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Abstract. Replication is a common technique to build reliable and scal-
able systems. Traditional strong consistency maintains the same total
order of operations across replicas. This total order is the source of mul-
tiple desirable consistency properties: integrity, convergence and recency.
However, maintaining the total order has proven to inhibit availability
and performance. Weaker notions exhibit responsiveness and scalability;
however, they forfeit the total order and hence its favorable properties.
This project revives these properties with as little coordination as pos-
sible. It presents a tool called Hampa that given a sequential object
with the declaration of its integrity and recency requirements, automat-
ically synthesizes a correct-by-construction replicated object that simul-
taneously guarantees the three properties. It features a relational object
specification language and a syntax-directed analysis that infers optimum
staleness bounds. Further, it defines coordination-avoidance conditions
and the operational semantics of replicated systems that provably guar-
antees the three properties. It characterizes the computational power and
presents a protocol for recency-aware objects. Hampa uses automatic
solvers statically and embeds them in the runtime to dynamically decide
the validity of coordination-avoidance conditions. The experiments show
that recency-aware objects reduce coordination and response time.

1 Introduction

Replicated objects [12,13,23,32,45] are pervasively used for fault-tolerance,
availability, responsiveness and scalability. They are used in diverse application
areas [14,20–22,37,39,40,50,53] including embedded controllers, online services
and game engines. However, coordinating the replicas has proven to be chal-
lenging. Strongly consistent replication, provided by consensus protocols such
as Viewstamp [42], Paxos [34] and Raft [44], guarantees the same total order of
operations across replicas. The total order simultaneously provides a hoard of
favorable properties: integrity, convergence and recency. Replicas converge to the
same state as the result of the same sequence of operations. Further, a propa-
gated operation executes in the same state as the originating replica. Therefore,
if an operation preserves the integrity properties [8] at the originating replica, it
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will certainly preserve them in the other replicas as well. In addition, the lock-
step execution keeps the replicas recent: an operations executes in all replicas
before the next. Thus, replicas can be stale by at most one operation.

However, strong consistency may not be available and responsive during
network failures or offline use. Further, its scalability is limited. The trade-
off between strong consistency of replicated objects, and their availability and
responsiveness is a famous dilemma [1,3,26–28]. Therefore, system designers
opted for weaker notions of consistency such as eventual [4,15,17,19,24,25,48,52]
and causal [2,13,33] consistency that can provide availability, responsiveness and
scalability but lose the same total order of operations. Several projects [16,49,51]
provide programming interfaces for weak consistency notions. Unfortunately, the
large collection of subtle weak consistency notions is unintuitive to users. If the
chosen notion is too weak, it can affect correctness, and if it is too strong, it may
degrade scalability.

Therefore, researchers have recently provided high-level abstractions to shield
the user from low-level complexities of weak consistency. These projects seem to
be the steps towards reviving the same three pillars of consistency, i.e. integrity,
convergence and recency, with as little coordination [7,35,47] as possible. CRDTs
[48] revived convergence. If an object satisfies a few algebraic properties, its repli-
cation can enjoy convergence even on top of eventual consistency. However, the
replicas can experience states that violate the integrity properties. Therefore,
follow-up projects revived the integrity property. CISE [29] and Soteria [41]
present proof techniques to verify the integrity properties of a replicated object.
Sieve [36], Indigo [10] and Hamsaz [30] translate the given high-level integrity
properties to hybrid models. However, they are oblivious to state recency. The
operations are eventually delivered to all replicas, however, they may be arbi-
trarily delayed. Some updates may be delivered too late and expose the clients
to stale data. On the other hand, at the expense of more communication, some
updates may be immediately sent and delivered. However, applications may
prefer to obtain more scalability and energy efficiency in return for bounded
staleness. In fact, many applications such as ticketing, distributed sensors and
network accounting can work with fairly recent data. Previous work such as
TACT [55], TRAPP [43], FRACT [59], and PBS [9] considered staleness but did
not address integrity and communication minimization. Further, they did not
provide automatic analysis, decision and synthesis. In addition to convergence
and integrity, this project, Hampa, revives recency. Given a sequential object
with the declaration of its integrity properties and recency requirements for its
methods, it automatically synthesizes a correct-by-construction replicated object
that guarantees integrity, convergence and recency while avoiding unnecessary
coordination.

To capture object specifications from the user, we present a relational lan-
guage and its denotational semantics. The language provides a complete set of
relational operators to define the object methods and integrity properties, and
allows the user to declare recency requirements for the return value of each
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method. Given a principled object specification, we present a syntax-directed
analysis that infers optimum staleness bounds for each element of the state.

We present the conditions required to simultaneously preserve the three prop-
erties: convergence, integrity and recency. These conditions are used to define
a novel operational semantics of replicated objects that provably preserve con-
vergence, integrity and the inferred staleness bound. We observe that recency-
awareness not only guarantees a limit on the staleness, but also allows buffering
of calls and reduces the coordination required to preserve integrity.

We characterize the computational power of recency-aware replicated objects.
We show that recency-aware objects have the same power as the perfect failure
detector. We present a novel protocol for recency-aware replicated objects that
implements the semantics. We use off-the-shelve SMT solvers both statically
and embed them at runtime to decide the validity of coordination-avoidance
conditions. We present a tool called Hampa that given an object definition,
analyzes the object and instantiates the protocol to synthesize replicated objects.
Our experiments with the synthesized objects show that the staleness bound has
an inverse relationship with the coordination and response time.

In summary, this paper presents the following contributions: (1) A relational
object specification language that captures integrity and recency declarations,
and its denotational semantics (Sect. 2). (2) The coordination conditions and the
operational semantics of replicated systems that simultaneously preserve conver-
gence, integrity and recency (Sects. 3 and 4). (3) A syntax-directed analysis that
infers optimum staleness bounds for each element of the state (Sect. 5). (4) The
characterization of the computational power and a protocol for recency-aware
replicated objects, (Sect. 6). (5) The Hampa replicated object synthesis tool and
its experimental results (Sect. 7). All the proofs are available in the appendix [5].

2 Recency-Aware Relational Object Language

Language. Figure 1 shows our core relational language for object specification.
An object is a record 〈Σ, I,M〉 that includes a state type Σ, an invariant I
on the state, and a set of methods M. The state can be a tuple of natural
number Nat and relation Rel types. The invariant I is a boolean function on
the state. A method m is a function from the parameter x and the pre-state
〈x1, .., xn〉 to a record of 〈eg, eu, er〉. The guard eg is a boolean expression that
captures the semantic preconditions of m such as conditions on the arguments.
The expressions eu and er are for the post-state and the return value. We use
guard, update and retv as functions that extract elements of this record. For each
method, the user declares an integer as the staleness bound ε for its return value.
A method call c is a method applied to its argument i.e. it is a function from
the current state to a record of 〈eg, eu, er〉.

An expression e is either a value v (that can be either a number n or a relation
R), a variable denoted by x, an application of the operators {+,−,=, <,&, !}
to operand expressions where & is the conjunction and and ! is the negation
operator, a selection σλ〈x〉.e(e′) that binds the attributes of each element of the
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relation e′ to the variables x and returns the elements that satisfy the condition
e, a projection Πλ〈x〉.〈e〉(e′) that for each element of the relation e′, binds its
attributes to the variables x and calculates a tuple of elements 〈e〉 and returns
the set of resulting tuples, a union e ∪ e′ that results in a relation with elements
of both of the relations e and e′, a difference e \ e′ that results in a relation
with the elements in the relation e that are not in the relation e′, and the
Cartesian product e × e′ that results in a relation with pair elements where
the first and second elements are in the relations e and e′ respectively. The
language supports a complete set of relational operators: any relational algebra
expression can be expressed by a combination of them. Selection (σ), projection
(π), union (∪), difference (\), product (×) and renaming (ρ) are a complete set of
operators. We note that since the language uses functions with argument names,
a renaming operator is unnecessary. The update and join operations are defined
as a syntactic sugar. The update operation Uλ〈x〉. 〈e,〈e′〉〉e

′′ returns a relation that
updates each element of e′′ that satisfies the condition e to the tuple 〈e′〉. The
join e1 �	λ〈x1,x2〉. e e2 results in pairs of elements of e1 and e2 that satisfy the
condition e.

Fig. 1. Syntax and semantics of the specification language

Semantics. Figure 1 presents a denotational semantics for expressions. The
semantics for values, variables, and binary and unary operations is standard.
The semantics of the selection expression σλ〈x〉.e′(e) is the set of tuples t in
the semantics of e such that substitution of the attributes x in e′ with their
corresponding values in t evaluates to true. The semantics of the projection
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Class MovieBooking
Σ := let rs := Set N × N in � Reservation: user identifier and movie identifier

let ms := Set N × N in � Movie: movie identifier and available space
〈rs,ms〉

I := λ〈rs, ms〉. unique (ms, λ〈m, a〉. m) ∧
refIntegrity (rs, λ〈u, m〉. m, ms, λ〈m, a〉. m) ∧
rowIntegrity (ms, λ〈m, a〉. a ≥ 0)

book(〈u, m〉) := 0 λ〈rs, ms〉.
〈〈u, m〉 /∈ rs, 〈rs ∪ 〈u, m〉, U λ〈m′,a〉. 〈m′=m,〈m,a−1〉〉 ms〉, ⊥〉

cancelBook(〈u, m〉) := 0 λ〈rs, ms〉.
〈True, 〈rs \ 〈u, m〉, U λ〈m′,a〉. 〈m′=m,〈m,a+1〉〉 ms〉, ⊥〉

offScreen(m) := 0 λ〈rs, ms〉.
〈True, 〈rs, ms \ σλ〈m′,a〉. m′=m ms〉, ⊥〉

specialReserve(〈m, n〉) := 0 λ〈rs, ms〉.
〈n > 0, 〈rs, U λ〈m′,a〉. 〈m′=m,〈m,a−n〉〉 ms〉, ⊥〉

increaseSpace(〈m, n〉) := 0 λ〈rs, ms〉.
〈n > 0, 〈rs, U λ〈m′,a〉. 〈m′=m,〈m,a+n〉〉 ms〉, ⊥〉

querySpace(m) := ε1 λ〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈m′,a〉. 〈a〉 (σλ〈m′,a〉. m′=m ms)〉

queryReservations(u) := ε2 λ〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈u′,m〉. 〈m〉 (σλ〈u′,m〉. u′=u rs)〉

querySpaces(u) := ε3 λ 〈rs, ms〉.
〈True, 〈rs, ms〉, Πλ〈u,m,m′,a〉 〈m,a〉 (rs ��λ〈u,m〉,〈m′,a〉. m=m′ ms)〉

Fig. 2. Movie booking use-case

expression Πλ〈x〉.〈e〉(e′) is a set of tuples, one per each tuple t in the seman-
tics of e′: a tuple resulted from substituting x with t in the expressions e and
evaluating them. The semantics of union, difference and product are standard
from the set theory. We define the difference Δ between two values as follows:
the difference between two natural numbers is the absolute value of their sub-
traction i.e. Δ(n, n′) = |n − n′|; the difference of two relations is the size of
their symmetric difference i.e. Δ(R,R′) = |R \ R′| + |R′ \ R|. We use delta δ to
represents the staleness of a value that is the difference between the value and
its target value. The delta for a completely recent (or exact) value is zero. For
a call c, the weight weight(c) is a bound on the difference that the execution of
c can make on the state of the object. In other words, for every call c, we have
∀σ. Let 〈 , σ′, 〉 := c(σ) in Δ(σ′, σ) < weight(c).

Running Use-Case. Figure 2 shows the movie booking use-case. The state of
the object is the two relations reservation rs and movie ms. The reservation
relation rs stores the movies that the users have booked; it is the pairs of users
u and movies m. The movie relation ms stores the number of available spaces for
each movie; it is the pairs of movies m and spaces a. The integrity property I is
a conjunction of three conditions: (1) The movie in ms should be unique. (2) The
referential integrity requires that every movie in rs exists in ms. (3) The number
of available spaces for every movie should be non-negative. The object provides



Hampa: Solver-Aided Recency-Aware Replication 329

five update methods and three query methods. Given a user u and a movie m, the
method book adds the pair to rs and decrements the available spaces for m in ms.
Similarly, the method cancelBook removes a reservation and increments available
spaces. Given a movie m, the method offScreen removes the corresponding tuple
from ms. Given a movie m and a number n, the method specialReserve subtracts
n from the available spaces for m in ms. The dual method increaseSpace adds n
to the spaces for m. Given a movie m, the method querySpace returns the number
of available spaces for m. The method queryReservations returns the set of movies
that the given user has booked. Given a user u, the method querySpaces returns
the pairs of movies and their available spaces for the movies that u has booked.
The staleness bound for the update methods is specified as 0. The returned none
constant ⊥ is always exact. The bound values ε1, ε2 and ε3 of the query methods
represent the number of tuples that are different between the current state and
the pending stable state of the result relation.

(a)

(b)

(c)

Fig. 3. (a) Buffering and coordination. Example execution (b) without and (c) with
recency. ↓: request, ↑: indication, �: synchronization

To reduce communication, certain calls can be executed locally and buffered,
and the buffer can be communicated to other replicas later. As an example,
in Fig. 3(a), the first two calls to the method increaseSpace do not exceed the
staleness bound for ms and can be buffered. However, the third call exceeds the
bound and cannot be added to the buffer. Therefore, the buffer is flushed to
other replicas and the third call is blocked until an acknowledgement for the
delivery of the buffer is received. All the calls of the buffer can be sent in a single
message and the acknowledgement for them can be sent in a single message as
well.
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Let us now consider the interaction of buffering with coordination. We will
see that buffering (staleness) interestingly reduces the coordination required for
the conflicts. (We will define conflicting calls that should be synchronized later
in Sect. 3.) Fig. 3(b) and (c) show the same execution without and with buffer-
ing respectively. In Fig. 3(b), the first replica rep1 executes the sequence of calls
increaseSpace, specialReserve and increaseSpace. The method increaseSpace does
not conflict with any other method; therefore, calls to it are simply broadcast.
The method specialReserve conflicts with itself and the method book; there-
fore, the call to it goes through synchronization. The second replica rep2 calls
book that conflicts with four other methods. Hence, it should synchronize. (The
synchronization reaches to other replicas, blocks calling the four methods, and
propagates previous calls to those methods.) In this example, the conflicting
specialReserve call in rep1 should be propagated to rep2 before the book call can
be executed.

In Fig. 3(c), the recency bound allows the three calls of rep1 to be buffered.
Replicas use SMT solvers at runtime to check the validity of three prop-
erties for the buffers: all-S-commutativity, invariant-sufficiency and let-P-R-
commutativity that we will formally define in Sect. 3. In this example, the buffer
is invariant-sufficient if the number of spaces that the call specialReserve decre-
ments is less than the number that the increaseSpace calls increment. Therefore,
the buffer can be sent to other replicas without any additional synchroniza-
tion; the invariant in the pre-state is sufficient for the invariant in its post-state.
We note that the call specialReserve that previously went through synchroniza-
tion does not need any synchronization inside the buffer. Further, the let-P-R-
commutativity property of the buffer guarantees that the book call will preserve
the integrity after the buffer. Thus, the synchronization of the book call that
previously waited for the specialReserve call does not need to wait anymore.

3 Coordination Conditions

In this section, we present the coordination conditions for replicated objects
that preserve the three properties: convergence, integrity and recency. The state
of the given sequential object is replicated across replicas. Clients can request
method calls at every replica, and replicas coordinate the calls. Convergence is
the safety property that when all pending updates are processed, the replicas
converge to the same state. Integrity is the safety property that every method
call is executed only on a state where the guard of the method and the invariant
are satisfied. Recency is the safety property that bounds the difference between
the state of a replica and its impending state after the pending calls are applied.

The state of each replica is initialized to the same state σ0 that satisfies the
invariant I. The replica that accepts the request for a call from the user is called
the originating replica of the call. We uniquely identify requests by identifiers r.
We use the two maps call and orig that map request identifiers to the method
call and originating replica respectively. The execution history of a replica is
modeled as a permutation of a set of request identifiers. An execution x of a
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set of requests R is a bijective from positions [0..|R| − 1] to R. We denote the
range of x as R(x). An execution x of R defines the total order ≺x on R: A
request r precedes another request r′ in an execution x written as r ≺x r′ iff
x−1(r) < x−1(r′). A replicated execution xs is a function from replicas N to
executions. The post-state of each call at a replica is the result of applying the
call to its pre-state.

We first revisit the coordination conditions for convergence and integrity [30],
and then present coordination conditions for recency and their impact on the
prior conditions.

Convergence. A replicated execution is convergent if the state of the replicas is
the same after all the calls are propagated. Out of order delivery of method calls
at different replicas can lead to divergence of their states. Method calls such as
special reservation specialReserve and increasing space increaseSpace result in the
same state if their order of execution is swapped. However, the resulting state
of the two method calls book and cancelBook is dependent on their execution
order. Therefore, they should synchronize.

Definition 1 (State-Commutativity and State-Conflict). Two method
calls c1 and c2 S-commute, written as c1 �S c2 iff for every state σ,
update(c2)(update(c1)(σ)) = update(c1)(update(c2)(σ)). Otherwise, they S-
conflict, written as c1 �	S c2.

Integrity. The body of each method relies on the invariant in the pre-state.
Further, methods have explicit guards that declare their pre-conditions. We say
that a method call enjoys integrity at a state if the invariant and the guard of
the method hold in that state.

Definition 2 (Integrity). A method call c enjoys integrity in a state σ, written
as integrity(σ, c), iff guard(c)(σ) and I(σ).

Method calls should be executed only in states that they have integrity in. The
integrity condition is simply lifted to executions and replicated executions: An
execution enjoys integrity iff every request in it enjoys integrity.

Definition 3 (Permissibility). A method call c is permissible in a state σ,
written as P(σ, c), iff guard(c)(σ) and I(update(c)(σ)).

In contrast to integrity that requires the invariant to hold in the pre-state,
permissibility requires it to hold in the post-state. The post-state of a call is the
pre-state of the next call in a replica. Further, the initial state is assumed to
satisfy the invariant. Therefore, if every call is permissible in its pre-state, then
every call enjoys integrity. By induction, permissibility leads to integrity.

To execute a method call, we check that it is permissible at its originating
replica. Thus, we say that each method call is locally permissible. Otherwise, the
call is aborted or delayed. Still, if the call is simply broadcast, it is not necessarily
permissible when it arrives at other replicas. Some calls need coordination.
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Conflict. There are calls such as increaseSpace that are always permissible as
far as they are applied to a state that satisfies the invariant. Increasing the space
cannot result in a missing or duplicate movie or a negative number for available
spaces. Thus, if it is broadcast and executed on another replica, it is sufficient
that the pre-state satisfies the invariant to preserve it in the post-state.

Definition 4 (Invariant-Sufficient). A call c is invariant-sufficient iff for
every state σ, if I(σ) then P(σ, c).

However, not all calls are invariant-sufficient. For example, a book call may
be permissible in a replica but may become impermissible in another when it
is executed after an already executed offScreen call for the same movie. These
two calls should synchronize to preserve integrity. Nonetheless, some pairs of
calls such as offScreen and specialReserve do not affect each other’s permissibil-
ity. (In the running example, specialReserve has no guards. After an offScreen
call, it remains permissible as it doesn’t find the movie and leaves the relation
unchanged).

Definition 5 (Permissible-Right-Commutativity). The call c1 P-R-
commutes with the call c2 written as c1 →P c2 iff for every state σ, if P(σ, c1)
then P(update(c2)(σ), c1).

If a call c1 is invariant-sufficient or P-R-commutes another call c2, then the
call c1 will stay permissible when it is propagated and applied to another replica
even if c2 is executed before it in that replica.

Definition 6 (Permissible-Concur and Permissible-Conflict). A call c1
P-concurs with a call c2 iff c1 is invariant-sufficient or c1 →P c2. Otherwise, c1
P-conflicts with c2.

The call offScreen P-concurs with the call specialReserve; however, the call
book P-conflicts with the call offScreen.

We say that two calls concur iff they both S-commute and P-concur with
each other. Otherwise, we say they conflict and need synchronization.

Definition 7 (Concur and Conflict). A pair of calls c1 and c2 concur iff
they S-commute and P-concur with each other. Otherwise, they conflict c1 �	 c2.

Dependency. As we saw above, invariant-sufficient method calls can always
preserve the invariant. However, there are calls whose preservation of the invari-
ant is dependent on the calls that have executed before them at that replica. For
example, taking the movie off-screen offScreen is dependent on cancelling the last
booking cancelBook. If offScreen is moved left before cancelBook, it can become
impermissible. Nonetheless, taking a movie off-screen offScreen is independent
of the previous special reservations specialReserve.

Definition 8 (Permissible-Left-Commutative). A call c2 P-L-commutes a
call c1, written as c2 ←P c1 iff for every σ, if P(update(c1)(σ), c2) then P(σ, c2).



Hampa: Solver-Aided Recency-Aware Replication 333

A call can avoid tracking dependencies to another call if the former is
invariant-sufficient or P-L-commutes with the latter.

Definition 9 (Independent and Dependent). A call c2 is independent of
c1, written as c2 ⊥⊥ c1, iff either c2 is invariant-sufficient or c2 ←P c1. Other-
wise, c2 is dependent on c1, written as c2 
⊥⊥ c1.

If c1 is executed before c2 in the originating replica of c2 and c2 is dependent
on c1, then c2 should be applied to other replicas only if c1 is already applied.

Recency. Calls executed at a replica may be delayed in the network before they
are executed in other replicas. Further, they may be buffered at the originating
replica to reduce communication. The pending calls for a replica are the calls
that have executed in other replicas but not at that replica yet. The staleness of a
replica is the difference of its current state and its state after applying its pending
calls. Given a bound ε, a replica is sufficiently recent if its staleness is less than ε.
The calls that have originated in the current replica n but have not been received
yet by another replica n′ make the state of n′ stale. To bound the staleness of
n′ by ε, the staleness imposed to n′ by the calls originated by each of the other
|N | − 1 replicas should be bounded by ε/(|N | − 1). The difference that these
calls can make is bounded by the sum of their weights (defined in Sect. 2). The
staleness bound can be evenly divided between the replicas. However, in general
it can be distributed unevenly and even dynamically. In particular, replicas that
tend to issue updates more often can get a larger share.

Given a recency bound, a buffering quota can be calculated for each replica
and the recency bound can be preserved when calls are buffered. Buffering calls
can reduce communication; however, it can affect the convergence and integrity
properties. To preserve these properties a buffer should have three properties: all-
state-commutativity, invariant-sufficiency and let-P-R-commutativity. We con-
sider each condition in turn.

Definition 10 (All-State-Commutative). A call is all-S-commutative if it
is S-commutative with respect to every call.

The calls of the buffer are executed locally and are not synchronized with
other replicas. Therefore, if the buffer is not all-S-commutative, concurrent exe-
cution of S-conflicting calls in other replicas can lead to divergence. Similarly, if
the buffer is not invariant-sufficient, concurrent execution of P-conflicting calls
in other replicas can lead to impermissibility of the buffer when it is propagated
and executed in other replicas. The buffer in Fig. 3(c) is all-S-commutative:
it includes increaseSpace and specialReserve calls that result in increasing or
decreasing the space for movies; the result is S-commutative with respect to
all method calls. Further, it is invariant-sufficient if the net result of its calls
is a non-negative addition to the space of each movie. For example, if the
increaseSpace calls add s spaces and the specialReserve calls subtract s′ spaces
from the same movie where s′ ≤ s, then the net effect is adding spaces and the
buffer is invariant-sufficient.
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Definition 11 (Let-Permissible-Right-Commutative). A call is let-P-R-
commutative if every call P-R-commutes with it.

Calls in other replicas are checked to be permissible with no knowledge of
the buffered calls in the current replica. Let-P-R-commutativity of the buffer of
the current replica guarantees that the calls in other replicas will continue to be
permissible once they are propagated and executed after the buffer in the current
replica. The buffer in Fig. 3(c) is let-P-R-commutative; it may only increase the
number of spaces that cannot make any call impermissible.

4 Replicated System Semantics

In this section, we define the operational semantics of replicated objects where
(1) the integrity property I on the state of each replica is always preserved, (2)
replicas converge to the same state once all the calls are propagated, and (3) the
staleness of each replica is always bounded by ε. The semantics declares the con-
ditions for execution and propagation of method calls on the replicated object to
guarantee the three properties. In particular, it represents the conditions for local
buffering of method calls to avoid communication while preserving the recency
of the other replicas. In Sect. 5, we will see a static analysis that infers staleness
bounds for the state. In this section, the semantics preserves the inferred stale-
ness bound ε for the state σ of the object. (For objects with multiple pieces of
state, the staleness of each piece can be tracked separately.) The semantics strives
to concisely define the conditions; we will present the protocols that implement
these conditions in Sect. 6.

w := 〈h, t, xs, orig, call〉 World
h : →
N S × Σ × R Hosts
n : N Replica nodes

s : S := x ← c; s | skip Statement
c : C := m(e) | id Call

m : M Method
e := x | v Expression
x Variable
v Value
σ : Σ Object State
r : R Request
t : Set P Transit

p : P := 〈n, r〉 | 〈n, r∗〉 Packet
xs : →
N List R History

orig : R N→
 Original node
call : R 
→ C Request call
w0 := Init World

〈n 〈→
 sn, σ0, rn〉n∈N , ∅, ∅,

[rn 
→ n]n∈N , [rn 
→ id]n∈N 〉

Fig. 4. Operational semantics state

As Fig. 4 shows, the global state
of the replicated system is represented
as a world w that is a tuple of
〈h, t, xs, orig, call〉. The hosts h is a
mapping from replica identifiers N to
the local state of replicas. Each call
is assigned a unique request identi-
fier r at the originating replica. The
two maps call and orig keep a mapping
from request identifiers to the call and
the originating replica of the request
respectively. The state of each replica
is a statement s ∈ S, the state of the
object σ ∈ Σ, and the identifier r ∈ R
of the current buffer. A statement s is
either x ← c; s′ that is the sequence of
a call c and another statement s′, or
the terminal statement skip. A call c is
the application of a method m to an
argument expression e. A call can also
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be the identity call id that leaves the state unchanged. (It is assumed that client
statements do not make id calls.) The network t is the set of packets that are
sent but not yet delivered. A packet p contains the identifier of the destination
replica n and the request identifier r of the call. If a packet is transmitting a
buffered call, it is decorated with an asterisk ∗. The history xs is a mapping from
replica identifiers N to the list of request identifiers of the calls that are previ-
ously applied to that replica. The initial value of the world state is w0 where
each replica n hold its initial statement sn, the initial state σ0 of the object
that satisfies the integrity property I, and an empty buffer. Empty buffers are
represented by mapping the buffer identifier rn of each replica n to the identity
call id.

Figure 5 presents the operational semantics. The rule Call executes a
method call c at a replica n. The call c can be executed if the following conditions
hold. (1) To preserve integrity, the call c should be locally permissible P(σ, c) in
the current state σ. (2) To preserve convergence and integrity, any pair of con-
flicting calls should have the same order across the replicas, a property that we
call conflict-synchronization. Thus, to execute a new request r, the rule Call
requires the condition ConflictSyncInit: any call r′ that is already executed in
another replica n′ and conflicts with the current call r should have been already
executed in the current replica n. Otherwise, once the calls r and r′ are propa-
gated and executed on the other replicas, they will have different orders in the
two replicas n and n′. (3) To preserve recency, this rule requires the condition
InBound: the difference that the pending calls from the current replica n can
make to the state of every other replica n′ should be bounded by ε/(|N | − 1). If
the conditions above hold, a fresh identifier r is created for the call, the history
xs and the maps orig and call are updated to reflect the new call, a packet is sent
in the network t to every other replica, and the variable x is substituted with
the returned value v of the call in the continuation statement s of the current
replica.

The rule Deliver delivers a call that has been sent to the current replica. It
requires two conditions: conflict-synchronization and dependency-preservation.
(1) Similar to the rule Call, conflict-synchronization requires ConflictSync: if
a conflicting call r′ is executed before the received call r in another replica n′,
then r′ should have been already executed before r in n as well. (2) To preserve
integrity, the dependencies of calls should be preserved. Thus, the dependency-
preservation condition DepPres requires that a call r originated from a replica n′

is executed in the current replica n only if the calls r′ that have been executed
before r in n′ and r is dependent on r′ should have been already executed in n.

Recency-aware replication can be applied to any object, but it can improve
performance when there are method calls that can be buffered. The rule Cal-
lLocal executes a call but locally buffers it. Similar to the rule Call, it
first checks the local permissibility of the call c. Since a buffered call is not
immediately coordinated with calls in other replicas, it should satisfy the three
properties (that saw in Sect. 5) to make it concur with any call: (1) all-state-
commutativity AllSComm, (2) invariant-sufficiency InvSuff, and (3) let-P-Right-
commutativity LetPRComm. The identifier of the current buffer is r; the current



336 X. Li et al.

Call
P(σ, c) c(σ) = 〈 , σ′, v〉

fresh r orig′ = orig[r 
→ n]
call′ = call[r 
→ c]

xs′ = xs[n 
→ (xs(n) ::: r)]
ConflictSyncInit〈call′〉(xs

′, n, r)
InBound〈orig′,call′〉(xs

′, n)
t′ = t ∪ {〈n′, r〉 | n′ ∈ N \ {n}}

(h[n 
→ (x ← c; s, σ, r′)], t, xs, orig, call)
n,r,c−→

(h[n 
→ (s[x 
→ v], σ′, r′)], t′, xs′, orig′, call′)

Deliver
call(r)(σ) = 〈 , σ′, 〉

xs′ = xs[n 
→ (xs(n) ::: r)]
ConflictSync〈call〉(xs

′, n, r)
DepPres〈orig,call〉(xs

′, n, r)

(h[n 
→ (s, σ, r′)], t ∪ {〈n, r〉}, xs, orig, call})
n,r,call(r)−→

(h[n 
→ (s, σ′, r′)], t, xs′, orig, call)

CallLocal
P(σ, c) c(σ) = 〈 , σ′, v〉

c′ = c · call(r)
AllSComm(c)

InvSuff(c′) LetPRComm(c′)
call′ = call[r 
→ c′]

xs′ =
{

xs[n 
→ (xs(n) ::: r)] if call(r) = id
xs else

InBound〈orig,call′〉(xs
′, n)

(h[n 
→ (x ← c; s, σ, r)], t, xs, orig, call)
n,r,c−→

(h[n 
→ (s[x 
→ v], σ′, r)], t, xs′, orig, call′)

SendBuffer
call(r) = id fresh r′

orig′ = orig[r′ 
→ n] call′ = call[r′ 
→ id]
t′ = t ∪ {〈n′, r∗〉 | n′ ∈ N \ {n}}
(h[n 
→ (s, σ, r)], t, xs, orig, call)

−→
(h[n 
→ (s, σ, r′)], t′, xs, orig′, call′)

DeliverBuffer
call(r)(σ) = 〈 , σ′, 〉

xs′ = xs[n 
→ (xs(n) ::: r)]
(h[n 
→ (s, σ, r′)], t ∪ {〈n, r∗〉}, xs, orig, call})

n,r,call(r)−→
(h[n 
→ (s, σ′, r′)], t, xs′, orig, call)

id := λσ. 〈True, σ, ⊥〉
P(σ, c) := Let 〈g, σ′, 〉 := c(σ) in (g = true ∧ I(σ′) = true)

ConflictSyncInit〈call〉(xs, n, r) := ∀n′, r′. r′ ∈ xs(n′) ∧ call(r) �� call(r′) → r′ ∈ xs(n)

ConflictSync〈call〉(xs, n, r) := ∀n′, r′. r′ ≺xs(n′) r ∧ call(r) �� call(r′) → r′ ≺xs(n) r

DepPres〈orig,call〉(xs, n, r) := ∀r′. r′ ≺xs(orig(r)) r ∧ call(r) ⊥⊥ call(r′) → r′ ∈ xs(n)

AllSComm(c) := ∀c′. c �S c′

InvSuff(c) := ∀σ. I(σ) → P(σ, c)

LetPRComm(c) := ∀c′. c′ →P c

InBound〈orig,call〉(xs, n) := ∀n′.
∑

r ∈ xs(n)\xs(n′)∧orig(r)=n weight(call(r)) < ε
|N|−1

(c · c′)(σ) := Let 〈 , σ′, 〉 := c′(σ) in c(σ′)

Fig. 5. Replicated system semantics

call c is composed with the current buffered call call(r) to result in a composed
call c′ for the updated buffer. The composition · of calls simply cascades their
updates to the state. The all-state-commutativity condition is stated for single
calls c (that implies the same condition for the composed call c′ as well). This
condition is required for the call c because there might be other calls delivered
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between the last buffered call and the currently buffered call c. The call c should
state-commute past the calls in between. Further, as explained for the rule Call,
the condition InBound requires that the added staleness remains within bound.
If the above conditions hold, the map call is updated with the new buffer call c′,
and the identifier r of the buffered call is added to the history xs, if the buffer
was empty and the current call c is the first buffered call.

The rule SendBuffer sends the buffer to every other replica and resets
the buffer. Packets transmitting buffers are decorated with an asterisk. The
rule DeliverBuffer receives a packet containing a buffer. As we saw in the
rule CallLocal, buffers are checked to be invariant-sufficient in the originat-
ing replica. Therefore, on receiving a packet containing a buffer, in contrast to
the rule Deliver, the rule DeliverBuffer does not checks the dependency-
preservationDepPres and the conflict-synchronization ConflictSync conditions.

The following lemmas state the three properties of the semantics. The fol-
lowing lemma states that once the buffers are flushed call(r) = call(r′) = id and
the messages are delivered t = ∅, the replicas converge to the same state.

Lemma 1 (Convergence). For all h, n, n′, σ, σ′, r and r′, if w0 −→∗

〈h, ∅, , , 〉 where h(n) = 〈 , σ, r〉, h(n′) = 〈 , σ′, r′〉 and call(r) = call(r′) = id
then σ = σ′.

The following lemma states that every call enjoys the integrity property.

Lemma 2 (Integrity). For all h, n, r, c, w and σ, if w0 −→∗ 〈h, , , , 〉 n, ,c−→
w where h(n) = 〈 , σ, 〉 then integrity(σ, c).

The staleness of a replica is the difference of its current state and its state
after applying its pending calls from others (buffered calls and in transit calls).
The following lemma states that the stateless of every replica is bounded by ε.

Lemma 3 (Recency). For all h, h′, n, s, σ and σ′, if w0 −→∗ 〈h, , , , 〉
(−→ ∪ n, ,−→)∗ 〈h′, , , , 〉,h(n)= 〈s, σ, 〉, and h′(n)= 〈s, σ′, 〉 then Δ(σ′, σ) < ε.

5 Staleness Bound Inference and Optimization

In Sect. 4, we presented an operational semantics that preserves a given staleness
bound for the state. The users declare the recency that they expect from the return
value of each method of the object. The specified bounds for the methods can be
used to infer the bounds for the elements of the state. In this section, given an object
specification that includes recency declarations for themethods,we present a static
analysis that infers optimum staleness bounds for each element of the state. We
present a syntax-directed analysis that derives recency constraints between bound
variables for the state elements. A solution to the constraints assigns a bound value
to each state element such that if every state element keeps its staleness bound then
the result of every method call respects the recency declaration of the method. The
optimumsolutionmaximizes the (weighted) sumof the bounds to increase buffered
calls and hence decrease communication.
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δ := n | dx | δ + δ | δ × δ Bound
C := δ = δ | δ < δ | C ∧ C Constraints

CObj
me � C

〈Σ, I, me〉 � ∧C

CMet
free(er) = {x, σ1, .., σn}

[x 
→ 0, σ1 
→ dσ1, .., σn 
→ dσn] � er � δ′, C

def δ m(x)(〈σ1, .., σn〉) 〈eg, eu, er〉 � C ∧ (δ′ ≤ δ)
CVal
Γ � v � 0, ∅

CVar
(x 
→ δ) ∈ Γ

Γ � x � δ, ∅
COp
Γ � e � δ, C Γ � e′ � δ′, C′

⊕ ∈ {+, −, ∪, \}
Γ � e ⊕ e′ � δ + δ′, C ∧ C′

CBOp
Γ � e � δ, C Γ � e′ � δ′, C′

⊕ ∈ {=, <,&}
Γ � e ⊕ e′ � 0, C ∧ C′ ∧ (δ = 0 ∧ δ′ = 0)

CSel
Γ [x 
→ 0] � e � δ, C

Γ � e′ � δ′, C′

Γ � σλx.e(e′) � δ′, C ∧ C′ ∧ (δ = 0)

CProj
Γ � e � δ, C

Γ � Πx(e) � δ, C

CProd
Γ � e � δ, C

Γ � e′ � δ′, C′

Γ � e × e′ � δ × δ′, C ∧ C′

Fig. 6. Bound constraint derivation

Figure 6 presents the constraint inference rules for the object language that
we saw in Fig. 1. A delta bound δ is either a natural number n, a delta variable
dx, or addition or multiplication of two deltas. A constraint C is equality or
comparison of two deltas, or conjunction of two constraints. A delta environment
Γ is a mapping from variables to delta variables or values. The judgements are
of the following forms: the judgement o � C states the bounding constraint C for
the object o, the judgement m � C states the constraint C for the method m,
and the judgement Γ � e � δ, C states that under the delta environment Γ, the
staleness of the expression e is bounded by δ when the constraints C are satisfied.
The rule CObj states that the constraint for an object is the conjunction of the
constraints for its methods. (We assume that the state variables passed to all the
methods are renamed to the same variables 〈σ1, .., σn〉.) The rule CMet infers
the constraints for a method by first, inferring the constraints for its return
expression under a delta environment where the argument is mapped to the
delta value of zero (exactly recent) and the state variables σi are mapped to
delta variables dσi to be inferred, and second, bounding the return value. The
rule CVal assigns the delta value zero to values with no constraints. (Values
are exact.) The rule CVar retrieves the bindings for delta variables from the
environment. The rule COp states that the delta for the result of the operators
{+,−,∪, \} is the sum of the delta of its operands. On the other hand, the rule
CBOp requires the operands of the boolean operators {=, <,&} to be exact
and states that the result is exact as well. We elide the similar rule for the
unary negation operator !. The rule CSel requires the selection condition to be
exact and states that the delta of the resulting relation is the same as the input
relation. In other words, the resulting relation is stale by the same number of
elements as the input relation. Similarly, the rule CProj states that the delta of
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the resulting relation is the same as the input relation. On the other hand, the
rule CProd states that the delta for the resulting relation is the multiplication
of the deltas for the input relations. In our running example, let us associate the
bound variables drs and dms to rs and ms respectively. The constraint inferred
for querySpace is dms ≤ ε2, for queryReservations is drs ≤ ε1, and for querySpace
that involves the join operator (product and selection) is drs × dms ≤ ε3. More
detailed explanation for these derivation is available in the appendix [5].

We now define the notion of sufficiently-recent states. Intuitively, a state is
sufficiently-recent with respect to the target state if the difference of the return
value of every method call on that state versus the target state is within the
declared bound of the method.

Definition 12 (Sufficiently-recent State). A state 〈v1, .., vn〉 is a
sufficiently-recent state with respect to the target state 〈v∗

1 , .., v
∗
n〉 for an object

o iff for every method def ε m(x)(〈σ1, .., σn〉) 〈eg, eu, er〉 of o, and every argu-

ment v, let vr be
�

er[x �→ v][σi �→ vi]
�

and v∗
r be

�
er[x �→ v][σi �→ v∗

i ]
�
, we have

Δ(vr, v
∗
r ) ≤ ε.

The following lemma states that the bound inference presented in Fig. 6 is
sound. In other words, if the inference derives the constraints C for an object,
for any solution S of C, if the staleness of each state element σi of the object
remains within the bound S(dσi), then the state remains sufficiently-recent.

Lemma 4 (Soundness of Bound Inference). Given an object o with the
state variables 〈σ1, .., σn〉, if o � C that is the constraints C (over the bound
variables dσi) are derived for o, and S is a solution for C, then for every pair
of states σ = 〈v1, .., vn〉 and σ∗ = 〈v∗

1 , .., v
∗
n〉, if Δ(vi, v∗

i ) < S(dσi) then σ is
sufficiently-recent for σ∗.

There may be many solutions for the derived constraints, and hence, many
sound state bounds that preserve the user-specified bounds for the object. How-
ever, solutions that allow more staleness (albeit appropriately bounded) are more
favorable since they allow more buffered calls and require less communication.
Thus, a candidate objective function to maximize is dσ1 + .. + dσn. In other
words, what are the largest delta bounds for the state elements that still pre-
serve the recency specifications of the methods? This function gives the same
weight to all the state elements; however, some may be updated more frequently.
Let fi be the relative update frequency of the state element σi. Frequencies can
be obtained from historical logs or profiling. The objective function is defined
as the following weighted sum dσ1/f1 + .. + dσn/fn. More frequently updated
state elements are given proportionally larger bounds. In our running example,
let ε1 = 3, ε2 = 4, and ε3 = 6. If the update frequency of rs is twice as ms, the
optimum solution is drs = 3 and dms = 2.

Definition 13 (Recency Bound Optimization). Give an object o and the
relative update frequency fi of the state elements σi of o, if o � C then the
optimum staleness bounds for o are the solution S of C that maximizes dσ1/f1+
.. + dσn/fn.
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It is obvious that the objective function can be easily translated to a linear
function by multiplying the least common denominator of the frequencies.

6 The Power and the Protocol of Recency-Aware Objects

Now, we show that recency-aware objects are stronger than the perfect failure
detector abstraction [18] and present a protocol that implements recency-aware
objects using perfect failure detectors. These two results show that recency-aware
objects have the same computational power as the perfect failure detector.

The perfect failure detector abstraction P notifies processes about the crash
of the other processes in a synchronous network. It has the following properties:
Liveness: Every crashed process is eventually detected by all correct processes.
Safety: No correct process is ever suspected by other processes. The recency-
aware object R has the following liveness and safety properties. Liveness: If
the user makes a request to a correct replica, it eventually responds. Safety:
Executed calls that are yet pending for each correct replica is bounded. The
following lemma states that P is reducible to R and also its opposite, R is
reducible to P.

RecencyAwareObject
request : call(C)
indication : ret(C, V) | aborted(C)
Params :

ε : Int
SConf : Set[M]

Using :
rb : ReliableBroadcast
pl : PerfectPointToPointLink
pfd : Perfect Failure Detector
bro : BasicRepObject

State :
σ : Σ = σ0; buff = ∅;wq = ∅;
up = N ; p : →�N Set[C] = N → ∅

request (call(c)) if (method(c) �∈ blocked(bro))
if (¬P(σ, c))

issue indication aborted(c)
else

if (method(c) �∈ SConf ∧
InvSuff(buff ) ∧ LetPRComm(buff ))

foreach (r ∈ up \ {self})
p′(r) ← ((p(r) \ {buff }) ∪ {c · buff })

if (InBound(p′))
p ← p′

exec(c); buff ← c · buff
else

issue request (rb, broadcast(buff(buff )))
insert(wq, c)

else

foreach (r ∈ up \ {self})
p′(r) ← (p(r) ∪ {c})

if (InBound(p′))
p ← p′

issue request(bro, call(c))
else

issue request (rb, broadcast(buff(buff )))
insert(wq, c)

indication crash(pfd, p)
up ← up \ {p}

fun InBound(p)
foreach(n ∈ up)

if (
∑

c′∈p(n) weight(c′) > ε/(N − 1))

return False
return True

indication (rb, deliver(n, buff(buff )))
if (self �= n)

exec(buff )
issue request (pl, send(n, ack(buff )))

indication (pl, deliver(n, ack(c)))
p ← p[n �→ (p(n) \ {c})]
foreach (c ∈ wq) issue request(call(c))
wq ← ∅

fun exec(c)
σ ← update(c)(σ); v ← retv(c)(σ)
issue indication ret(c, v)

indication (bro, ret(c, v))
issue request (pl, send(orig(c), ack(c)))
issue indication ret(c, v)

Fig. 7. Recency-aware protocol
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Lemma 5. P � R ∧ R � P.

For the proof of the first conjunct, consider two replicas rep1 and rep2. We show
by contradiction that rep1 will eventually know whether rep2 has crashed. We
assume the opposite. Consider an execution where rep1 has already executed a
set of requests R and receives another request r from the user, such that the
pending set R ∪ {r} makes a difference in the state of rep2 that pushes it out-
of-bound. By the contradiction assumption, rep1 is never informed when rep2

crashes. Therefore, if rep1 does not hear from rep2, the following two scenarios
are indistinguishable to rep1. (S1) The replica rep2 has crashed. (S2) The replica
rep2 is too slow. The replica rep1 has the following two choices: (C1) The replica
rep1 waits to hear from rep2 about receiving a request in R before processing
and responding to r. (C2) The replica rep1 processes and responds to r. If the
protocol makes the choice C1, it might be the scenario S1 and then the liveness
property is violated. If the protocol makes the choice C2, it might be the scenario
S2 and then the recency bound for rep2 is violated.

The second conjunct, directly follows from the protocol. We briefly describe
the protocol in Fig. 7 that implements a recency-aware replicated object. The
full description of the protocol is available in the appendix [5]. Given an object
definition, the protocol benefits from both static and dynamic coordination anal-
ysis to guarantee convergence, integrity and recency. To reduce communication,
replicas try to execute the calls locally while maintaining the staleness bound
ε. Each replica keeps its locally executed calls in a buffer buff before they are
broadcast. Replicas send an acknowledgement ack to the originating replica once
they receive and execute a call or a buffer of calls. Each replica rep keeps a map
called pending p from each replica rep′ to the set of pending calls sent from
rep to rep′. When a replica originates a call c, it adds c to its local pending set
for each of the other replicas; once it receives an acknowledgement for c from
a replica rep′, it removes c from the set of pending calls for rep′. Each replica
keeps the set of correct replicas up, and removes a replica from the set if the
prefect failure detector pfd issues a crash event for that replica. A requested call
can be executed only if it does not push the pending set for any correct replica
out of the bound. Otherwise, it cannot be immediately executed and is kept in a
waiting queue wq to be retried later, and further, the buffer is sent to the other
replicas and is reset to accelerate the shrinking of the pending set. To decide
whether a call can be executed locally, the conditions of the rule CallLocal
of the operational semantics (Sect. 4) are checked. The set of state-conflicting
methods SConf that is statically calculated is consulted to check if the call is all-
state-commutative. The validity of the two conditions invariant-sufficiency and
let-P-R-commutativity of the buffer (after the new call is added) are dynami-
cally decided by a solver at run-time. If the conditions do not hold, the call is
coordinated with other replicas using the basic blocking coordination protocol
bro [30] that guarantees integrity and convergence but not recency.
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7 Experimental Results

We have implemented the analysis and protocol as a synthesis tool called Hampa.
We applied it to two use-cases: the bank account use-case (with the withdraw,
deposit and balance methods and the integrity property of non-negative bal-
ance) and the movie booking use-case (Fig. 2). The experiments show that as
the staleness bound increases, the coordination overhead and response time of
recency-aware objects is decreased. Further, recency-aware objects are twice as
responsive as sequentially consistent counterparts.

Platform and Setup. The experiments are conducted on a cluster of 4 com-
puting nodes. Each node has 2 AMD Opteron 6272 CPUs with a total 8 cores,
64GB ECC memory and 40Gbps InfiniBand network. JDK is openjdk version
1.8.0 222. We used the CVC4 [11] SMT solver v.1.7. Reported numbers are the
arithmetic means of results from three repetitions on 4 replicas. In the experi-
ments for the bank account use-case, all the calls are applied to the same account
object and the amount is selected randomly in the range [10,20]. For the movie
use-case, we send requests for each movie identifier to the same replica. Further,
we do not issue offScreen calls because taking a movie off-screen causes later
method calls on the same movie to be aborted and thus, these methods are not
fully exercised. This would significantly improve the response time. However, in
practice, offScreen calls are rarely used. The movie and user IDs are chosen at
random from six and a hundred unique IDs. In all the experiments, we execute
500 calls in millisecond intervals evenly distributed between 4 replicas.
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Fig. 8. Effect of recency on coordination load and response time. (a) and (b) show the
bank account use-case. d, w, and b stand for deposit, withdraw and balance (with the
frequencies of 75%, 25%, 5% in the workload respectively). (c) and (d) show the movie
use-case. c, b, q, s, and i stand for cancelBook, book, querySpace, specialReserve, and
increaseSpace (with frequencies 4%, 6%, 5%, 40% and 45%).
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Measurements. We measure two comparison criteria: coordination load and
response time. At the lower layers, the protocol reduces to three communication
primitives: total-order-broadcast (TOB), reliable-broadcast (RB) and point-to-
point links (P2P). To measure the coordination overhead, we separately count
the number of different types of messages that replicas send during the execution
of their requests. The response time for a call is the duration between the time
that the client requests the call and the time that the user receives the return
value.

We performed three experiments. In the first experiment, we study the effect
of increasing the staleness bound on the coordination load. We report the ratio
of the number of messages that the protocol sends for the bound under test over
the number of messages that it sends for the base-line bound. (The base-line
recency bound is the maximum weight of the calls. The baseline allows every
single call to be buffered.) In the second experiment, we study the effect of
increasing the staleness bound on the response time of each method. Finally, in
the last experiment, we compare the response time of our protocol with the base-
line recency, with the sequential consistency (SC). SC uses total-order broadcast
for all the methods.

Assessment. Figure 8(a) and (c) show the effect of increasing the staleness
bound on the coordination load for the two use-cases. As the staleness bound
is increased, the ratio of the messages sent by RB, TOB and P2P decreases.
Figure 8(a) (bank account), shows 88% decrease in the number of messages sent
to RB when the bound is increased from 20 to 200. Likewise, the TOB and
P2P ratios decrease by 78% and 90%, respectively. In Fig. 8(c) (movie book-
ing), buffering helps to reduce TOB calls by 40% across the experiments. This
decrease, however, unlike the bank account use-case, is steady over different
bounds. This is because it is more difficult to “buffer” in the movie booking
use-case. There are no S-conflicts in the bank account use-case and hence two
out of two update methods can be buffered. However, S-conflicts in the movie
use-case allow only 2 out of 4 update methods to be buffered: increaseSpace
and specialReserve. Also, we observe that the number of RB and P2P messages
decrease by at most 10%.
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Fig. 9. Response time comparison between
Hampa and sequential consistency for each
method type. Top: bank account, Bottom:
movie booking use-case.

Figure 8(b) and (d) shows the effect
of increasing the staleness bound on
the response time for the two use-
cases. In Fig. 8(b) (bank account), the
response time of withdraw and deposit
methods decrease by 71% and 75%,
respectively when the staleness bound
is increased from 20 to 200. The
withdraw method is the least respon-
sive method. The reason is that it has
a self-conflict and requires synchro-
nization if it cannot be buffered. In
Fig. 8(d) (movie booking), we observe
slight increase in response time for
the book method while increasing the
bound from 2 to 20. This is because
the book operation cannot be buffered
due to the S-conflict with other methods and has to be synchronized. On the
other hand, the response time of the specialReserve method decreases by 33%
when the bound is increased from 2 to 20. The reason is that it has a self-
conflict and if it cannot be buffered, it should be synchronized by the TOB and
TOB incurs a high coordination overhead. Therefore, as buffered calls increase
and the use of TOB decreases, the response time is significantly improved. The
response time of the increaseSpace method also benefits from recency awareness;
it decreases by 72%. The methods book and cancelBook have conflicts. In the
blocking protocol that Hampa uses, the method book handles synchronization;
therefore, the method cancelBook just broadcasts the request. As the recency
bound is increased, the network is less crowded and therefore, the response time
of cancelBook is decreased.

Figure 9 compares the response time of recency-aware objects with the base-
line bound with the sequentially consistent objects. The SC protocol synchro-
nizes all the calls and orders them with respect to each other. However, Hampa
minimizes coordination while preserving convergence, integrity and recency. We
observe that the response time speedup is in average as high as 2× and 1.8×
for the bank account and movie use-cases respectively. More experiments are
available in the appendix [5]. In particular, they show that the runtime cost of
SMT solving is only 0.2% to 1% of the average response time.

8 Related Work

Epsilon serializability [46] allows concurrent execution of updates with queries
and bounds the difference of the inconsistent values that are observed in these
executions and the consistent values that would be observed in a serializable exe-
cution. In contrast, Hampa preserves the integrity of the state, bounds staleness,
allows different orders in different replicas, and formally defines the difference
for relational operators.
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In TACT [54–58], operations return tentative values; they might be eventu-
ally reordered to preserve strong consistency. TACT bounds the numeric error
between the tentative and final return values. The user specifies the granularity
of the bounded object “conit” and the strength of the protocol. On the other
hand in Hampa, the states are final and enjoy integrity provided on top of weak
consistency. Further, the staleness bound with respect to the pending future
state is automatically optimized with static and dynamic analyses.

In AQuA [31], given a query and a staleness bound, the master server dynam-
ically selects a recent enough server to service the query. Similarly, TRAPP [43]
finds recent enough servers for different parts of data that are needed for the
query. FRACS [59] allows operations to be buffered at replicas up to a given
threshold. In contrast to Hampa, these projects do not guarantee integrity and
convergence, and do not automatically infer the staleness bounds. PIQL [6]
bounds the number of key-value store operations for each query trading the
precision of the result for performance. However, it does not consider the stale-
ness of replicas.

To reduce synchronization, PBS [9] communicates with only a partial quorum
of replicas to bring a total order to operations, and probabilistically bounds the
staleness of the observed states. In contrast, Hampa performs synchronization
with full quorums but only for conflicting calls, and allows different orders for
replicas. Further, it analyzes and synthesizes replicated objects and supports
relational in addition to single-key operations.

The trade-off between consistency and latency presented as PACELC [1]
aligns with our experiments. As the consistency decreases (staleness bound
increases), the latency decreases (responsiveness increases). Warranties [38] and
Homeostasis [47] allow local updates if they keep the validity of certain assertions.
Although other replicas can rely on the validity of the assertions, the staleness
of their state is not bounded. In contrast, Hampa maintains a staleness bound.
Further, it exploits weak consistency and guarantees convergence.

9 Conclusion

This paper presented a relational object specification language that captures the
integrity and recency requirements of the object. It presented a syntax-directed
analysis that given a specification, infers optimum staleness bounds. In addi-
tion, it presented the coordination avoidance conditions, operational semantics,
a protocol and a synthesis tool for replicated systems that guarantee conver-
gence, integrity and recency. The recency-aware protocol embeds a solver to
decide whether coordination avoidance is safe and increases the responsiveness.
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