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Abstract 
 
A new approach is presented for elastic registration of 
medical images, and is applied to magnetic resonance 
images of the brain. Experimental results demonstrate 
remarkably high accuracy in superposition of images from 
different subjects, thus enabling very precise localization 
of morphological characteristics in population studies. 
There are two major novelties in the proposed algorithm. 
First, it uses an attribute vector, i.e. a set of geometric 
moment invariants that is defined on each voxel in an 
image, to reflect the underlying anatomy at different 
scales. The attribute vector, if rich enough, can distinguish 
between different parts of an image, which helps establish 
anatomical correspondences in the deformation 
procedure. This is a fundamental deviation of our method, 
referred to as HAMMER, from other volumetric 
deformation methods, which are typically based on 
maximizing image similarity. Second, in order to avoid 
being trapped by local minima, i.e. suboptimal poor 
matches, HAMMER uses a successive approximation of 
the energy function being optimized by lower dimensional 
energy functions, which are constructed to have 
significantly fewer local minima. This is achieved by 
hierarchically selecting features that have distinct 
attribute vectors, thus drastically reducing ambiguity in 
finding correspondence. A number of experiments in this 
paper have demonstrated excellent performance.  
 
1.  Introduction 
 
Deformable registration of brain images has been an active 
topic of research for over a decade. Its clinical applications 
are numerous. In particular, deformable registration can be 
used for spatial normalization of functional images, for 
group analysis and statistical parametric mapping [1]. It is 
also used in computational anatomy as a means for 
measuring structure, by adapting an anatomical template to 
individual anatomies [2-6,14]. Finally, it is used as a 
means for image data mining in lesion-deficit studies, as 
well as in stereotaxic neurosurgery for mapping 
anatomical atlases to patient images [7,8]. Therefore, 
many image analysis methods have been developed to 
tackle this issue, which fall in two general categories. The 
first family of methods involves feature-based matching, 
i.e. transformations that are calculated based on the 

anatomical correspondences established manually, semi-
automatically, or fully automatically on a number of 
distinct anatomical features. Such features are distinct 
landmark points [9], or a combination of curves and 
surfaces, such as sulci and gyri [4,10-13,28]. The second 
family of methods is based on volumetric transformations, 
which seek to maximize the similarity between an image 
and a template, and assume that the image and the 
template have been acquired with the same imaging 
protocol [1,2,14-17,27,29,30].   

Each of these approaches has its advantages and 
disadvantages. Feature-based methods utilize anatomical 
knowledge in determining point correspondences, and can 
be faster, since they don’t evaluate a matching criterion on 
every single voxel in an image, but rather rely on a 
relatively small number of feature points. Similarity-based 
methods can be fully automated, and are more general, 
since they do not require the construction of a specific 
anatomical model each time they are applied to a new 
problem. However, they do not directly solve the problem 
of anatomical correspondences, as image similarity does 
not necessarily imply good registration of the underlying 
anatomy.   

In medical imaging, it is important to build deformable 
anatomical models that take into account the underlying 
anatomy, and not simply the similarity of image intensity. 
Toward that end, this was recognized in [18], which used 
the concept of an attribute vector, i.e. a vector of 
geometric attributes that was attached to each point on a 
surface model of an anatomical structure, and which 
reflected the geometric properties of the underlying 
structure from a local scale (i.e. curvature) to a global 
scale that reflected spatial relationships with more distant 
surface points. If the attribute vector is rich enough, it can 
differentiate between different parts of the anatomy that 
would otherwise look similar, if only image characteristics 
were taken into account (i.e. two points that lie on the 
hippocampal boundary, but belong to different parts of the 
structure) [19]. In this paper, we build upon the ideas of 
the approach in [18], by defining attribute vectors in 
volumetric images, and using them for 3D warping. 
Specifically, we present a method that has the following 
two key novelties: 
1) We use a sequence of successive approximations of the 
energy function being optimized, by lower dimensional 
energy functions. This is accomplished by a hierarchical 



procedure, which initially uses only a small set of features 
to drive the volumetric deformation, and gradually 
increases the number of features, and therefore it increases 
the dimensionality of the energy function. The driving 
features are selected hierarchically according to how 
uniquely they can be identified and matched to other 
features in the image, which reduces ambiguity and 
therefore local minima. This introduces the second novelty 
of the algorithm, described next. 
2) In order to characterize the brain structure in the 
vicinity of each voxel, we use the concept of an attribute 
vector, which is defined on each voxel in an image, and 
which reflects the underlying anatomy at different scales. 
In addition to image intensity and edge information, we 
use geometric moment invariants (GMI’s) as a means for 
representing the geometric structure of the underlying 
anatomy. GMI’s have been used very successfully in 
different computer vision application [20] in order to 
represent the local structure of images. The idea behind the 
attribute vector is that, if it is rich enough, it can 
distinguish between different parts of an image, which 
might otherwise be indistinguishable. For example, all 
grey matter voxels have similar intensities. Therefore, 
when trying to find a spatial transformation that 
maximizes image similarity, the precentral gyrus might 
well be matched to its neighboring postcentral gyrus, 
which has similar image intensity. However, when 
examined at different scales, the precentral and postcentral 
gyri have different characteristics, hence anatomists have 
assigned them different names. A GMI at a particular scale 
is calculated by placing a spherical neighborhood around 
each voxel, and finding thirteen quantities that are 
invariant to rotation [21]. The radius of the neighborhood 
defines the scale of the GMI. We evaluate the GMI at 
different scales (i.e. for different neighborhood sizes), and 
concatenate the resulting GMI’s into a long attribute 
vector. The idea of a GMI is demonstrated schematically 
in Fig. 1, where different local structures have different 
GMI’s. 

We present experiments with images from elderly 
subjects, which display several difficulties, including 
reduced tissue contrast, significant atrophy, and motion 
artifacts. We demonstrate results of exquisite accuracy 
(see Figs. 8, 9), which for the first time, to our knowledge, 
enable very accurate morphometric analyses at an 
extremely high resolution, which is practically limited 
only by the voxel dimensions.  
 

2.  Methods 
 

2.1 General Formulation 

In deformable registration, the key issue is to detect 
anatomical correspondences between two brain images. 
Some parts of the anatomy in the brain image can be 
identified relatively more reliably than others, such as 

roots of sulci and crowns of gyri, since they have distinct 
attribute vectors. Therefore, it is reasonable that the 
deformation of the template be initially influenced by 
these structures. Most deformable models iteratively apply 
displacements to individual voxels. This can cause 
unrealistic deformations as individual points are pulled 
towards noisy edges. HAMMER applies a deformation to 
subvolumes, and evaluates the similarity of attribute 
vectors over the whole subvolume. This deformation 
strategy greatly helps our method avoid local minima. We 
now describe the methodology in detail. 

Let’s assume that T(x) is the intensity of the voxel x in 
the template, and S(y) is the intensity of the voxel y in the 
individual’s image. Here, x and y are the 3D coordinates 
of the voxels in a volume V. The displacement field u(x) 
defines the mapping from the coordinate system of the 
template T to the subject S, while the transformation 
h(x)=x+u(x) defined the mapping that transforms the 
template T into the shape of the subject S. The inverse 
transformation of h(x) is h-1(x). By transforming the 
template to the subject, for each voxel in the template we 
know its corresponding voxel in the subject. In this way, 
we can warp the subject to the space of the template. 
Therefore, our goal here is to warp the subject to the 
template by deforming the template to the subject.  

The energy function minimized by HAMMER is 
defined as follows: 
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The first energy term sums over the differences of the 
attribute vectors of the template voxels at position x, with 
their corresponding subject voxels at the position h(x). 
aT(z) is the attribute vector of the template voxel z, while 
aS(h(z))  is the attribute vector of the subject voxel at the 
position h(z). z is a voxel in the subvolume n(x) of the 
template voxel x. The function m(aT(z), aS(h(z))) measures 
the similarity of the attribute vectors of two voxels, the 
template voxel z and the subject voxel at the position h(z). 
The value of m(.,.) ranges from 0 to 1. Therefore, 1-m(.,.) 
measures the difference of the two voxels. The integration 
of the differences of the attribute vectors aT(z) and aS(h(z)) 
over the whole subvolume n(x) of the voxel x, instead of 
individual voxel x, enables our model to evaluate the 
similarity of whole parts of the anatomy. The parameter 

)(zε  assigns higher weights to the boundary voxels z, 
which yields a good matching of corresponding 
boundaries in the template and subject images. The term 

∑
∈ )(

)(
xz

z
n

ε  is used for normalization. The weighting 

parameter )(xTω  determines the relative weight of each 
voxel x in the template. If one voxel has distinct attribute 



vectors and can be identified relatively more reliably than 
others, then this voxel is assigned higher weight and 
influences the initial deformation of the template relatively 
more than other points. By adaptively changing the 
weights in this energy function, our model is able to 
adaptively focus on the different parts of the anatomy 
during different deformation stages. The second energy 
term is defined similarly as the first, but it is defined on 
the subject domain. Since weightings )(ySω  and )(xTω  
are determined by the image contents, which are different 
in the template and the subject, the emphases of these two 
energy terms are different. The first energy term focuses 
on deforming “template to subject”, while the second 
energy term focuses on pulling “template to subject”. This 
formulation makes our model robust to initialization and 
suboptimal solutions (see Fig. 4), and makes the 
transformation consistent [25]. Naturally, the introduction 
of this term increases the computational time of our model. 
In order to overcome this limitation, we selectively focus 
on a small part of major voxels in the subject image, by 
setting zero weightings )(ySω  to all other unreliable 
voxels. Although this does not warranty consistency of the 
full 3D transformation [25], it warranties consistency of 
the driving forces, something that has turned out to be 
adequate in our experiments. The third term is a 
smoothness constraint on the displacement fields. Here, 

2∇  is Laplacian operator.  
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(a)                                          (b)      

Fig. 1 Demonstration of the GMI’s in discriminating local 
structures. The GMI’s of the voxel indicated by a black circle in 
(a) is compared with the GMI’s of all other points. The resulting 
similarity of the GMI’s is shown in (b), where the white circle 
corresponds to the black circle in (a). High similarity is white. 
 

2.2 Attribute Vectors 

As we described in the introduction, the attribute vectors 
are a critical part of our formulation. Consider a voxel 
with 3D coordinates x in a volumetric image. Then the 
attribute vector, a(x), at x is defined as  

[ ])()()()( 321 xaxaxaxa = , 

where the individual components of the attribute vector are 
the following. The first component a1(x) is the edge type 
of the voxel x. There exist several edge types, i.e. non-
edge and six combinations of edges among grey matter 
(GM), white matter (GM), and CSF. This attribute can be 
obtained directly after performing intensity segmentation 

on the brain images [22], or it can be determined by using 
learning algorithm such as a support vector machine [23] 
from the brain samples. The second component a2(x) is the 
intensity of the voxel x. The last part of the attribute vector 
a3(x) comprises the GMI’s at different scales. For each 
scale, there are thirteen rotation invariants that are 
calculated from the zero-order, second-order, third-order 
3D regular moments [21]. In order to calculate the rotation 
invariants for the voxel x, let’s assume that the origin of 
the coordinate system has been shifted to the voxel x, and 
under this coordinate system the intensity function of the 
volumetric brain image is f(x1,x2,x3), where x1, x2, x3 are 
coordinates. Then, the 3D regular moments of order 
(p+q+r) of the image f(x1,x2,x3) can be defined by  
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where R is the size of the neighborhood around the origin 
(i.e. voxel x). Two rotation invariants are listed next. Other 
eleven rotation invariants can be found in [21].  

0,0,01 MI = ,  
2,0,00,2,00,0,22 MMMI ++=  

If we can use intensity segmentation method to label brain 
tissue into GM, WM, and CSF, then we can calculate 
thirteen GMI’s for each tissue, with the first GMI 
corresponding to the volume of this tissue. In this way, we 
have 13x3 GMI’s for each voxel at each scale. 

GMI’s are a convenient way of characterizing the 
shapes of objects in 2D or 3D images, since objects of 
different shapes tend to have different GMI’s. Fig. 1 
demonstrates the concept of GMI’s that can be used to 
discriminate local structures. In this figure, the GMI’s of 
the point indicated by a black circle in Fig. 1a are 
compared with the GMI’s of all other points in the image. 
Fig. 1b shows the attribute vector similarity of the selected 
point and the other points, ranging from 0 to 1. The size of 
this image is 256x256, while the GMI’s are calculated in 
81x81 neighborhood. It should be indicated that, besides 
using GMI’s to extract the geometric properties of objects, 
other techniques such as Gabor filters, Wavelets, and low-
frequency representations [24], can also be applied, under 
the condition that the extracted attributes are rotation 
invariant.  

Having defined the attribute vector, we now define the 
similarity criterion used for deforming the template to the 
subject. We require that boundary voxels in the template 
deform to the voxels with the same boundary type in the 
subject. This is because boundaries are very important 
features in describing the brain structures. Mathematically, 
the similarity of the two voxels x and y is defined as  
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where ).,.(c  is the similarity of the second and third parts 
of attribute vectors. When a set of training samples is 
available, the similarity ).,.(c  can be learned by a learning 
technique such as support vector machines [23]. Without 
the set of training samples, we can simply normalize each 



element in a2 and a3 to a range from 0 and 1, and then 
define ).,.(c  as 
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where )(3 xa i  is the i-th element of )(3 xa  that has total K 
elements. This is the definition used throughout the 
experiments of this paper. 
 

2.3.  Image Deformation Mechanism: hierarchical 
approximation of the energy function 

In order to optimize the criterion in (1), we have 
developed a deformation mechanism that is robust to 
suboptimal solutions. This deformation mechanism is 
based on the approximation of the energy function in (1), 
by an energy function, with the significantly fewer local 
minima, which is defined on the focus points in the 
template and subject, i.e. points that drive the volumetric 
deformation procedure at a particular stage. Initially, only 
few distinctly identifiable features are used to drive the 
deformation, as described below. 

Focus points. Some parts of the anatomy can be identified 
more reliably than others. This is due to several reasons. 
First, some parts have very distinct geometric 
characteristics. Good examples are the roots of sulci and 
the crowns of the gyri, which can be identified more 
reliably than intermediate cortical points. Second, the 
attribute vectors, which in our framework provide the 
means by which anatomical characteristics are represented, 
might be better discriminants of some features over others. 
Finally, certain parts of the anatomy are more complex 
than others. For example, in regions where many 
structures are close to each other, edges extracted from the 
images are dense, and might simultaneously influence the 
deformation of deformable model, thus rendering its 
deformation prone to errors. 

Our deformation mechanism addresses exactly the 
issues above. In particular, certain parts of the anatomy are 
used first to drive the volumetric deformation. These parts 
include sulcal roots and gyral crowns, as well as regions in 
which edges are relatively stronger and more isolated, i.e. 
ventricular boundaries and outside cortical boundaries. It 
is particularly important in our studies to use the 
ventricular boundaries to drive the volumetric deformation 
in the very beginning stages, since this way we account for 
large image dissimilarities caused by the extreme atrophy 
of many of our elderly subjects.   

Specifically, the rules for the hierarchical procedure of 
our deformation mechanism are the following: 
1) Roots of sulci and crowns of gyri are typically 
identified very robustly, based on their distinctive attribute 
vectors. This is demonstrated in Fig. 2(a1). Accordingly, 
the deformation of the model is influenced primarily by 
those regions initially, and gradually shifts focus to other 
cortical regions, as those get close to their respective ones.   

2) Regions that display relatively higher similarity of the 
respective attribute vectors have a relatively stronger 
influence on the deformation mechanism. This 
characteristic makes the deformation mechanism robust to 
spurious matches, at least in the beginning of the 
deformation, when the chances for the algorithm to be 
trapped in local minima are relatively higher. 
3) Voxels located on strong and isolated edges are usually 
easy to determine. These types of voxels can be detected 
by evaluating the difference between their edge strength 
and the mean edge strength in their vicinities. In the future 
we are planning to determine such voxels from a training 
set, in a way analogous to the approach presented in [18]. 

Fig. 2 gives an example of the focus voxels during 
different stages of the deformation procedure that deforms 
the template in (a1-a4) to the subject in (b). The subject 
image in 2b is the same as the cross-section image in Fig. 
6(Li), which is automatically affine-transformed from the 
initial input subject (in Fig. 6(I)) by HAMMER. The black 
points in 2(a1) are the voxels that our model automatically 
determined for the initial deformation stages. Most of 
them are the voxels in the sulcal roots and gyral crowns. 
(Only points on the grey/white matter interface are shown, 
so we are using the terms sulcal root and gyral crown 
loosely here.) After using these voxels to drag the major 
structures of the template to their corresponding parts in 
the subject, other boundary voxels are added to the set of 
the focus voxels and immediately join the deformation 
procedure. For example, the white voxels are added in 
2(a2), then other black and white voxels are added in 2(a3) 
and 2(a4). The black voxels in 2b are voxels in the subject 
that have distinctive attribute vectors. Only points on the 
white matter/grey matter boundary are shown, for clarity. 
These points tend to fall on sulci or gyri, which are easier 
to distinguish based on their attribute vectors.  
 

   
(a1)                                 (a2)                                (a3) 

  
                 (a4)                        (b) Subject 
Fig. 2 Schematic demonstration of the hierarchical deformation 
mechanism in HAMMER. See the text for details.  
 



Displacement of subvolumes. The vast majority of 
deformable registration methods rely on iterative methods 
that effectively move one voxel at a time, trying to 
improve some similarity criterion. However, the huge 
dimensionality of systems arising in 3D warping methods 
of medical images, in conjunction with the highly non-
convex nature of the underlying energy functions resulting 
from the complex nature of brain anatomy, renders such 
iterative methods susceptible to local minima. Moreover, 
the resulting displacement fields are often “bumpy”, as 
they pull and push individual voxels to nearby voxels of 
similar intensity characteristics.   

In our approach, we have chosen a different deformation 
mechanism, which has proven to be very robust to local 
minima. In particular, for each template voxel that is 
considered at a particular stage of the deformation, a 
subvolume, i.e. a small volume around that voxel, is 
displaced at several tentative nearby locations, based on 
which nearby voxels have similar attribute vectors with the 
voxel under consideration. Importantly, the optimal 
deformation of the subvolume is not determined based on 
the similarity of one voxel, but it is determined by 
integrating the similarity of the attribute vectors within the 
whole subvolume. For example, when several tentative 
deformations of the corner of the ventricle are considered, 
the similarity of attribute vectors within the whole 
subvolume around this corner voxel is evaluated. The 
subvolume of this ventricular corner voxel will be finally 
deformed to the optimal position, if the total similarity is 
over a certain threshold. Otherwise, this voxel will 
produce no deformation on its subvolume. This is shown 
schematically in Fig. 3. Figs. 3b and 3a respectively 
display the selected part of the template and the subject. A 
regular grid x in the template (b) has been deformed 
slightly to an irregular grid h(x) in the subject (a). The 
white “disc” in Fig 3 denotes a template voxel under 
consideration. The search domain of this voxel is shown as 
the big dotted circles in c1 and d1. Two voxels with the 
similar attribute vectors are found in its neighborhood as 
shown as white circles in c1 and d1. Then the subvolume 
of this voxel is tentatively deformed to these two positions, 
as shown in c2 and d2. The corresponding deformed 
template grids h(x) are given in c1 and d1. By integrating 
the total similarity of the attribute vectors in the current 
deformed subvolume with those in the subject, this 
subvolume is finally deformed to an optimal position such 
as c2. White crosses in c2 and d2 are at the same positions, 
which are used as a reference in comparing two different 
deformations in these two images. It should be indicated 
that the size of the subvolume could be defined in a 
hierarchical fashion. It is initially large, and reduces 
gradually with time. Also, for speeding up the procedure 
of evaluating subvolume similarity, the voxels in this 
subvolume can be subsampled according to the size of this 
subvolume.  
 

 h(x) 

 

 h(x) 

 

 h(x) 

 
(a)                                  (c1)                               (d1) 

 x 

 

 

 

 

 
(b)                                (c2)                              (d2) 

Fig. 3 Demonstration of the deformation mechanism in 
HAMMER. See the text for detailed meanings of the pictures.  

 
The mathematical form of the deformation of the 
subvolume is described next. When deforming the 
subvolume of the template voxel x, we should produce no 
discontinuities at the boundary of the subvolume. In order 
to reach this objective, we propagate the deformation on 
the voxel x to its neighboring voxels z according to a 
Guassian kernel. Currently, the position of the template 
voxel x is h(x), and the position of the voxel z that is 
included in the subvolume of the voxel x is h(z). Assume 
that the position of template voxel x is moved from h(x) to 
a tentative position h(x)+ ∆ , during the greedy research. 
Then, the new position of the voxel z is defined as  

)2exp()( 22 σzxz −−⋅∆+h , 

where σ  is a parameter that makes )2exp( 22 σzx −−  
close to zero for the voxels z in the boundary of the 
subvolume around the template voxel x. This definition 
leaves the boundary voxels unchanged and hence 
maintains the smoothness of the displacement field.  

Consistent transformation framework. Constructing 
consistent transformations, i.e. transformations which give 
identical mapping between two brains regardless of which 
of the two brains is treated as the template, have gained 
interest in the medical imaging community during the past 
2 years [25]. The similar concept of consistent 
transformations has been previously introduced in the 
computer vision community by [26], for normalization of 
hand-written characters. In this paper, we used a 
consistency term in eq. (1), which constrains the inverse 
transformation h-1(x) and pertains to the deformation of 
“subject to template”. This formulation makes our model 
very robust to the initialization and suboptimal solutions. 
Fig. 4 vividly demonstrates the importance of using 
consistency term, with a good warping result using the 
consistency term in Fig. 4a and an incorrect warping 
result, without using the consistency term, in Fig. 4b. The 
black contours in Fig. 4 are the WM boundaries of the 
template brain image in the same slice.  
 



  
(a)                          (b) 

Fig. 4 Demonstration on the importance of using the consistency 
term in our energy function. (a) Using the consistency term, (b) 
without using the consistency term.  
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(a) Template domain                   (b) Subject domain 

Fig. 5 Schematic description of our idea in converting the 
constraint on the inverse transformation h-1(x) as an additional 
constraint on the transformation h(x). See text for details.  
 

In the numerical implementation, even if we know the 
transformation h(x), it is still computationally burdensome  
to determine the inverse transformation h-1(x). We bypass 
the problem of finding the inverse transformation by 
converting the constraint on the inverse transformation     
h-1(x) as an additional constraint on the transformation 
h(x). Moreover, in order to speed up our algorithm, we 
only focus on the major subitems in the second energy 
term of eq. (1), such as maintaining only subitems with big 
weightings )(ySω  that are corresponding to the distinctive 
boundary voxels in the subject, and removing all other 
subitems.  

Assume that, in the current iteration, the set of the 
template focus voxels xi is { }Ti Ni ≤≤1x , such as a number 

of small black circles in Fig 5a. Here, NT is the number of 
the template focus voxels. Similarly, let { }Si Ni ≤≤1y  be the 

set of the NS major subject image’s focus voxels. This 
latter set of focus voxels can be selected adaptively, as 
described earlier for the template. However, for saving 
computation time, in the current study we fix this set in the 
whole deformation procedure. For example, Fig 2b shows 
the subject’s focus voxels in a slice. With the 
transformation function h(x), we know the set of the 
template voxels { }Ti Ni ≤≤1x  has been displaced into 

{ }Ti Nih ≤≤1)(x , such as small black circles in Fig 5b. Then 

for each subject voxel yi under consideration, such as a 
grey point, in its neighborhood we find a displaced 
template voxel h(xj), where { }Tij Nihh ≤≤∈ 1)()( xx , with the 

most similar attribute vector. If the similarity between the 
subject voxel yi and the template voxel xj is high, then a 
force is applied on the displaced template voxel h(xj) at the 

direction from h(xj) to yi, as shown as a grey arrow in Fig 
5b. Finally, the displaced template voxel h(xj), including 
its subvolume, will be deformed according to the 
definition of the displacement of subvolume, described 
earlier.  
 

Multi-grid formulation.  In order to speed up HAMMER, 
we have implemented it in a multi-grid framework.  
Currently, we use 3 different scales, corresponding to the 
original image resolution (High), a subsampled version by 
a factor of 2 (Middle), and a subsampled version by a 
factor of 4 (Low).  For each resolution, we first calculate 
the attribute vector for each voxel in the template and 
subject. Then we use HAMMER to register them. The 
transformation function h(x) in one low resolution are 
upsampled and linearly interpolated to the next resolution. 
The upsampled transformation function is then used as the 
initialization for the studied resolution. An example of 
warping two brains using this multi-grid formulation is 
demonstrated in Fig. 6 in Section 3. 
 

3.  Results 

Two experiments are given here to demonstrate the 
performance of HAMMER. As to the speed of HAMMER, 
it currently takes about 4~5 hours on an SGI OCTANE 
workstation for a full 3D warping of MR images, without 
any code optimization. 
 

Experiment on warping one subject to the template. Fig 6 
shows the result obtained by warping the subject with 
large ventricles to the template. The black contours in Fig 
6 are the WM boundaries of the template brain image at 
the same slice, which are used as a reference for 
comparison. The small images in the upper left corner 
were taken from the low resolution warping procedure. In 
the beginning, the subject image was automatically 
transformed to the space of the template by using the 
global affine transformation. A representative slice image 
of this affine transformed volume is displayed in 6(Li). 
The effect of this affine transformation can be observed by 
comparing three images in 6(I), (Li), and (Lt). Notice that 
an image in 6(I) is the original subject image, and an 
image in 6(Lt) is the template image. All of them are at the 
same slice. The final warping result of the low resolution 
procedure is under the image 6(Lt). We can observe that 
the subject has been warped a lot to the template. By 
upsampling the displacement fields from the low 
resolution to the middle resolution, we can obtain the 
initial warping image in the middle resolution, as shown in 
6(Mi). This warping result was improved in the end of the 
middle resolution, by comparing the template in 6(Mt) 
with the warping result under this template. Similarly, the 
displacement fields were upsampled and interpolated to 
the high resolution, and we therefore obtained the initial 
warping result in this high resolution in 6(Hi). The final 
warping result of the subject is displayed in the right 



corner. Comparing this final warping result with the 
template in 6(Ht), we can easily observe the exquisite 
accuracy of HAMMER in warping brain images. A movie 
on the procedure of warping this subject can be found in 
the web site:  

http://beast.cbmv.jhu.edu/~dgshen/HAMMER/Whole_withCaption.gif. 

In Fig 7, we provide a picture of the displacement 
fields of this warping. We can observe the relative 
smoothness of the associated displacement fields, even the 
initial difference between the ventricles of the subject and 
the template is large.  
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Fig. 6 A procedure of warping a subject brain to the template. 
See text for details. Bottom right shows warped subject overlaid 
on template’s outline 
 

 
Fig. 7. Displacement fields on a typical slice of the template. 
 

Experiment on constructing average brain image. The 
quality of the average brain image can be used to validate 
the accuracy of the warping algorithm in performing 
registration. We selected 18 subjects, with a wide 
variability of ventricular shape and size, and, of course 
representative of variability in other structures. We applied 
HAMMER to warp these 18 subjects using the same fixed 
set of parameters. Fig. 8 shows an average brain image in 

three different views. For comparison, the same slice 
images of the template are also displayed. Notably, the 
cortical regions, ventricles, and WM/GM boundaries are 
very clear. Also, the caudate nucleus and the lenticular 
nucleus are also very clear. That indicates the high 
registration accuracy obtained by HAMMER.  

We also generated a 3D rendering of the average 
image, shown in Fig 9 along with the template brain. An 
excellent definition of the cortical anatomy is evident in 
this average.  
 

  

  

  
 (a) Average brain                         (b) Template brain 

Fig. 8 Average brain image reconstructed from 18 very different 
subjects, along with the template slices images. The crispness of 
the average reflects an exquisite registration accuracy. 

 

  
(a) Average brain                    (b) Template brain 

Fig. 9 The 3D renderings of the 18-brain average brain and the 
template brain. The black crosses are used for comparing the 
correspondences in the average and template brains.  



4.  Conclusion 

We presented a new approach to deformable registration 
of brain images, which resulted in extremely high 
accuracy in superposition of images from different 
subjects, thus enabling very precise localization of 
morphological characteristics in population studies. The 
proposed approach has two major novelties. First, it 
utilizes attribute vectors to reflect geometric characteristics 
of the underlying anatomical structures. The attribute 
vectors are essential in establishing anatomical 
correspondences in the deformation procedure. Second, it 
uses a hierarchical deformation mechanism. In particular, 
parts of the anatomy that have distinct shape properties are 
used as “anchors” during initial deformation stages, while 
the remaining parts simply follow the deformation. As a 
template deforms toward its target configuration, other 
parts of the anatomy gradually affect the deformation, as 
those get close to their respective targets. Moreover, the 
deformation mechanism deforms subvolumes at a time, 
rather than individual voxels, and evaluates the similarity 
of attribute vectors over the entire subvolume.  

We have evaluated this algorithm on images from an 
aging study, which display several difficulties, including 
low tissue contrast, significant atrophy, and motion 
artifacts. The exquisite crispness of the resulting averages 
after warping (see Figs. 8,9), along with the relative 
smoothness of the associated displacement fields (see Fig. 
7), are very promising, in that they will allow us to 
examine morphology at a very detailed level, compared to 
the image resolution.  
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