
J Autom Reasoning (2018) 61:423–453
https://doi.org/10.1007/s10817-018-9458-4

Hammer for Coq: Automation for Dependent Type
Theory

Łukasz Czajka1 · Cezary Kaliszyk1

Received: 30 March 2017 / Accepted: 20 February 2018 / Published online: 27 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract Hammers provide most powerful general purpose automation for proof assistants
based on HOL and set theory today. Despite the gaining popularity of the more advanced
versions of type theory, such as those based on the Calculus of Inductive Constructions,
the construction of hammers for such foundations has been hindered so far by the lack of
translation and reconstruction components. In this paper, we present an architecture of a
full hammer for dependent type theory together with its implementation for the Coq proof
assistant. A key component of the hammer is a proposed translation from the Calculus
of Inductive Constructions, with certain extensions introduced by Coq, to untyped first-
order logic. The translation is “sufficiently” sound and complete to be of practical use for
automated theorem provers. We also introduce a proof reconstruction mechanism based on
an eauto-type algorithm combined with limited rewriting, congruence closure and some
forward reasoning. The algorithm is able to re-prove in the Coq logic most of the theorems
established by theATPs. Togetherwithmachine-learning based selection of relevant premises
this constitutes a full hammer system. The performance of the whole procedure is evaluated
in a bootstrapping scenario emulating the development of the Coq standard library. For each
theorem in the library only the previous theorems and proofs can be used. We show that
40.8% of the theorems can be proved in a push-button mode in about 40 s of real time on a
8-CPU system.

Keywords Hammer · Coq · Calculus of inductive constructions · Proof automation

B Cezary Kaliszyk
cezary.kaliszyk@uibk.ac.at

Łukasz Czajka
lukasz.czajka@uibk.ac.at

1 University of Innsbruck, Innsbruck, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9458-4&domain=pdf
http://orcid.org/0000-0002-8273-6059

424 Ł. Czajka, C. Kaliszyk

1 Introduction

Interactive Theorem Proving (ITP) systems [44] become more important in certifying math-
ematical proofs and properties of software and hardware. A large part of the process of
proof formalisation consists of providing justifications for smaller goals. Many of such goals
would be considered trivial by mathematicians. Still, modern ITPs require users to spend an
important part of the formalisation effort on such easy goals. The main points that constitute
this effort are usually library search, minor transformations on the already proved theorems
(such as reordering assumptions or reasoning modulo associativity-commutativity), as well
as combining a small number of simple known lemmas.

ITP automation techniques are able to reduce this effort significantly. Automation tech-
niques are most developed for systems that are based on somewhat simple logics, such as
those based on first-order logic, higher-order logic, or the untyped foundations of ACL2. The
strongest general purpose proof assistant automation technique is today provided by tools
called “hammers” [17] which combine learning from previous proofs with translation of the
problems to the logics of automated systems and reconstruction of the successfully found
proofs. For many higher-order logic developments a third of the proofs can be proved by a
hammer in push-button mode [15,52].

Even if the more advanced versions of type theory, as implemented by systems such as
Agda [13], Coq [14], Lean [29], and Matita [5], are gaining popularity, there have been no
hammers for such systems. This is because building such a tool requires a usable encoding,
and a strong enough proof reconstruction.

A typical use of a hammer is to prove relatively simple goals using available lemmas.
The problem is to find appropriate lemmas in a large collection of all accessible lemmas
and combine them to prove the goal. An example of a goal solvable by our hammer, but not
solvable by any standard Coq tactics, is the following.

forall (A : Type) (l1 l2 : list A) (x y1 y2 y3 : A),
In x l1 \/ In x l2 \/ x = y1 \/ In x (y2 :: y3 :: nil) ->
In x (y1 :: (l1 ++ (y2 :: (l2 ++ (y3 :: nil)))))

The statement asserts that if x occurs in one of the lists l1, l2, or it is equal to y1, or it
occurs in the list y2 :: y3 :: nil consisting of the elements y2 and y3, then it occurs
in the list

y1 :: (l1 ++ (y2 :: (l2 ++ (y3 :: nil))))

where ++ denotes list concatenation and :: denotes the list cons operator. Eprover almost
instantly finds a proof of this goal using six lemmas from the module Lists.List in the
Coq standard library:

Lemma in_nil : forall (A : Type) (a : A), ˜(In a nil).
Lemma in_inv : forall (A : Type) (a b : A) (l : list A),

In b (a :: l) -> a = b \/ In b l.
Lemma in_cons : forall (A : Type) (a b : A) (l : list A),

In b l -> In b (a :: l).
Lemma in_or_app : forall (A : Type) (l m : list A) (a : A),

In a l \/ In a m -> In a (l ++ m).
Lemma app_comm_cons : forall (A : Type) (x y : list A) (a : A),

a :: (x ++ y) = (a :: x) ++ y.
Lemma in_eq : forall (A : Type) (a : A) (l : list A), In a (a :: l).

The found ATP proof may be automatically reconstructed inside Coq.

123

Hammer for Coq: Automation for Dependent Type Theory 425

The advantage of a hammer is that it is a general system not depending on any domain-
specific knowledge. The hammer plugin may use all currently accessible lemmas, including
those proven earlier in a given formalization, not only the lemmas from the standard library
or other predefined libraries.
Contributions. In this paperwe present a comprehensive hammer for theCalculus of Inductive
Constructions together with an implementation for the Coq proof assistant. In particular:

– We introduce an encoding of the Calculus of Inductive Constructions, including the
additional logical constructions introduced by the Coq system, in untyped first-order
logic with equality.

– We implement the translation and evaluate it experimentally on the standard library of
the Coq proof assistant showing that the encoding is sufficient for a hammer system for
Coq: the success rates are comparable to those demonstrated by hammer systems for
Isabelle/HOL and Mizar, while the dependencies used in the ATP proofs are most often
sufficient to prove the original theorems.

– We present a proof reconstruction mechanism based on an eauto-type procedure com-
bined with some forward reasoning, congruence closure and heuristic rewriting. Using
this proof search procedure we are able to re-prove 44.5% of the problems in the Coq
standard library, using the dependencies extracted from the ATP output.

– The three components are integrated in a plugin that offers a Coq automation tactic
hammer. We show case studies how the tactic can help simplify certain existing Coq
proofs and prove some lemmas not provable by standard tactics available in Coq.

Preliminary versions of the translation and reconstruction components for a hammer for Coq
have been presented by us at HaTT 2016 [24]. Here, we improve both, as well as introduce the
other required components creating a first whole hammer for a system based on the Calculus
of Inductive Constructions.

The rest of this paper is structured as follows. In Sect. 2 we discuss existing hammers
for other foundations, as well as existing automation techniques for variants of type theory
including the Calculus of Constructions. In Sect. 3 we introduce CIC0, an approximation of
the Calculus of Inductive Constructions which will serve as the intermediate representation
for our translation. Section 4 discusses the adaptation of premise selection to CIC0. The
two main contribution follow: the translation to untyped first-order logic (Sect. 5) and a
mechanism for reconstructing in Coq the proofs found by the untyped first-order ATPs 6.
The construction of the whole hammer and its evaluation is given in Sect. 7. Finally in Sect. 8
a number of case studies of the whole hammer is presented.

2 Related Work

A recent overview [17] discusses the three most developed hammer systems, large-theory
premise selection, and the history of bridges between ITP and ATP systems. Here we briefly
survey the architectures of the three existing hammers and their success rates on the various
considered corpora, as well as discuss other related automation techniques for systems based
on the Calculus of (Inductive) Constructions.

2.1 Existing Hammers

Hammers are proof assistant tools that employ external automated theorem provers (ATPs) in
order to automatically find proofs of user given conjectures. Most developed hammers exist

123

426 Ł. Czajka, C. Kaliszyk

for proof assistants based on higher-order logic (Sledgehammer [63] for Isabelle/HOL [74],
HOLyHammer [52] for HOL Light [40] and HOL4 [67]) or dependently typed set theory
(MizAR [55] for Mizar [10,73]). Less complete tools have been evaluated for ACL2 [46].
There are three main components of such hammer systems: premise selection, proof trans-
lation, and reconstruction.

Premise Selection is a module that given a user goal and a large fact library, predicts a
smaller set of facts likely useful to prove that goal. It uses the statements and the proofs of
the facts for this purpose. Heuristics that use recursive similarity include SInE [45] and the
Meng-Paulson relevance filter [62], while the machine-learning based algorithms include
sparse naive Bayes [70] and k-nearest neighbours (k-NN) [51]. More powerful machine
learning algorithms perform significantly better on small benchmarks [1], but are today too
slow to be of practical use in ITPs [34,58].

Translation (encoding) of the user given conjecture together with the selected lemmas to
the logics and input formats of automated theorem provers (ATPs) is the focus of the second
module. The target is usually first-order logic (FOL) in the TPTP format [68], as the majority
of the most efficient ATPs today support this foundation and format. Translations have been
developed separately for the different logics of the ITPs. An overview of the HOL translation
used in Sledgehammer is given in [18]. An overview of the dependently-typed set theory of
MizAR is given in [72]. The automated systems are in turn used to either find an ATP proof
or just further narrow down the subset of lemmas to precisely those that are necessary in the
proof (unsatisfiable core).

Finally, information obtained by the successful ATP runs can be used to re-prove the
facts in the richer logic of the proof assistants. This is typically done in one of the following
three ways. First, by a translation of the found ATP proof to the corresponding ITP proof
script [9,64], where in some cases the script may be even simplified to a single automated
tactic parametrised by the used premises. Second, by replaying the inference inside the proof
assistant [20,50,64]. Third, by implementing verified ATPs [3], usually with the help of code
reflection.

The general-purpose automation provided by the most advanced hammers is able to solve
40–50% of the top-level goals in various developments [17], as well as more than 70% of
the user-visible subgoals [15].

2.2 Related Automation Techniques

The encodings of the logics of proof assistants based on the Calculus of Constructions and its
extensions in first-order logic have so far covered only very limited fragments of the source
logic [2,16,69]. Why3 [35] provides a translation from its own logic [33] (which is a subset
of the Coq logic, including features like rank-1 polymorphism, algebraic data types, recursive
functions and inductive predicates) to the format of various first-order provers (in fact Why3
has been initially used as a translation back-end for HOLyHammer).

Certain other components of a hammer have already been explored for Coq. For premise
selection, we have evaluated the quality of machine learning advice [49] using custom imple-
mentations of Naive Bayes relevance filter, k-Nearest Neighbours, and syntactic similarity
based on theMeng-Paulson algorithm [62].Coq Learning Tools [59] provides a user interface
extension that suggests to the user lemmas that are most likely useful in the current proof
using the above algorithms as well as LDA. The suggestions of tactics which are likely to
work for a given goal has been attempted in ML4PG [48], where the Coq Proof General [6]
user interface has been linked with the machine learning framework Weka [41]. SEPIA [39]
tries to infer automata based on existing proofs that are able to propose likely tactic sequences.

123

Hammer for Coq: Automation for Dependent Type Theory 427

The already available HOL automation has been able to reconstruct the majority of the
automatically found proofs using either internal proof search [43] or source-level reconstruc-
tion. The internal proof search mechanisms provided in Coq, such as the firstorder
tactic [26], have been insufficient for this purpose so far: we will show this and discuss
the proof search procedures of firstorder and tauto in Sect. 6. The jp tactic which
integrates the intuitionistic first-order automated theorem prover JProver [66] into Coq does
not achieve sufficient reconstruction rates either [24]. Matita’s ordered paramodulation [7] is
able to reconstruct many goals with up to two or three premises, and the congruence-closure
based internal automation techniques in Lean [30] are also promising.

The SMTCoq [3] project has developed an approach to use external SAT and SMT solvers
and verify their proof witnesses. Small checkers are implemented using reflection for parts
of the SAT and SMT proof reconstruction, such as one for CNF computation and one for
congruence closure. The procedure is able to handle Coq goals in the subset of the logic that
corresponds to the logics of the input systems.

3 Type Theory Preliminaries

In this section we present our approximation CIC0 of the Calculus of Inductive Construc-
tions, i.e., of the logic of Coq. The system CIC0 will be used as an intermediate step in the
translation, as well as the level at which premise selection is performed. Note that CIC0 is
interesting as an intermediate step in the translation, but is not a sound type theory by itself
(this will be discussed in Sect. 5.6). We assume the reader to be familiar with the Calculus of
Constructions [22] and to have a working understanding of the type system of Coq [11,25].
This section is intended to fix notation and to precisely define the syntax of the formalism
we translate to first-order logic. The system CIC0 is intended as a precise description of the
syntax of our intermediate representation. It is a substantial fragment of the logic of Coq
as presented in [25, Chapter 4], as well as of other systems based on the Calculus of Con-
structions. The features of Coq not represented in the formalism of CIC0 are: modules and
functors, coinductive types, primitive record projections, and universe constraints on Type.

The formalism of CIC0 could be used as an export target for other proof assistants based
on the Calculus of Inductive Constructions, e.g. for Matita or Lean. However, in CIC0, like
in Coq, Matita and Lean, there is an explicit distinction between the universe of propo-
sitions Prop and the universe of sets Set or types Type. The efficiency of our translation
depends on this distinction: propositions are translated directly to first-order formulas, while
sets or types are represented by first-order terms. For proof assistants based on dependent type
theories which do not make this distinction, e.g. Agda [13] and Idris [19], one would need
a method to heuristically infer which types are to be regarded as propositions, in addition to
possibly some adjustments to the formalism of CIC0.

The language of CIC0 consists of terms and three forms of declarations. First, we present
the possible forms of terms of CIC0 together with a brief intuitive explanation of their
meaning. The terms of CIC0 are essentially simplified terms of Coq. Below by t , s, u, τ , σ ,
ρ, κ , α, β, etc., we denote terms of CIC0, by c, c′, f , F , etc., we denote constants of CIC0,
and by x , y, z, etc., we denote variables. We use �t for a sequence of terms t1 . . . tn of an
unspecified length n, and analogously for a sequence of variables �x . For instance, s �y stands
for sy1 . . . yn , where n is not important or implicit in the context. Analogously, we use λ�x : �τ .t
for λx1 : τ1.λx2 : τ2. . . . λxn : τn .t , with n implicit or unspecified.

A term of CIC0 has one of the following forms.

123

428 Ł. Czajka, C. Kaliszyk

– c. A constant.
– x . A variable.
– ts. An application.
– λx : t.s. A lambda-abstraction.
– Πx : t.s. A dependent product. If x does not occur free in s then we abbreviate Πx : t.s

by t → s.
– case(t, c, n, λ�a : �α.λx : c �p�a.τ, λ �x1 : �τ1.s1, . . . , λ �xk : �τk .sk). A case expression. Here

t is the term matched on, c is a constant such that

In(c : γ :=c1 : γ1, . . . , ck : γk)

is an inductive declaration in the global environment (see the definition of inductive
declarations below for an explanation), the type of t has the form c �p�u, the integer n
denotes the number of parameters (which is the length of �p), the type τ [�u/�a, t/x] is the
return type, i.e., the type of the whole case expression, �a ∩ FV(�p) = ∅, and si [�v/ �xi] is
the value of the case expression if the value of t is ci �p�v.

– fix(fi , f1 : t1:=s1, . . . , fn : tn :=sn). A mutually recursive fixpoint definition. The
value of this is the function fi (where 1 ≤ i ≤ n) defined by si . The variables f1, . . . , fn
may occur in s1, . . . , sn . All functions are required to be terminating.

– let(x : t :=s, u). A let-expression locally binding x of type t to s in u.
– cast(t, τ). A type cast: t is forced to have type τ .

We assume that the following special constants are among the constants of CIC0: Prop, Set,
Type,�,⊥, ∀, ∃,∧,∨,↔,¬,=. We usually write ∀x : t.s and ∃x : t.s instead of ∀t (λx : t.s)
and ∃t (λx : t.s), respectively. For ∧, ∨ and ↔ we typically use infix notation. We usually
write t = s instead of= τ st , omitting the type τ . The purpose of having the logical primitives
�,⊥,∀, ∃,∧,∨,↔,¬,= in CIC0 is to be able to directly represent the Coq definitions of
logical connectives. These primitives are used during the translation. We directly export
the Coq definitions and inductive types which represent the logical connectives (the ones
declared in the Init.Logicmodule), as well as equality, to the logical primitives of CIC0.
In particular, Init.Logic.all is exported to ∀.

In CIC0 the universe constraints on Type present in the Coq logic are lost. This is not
dangerous in practice, because the ATPs are not strong enough to exploit the resulting incon-
sistency. Proofs of paradoxes present in Coq’s standard library are explicitly filtered-out by
our plugin.

A declaration of CIC0 has one of the following forms.

– A definition c = t : τ . This is a definition of a constant c stating that c is (definitionally)
equal to t and it has type τ .

– A typing declaration c : τ . This is a declaration of a constant c stating that it has type τ .
– An inductive declaration Ik(c : τ :=c1 : τ1, . . . , cn : τn) of c of type τ with k parameters

and n constructors c1, . . . , cn having types τ1, . . . , τn respectively. We require τ ⇓ Π �y :
�σ .Π �y′ : �σ ′.s with s ∈ {Prop,Set,Type} and τi ⇓ Π �y : �σ . �xi : �αi .c�y �ui for i = 1, . . . , n,
where the length of �y is k and a ⇓ b means that a evaluates to b. Usually, we omit the
subscript k when irrelevant or clear from the context.
For instance, a polymorphic type of lists defined as an inductive type in Type with a
single parameter of type Type may be represented by

I1(List : Type → Type:=
nil : (Π A : Type.List A),

cons : (Π A : Type.A → List A → List A)).

123

Hammer for Coq: Automation for Dependent Type Theory 429

Mutually inductive types may also be represented, because we do not require the names
of inductive declarations to occur in any specific order. For instance, the inductive pred-
icates even and odd may be represented by two inductive declarations

I0(even : nat → Prop:=
even 0 : even 0,
even S : Πn : nat.odd n → even (Sn)).

I0(odd : nat → Prop:=
odd S : Πn : nat.even n → odd (Sn)).

An environment ofCIC0 is a set of declarations.We assume an implicit global environment E .
The environment E is assumed to contain appropriate typing declarations for the logical
primitives. A CIC0 context is a list of declarations of the form x : t with t a term of CIC0

and x the declared CIC0 variable. We assume the variables declared in a context are pairwise
disjoint.We denote environments by E , E ′, etc., and contexts byΓ ,Γ ′, etc.WewriteΓ, x : τ

to denote the context Γ with x : τ appended. We denote the empty context by 〈〉. A type
judgement of CIC0 has the form Γ � t : τ where Γ is a context and t, τ are terms. If
Γ � t : τ and Γ � τ : σ then we write Γ � t : τ : σ . A Γ -proposition is a term t such that
Γ � t : Prop. A Γ -proof is a term t such that Γ � t : τ : Prop for some term τ .

The set FV(t) of free variables of a term t is defined in the usual way. To save on notation
we sometimes treat FV(t) as a list. For a context Γ which includes declarations of all free
variables of t , the free variable context FC(Γ ; t) of t is defined inductively:
– FC(〈〉; t) = 〈〉,
– FC(Γ, x : τ ; t) = FC(Γ ; λx : τ.t), x : τ if x ∈ FV(t),
– FC(Γ, x : τ ; t) = FC(Γ ; t) if x /∈ FV(t).

If Γ includes declarations of all variables from a set of variables V , then we define FFΓ (V)

to be the set of those y ∈ V which are notΓ -proofs. Again, to save on notation we sometimes
treat FFΓ (V) as a list.

Our translation encodes CIC0 in untyped first-order logic with equality (FOL). We also
implemented a straightforward information-forgetting export of Coq declarations into the
syntax of CIC0. We describe the translation and the export in the next section.

In the translation of CIC0 we need to perform (approximate) type checking to determine
which terms are propositions (have type Prop), i.e. we need to check whether a given term t
in a given context Γ has type Prop. For this purpose we implemented a specialised effi-
cient procedure to do so. In fact, this procedure is slightly incomplete. The point here is to
approximately identify which types are intended to represent propositions. In proof assistants
or proof developments where types other than those of sort Prop are intended to represent
propositions the procedure needs to be changed.

All CIC0 terms we are interested in correspond to typable (and thus strongly normalizing)
Coq terms, i.e., Coq terms are exported in a simple information-forgetting way to appropri-
ate CIC0 terms. We will assume that for any exported term there exists a type in logic of Coq,
it is unique, and it is preserved under context extension. This assumption is not completely
theoretically justified, but is useful in practice.

4 Premise Selection

The first component of a hammer preselects a subset of the accessible facts most likely to
be useful in proving the user given goal. In this section we present the premise selection

123

430 Ł. Czajka, C. Kaliszyk

algorithm proposed for a hammer for dependently typed theory. We reuse the two most
successful filters used in HOLyHammer [52] and Sledgehammer [15] adapted to the CIC0

representation of proof assistant knowledge. We first discuss the features and labels useful
for that representation and further describe the k-NN and naive Bayes classifiers, which we
used in our implementation.

4.1 Features and Labels

A simple possible characterization of statements in a proof assistant library is to use the sets
of symbols that appear in these statements. It is possible to extend this set in many ways [56],
including various kinds of structure of the statements, types, and normalizing variables (all
variables will be replaced by a single symbol X). In the case of CIC0, the constants are already
both term constants and type constructors.We omit the basic logical constants, as theywill not
be useful for automated theorem provers which assume first-order logic. We further augment
the set of features by inspecting the parse tree: constants and constant-variable pairs that
share an edge in the parse tree give rise to a feature of the statement. We will denote such
features of a theorem T by F(T).

For each feature f we additionally compute a feature weight w(f) that estimates the
importance of the feature. Based on theHOLyHammer experimentswith featureweights [54],
we use TF-IDF [47] to compute feature weights. This ensures that rare features are more
important than common ones.

Like in usual premise selection, the dependencies of theorems will constitute the labels
for the learning algorithms. The dependencies for a theorem or definition T , which we will
denote D(T), are the constants occuring in the type of T or in the proof term (or the unfolding)
of T . Note that these dependencies may not be complete, because in principle an ATP proof
of T may need some additional information that in Coq is incorporated into type-checking
but not used to build proof terms, e.g. definitions of constants, facts which are necessary to
establish types of certain terms.

For example, consider the theorem T = Between.between le from theCoq standard
library with the statement:

forall k l, between k l -> k <= l.

In the section where this theorem is declared there is the following variable declaration:

Variable P : nat -> Prop.

The features and dependencies of T are:

F(T) = {"Between.Between.between","Between.Between.between-X",
"Coq.Init.Datatypes.nat", "Coq.Init.Peano.le",

"Coq.Init.Peano.le-X"}
D(T) = {"Between.Between.between","Between.Between.between ind",

"Coq.Init.Datatypes.nat", "Coq.Init.Peano.le",

"Coq.Init.Peano.le S", "Coq.Init.Peano.le n", "P"}

The -X features correspond to constants applied to variables. Similarly, in more complex
examples constant-constant applications (such as the successor of zero) give rise to such
compound features.

123

Hammer for Coq: Automation for Dependent Type Theory 431

4.2 k-Nearest Neighbors

The k nearest neighbors classifier (k-NN) finds a given number k of accessible facts which are
most similar to the current goal. The distance for two statements a, b is defined by the function
(higher values means more similar, τ1 is a constant which gives more similar statements an
additional advantage):

s(a, b) =
∑

f ∈F(a)∩F(b)

w(f)τ1

The dependencies of the selected facts will be used to estimate the relevance of all acces-
sible facts. Given the set of the k nearest neighbors N together with their nearness values,
the relevance of a visible fact a for the goal g is

⎛

⎝τ2
∑

b∈N |a∈D(b)

s(b, g)

|D(b)|

⎞

⎠ +
{
s(a, g) if a ∈ N

0 otherwise

where τ2 is a constant which gives more importance to the dependencies. We have used the
values τ1 = 6 and τ2 = 2.7 in our implementation, which were found experimentally in our
previous work [51].

There are two modifications of the standard k-NN algorithm. First, when deciding on
the labels to predict based on the neighbors, we not only include the labels associated with
the neighbors based on the training examples (this corresponds to past proofs) but also the
neighbors themselves. This is because a theorem is in principle provable from itself in zero
steps, and this information is not included in the training data. Furthermore, theorems that
have been proved, but have not been used yet, would not be accessible to the algorithm
without this modification.

Second, we do not use a fixed number k, instead we fix the number of facts with non-
zero relevance that need to be predicted. We start with k = 1 and if not enough facts have
been selected, we increase k iteratively. This allows creating ATP problems of proportionate
complexity.

4.3 Sparse Naive Bayes

The sparse naive Bayes classifier estimates the relevance of a fact a for a goal g by the
probability

P(a is used in the proof of g)

Since the goal is only characterized by its features, the probability can be further estimated
by:

P(a is used in a proof of s | s has features F(g))

where s is an arbitrary proved theorem, abstracting from the goal g.
For efficiency reasons the computation of the relevance of a is restricted to the features of

a and the features that were ever present when a was used as a dependency. More formally,
the extended features F(a) of a are:

F(a) = F(a) ∪
⋃

a∈D(b)

F(b)

123

432 Ł. Czajka, C. Kaliszyk

The probability can be thus estimated by the statements s which have the features F(g) but
do not have the features F(a) − F(g):

P
(
a is used in a proof of s | F(a) ⊆ F(g) ∧ F(a) misses F(a) − F(g)

)

Assuming that the features are independent1 the Bayes’s rule can be applied to transform the
probability to the following product of probabilities:

P(a is used in the proof of s)

·
∏

f ∈F(g)∩F(a)

P
(
s has feature f | a is used in the proof of s

)

·
∏

f ∈F(g)−F(a)

P
(
s has feature f | a is not used in the proof of s

)

·
∏

f ∈F(a)−F(g)

P
(
s does not have feature f | a is used in the proof of s

)

The expressions can be finally estimated:

P(a is used in a proof of s) = t (a)

K

P
(
s has feature f | a is used in the proof of s

) = s(a, f)

t (a)

P
(
s does not have feature f | a is used in the proof of s

) = 1 − s(a, f)

t (a)

using two auxiliary functions that can be computed from the dependencies:

– s(a, f) is the number of times a has been a dependency of a fact characterized by the
feature f ;

– t (a) is the number of times a has been a dependency;

as well as the number K of all theorems proved so far.
In our actual implementation we further introduce minor modifications to avoid any of the

probabilities become zero andwe estimate the logarithms of probabilities to avoidmultiplying
small numbers which might cause numerical instability. The classifier can finally estimate
the relevance of all visible facts and return the requested number of them that are most likely
to lead to a successful proof of the conjecture.

5 Translation

In this section we describe a translation of Coq goals through CIC0 to untyped first-order
logic with equality. The translation presented here is a significantly improved version of our
translation presented at HaTT [24]. It has been made more complete, many optimisations
have been introduced, and several mistakes have been eliminated.

The translation is neither sound nor complete. In particular, it assumes proof irrelevance (in
the sense of erasing proof terms), it omits universe constraints on Type, and some information
is lost in the export to CIC0. However, it is sound and complete “enough” to be practically

1 There are many dependencies among the features, however considering such dependenceis makes premise
selection very slow and gives little improvement both when it comes to machine learning metrics and in
practical hammer use [4].

123

Hammer for Coq: Automation for Dependent Type Theory 433

usable by a hammer (just like the hammers for other systems, it works verywell for essentially
first-order logic goals and becomes much less effective with other features of the logics [17]).
The limitations of the translation and further issues of the current approach are explained
in more detail in Sects. 5.6 and 9. Some similar issues were handled in the context of code
extraction in [60].

The translation proceeds in three phases. First, we export Coq goals to CIC0. Next we
translate CIC0 to first-order logic with equality. In the first-order language we assume a unary
predicate P , a binary predicate T and a binary function symbol@.Usually,wewrite ts instead
of@(t, s). Intuitively, an atomof the form P(t) asserts the provability of t , and T (t, τ) asserts
that t has type τ . In the third phase we perform some optimisations on the generated FOL
problem, e.g. replacing some terms of the form P(cts) with c(t, s).

A FOL axiom is a pair of a FOL formula and a constant (label). We translate CIC0 to a
set of FOL axioms. The labels are used to indicate which axioms are translations of which
lemmas. When we do not mention the label of an axiom, then the label is not important.

5.1 Export of Coq data

The Coq declarations are exported in a straightforward way, translating Coq terms to corre-
sponding terms of CIC0, possibly forgetting some information like e.g. universe constraints
on Type. We implemented a Coq kernel plugin which exports the Coq kernel data structures.
We briefly comment on several aspects of the export.

– Definitions are exported as CIC0 definitions.
– Axioms are exported as CIC0 typing declarations.
– Free variables (e.g. current hypotheses or variables from a currently open section) are

exported as CIC0 constants with appropriate typing declarations.
– Inductive types are exported as CIC0 inductive declarations. Induction principles and

recursor definitions are exported as separate CIC0 definitions.
– Coinductive types are treated in the sameway as inductive types, except that no induction

principles or recursor definitions are exported for them.
– Mutual inductive types are exported separately for each constituent inductive type. See

Sect. 3.
– The Coq construct cofix is exported to fix in CIC0 with a special flag that affects the

evaluation algorithm. We omitted this flag from the description of CIC0 for the sake of
simplicity.

– Modules and functors are not exported. Objects inside a module are exported with the
name of the module prefixed to the name of the object.

– Universe constraints onType are not exported. Proofs of paradoxes present in the standard
library, e.g., Hurken’s paradox, are explicitly filtered out and not exported.

– The following objects from the Init.Logic module are represented directly by the
corresponding logical primitives of CIC0: True, False, all, ex, and, or, iff, eq.
No other objects from the Init.Logic module are exported.

– Records are translated to inductive types already by Coq. Primitive record projections
are not supported by our plugin.

– Existential metavariables are not exported. Currently it is not possible to use the hammer
plugin when the proof state contains some uninstantiated existential metavariables.

The limitations of the translation, including these stemming from the incompleteness of the
export as well as of the current architecture will be discussed in Sects. 5.6 and 9.

123

434 Ł. Czajka, C. Kaliszyk

5.2 Translating Terms

The terms of CIC0 are translated using three mutually recursively defined functions F , G
and C. The function F encodes propositions as FOL formulas and is used for terms of CIC0

having type Prop, i.e., for propositions of CIC0. The function G encodes types as guards and
is used for terms of CIC0 which have type Type but not Prop. The function C encodes CIC0

terms as FOL terms. During the translation we add some fresh constants together with axioms
(in FOL) specifying their meaning. Hence, strictly speaking, the codomain of each of the
functions F , G and C is the Cartesian product of the set of FOL formulas (or terms)—the
desired encoding—and the powerset of the set of FOL formulas—the set of axioms added
during the translation. However, it is more readable to describe the functions assuming a
global mutable collection of FOL axioms.

Our translation assumes proof irrelevance. We use a fresh constant prf to represent
an arbitrary proof object (of any inhabited proposition). For the sake of efficiency, CIC0

propositions are translated directly to FOL formulas using the F function. The CIC0 types
which are not propositions are translated to guards which essentially specify what it means
for an object to have the given type. The formula G(t, α) intuitively means “t has type α”.
For instance, for a (closed) type τ = Πx : α.β we have

G(f, τ) = ∀x .G(x, α) → G(f x, β)

So G(f, τ) says that an object f has type τ = Πx : α.β if for any object x of type α, the
application f x has type β (in which x may occur free).

Belowwe give definitions of the functionsF , G and C. These functions are in fact parame-
terised by a CIC0 context Γ , which we write as a subscript. In the description of the functions
we implicitly assume that variable names are chosen appropriately so that no unexpected vari-
able capture occurs. Also we assume an implicit global environment E . This environment
is used for type checking. The typing declarations for CIC0 logical primitives, as described
in the previous section, are assumed to be present in E . During the translation also some
new declarations are added to the environment. We assume all CIC0 constants are also FOL
constants, and analogously for variables. We use the notation t1 ≈Γ t2 for t1 ↔ t2 if
Γ � t1 : Prop, or for t1 = t2 if Γ � t1 : Prop.
The function F encoding propositions as FOL formulas:

– If Γ � t : Prop then FΓ (Πx : t.s) = FΓ (t) → FΓ,x :t (s).
– If Γ � t : Prop then FΓ (Πx : t.s) = ∀x .GΓ (x, t) → FΓ,x :t (s).
– FΓ (∀x : t.s) = ∀x .GΓ (x, t) → FΓ,x :t (s).
– FΓ (∃x : t.s) = ∃x .GΓ (x, t) ∧ FΓ,x :t (s).
– FΓ (t ◦ s) = FΓ (t) ◦ FΓ (s) where ◦ ∈ {∧,∨,↔}.
– FΓ (¬t) = ¬FΓ (t).
– FΓ (t = s) = (CΓ (t) = CΓ (s)).
– Otherwise, if none of the above apply, FΓ (t) = P(CΓ (t)).

The function G encoding types as guards:

– If w = Πx : t.s and Γ � t : Prop then

GΓ (u, w) = FΓ (t) → GΓ,x :t (u, s).

– If w = Πx : t.s and Γ � t : Prop then GΓ (u, w) = ∀x .GΓ (x, t) → GΓ,x :t (ux, s).
– If w is not a product then GΓ (u, w) = T (u, CΓ (w)).

The function C encoding terms as FOL terms:

123

Hammer for Coq: Automation for Dependent Type Theory 435

– CΓ (c) = c for a constant c,
– CΓ (x) = x for a variable x if x is not a Γ -proof,
– CΓ (x) = prf for a variable x if x is a Γ -proof,
– CΓ (ts) is equal to:

– prf if CΓ (t) = prf,
– CΓ (t) if CΓ (t) �= prf but CΓ (s) = prf,
– CΓ (t)CΓ (s) otherwise.

– CΓ (Πx : t.s) = R �y for a fresh constant F where �y = FFΓ (FC(Γ ;Πx : t.s)) and
– if Γ � (Πx : t.s) : Prop then ∀�y.P(F �y) ↔ FΓ (Πx : t.s) is a new axiom,
– if Γ � (Πx : t.s) : Prop then ∀�yz.T (z, F �y) ↔ GΓ (z,Πx : t.s) is a new axiom.

– CΓ (λ�x : �τ .t) = F �y0 for a fresh constant F where

– t does not start with a lambda-abstraction any more,
– Γ, �x : �τ � t : α,
– �y : �ρ = FC(Γ ; λ�x : �τ .t),
– �y0 = FFΓ (�y) and �x0 = FFΓ,�x :�τ (�x),
– the typing declaration F : Π �y : �ρ.Π �x : �τ .α is added to the global environment E

(before the recursive call to FΓ below),
– the following is a new axiom:

∀ �y0 �x0.FΓ,�x :�τ (F �y �x ≈Γ,�x :�τ t).

Note that the call to F will remove those variable arguments to F which are Γ, �x : �τ -
proofs. Hence, ultimately F will occur as F �y0 �x0 in the above axiom.

– If t is a Γ -proof then

CΓ (case(t, c, n, λ�a : �α.λx : c �p�a.τ, λ �x1 : �τ1.s1, . . . , λ �xk : �τk .sk)) = C

for a fresh constant C .
– If t is not a Γ -proof then

CΓ (case(t, c, n, λ�a : �α.λx : c �p�a.τ, λ �x1 : �τ1.s1, . . . , λ �xk : �τk .sk)) = F �y0
for a fresh constant F where

– I (c : γ :=c1 : γ1, . . . , ck : γk) ∈ E ,
– �y : �ρ = FC(Γ ;case(t, c, n, λ�a : �α.λx : c �p�a.τ, λ �x1 : �τ1.s1, . . . , λ �xk : �τk .sk)),
– �y0 = FFΓ (�y),
– �y1 : �ρ1 = FC(Γ ; t),
– Γ � t : c �p�u for some terms �u,
– the declaration F : Π �y : �ρ.τ [�u/�a, t/x] is added to the global environment E ,
– the following is a new axiom:

∀ �y0.guards �y1: �ρ1(FΓ ((∃ �x1 : �τ1.t = c1 �p �x1 ∧ F �y ≈Γ, �x1: �τ1 s1)
∨ . . .

∨ (∃ �xk : �τk .t = ck �p �xk ∧ F �y ≈Γ, �xk : �τk sk)))

where for a FOL formula ϕ and a context Γ we define guardsΓ (ϕ) inductively as
follows:

• guards〈〉(ϕ) = ϕ,
• guardsΓ,x :τ (ϕ) = guardsΓ (FΓ (τ) → ϕ) if Γ � τ : Prop,

123

436 Ł. Czajka, C. Kaliszyk

• guardsΓ,x :τ (ϕ) = guardsΓ (GΓ (x, τ) → ϕ) if Γ � τ : Prop.
– CΓ (fix(f j , f1 : τ1:=t1, . . . , fn : τn :=tn)) = Fj �y0 where

– �y : �α = FC(Γ ;fix(f j , f1 : τ1:=t1, . . . , fn : τn :=tn)),
– �y0 = FFΓ (�y),
– F1, . . . , Fn are fresh constants,
– for i = 1, . . . , n the typing declarations Fi : Π �y : �α.τi are added to the global

environment E ,
– for i = 1, . . . , n the following are new axioms:

∀ �y0.FΓ (Fi �y ≈Γ ti [F1 �y/ f1, . . . , Fn �y/ fn]).
– CΓ (let(x : τ :=t, s)) = CΓ (s[F �y0/x]) for a fresh constant F where

– �y : �α = FC(Γ ; tτ),
– �y0 = FFΓ (�y),
– σ = Π �y : �α.τ ,
– the definition F = (λ�y : �α.t) : σ is added to the global environment E (before the

recursive call to CΓ above),
– if � σ : Prop then ∀ �y0.F �y0 = CΓ (t) is a new axiom.

– CΓ (cast(prf, τ)) = prf.
– If t �= prf then CΓ (cast(t, τ)) = F �y0 for a fresh constant F where

– �y : �α = FC(Γ ; tτ),
– �y0 = FFΓ (�y),
– σ = Π �y : �α.τ ,
– the definition F = (λ�y : �α.t) : σ is added to the global environment E ,
– if � σ : Prop then ∀ �y0.F �y0 = CΓ (t) is a new axiom.

Example 1 A CIC0 proposition

t = Πx : N .Π f : α → N → N .Πq : α. f qx = x

in the context

Γ = N : Type, α : Prop
is translated to

FΓ (t) = ∀x .T (x, N) → ∀ f.(P(α) → ∀y.T (y, N) → T (f y, N)) → P(α) → f x = x .

In practice, checking the conditions Γ � t : Prop is performed by our specialised approx-
imate proposition-checking algorithm. Checking whether a term t is a Γ -proof occurs in two
cases.

1. t is the termmatched on in a case-expression case(t, c, . . .). Then there is an inductive
declaration In(c : γ := . . .) in the global environment. We check if the normal form of γ

has target Prop.
2. t = x is a variable. Then we check if the type assigned to x by the context Γ is a

proposition.

We write ϕ(σ) to denote that a FOL formula ϕ has σ as a subformula. Then ϕ(σ ′) denotes
the formula ϕ with σ replaced by σ ′. We use an analogous notation when σ is a FOL term
instead of a formula.

123

Hammer for Coq: Automation for Dependent Type Theory 437

Note that each new axiom defining a constant F intended to replace (“lift-out”) a λ-
abstraction, a case expression or a fixpoint definition has the form

∀�x .ϕ(F �x = t)

or

∀�x .ϕ(P(F �x) ↔ ψ).

Wewill call each such axiom the liftingaxiom for F . For lambda abstractions, this is equivalent
to lambda-lifing, which is a common technique used by hammers for HOL and Mizar. In
CIC0 however other kinds of terms do bind variables (for example case and fix) and lifting
axioms need to be created for such terms as well.

5.3 Translating Declarations

Declarations of CIC0 are encoded as FOL axioms. As before, a global CIC0 environment E
is assumed. During the translation of a declaration the functionsF , G and C from the previous
subsection are used. These functions may themselves add some FOL axioms, which are then
also included in the result of the translation of the declaration. We proceed to describe the
translation for each of the three forms of CIC0 declarations. Whenever we write F , G, C
without subscript, the empty context 〈〉 is assumed as the subscript.

A definition c = t : τ is translated as follows.

– If � τ : Prop then add F(τ) as a new axiom with label c.
– If � τ : Prop then

– add G(c, τ) as a new axiom,
– if τ = Prop then add c ↔ F(t) as a new axiom with label c,
– if τ = Set or τ = Type then add ∀ f.c f ↔ G(f, t) as a new axiom with label c,
– if τ /∈ {Prop,Set,Type} then add c = C(t) as a new axiom with label c.

A typing declaration c : τ is translated as follows.

– If � τ : Prop then add F(τ) as a new axiom with label c.
– If � τ : Prop then add G(c, τ) as a new axiom with label c.

An inductive declaration I (c : τ :=c1 : τ1, . . . , cn : τn) is translated as follows, where
τ ⇓ Π �p : �β.Π �y : �γ .s and s ∈ {Prop,Set,Type} and �β are the types of the parameters of
the inductive type and τi ⇓ Π �p : �β.Π �xi : �αi .c �p�ti and the length of �y and each �ti is m.

– Translate the typing declaration c : τ .
– Translate each typing declaration ci : τi for i = 1, . . . , n.
– If s �= Prop then for each i = 1, . . . , n add the following injectivity axiom:

F(∀ �xi : �αi .∀ �xi ′ : �αi
′.ci �xi = ci �xi ′ → xi,1 = x ′

i,1 ∧ . . . ∧ xi,ki = x ′
i,ki)

where �αi
′ = �αi [�xi ′/ �xi].

– If s �= Prop then for each i, j = 1, . . . , n with i �= j add the following discrimination
axiom:

F(∀ �xi : �αi .∀ �x j : �α j .ci �xi �= c j �x j).
– If s �= Prop then add the following inversion axiom:

F(∀ �p : �β.∀�y : �γ .∀z : c �p�y . (∃ �x1 : �α1.z = c1 �p �x1 ∧ y1 = t1,1 ∧ . . . ∧ ym = t1,m)

∨ . . .

∨ (∃ �xn : �αn .z = cn �p �xn ∧ y1 = tn,1 ∧ . . . ∧ ym = tn,m)).

123

438 Ł. Czajka, C. Kaliszyk

– If s = Prop then add the following inversion axiom:

F(∀ �p : �β.∀�y : �γ .c �p�y → ((∃ �x1 : �α1.y1 = t1,1 ∧ . . . ∧ ym = t1,m)

∨ . . .

∨ (∃ �xn : �αn .y1 = tn,1 ∧ . . . ∧ ym = tn,m))).

5.4 Translating Problems

ACIC0 problemconsists of a set of assumptionswhich areCIC0 declarations, and a conjecture
which is aCIC0 proposition.ACIC0 problem is translated to a FOLproblemby translating the
assumptions to FOL axioms in the way described in the previous subsection, and translating
the conjecture t to a FOL conjecture F(t). New declarations added to the environment
during the translation are not translated. For every CIC0 problem the following FOL axioms
are added to the result of the translation:

– T (Prop,Type), T (Set,Type), T (Type,Type),
– ∀y.T (y,Set) → T (y,Type).

5.5 Optimisations

We perform the following optimisations on the generated FOL problems, in the given order.
Below, by an occurrence of a term t (in the FOL problem) we mean an occurrence of t in the
set of FOL formulas comprising the given FOL problem.

– We recursively simplify the lifting axioms for the constants encoding λ-abstractions, case
expressions and fixpoint definitions. For any lifting axiom A for a constant F , if A has
the form

∀�x .ϕ(F �x = G �x)
such that G has a lifting axiom B

∀�x∀�y.ψ(G �x �y = t)

and either ϕ(�) = � or �y is empty, then we replace the axiom A by

∀�x .ϕ(∀�y.ψ(F �x �y = t))

and we remove the axiom B and replace all occurrences of G by F . When in the lifting
axioms A and B we have logical equivalence ↔ instead of equality =, then we adjust
the replacement of A appropriately, using ↔ instead of =. We repeat applying this
optimisation as long as possible.

– For a constant c, we replace any occurrence of T (s, ct1 . . . tn) by cT (t1, . . . , tn, s)
where cT is a new function symbol of arity n + 1. We then also add a new axiom:

∀x1 . . . xn y.cT (x1, . . . , xn, y) ↔ T (y, cx1 . . . xn).

Note that after performing this replacement the predicate T may still occur in the FOL
problem, e.g., a term T (s, xt1 . . . tn) may occur. This optimisation is useful, because it
simplifies the FOL terms and replaces the T predicate with a specialised predicate for a
constant. This makes it easier for the ATPs to handle the problem.

– For each occurrence of a constant c with n > 0 arguments, i.e., each occurrence ct1 . . . tn
where n > 0 is maximal (there are no further arguments), we replace this occurrence
with cn(t1, . . . , tn) where cn is a new n-ary function symbol. We then also add a new
axiom:

123

Hammer for Coq: Automation for Dependent Type Theory 439

– ∀x1 . . . xn .P(cn(x1, . . . , xn)) ↔ P(cx1 . . . xn) if (after replacement of all such
occurrences) all terms of the form cn(t1, . . . , tn) occur only as arguments of the
predicate P , i.e., occur only as in P(cn(t1, . . . , tn)).

– ∀x1 . . . xn .cn(x1, . . . , xn) = cx1 . . . xn otherwise.

This optimisation is similar to the optimisation originally described byMeng and Paulson
in [61, Section 2.7].

– For any constant c and n > 0, if all terms of the form cn(t1, . . . , tn) occur only as
arguments of P , then replace each occurrence of a term of the form P(cn(t1, . . . , tn)) by
cn(t1, . . . , tn).

5.6 Properties of the Translation

In this sectionwe briefly comment on the theoretical aspects of the translation. Further limita-
tions of the whole approach will be mentioned in Sect. 9. The translation is neither sound nor
complete. The lack of soundness is caused e.g. by the fact that we forget universe constraints
on Type, the assumption of proof irrelevance, and the combination of omitting type guards for
lifted-out lambda-abstractions with translating Coq equality to FOL equality. However, our
experimental evaluation indicates that the translation is both sound and complete “enough”
to be practically usable. Also, a “core” version of our translation is sound. A soundness proof
and amore detailed discussion of the theoretical properties of a core version of our translation
may be found in [27].

Note that e.g. in the axiom added for lifted-out lambda-abstractions

∀ �y0 �x0.FΓ,�x :�τ (F �y �x ≈Γ,�x :�τ t)

we do not generate type guards for the free (�y0) or bound (�x0) variables of the lambda-
expression. In practice, omitting these guards slightly improves the success rate of the ATPs
without significantly affecting the reconstruction success rate. We conjecture that, ignoring
other unsound features of the translation, omitting these guards is sound provided that the
inductive Coq equality type eq is not translated to FOL equality. Note also that it is not
sound (and our translation does not do it) to omit guards for the free variables of the term
matched on in the case construct, even if Coq equality is not translated to FOL equality. For
example, assume I0(c : Set:=c0 : c) is in the global environment. With the guards omitted,
for the case-expression case(x, c, 0, c, c0) we would add an axiom

∀x .x = c0 ∧ Fx = c0

with F a fresh first-order constant. This obviously leads to an inconsistency by substituting
for x two distinct constants c1, c2 such that c1 �= c2 is provable.

In our translation we map Coq equality to FOL equality which is not sound in combina-
tion with omitting the guards for free variables. In particular, if a CIC0 problem contains a
functional extensionality axiom then the generated FOL problem may be inconsistent, and
in contrast to the inconsistencies that may result from omitting certain universe constraints,
this inconsistency may be “easy enough” for the ATPs to derive. Our plugin has an option to
turn on guard generation for free variables. See also [27, Section 6].

123

440 Ł. Czajka, C. Kaliszyk

6 Proof Reconstruction

In this section we will discuss a number of existing Coq internal automation mechanisms
that could be useful for proof reconstruction and finally introduce our combined proof recon-
struction tactic.

The tactic firstorder is based on an extension of the contraction-free sequent calcu-
lus LJT of Dyckhoff [32] to first-order intuitionistic logic with inductive definitions [26]. A
decision procedure for intuitionistic propositional logic based on the system LJT is imple-
mented in the tactic tauto. The tactic firstorder does not take into account many
features of Coq outside of first-order logic. In particular, it does not fully axiomatise equality.

In general, the tactics based on extensions of LJT do mostly forward reasoning, i.e.,
they predominantly manipulate the hypotheses in the context to finally obtain the goal. Our
approach is based more on an auto-type proof search which does mostly backward Prolog-
style reasoning—modifying the goal by applying hypotheses from the context. The core of
our search procedure may be seen as an extension of the Ben-Yelles algorithm [21,42] to
first-order intuitionistic logic with all connectives [71,75]. It is closely related to searching
for η-long normal forms [12,31]. Our implementation extends this core idea with various
heuristics. We augment the proof search procedure with the use of existential metavariables
like ineauto, a looping check, some limited forward reasoning, the use of thecongruence
tactic, and heuristic rewriting using equational hypotheses.

It is important to note that while the external ATPs we employ are classical and the
translation assumes proof irrelevance, the proof reconstruction phase does not assume any
additional axioms. We re-prove the theorems in the intuitionistic logic of Coq, effectively
using the output of the ATPs merely as hints for our hand-crafted proof search procedure.
Therefore, if the ATP proof is inherently classical then proof reconstruction will fail. Cur-
rently, the only information from ATP runs we use is a list of lemmas needed by the ATP to
prove the theorem (these are added to the context) and a list of constant definitions used in
the ATP proof (we try unfolding these constants and no others).

Another thing to note is that we do not use the information contained in the Coq standard
library during reconstruction. This would not make sense for our evaluation of the recon-
struction mechanism, since we try to re-prove the theorems from the Coq standard library. In
particular, we do not use any preexisting hint databases available in Coq, not even the core
database (for the evaluation we use the auto and eauto tactics with the nocore option,
but in the final version of the reconstruction tactics we also use auto without this option).
Also, we do not use any domain-specific decision procedures available as Coq tactics, e.g.,
field, ring or omega. Including such techniques in HOLyHammer did allow fast solving
of many simple arithmetic problems [53].

We now describe a simplification of our proof search procedure. We will treat the current
proof state as a collection of judgements of the form Γ � G and describe the rules as
manipulating a single such judgement. In a judgement Γ � G the term G is the goal and Γ

is the context which is a list of hypothesis declarations of the form H : A. We use an informal
notation for Coq terms similar to how they are displayed by Coq. For instance, by ∀x : A, B
we denote a dependent product. We write ∀x, B when the type of x is not essential. Note
that in ∀x, B the variable x may be a proposition, so ∀x, B may actually represent a logical
implication A → B if A is the omitted type of x which itself has type Prop and x does
not occur in B. To avoid confusion with = used to denote the equality inductive predicate
in Coq, we use ≡ as a metalevel symbol to denote identity of Coq terms. We use the notation
Γ ; H : A to denote Γ with H : A inserted at some fixed position. By Γ, H : Awe denote the

123

Hammer for Coq: Automation for Dependent Type Theory 441

context Γ with H : A appended. We omit the hypothesis name H when irrelevant. By C[t]
we denote an occurrence of a term t in a term context C .

The proof search procedure applies the rules from Fig. 1. An application of a rule of the
form

Γ1 � G1 . . . Γn � Gn

Γ � G

replaces a judgement Γ � G in the current proof state by the judgements Γ1 � G1, …,
Γn � Gn . The notation tac[Γ � G] (resp. tac(A)[Γ � G]) in a rule premise means
applying the Coq tactic tac (with argument A) to the judgement Γ � G and making the
judgements (subgoals) generated by the tactic be the premises of the rule. In a rule of the
form e.g.

Γ ; A′ � G

Γ ; A � G

the position in Γ at which A is inserted is implicitly assumed to be the same as the position
at which A′ is inserted.

In Fig. 1 the variables ?ei , ?e denote fresh existential metavariables of appropriate types.
These metavariables need to be instantiated later by Coq’s unification algorithm. In the rules
(orsplit) and (exsimpl) the types of x1, . . . , xn are assumed not to be propositions. In the
rule (exinst) the types of x1, . . . , xk are not propositions and either k = n or the type of xk+1

is a proposition. In the rule (orinst) the xi1 , . . . , xim are all those among x1, . . . , xn for which
Ti1 , . . . , Tim are not propositions; and the index k ranges over all k ∈ {1, . . . , n}\{i1, . . . , im}
(so that each Tk is a proposition)—all judgements for any such k are premises of the
rule, not just a single one. Moreover, in these rules for any term T by T ′ we denote
T [?ei1/xi1 , . . . , ?eim /xim], and Tj1 , . . . , Tjm:k are those among T1, . . . , Tk which are propo-
sitions. In the (apply) and (invert) rules P is an atomic proposition, i.e., a proposition which
is not a dependent product, an existential, a disjunction or a conjunction. In the (destruct)
rule T is not a proposition.

The tactic yapply in rule (apply) works like eapply except that instead of simply
unifying the goal with the target of the hypothesis, it tries unification modulo some simple
equational reasoning. The idea of the yapply tactic is broadly similar to the smart matching
of Matita [8], but our implementation is more heuristic and not based on superposition.

The tactic yrewrite in rule (rewrite) uses Coq’s tactic erewrite to try to rewrite the
hypothesis in the goal. If it fails to rewrite it directed from left to right, then it tries the other
direction.

The rules in Fig. 1 are divided into groups. The rules in each group are either applied with
backtracking (marked by (b) in the figure), i.e., if applying one of the rules in the group to a
judgement Γ � G does not ultimately succeed in finishing the proof then another of the rules
in the group is tried onΓ � G; or they are applied eagerlywithout backtracking (markedby (e)
in the figure). There are also restrictions on when the rules in a given group may be applied.
The rules in the group “Leaf tactics” must close a proof tree branch, i.e., they are applied only
when they generate zero premises. The rules in the group “Final splitting” are applied only
before the “leaf tactics”. The rules in the groups “Splitting”, “Hypothesis simplification” and
“Introduction” are appliedwhenever possible. The rules in the group “Proof search” constitute
the main part of the proof search procedure. They are applied only when none of the rules in
the groups “Splitting”, “Hypothesis simplification” and “Introduction” can be applied. The
rules in the group “Initial proof search” may only be applied after an application of (intro)
followed by some applications of the rules in the “Splitting” and “Hypothesis simplification”

123

442 Ł. Czajka, C. Kaliszyk

Fig. 1 Simplified proof search rules

123

Hammer for Coq: Automation for Dependent Type Theory 443

groups. They are applied only if none of the rules in the groups “Splitting”, “Hypothesis
simplification” and “Introduction” can be applied.

The above description is only a readable approximation of what is actually implemented.
Some further heuristics are used and more complex restrictions are put on what rules may be
applied when. In particular, some loop checking (checking whether a judgement repeats) is
implemented, the number of times a hypothesis may be used for rewriting is limited, and we
also use heuristic rewriting in hypotheses and heuristic instantiation of universal hypotheses.
Some heuristics we use are inspired by the crush tactic of Adam Chlipala [23].

As mentioned before, our proof search procedure could be seen as an extension of a search
for η-long normal forms for first-order intuitionistic logic using a Ben-Yelles-type algo-
rithm [71,75]. As such it would be complete for the fragment of type theory “corresponding
to” first-order logic, barring two simplifications we introduced to make it more practical.
For the sake of efficiency, we do not backtrack on instantiations of existential metavariables
solved by unification, and the rules (exinst) and (orinst) are not general enough. These cause
incompleteness even for the first-order fragment, but this incompleteness does not seem to
matter much in practice. The usual reasons why proof reconstruction fails is that either the
proof is inherently classical, too deep, or uses too much rewriting which cannot be easily
handled by our rewriting heuristics. It is left for future work to integrate rewriting into our
proof search procedure in a more principled way.

The proof reconstruction phase in the hammer tactic uses a number of tactics derived
from the procedure described above, with different depth limits, a bit different heuristics and
rule application restrictions; plus a few other tactics, including Coq’s intuition, simpl,
subst, and heuristic constant unfolding. Various reconstruction tactics are tried in order
with a time limit for each, until one of them succeeds (or none succeed—then the proof
cannot be reconstructed).

It is important to note that no time limits are supposed to be present in the final proof scripts.
The CoqHammer plugin shows which of the tactics succeeded, and the user is supposed to
copy this tactic, replacing the hammer tactic invocation. The final reconstruction tactic does
not rely on any time limits or make any calls to external ATPs. Its results are therefore
completely reproducible on different machines, in contrast to the main hammer tactic itself.

7 Integrated Hammer and Evaluation

In this section we present the technique used to select the combination of strategies included
in the integrated hammer and present an evaluation of the components as well as the final
offered strategy.

The evaluation in this section will perform a push-button re-proving of Coq problems
without using their proofs. In order for the evaluation of the system to be fair, we need ensure
that no information from a proof is used in its re-proving, as well as that the actual strategy
that is used by the whole system has been developed without the knowledge of the proofs
being evaluated.

The system will be evaluated on the problems generated from all theorems in the Coq
standard library of Coq version 8.5 (a version of the plugin works with Coq 8.6 and 8.7
as well). The problems were generated from the source code of the library, counting as
theorems all definitions (introduced with any of Lemma, Theorem, Corollary, Fact,
Instance, etc.) that were followed by the Proof keyword. The source code of the library
was then modified to insert a hook to our hammer plugin after each Proof keyword. The

123

444 Ł. Czajka, C. Kaliszyk

plugin tries to re-prove the theorem using the Coq theorems accessible at the point when
the statement of the theorem is introduced, using the three phases of premise selection, ATP
invocation and proof reconstruction as described above.

This simulates how a hammer would be used in the development of the Coq standard
library. In particular, when trying to re-prove a given theorem we use only the objects acces-
sible in the Coq kernel at the moment the theorem statement is encountered by Coq. Of
course, neither the re-proved theorem itself nor any theorems or definitions that depend on
it are used. The number of problems obtained by automatically analysing the Coq standard
library source code in the way described above is 9276. This differs significantly from the
number of problems reported in [24]. There the theorems in the Coq standard library were
extracted from objects of type Prop in the Coq kernel. Because of how the Coqmodule system
works, there may be many Coq kernel objects corresponding to one definition in a source file
(this is the case e.g. when using the Include command).

Furthermore, the problems are divided in a training set consisting of about 10% of the
problems in the standard library and a validation set containing the remaining 90% of the
problems. The training set is used to find a set of complementary strategies. Just like for the
hammers for higher-order logic based systems and for Mizar a single best combination of
the premise-selection algorithm, number of selected premises, and ATP run for a longer time
is much weaker than running a few such combinations even for a shorter time. Contrary to
existing hammer constructions [52,55], we decided to include the reconstruction mechanism
among the considered strategy parameters since generally reconstruction rates are lower and
it could happen that proofs originating from a particular prover and number of premises
would be too hard to reconstruct.

In our evaluation we used the following ATPs: E Prover version 1.9 [65], Vampire ver-
sion 4.0 [57] and Z3 version 4.0 [28]. The evaluation was performed on a 48-core server
with 2.2GHz AMD Opteron CPUs and 320GB RAM. Each problem was always assigned
one CPU core. The two considered premise selection algorithms were asked for an ordering
of premises, and all powers of two between 16 and 1024 were considered. Finally we consid-
ered both firstorder and hrecon reconstruction. Having evaluated all combinations of
premise selection algorithms we ordered them in a greedy sequence: each following strategy
is the one that adds most to the current selection of strategies. The first 14 strategies in the
greedy sequence are presented in Table 1. The column “Solved” indicates the number of
problems that were successfully solved by the given ATP with the given premise selection
method and a given number of premises, and they could be reconstructed by the proof recon-
struction procedure described in Sect. 6. The ATPs were run with a time limit of 30 s. The
maximum time limit for a single reconstruction tactic was 10 s, depending on the tactic, as
described in Sect. 6. No time limit was placed on the premise selection phase, however for
goals with largest number of available premises the time does not exceed 0.5 s for either of
the considered algorithms. The first strategy that includes firstorder appears only on
twelfth position in the greedy sequence and is therefore not used as part of the hammer. We
show cumulative success rates to display the progress in the greedy sequence.

The results of the hammer strategies including the premise selection are very good in
comparison with the results on the dependencies. Evaluating the translation with hrecon
reconstruction is presented in Table 2. The results are significantly worse, mainly for two
reasons. First, some dependencies are missing due to our way of recording them which does
not take into account the delta-conversion. Secondly, the dependencies in proof terms often
were added by automated tactics and are difficult to use for the ATPs. It is sometimes easier
for the ATPs to actually prove the theorem from other lemmas in the library than from the
original dependencies.

123

Hammer for Coq: Automation for Dependent Type Theory 445

Table 1 Success rates of the strategies on the training set in the greedy sequence order

Prover Selection Premises Reconstruction Solved (%) Solved

Vampire k-NN 1024 Hrecon 30.778 285

Z3 k-NN 128 Hrecon 37.473 347

E-Prover k-NN 1024 Hrecon 39.741 368

Vampire k-NN 64 Hrecon 40.929 379

Z3 n. Bayes 32 Hrecon 41.469 384

Z3 n. Bayes 512 Hrecon 42.009 389

Z3 n. Bayes 128 Hrecon 42.549 394

E-Prover n. Bayes 256 Hrecon 43.089 399

Z3 n. Bayes 16 Hrecon 43.521 403

E-Prover n. Bayes 1024 Hrecon 43.952 407

Vampire n. Bayes 256 Hrecon 44.276 410

Z3 k-NN 64 Hrecon 44.492 412

Vampire k-NN 512 Hrecon 44.708 414

E-Prover k-NN 512 Firstorder 44.924 416

total 46.112 427

Table 2 Prover results on the
dependencies

Prover Solved (%) Solved

Vampire 24.749 2292

Z3 23.961 2219

E-Prover 23.162 2145

Total 26.747 2477

Table 3 The success rate of of the combination of strategies on the validation set

Prover Selection Premises Reconstruction Solved (%) Solved

Vampire k-NN 1024 Hrecon 28.816 2673

E-Prover k-NN 1024 Hrecon 25.593 2374

Vampire k-NN 64 Hrecon 25.367 2353

Z3 n. Bayes 128 Hrecon 24.299 2254

Z3 k-NN 128 Hrecon 24.127 2238

Z3 n. Bayes 512 Hrecon 23.243 2156

Z3 n. Bayes 32 Hrecon 19.028 1765

E-Prover n. Bayes 256 Hrecon 17.497 1623

Total 40.815 3786

Given the common hardware configuration of computers today, we consider as the inte-
grated system a combination of eight complementary strategies. The final results of the
hammer including reconstruction on the validation set are presented in Table 3.

123

446 Ł. Czajka, C. Kaliszyk

8 Case Studies

The intended use of a hammer is to prove relatively simple goals using available lemmas.
The main problem a hammer system tries to solve is that of finding appropriate lemmas in
a large collection and combining them to prove the goal. The advantage of a hammer over
specialised domain-specific tactics is that it is a general system not depending on any domain
knowledge. The hammer plugin may use all currently accessible lemmas, which includes
lemmas proven earlier in a given formalization, not only the lemmas from the standard
library or other predefined libraries.

It sometimes happens that the ATPs find proofs with fewer dependencies than the proofs
in the standard library. One example is the Coq lemma isometric rotation:

Lemma isometric_rotation : forall x1 y1 x2 y2 theta : R,
dist_euc x1 y1 x2 y2 =
dist_euc (xr x1 y1 theta) (yr x1 y1 theta)

(xr x2 y2 theta) (yr x2 y2 theta).

Its current proof in the Coq standard library uses 6 auxiliary facts and is performed using
the following 7 line script:

unfold dist_euc; intros; apply Rsqr_inj;
[apply sqrt_positivity; apply Rplus_le_le_0_compat

| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;

[apply isometric_rotation_0
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat]]; apply Rle_0_sqr

Multiple ATPs found a shorter proof which uses only two of the dependencies: the defini-
tion of euclidean distance and the lemma isometric rotation 0. This suggests that
the proof using the injectivity of square root is a detour, and indeed it is possible to write a
much simpler valid Coq proof of the lemma using just the two facts used by the ATPs:

unfold dist_euc; intros;
rewrite (isometric_rotation_0 _ _ _ _ theta); reflexivity.

The proof may also be reconstructed from the found dependencies inside Coq. This is also
the case for all other examples presented in this section.

Also for some theorems the ATPs found proofs which use premises not present in the
dependencies extracted from the proof of the theorems in the standard library. An example
is the lemma le double from Reals.ArithProp:

forall m n:nat, 2 * m <= 2 * n -> m <= n.

The proof of this lemma in the standard library uses 6 auxiliary lemmas and is performed
by the following proof script (two lemmas not visible in the script were added by the tactic
prove sup0):

intros; apply INR_le.
assert (H1 := le_INR _ _ H).
do 2 rewrite mult_INR in H1.
apply Rmult_le_reg_l with (INR 2).
replace (INR 2) with 2; [prove_sup0 | reflexivity].
assumption.

123

Hammer for Coq: Automation for Dependent Type Theory 447

ATPs found a proof of le doubleusing only 3 lemmas:Arith.PeanoNat.Nat.le 0
l, Arith.Mult.mult S le reg l and Init.Peano.le n. None of these lem-

mas appear among the original dependencies.
Another example of hammer usage is a proof of the following fact:

forall m n k : nat, m * n + k = k + n * m.

This cannot be proven using the omega tactic because of the presence of multiplication. The
tactic invocations eauto with arith or firstorder with arith do not work
either. The hammer tool finds a proof using two lemmas from Arith.PeanoNat.Nat:
add comm and mul comm.

A similar example is the goal

forall n : nat, 3 * 3 ˆ n = 3 ˆ (n + 1).

This goal cannot be solved using standard Coq tactics, including the tactic omega.
Z3 with 128 preselected premises found a proof using the following lemmas from
Arith.PeanoNat.Nat:add succ r,le 0 l,pow succ r,add 0 r. Theproof
may be reconstructed using hexhaustive 0 or hyelles 5 tactic invocations.

The next example of a goal solvable by the hammer involves operations on lists.

forall {A} (x : A) l1 l2 (P : A -> Prop),
In x (l1 ++ l2) -> (forall y, In y l1 -> P y) ->
(forall y, In y l2 -> P y) ->
P x.

This goal cannot be solved (in reasonable time) using either eauto with datatypes
or firstorder with datatypes. The hammer solves this goal using just one lemma:
Lists.List.in app iff.

A similar example is

forall {A} (y1 y2 y3 : A) l l’ z, In z l \/ In z l’ ->
In z (y1 :: y2 :: l ++ y3 :: l’).

This goal cannot be solved using standard Coq tactics. Eprover with 512 preselected
premises found a proof using two lemmas fromLists.List:in cons andin or app.

The hammer is currently not capable of reasoning by induction, except in some very
simple cases. Here is an example of a goal where induction is needed.

forall (A : Type) (P : A -> Prop) (a : A) (l l’ : list A),
List.Forall P l /\ List.Forall P l’ /\ P a ->
List.Forall P (l ++ a :: l’).

This goal can be solved neither by standard Coq tactics nor by the hammer. However, it
suffices to issue the ltac command induction l and the hammer can solve the resulting
two subgoals, none of which could be solved by standard Coq tactics. The subgoal for
induction base is:

A : Type
P : A -> Prop
a : A
============================
forall l’ : list A, Forall P nil /\ Forall P l’ /\ P a ->

Forall P (nil ++ a :: l’)

123

448 Ł. Czajka, C. Kaliszyk

The hammer solves this goal using the lemma Forall cons from Lists.List and the
definition of ++ (Datatypes.app). The subgoal for the induction step is:

A : Type
P : A -> Prop
a, a0 : A
l : list A
IHl : forall l’ : list A, Forall P l /\ Forall P l’ /\ P a ->

Forall P (l ++ a :: l’)
============================
forall l’ : list A, Forall P (a0 :: l) /\ Forall P l’ /\ P a ->

Forall P ((a0 :: l) ++ a :: l’)

The hammer solves this goal using the lemma Forall cons, the inductive hypothesis
(IHl) and the definition of ++. Note that to reconstruct the ATP proof for this goal it is
crucial that our reconstruction tactics can do inversion on inductive predicates in the context.

9 Limitations

In this sectionwebriefly discuss the limitations of the current implementation of theCoqHam-
mer tool. We also compare the hammer with the automation tactics already available in Coq.

The intended use of a hammer is to prove relatively simple goals using accessible lemmas.
Currently, the hammer works best with lemmas from the Coq standard library. Testing with
other libraries has been as yet very limited and the hammer tool may need some adjustments
to achieve comparable success rates.

The hammer works best when the goal and the needed lemmas are “close to” first-order
logic, as some more sophisticated features of the Coq logic are not translated adequately. In
particular, when dependent types are heavily used in a development then the effectiveness of
the hammer tool is limited. Specifically, case analysis over inhabitants of small propositional
inductive types is not translated properly, and the fact that in Coq all inhabitants of Prop are
also inhabitants of Type is not accounted for.

A small propositional inductive type is an inductive type in Prop having just one construc-
tor and whose arguments are all non-informative (e.g. propositional). In Coq it is possible to
perform case analysis over an inhabitant of a small propositional inductive type. This is fre-
quently done when dealing with data structures where dependent types are heavily exploited
to capture the data structure invariants. Currently, all such pattern matches are translated to a
fresh constant about which nothing is assumed. Therefore, the ATPs will fail to find a proof,
except for trivial tautologies.

InCoq all propositions (inhabitants of Prop) are also types (inhabitants ofType). Therefore,
type formers expecting types as arguments may sometimes be fed with propositions. For
instance, one can use the pair type former as if it was a conjunction. Our translation heavily
relies on the possibility of detecting whether a subterm is a proposition or not, in order to
translate it to a FOL formula or a FOL term. The currently followed approach to proposition
detection is relatively simplistic. For example, the pair type former should be translated
to four different definitions, one taking in input two propositions, etc. Currently, only one
definition is generated (the one with both arguments being of type Type).

In the context of code extraction the above two problems and some similar issues were
handled in Pierre Letouzey’s Ph.D. thesis [60]. In [60] Coq terms are translated into an
intermediate language where propositions are either removed from the terms or turned into
unit types when used as types. It may be worthwhile to investigate if our translation could

123

Hammer for Coq: Automation for Dependent Type Theory 449

be factorized reusing the intermediate representation from [60]. If successful, this would be
a better approach.

We leave it for future work to increase effectiveness of the hammer on a broader fragment
of dependent type theory. In this regard our hammer is similar to hammers for proof assistants
based on classical higher-order logic, which are less successful when the goal or the lemmas
make heavy use of higher-order features.

The success of the hammer tactic is not guaranteed to be reproducible, because it relies
on external ATPs and uses time limits during proof reconstruction. Indeed, small changes
in the statement of the goal or a change of hardware may change the behaviour of the
hammer. However, once a proof has been found and successfully reconstructed the user
should replace the hammer tactic with an appropriate reconstruction tactic shown by the
hammer in the response window. This reconstruction tactic does not depend on any time
limits or external ATPs, so its success is independent of the current machine.

In comparison to the hammer, domain-specific decision procedures, e.g., theomega tactic,
are generally faster and more consistently reliable for the goals they can solve. On the other
hand, the proof terms generated by the hammer tactic are typically smaller and contain fewer
dependencies which are more human-readable.

An advantage of Coq proof-search tactics like auto, eauto or firstorder is that
they can be configured by the user by means of hint databases. However, they are in general
much weaker than the hammer. The idea of a hammer is to be a strong general-purpose tactic
not requiring much configuration by the user.

10 Conclusions and Future Work

We have developed a first whole hammer system for intuitionistic type theory. This involved
proposing an approximation of the Calculus of Inductive Constructions, adapting premise
selection to this foundation, developing a translation mechanism to untyped-first order logic,
and proposing reconstruction mechanisms for the proofs found by the ATPs. We have imple-
mented the hammer as a plugin for the Coq proof assistant and evaluated it on all the proofs
in its standard library. The source code of the plugin for Coq versions 8.5, 8.6 and 8.7, as
well as all the experiments are available at: http://cl-informatik.uibk.ac.at/cek/coqhammer/

The hammer is able to re-prove completely automatically 40.8% of the standard library
proofs on a 8-CPU system in about 40 s. This success rate is already comparable to that
offered by the first generations of hammer systems for HOL and Mizar and can already offer
a huge saving of human work.

To our knowledge this is the first translationwhich is usable by hammers. Strictly speaking,
our translation is neither sound nor complete. However, our experiments suggest that the
encoding is “sound enough” to be usable and that it is particularly good for goals close to
first-order logic. Moreover, a “core” version of the translation is in fact sound [27].

There are many ways how the proposed work can be extended. First, the reconstruction
mechanism currently is able to re-prove only 85.2% (4215 out of 4841) of the proofs founds
by the ATPs, which is lower than that in other systems. The premise selection algorithms are
not as precise as those involvingmachine learning algorithms tailored for particular logics. In
particular, for similar size parts of the libraries almost the same premise selection algorithms
used in HOLyHammer [52] or Isabelle/MaSh on parts of the Isabelle/HOL library [15],
require on average 200–300 best premises to cover the dependencies, whereas in the Coq
standard library on average 499–530 best premises are required.

123

http://cl-informatik.uibk.ac.at/cek/coqhammer/

450 Ł. Czajka, C. Kaliszyk

The core of the hammer—the translation to FOL—could be improved to make use of
more knowledge available in the prover in order to offer a higher success rate. It could also
be modified to make it more effective on developments heavily using dependent types, and
to more properly handle the advanced features of the Coq logic, possibly basing on some
of the ideas in [60]. Finally, the dependencies extracted from the Coq proof terms do miss
information used implicitly by the kernel, and are therefore not as precise as those offered in
HOL-based systems.

In our work we have focused on the Coq standard library. Evaluations on a proof assistant
standard library were common in many hammer comparisons, however this is rarely the level
at which users are actually working, and looking at more advanced Coq libraries could give
interesting insights for all components of a hammer. Since we focused on the standard library
during development, it is likely that the effectiveness of the hammer is lower on libraries not
similar to the standard library.

In particular, the Mathematical Components Library based on SSReflect [37] would be
a particularly interesting example, as it heavily relies on unification hints to guide Coq
automation. It has been used for example in the proofs of the four color theorem [38] and the
odd order theorem [36]. On a few manually evaluated examples, the success rate is currently
quite low. It remains to be seen, whether a hammer can provide useful automation also for
such developments, and how the currently provided translation could be optimized, to account
for the more common use of dependent types. Lastly, we would like to extend the work to
other systems based on variants of CIC and other interesting foundations, including Matita,
Agda, and Idris.

Acknowledgements Openaccess fundingprovidedbyAustrianScienceFund (FWF).We thank the organisers
of the First Coq Coding Sprint, especially Yves Bertot, for the help with implementing Coq export plugins.
We wish to thank Thibault Gauthier for the first version of the Coq exported data, as as well as Claudio
Sacerdoti-Coen for improvements to the exported data and fruitful discussions on Coq proof reconstruction.
This work has been supported by the Austrian Science Fund (FWF) Grant P26201 and European Research
Council (ERC) Grant No. 714034 SMART.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alemi, A.A., Chollet, F., Irving, G., Szegedy, C., Urban, J.: DeepMath—Deep sequence models for
premise selection. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances
in Neural Information Processing Systems (NIPS 2016), pp. 2235–2243 (2016)

2. Abel, A., Coquand, T., Norell, U.: Connecting a logical framework to a first-order logic prover. In:
Gramlich, B. (ed.) Frontiers of Combining Systems (FroCoS 2005), Volume 3717 of LNCS, pp. 285–
301. Springer, New York (2005)

3. Armand,M., Faure, G., Grégoire, B., Keller, C., Théry, L.,Werner, B.: Amodular integration of SAT/SMT
solvers to Coq through proof witnesses. In: Jouannaud, J., Shao, Z. (eds.) Certified Programs and Proofs
(CPP 2011), Volume 7086 of LNCS, pp. 135–150. Springer, New York (2011)

4. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by
corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)

5. Asperti, A., Ricciotti, W., Coen, CSacerdoti: Matita tutorial. J. Formaliz. Reason. 7(2), 91–199 (2014)
6. Aspinall, D.: Proof general: a generic tool for proof development. In: Graf, S., Schwartzbach, M.I. (eds.)

Tools and Algorithms for Construction and Analysis of Systems, 6th International Conference, TACAS
2000, volume 1785 of LNCS, pp. 38–42. Springer, New York (2000)

123

http://creativecommons.org/licenses/by/4.0/

Hammer for Coq: Automation for Dependent Type Theory 451

7. Asperti, A., Tassi, E.: Higher order proof reconstruction from paramodulation-based refutations: the unit
equality case. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Mathematical Knowledge
Management (MKM 2007), Volume 4573 of LNCS, pp. 146–160. Springer, New York (2007)

8. Asperti, A., Tassi, E.: Smart matching. In: Intelligent Computer Mathematics, 10th International Confer-
ence, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010,
Paris, France, July 5–10, 2010. Proceedings, pp. 263–277 (2010)

9. Blanchette, J.C., Böhme, S., Fleury,M., Smolka, S.J., Steckermeier, A.: Semi-intelligible Isar proofs from
machine-generated proofs. J. Autom. Reason. (2015)

10. Bancerek, G., Byliński, C., Grabowski, A. Korniłowicz, A., Matuszewski, R., Naumowicz, A., Pąk,
K., Urban, J.: Mizar: State-of-the-art and beyond. In: Intelligent Computer Mathematics—International
Conference, CICM 2015, Washington, DC, USA, July 13–17, 2015, Proceedings, pp. 261–279 (2015)

11. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus
of Inductive Constructions. Springer, New York (2004)

12. Broda, S., Damas, L.: On long normal inhabitants of a type. J. Log. Comput. 15(3), 353–390 (2005)
13. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda—A functional language with dependent types.

In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics
(TPHOLs 2009), Volume 5674 of LNCS, pp. 73–78. Springer, New York (2009)

14. Bertot, Y.: A short presentation of Coq. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) Theorem
Proving in Higher Order Logics (TPHOLs 2008), Volume 5170 of LNCS, pp. 12–16. Springer, New York
(2008)

15. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector
for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

16. Bezem, M., Hendriks, D., de Nivelle, H.: Automated proof construction in type theory using resolution.
J. Autom. Reason. 29(3–4), 253–275 (2002)

17. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason.
9(1), 101–148 (2016)

18. Blanchette, J.C.: Automatic Proofs and Refutations for Higher-Order Logic. PhD thesis, Technische
Universität München (2012). http://www21.in.tum.de/~blanchet/phdthesis.pdf

19. Brady, E.: Idris, a general-purpose dependently typed programming language: design and implementation.
J. Funct. Program. 23(5), 552–593 (2013)

20. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L. (eds.)
Interactive TheoremProving (ITP 2010), Volume 6172 of LNCS, pp. 179–194. Springer, NewYork (2010)

21. Ben-Yelles, C.: Type-assignment in the lambda-calculus: syntax and semantics. Ph.D. thesis,Mathematics
Department, University of Wales, Swansea, UK (1979)

22. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3), 95–120 (1988)
23. Chlipala, A.: Certified Programming with Dependent Types—A Pragmatic Introduction to the Coq Proof

Assistant. MIT Press, Cambridge (2013)
24. Czajka, Ł., Kaliszyk, C.: Goal translation for a hammer for Coq (extended abstract). In: Blanchette, J.C.,

Kaliszyk, C. (eds.) First International Workshop on Hammers for Type Theories (HaTT 2016), Volume
210 of EPTCS, pp. 13–20 (2016)

25. Coq Development Team: The Coq proof assistant reference manual (2016). Version 8.6
26. Corbineau, P.: First-order reasoning in the calculus of inductive constructions. In: Berardi, S., Coppo, M.,

Damiani, F. (eds.) Types for Proofs and Programs (TYPES 2003), Volume 3085 of LNCS, pp. 162–177.
Springer, New York (2003)

27. Czajka, Ł.: A shallow embedding of pure type systems into first-order logic. Submitted. (2016). http://
www.mimuw.edu.pl/~lukaszcz/emb.pdf

28. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008, Volume 4963 of LNCS, pp. 337–340. Springer, New York (2008)

29. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem prover. In: Felty,
A.P., Middeldorp, A. (eds.) International Conference on Automated Deduction (CADE 2015), Volume
9195 of LNCS, pp. 378–388. Springer, New York (2015)

30. deMoura, L., Selsam, D.: Congruence closure in intensional type theory. In: Olivetti, N., Tiwari, A. (eds.)
International Joint Conference on Automated Reasoning, IJCAR 2016, Volume 9706 of LNCS. Springer,
New York (2016)

31. Dowek, G.: A complete proof synthesis method for the cube of type systems. J. Log. Comput. 3(3),
287–315 (1993)

32. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57(3), 795–807
(1992)

33. Filliâtre, J.-C.: One logic to use them all. In: Bonacina, M.P. (ed.) International Conference on Automated
Deduction (CADE 2013), Volume 7898 of LNCS, pp. 1–20. Springer, New York (2013)

123

http://www21.in.tum.de/~blanchet/phdthesis.pdf
http://www.mimuw.edu.pl/~lukaszcz/emb.pdf
http://www.mimuw.edu.pl/~lukaszcz/emb.pdf

452 Ł. Czajka, C. Kaliszyk

34. Färber, M., Kaliszyk, C.: Random forests for premise selection. In: Lutz, C., Ranise, S. (eds.) Frontiers
of Combining Systems (FroCoS 2015), Volume 9322 of LNCS, pp. 325–340 (2015)

35. Filliâtre, J.-C., Paskevich, A.: Why3—Where programs meet provers. In: Felleisen, M., Gardner, P. (eds.)
European Symposium on Programming (ESOP 2013), Volume 7792 of LNCS, pp. 125–128. Springer,
New York (2013)

36. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L., Mahboubi, A.,
O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., Théry, L.: A machine-checked
proof of the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem
Proving (ITP 2013), Volume 7998 of LNCS, pp. 163–179. Springer, New York (2013)

37. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formaliz. Reason. 3(2),
95–152 (2010)

38. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: Kapur, D. (ed.) ASCM, Volume
5081 of LNCS, pp. 333. Springer, New York (2007)

39. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred automata. In: Felty,
A.P., Middeldorp, A. (eds.) International Conference on Automated Deduction (CADE 2015), Volume
9195 of LNCS, pp. 246–255. Springer, New York (2015)

40. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,Wenzel, M. (eds.) Theorem
Proving in Higher Order Logics (TPHOLs 2009), Volume 5674 of LNCS, pp. 60–66. Springer, New York
(2009)

41. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The Weka data mining
software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

42. Hindley, J.R.: Basic Simple Type Theory, Volume 42 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge (1997)

43. Hurd, J.: First-order proof tactics in higher-order logic theoremprovers. In:Archer,M.,Vito, B.D.,Muñoz,
C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), Number
NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

44. Harrison, J.,Urban, J.,Wiedijk, F.:History of interactive theoremproving. In: Siekmann, J. (ed.)Handbook
of the History of Logic vol 9 (Computational Logic), pp. 135–214. Elsevier, Amsterdam (2014)

45. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans,
V. (eds.) 23rd International Conference on Automated Deduction (CADE 2011), Volume 6803 of LNCS,
pp. 299–314. Springer, New York (2011)

46. Joosten, S., Kaliszyk, C., Urban, J.: Initial experiments with TPTP-style automated theorem provers on
ACL2 problems. In: Verbeek, F., Schmaltz, J. (eds.) ACL2 Theorem Prover and Its Applications (ACL2
2014), Volume 152 of EPTCS, pp. 77–85 (2014)

47. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28, 11–21
(1972)

48. Komendantskaya, E. Heras, J., Grov, G.: Machine learning in Proof General: Interfacing interfaces. In:
Kaliszyk, C., Lüth, C. (eds.) User Interfaces for Theorem (UITP 2012), Volume 118 of EPTCS, pp. 15–41
(2013)

49. Kaliszyk, C. Mamane, L. Urban, J.: Machine learning of Coq proof guidance: First experiments. In:
Kutsia, T., Voronkov, A. (eds.) Symbolic Computation in Software Science (SCSS 2014), Volume 30 of
EPiC, pp. 27–34. EasyChair (2014)

50. Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction forHOLLight. In: Bonacina,M.P. (ed.) International
Conference on Automated Deduction (CADE 2013), Volume 7898 of LNCS, pp. 267–274. Springer, New
York (2013)

51. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution.
In: Blanchette, J.C., Urban, J. (eds.) Proof Exchange for Theorem Proving (PxTP 2013), Volume 14 of
EPiC, pp. 87–95. EasyChair (2013)

52. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2),
173–213 (2014)

53. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1),
5–22 (2015)

54. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput.
69, 109–128 (2015)

55. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256 (2015)
56. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated reasoning over large

theories. In: Yang, Q., Wooldridge, M. (eds.) International Joint Conference on Artificial Intelligence
(IJCAI 2015), pp. 3084–3090. AAAI Press, Palo Alto (2015)

57. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.)
Computer-Aided Verification (CAV 2013), Volume 8044 of LNCS, pp. 1–35. Springer, New York (2013)

123

Hammer for Coq: Automation for Dependent Type Theory 453

58. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of
premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
International Joint Conference on Automated Reasoning (IJCAR 2012), volume 7364 of LNCS, pp.
378–392. Springer, New York (2012)

59. Laurent, J.: Suggesting relevant lemmas by learning from successful proofs. Technical report, École
normale supérieure (2016). Internship Report

60. Letouzey, P.: Programmation fonctionnelle certifiée : L’extraction de programmes dans l’assistant Coq.
(Certified functional programming : Program extraction within Coq proof assistant). PhD thesis, Univer-
sity of Paris-Sud, Orsay, France, (2004)

61. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1),
35–60 (2008)

62. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J.
Appl. Log. 7(1), 41–57 (2009)

63. Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link between
automated and interactive theorem provers. In: 8th IWIL (2010)

64. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In:
Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2007), Volume 4732
of LNCS, pp. 232–245. Springer, New York (2007)

65. Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence (LPAR 2013), Volume 8312 of LNCS, pp. 735–743. Springer, New
York (2013)

66. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: Jprover : Integrating connection-based theorem proving
into interactive proof assistants. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Automated Reasoning, First
International Joint Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings, Volume 2083
of Lecture Notes in Computer Science, pp. 421–426. Springer, New York (2001)

67. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008, Volume 5170 of LNCS, pp. 28–32. Springer, New York (2008)

68. Sutcliffe, G.: The TPTP world-infrastructure for automated reasoning. In: Clarke, E., Voronkov, A. (eds.)
LPAR-16, Number 6355 in LNAI, pp. 1–12. Springer, New York (2010)

69. Tammet, T., Smith, J.M.: Optimized encodings of fragments of type theory in first-order logic. J. Log.
Comput. 8(6), 713–744 (1998)

70. Urban, J.: MPTP—motivation, implementation. First Exp. J. Autom. Reason. 33(3–4), 319–339 (2004)
71. Urzyczyn, P.: Intuitionistic games: determinacy, completeness, and normalization. Stud. Log. 104(5),

957–1001 (2016)
72. Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in

Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.)
Intelligent Computer Mathematics (CICM 2010), Volume 6167 of LNCS, pp. 132–146 (2010)

73. Wiedijk, F.: Mizar’s soft type system. In: Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10–13, 2007, Proceedings, pp. 383–399
(2007)

74. Wenzel,M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In:Mohamed, O.A.,Muñoz, C.A., Tahar,
S. (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2008), Volume 5170 of LNCS, pp. 33–38.
Springer, New York (2008)

75. Zielenkiewicz, M., Schubert, A.: Automata theory approach to predicate intuitionistic logic. In: Logic-
Based Program Synthesis and Transformation—26th International Symposium, LOPSTR 2016, Revised
Selected Papers, pp. 345–360 (2016)

123

	Hammer for Coq: Automation for Dependent Type Theory
	Abstract
	1 Introduction
	2 Related Work
	2.1 Existing Hammers
	2.2 Related Automation Techniques

	3 Type Theory Preliminaries
	4 Premise Selection
	4.1 Features and Labels
	4.2 k-Nearest Neighbors
	4.3 Sparse Naive Bayes

	5 Translation
	5.1 Export of Coq data
	5.2 Translating Terms
	5.3 Translating Declarations
	5.4 Translating Problems
	5.5 Optimisations
	5.6 Properties of the Translation

	6 Proof Reconstruction
	7 Integrated Hammer and Evaluation
	8 Case Studies
	9 Limitations
	10 Conclusions and Future Work
	Acknowledgements
	References

