moise. ”Embedding Android devices in
automation systems,” IEEE 19th Int. Symp. for Design and Technology

in Electronic Packaging (SIITME). pp.215,218, 24-27 Oct. 2013. DOI:
10.1109/SIITME.2013.6743676.

[10] Y. Jan, S. Hassan, S. Pyo and J. Yoon, ”Smartphone Based Control
Architecture of Teaching Pendant for Industrial Manipulators,” 2013

4th Int. Conf. on Intelligent Systems Modelling and Simulation (ISMS).
pp.370,375, 29-31 Jan. 2013. DOI: 10.1109/ISMS.2013.116

[11] S. M. Abbas, S. Hassan and J. Yun, ”Augmented reality based teaching
pendant for industrial robot,” Control, 2012 12th Int. Conf. on Automa-
tion and Systems (ICCAS). pp.2210,2213, 17-21 Oct. 2012.

[12] Hephestos EU FP7 project. Available: http://www.hephestosproject.eu/.
[Accessed: July 07, 2014].

[13] EasyRob simulation software. Available: http://www.easy-rob.com/.
[Accessed: July 07, 2014].

[14] Vuforia library. Available: http://www.qualcomm.com/solutions/augmented-
reality. [Accessed: July 07, 2014].

[15] Scratch programming IDE. Available: http://scratch.mit.edu/.[Accessed:
July 07, 2014].


