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Abstract

Zero-day polymorphic worms pose a serious threat to
the security of Internet infrastructures. Given their rapid
propagation, it is crucial to detect them at edge networks
and automatically generate signatures in the early stages
of infection. Most existing approaches for automatic sig-
nature generation need host information and are thus not
applicable for deployment on high-speed network links. In
this paper, we propose Hamsa, a network-based automated
signature generation system for polymorphic worms which
is fast, noise-tolerant and attack-resilient. Essentially, we
propose a realistic model to analyze the invariant content
of polymorphic worms which allows us to make analytical
attack-resilience guarantees for the signature generation
algorithm. Evaluation based on a range of polymorphic
worms and polymorphic engines demonstrates that Hamsa
significantly outperforms Polygraph [16] in terms of effi-
ciency, accuracy, and attack resilience.

1 Introduction

The networking and security community has proposed

intrusion detection systems (IDSes) [19, 22] to defend

against malicious activity by searching the network traffic

for known patterns, or signatures. So far these signa-
tures for the IDSes are usually generated manually or

semi-manually, a process too slow for defending against

self-propagating malicious codes, or worms, which can
compromise all the vulnerable hosts in a matter of a few

hours, or even a few minutes [25]. Thus, it is critical

to automate the process of worm detection, signature

generation and signature dispersion.

∗Hamsa (pronounced ‘hum-sa’) is the sanskrit word for the swan bird

which has the mystical potency of separating out the milk from a mixture

of milk and water.

To evade detection by signatures, attackers could employ

polymorphic worms which change their byte sequence at
every successive infection. Our goal is to design an auto-

matic signature generation system for polymorphic worms

which could be deployed at the network level (gateways and

routers) and hence thwart a zero-day worm attack.

Such a signature generation system should satisfy the

following requirements.

Network-based. Most of the existing approaches [4,
14, 26, 31] work at the host level and usually have ac-

cess to information that is not available at the network

routers/gateways level (e.g., the system calls made after re-
ceiving the worm packets). According to [25], the propaga-

tion speed of worms in their early stage is close to exponen-

tial. So in the early stage of infection only a very limited

number of worm samples are active on the Internet and the

number of machines compromised is also limited. Hence,

it is unlikely that a host will see the early worm packets

and be able to respond in the critical early period of at-

tack. Therefore, the signature generation system should be

network-based and deployed at high-speed border routers

or gateways that sees the majority of traffic. The require-

ment of network-based deployment severely limits the de-

sign space for detection and signature generation systems

and motivates the need for high-speed signature generation.

Noise-tolerant. Signature generation systems typically
need a flow classifier to separate potential worm traffic from

normal traffic. However, network-level flow classification

techniques [10, 18, 28–30] invariably suffer from false pos-

itives which lead to noise in the worm traffic pool. Noise is

also an issue for honeynet sensors [12, 26, 31]. For exam-

ple, attackers may send some legitimate traffic to a honeynet

sensor to pollute the worm traffic pool and to evade noise-

intolerant signature generation.

Attack-resilient. Since the adversary for the algorithm
is a human hacker, he may readily adapt his attacks to evade

the system. Therefore, the system should not only work
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for known attacks, but also be resilient against any possible

evasion tactics.

Efficient Signature Matching. Since the signatures
generated are to be matched against every flow encountered

by the NIDS/firewall, it is critical to have high-speed signa-

ture matching algorithms. Moreover, for the network-level

signature matching, the signatures must solely be based on

the network flows. Though it is possible to incorporate host-

based information such as system calls in the signatures, it

is generally very difficult to get efficient matching for these

signatures on the network level.

Router

LAN

Internet

LAN

SplitterSwitch

Switch

Hamsa
system

Figure 1. Attaching Hamsa to high-speed
routers

Towards meeting these requirements, we propose

Hamsa, a network-based automatic signature generation

system designed to meet the aforementioned requirements.

Hamsa can be connected to routers via a span (mirror) port

or an optical splitter as shown in Figure 1. Most modern

switches are equipped with a span port to which copies of

the traffic from a list of ports can be directed. Hamsa can

use such a span port for monitoring all the traffic flows.

Alternatively, we can use a splitter such as a Critical Tap [6]

to connect Hamsa to routers. Such splitters are fully passive

and used in various NIDS systems to avoid affecting the

traffic flow.

Hamsa is based on the assumption that a worm must ex-

ploit one or more server specific vulnerabilities. This con-

strains the worm author to include some invariant bytes that
are crucial for exploiting the vulnerabilities [16].

We formally capture this idea by means of an adversary

model Γ which allows the worm author to include any byte
strings for the worm flows as long as each flow contains

tokens present in the invariant set I in any arbitrary order.
Under certain uniqueness assumptions on the tokens in I
we can analytically guarantee signatures with bounded false

positives and false negatives.

Since the model allows the worm author to choose any

bytes whatsoever for the variant part of the worm, Hamsa is

provably robust to any polymorphism attack. Such analyt-

ical guarantees are especially critical when designing algo-

rithms against a human adversary who is expected to adapt

his attacks to evade our system. However, to the best of our

knowledge, we are the first to provide such analytical guar-
antees for polymorphic worm signature generation systems.

To give a concrete example, we design an attack in Sec-

tion 3.2 which could be readily employed by an attacker to

evade state-of-the-art techniques like Polygraph [16] while

Hamsa successfully finds the correct signature.

The signature generation is achieved by simple greedy

algorithms driven by appropriately chosen values for the

model parameters that capture our uniqueness assumptions

and are fast in practice. Compared with Polygraph, Hamsa

is tens or even hundreds of times faster, as verified both an-

alytically and experimentally. Our C++ implementation can

generate signatures for a suspicious pool of 500 samples of

a single worm with 20% noise and a 100MB normal pool

within 6 seconds with 500MB of memory 1. Thus Hamsa
can respond to worm attacks in its crucial early stage. We

also provide techniques for a variety of memory and speed

trade-offs to further improve the memory requirements. For

instance, using MMAP we can reduce the memory usage

for the same setup to about 112MB and increase the runtime

only by around 5-10 seconds which is the time required to

page fault 100MB from disk to memory. All the experi-

ments were executed on a 3.2GHz Pentium IV machine.

In the absence of noise, the problem of generating con-

junction signatures, as discussed by Polygraph, is easily

solved in polynomial time. Presence of noise drastically

affects the computational complexity. We show that finding

multi-set signatures, which are similar to Polygraph’s con-

junction signatures, in the presence of noise is NP-Hard.

In terms of noise tolerance, can bound the false positive

by a small constant while the bound on false negative de-

pends on the noise in the suspicious traffic pool. The more

accurate is the worm flow classifier in distinguishing worm

flows from the normal flows, the better is the bound on false

negatives that we achieve. We also provide a generalization

for measuring the goodness of signature using any reason-

able scoring function and extend our analytical guarantees

to that case.

We validate our model of worm flows experimentally

and also propose values for parameters characterizing the

uniqueness condition using our experimental results. Eval-

uations on a range of polymorphic worms and polymorphic

engines demonstrate that Hamsa is highly efficient, accu-

rate, and attack resilient, thereby significantly outperform-

ing Polygraph [16].

Paper Layout We discuss the problem space and a high
level design of Hamsa in Section 2. We formulate the signa-

ture generation problem in Section 3 and present our algo-

rithm in Section 4. In Section 5 we generalize our problem

formulation to better capture the notion of a “good” signa-

ture. We discuss some implementation details in Section 6

1if the data is pre-loaded in memory
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and evaluate Hamsa in Section 7. Finally we compare with

related work in Section 8 and conclude in Section 9.

2 Problem Space and Hamsa System Design

2.1 Two Classes for Polymorphic Signa-
tures

Signatures for polymorphicworms can be broadly classi-

fied into two categories - content-based and behavior-based.

Content-based signatures aim to exploit the residual similar-

ity in the byte sequences of different instances of polymor-

phic worms. There are two sources of such residual similar-

ity. One is that some byte patterns may be unavoidable for

the successful execution of the worm. The other is due to

the limitations of the polymorphism inducing code. In con-

trast, behavior based signatures ignore the byte sequences

and instead focus on the actual dynamics of the worm exe-

cution to detect them.

Hamsa focuses on content-based signatures. An ad-

vantage of content-based signatures is that they allows us

to treat the worms as strings of bytes and does not depend

upon any protocol or server information. They also have

fast signature matching algorithms [27] and can easily be

incorporated into firewalls or NIDSes. Next we discuss the

likelihood for different parts of a worm (ε, γ, π) [5] to con-
tain invariant content.

• ε is the protocol frame part, which makes a vulnerable
server branch down the code path to the part where a

software vulnerability exists.

• γ represents the control data leading to control flow
hijacking, such as the value used to overwrite a jump

target or a function call.

• π represents the true worm payload, the executable
code for the worm.

The ε part cannot be freely manipulated by the attackers
because the worm needs it to lead the server to a specific

vulnerability. For Codered II, the worm samples should

necessarily contain the tokens “ida” or “idq”, and “%u”.

Therefore, ε is a prime source for invariant content. More-
over, since most vulnerabilities are discovered in code that

is not frequently used [5], it is arguable that the invariant in

ε is usually sufficiently unique.
For the γ part, many buffer overflow vulnerabilities need

to hard code the return address into the worm, which is a

32-bit integer of which at least the first 23-bit should ar-

guably be the same across all the worm samples. For in-

stance, the register springs can potentially have hundreds of

way to make the return address different, but use of regis-

ter springs increases the worm size as it needs to store all

the different address. It also requires considerable effort to

look for all the feasible instructions in libc address space for

register springing.

For the π part, a perfect worm using sophisticated en-
cryption/decryption (SED) may not contain any invariant

content. However, it is not trivial to implement such per-

fect worms.

As mentioned in [5], it is possible to have a perfect worm

which leverages a vulnerability by using advanced register

springs and SED techniques does not contain any invari-

ance. This kind of a worm can evade not only our system,

but any content-based systems. But in practice such worms

are not very likely to occur.

2.2 Hamsa System Design

Figure 2 depicts the architecture of Hamsa which is sim-

ilar to the basic frameworks of Autograph [10] and Poly-

graph [16]. We first need to sniff the traffic from networks,

assemble the packets to flows, and classify the flows based

on different protocols (TCP/UDP/ICMP) and port numbers.

Then for each protocol and port pair, we need to filter out

the known worm samples and then separate the flows into

the suspicious pool (M) and the normal traffic reservoir us-
ing a worm flow classifier. Then based on a normal traf-
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fic selection policy we select some part of the normal traf-

fic reservoir to be the normal traffic pool (N ). Since it is
usually easy to collect a large amount of normal traffic and

we found experimentally that Hamsa is not sensitive to the

normal traffic pool, we can selectively choose the amount

and the period of normal traffic we use for the normal traf-

fic pool. This strategy prevents attackers from controlling

which normal traffic is used by Hamsa and also allows pre-

processing of the normal traffic pool. The suspicious and

normal traffic pools are given as input to the signature gen-

erator (Figure 3) which outputs signatures as described in

Sections 4 and 5.

Token Extractor For the token extraction we use a suffix
array based algorithm [15] to find all byte sequences that

occur in at least λ fraction of all the flows in suspicious
pool. The idea is that the worm flows will constitute at least

λ fraction of the pool and thus we can reduce the number of
tokens that we need to consider.

Core This part implements the algorithms described in
Sections 4 and 5.

Token Identification The goal of token identification is

to test the tokens’ specificity in the normal traffic pool.

Signature Refiner This module finds all common tokens
from the flows in the suspicious pool that match the signa-

ture outputted by the core. This way we can make our sig-

nature more specific (lower false positive) without affecting

its sensitivity (the coverage of the suspicious pool).

3 Problem Definition and Computational
Challenge

A token is a byte sequence that occurs in a significant

number of flows in the suspicious pool. In particular we

consider a byte sequence t to be a token if it occurs in at
least λ fraction of suspicious flows.

Multiset Signature Model We consider signatures that
are multi-sets of tokens. For example a signature could
be {‘host’, ‘host’, ‘http://1.1’, ‘0xDDAF’, ‘0xDDA’,
‘0xDDA’, ‘0xDDA’} or equivalently denoted as {(‘host’,2),
(‘http://1.1’,1), (‘0xDDAF’,1), (‘0xDDA’,3)}. A flow

matches this signature if it contains at least one occurrence

each of ‘http://1.1’ and ‘0xDDAF’, two occurrences of

token ‘host’, and three occurrences of token ‘0xDDA’,

where overlapping occurrences are counted separately.

A flow W is said to match a multi-set of tokens
{(t1, n1), . . . , (tk, nk)} if it contains at least nj copies of

tj as a substring. For a set of flows A and a multi-set of
tokens T , let AT denote the largest subset of A such that
every flow in AT matches T .

Note that a multiset signature does not capture any or-

dering information of tokens. While a worm author may

be constrained to include the invariant bytes in a specific

order, the ordering constraint makes the signature easy to

evade by inserting spurious instances of the invariant tokens

in the variant part. An example of such an attack called the

coincidental-pattern attack is discussed in [16].

Matching of Multiset Signatures Counting the number
of overlapping occurrences of a set of tokens in a flow of

length � can be done in time O(� + z) where z is the total
number of occurrences. This is achieved by using a key-

word tree as proposed by [2]. The keyword tree can be

constructed in time O(τ) as a preprocessing step where τ
is the total length of all the distinct tokens in all the signa-

tures. Therefore, a set of signatures is first preprocessed to

construct a keyword tree of all the distinct tokens. Then for

each incoming flow, all the overlapping occurrences of the

tokens are counted in linear time. Given these counts, we

can check if the flow matches any of the signatures. This

check can be done in time linear to the number of tokens

in all the signatures and can thus be used for high-speed fil-

tering of network flows. Currently, the improved hardware-

based approach [27] can archive 6 – 8Gb/s.

Architecture The worm flow classifier labels a flow as ei-
ther worm or normal. The flows labeled worms constitute

the suspicious traffic pool while those labeled normal con-
stitute the normal traffic pool. If the flow classifier is per-
fect, all the flows in the suspicious pool will be worm sam-

ples. Then finding a multi-set signature amounts to simply

finding the tokens common to all the flows in the suspicious

pool which can be done in linear time. However, in practice

flow classifiers at the network level will have some false

positives and therefore the suspicious pool may have some

normal flows as noise. Finding a signature from a noisy

suspicious pool makes the problem NP-Hard (Theorem 1).

3.1 Problem Formulation

Given a suspicious traffic pool M and a normal traf-

fic pool N , our goal is to find a signature S that covers
most of the flows inM (low false negative) but not many

in N (low false positive). Let FPS denote the false posi-

tive of signature S as determined by the given normal pool
and COVS denote the true positive of S or the fraction of

suspicious flows covered by S. That is, FPS = |NS |
|N | and

COVS = |MS |
|M| .

Problem 1 (Noisy Token Multiset Signature Generation
(NTMSG)).
INPUT: Suspicious traffic poolM = {M1, M2, . . .} and
normal traffic poolN = {N1, N2, . . .}; value ρ < 1.
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M : suspicious traffic pool N : normal traffic pool

λ : parameter for token extraction AT : largest subset of traffic poolA that matches
multiset of tokens T

FPS :
|NS |
|N | for a multiset of tokens S COVS :

|MS |
|M| for a multiset of tokens S

u(i), k∗ : model parameters σi :
∑

j=1...i u(j)

� : maximum token length T : total number of tokens

|M| : number of suspicious flows inM |N| : number of normal flows inN
M1 : set of true worm flows inM M2 : set of normal flows inM
α : coverage of true worms β : false positive of invariant content of the true

worm

Table 1. Notations used

OUTPUT: A multi-set of tokens signature S = {t̃1, . . . , t̃k}
such that COVS is maximized subject to FPS ≤ ρ.

3.2 Hardness

In the absence of noise, generation of multiset signatures

is a polynomial time problem, since it is equivalent to ex-

tract all the tokens which cover all the samples. According

to Theorem 1, introduction of noise drastically alters the

computational complexity of the problem.

Theorem 1. NTMSG is NP-Hard

An Illustration The multiset signatures we consider are

very similar to conjunction signatures proposed by Poly-

graph. In absence of noise, these signatures are generated

by simply finding the set of tokens common to all the flows

in the suspicious pool. In presence of noise, Polygraph pro-

poses to use hierarchical clustering to separate out noise and

worm traffic and then uses the noise-free signature genera-

tion algorithm for each cluster. We now discuss how this

technique fails in presence of arbitrarily small noise.

Since the worms are generated by an attacker who will

try to evade the system by exploiting its weakness, it is im-

perative to examine the worst case scenario. Hierarchical

clustering begins with considering each sample to be in a

cluster of its own. It then iteratively merges two clusters

with the optimum score. For signature generation, the clus-

ters whose union gives a signature with the least false pos-

itive is merged at every iteration. The process is continued

till either there is only one cluster or merging any two clus-

ters results in high false positive. Now if the variant part of

worm flows contain common tokens in normal pool, hierar-

chical clustering will tend to cluster a worm sample with the

normal sample and hence fail to separate out the suspicious

samples. In their experiments, they find that this works well

if the variant part of the worm flows is randomly generated.

However, on using a smaller distribution the algorithm suf-

fers from false negatives [16].

For our example, suppose the invariant content

consists of three tokens ta, tb and tc each of which
have the same false positive (i.e. coverage in the

normal traffic pool) and occur independently. Let

t11, t12, t13, t14, t21, t22, t23, t24, t31, t32, t33 and t34 be 12
other tokens such that the false positive of each of them

is the same as that of the invariant tokens and they occur

independent of each other. Let W1, W2 and W3 be three

worm flows such thatWi consists of all the invariant tokens

and the tokens tij for all j. Let N1, N2 and N3 be three

normal flows where Ni consists of tokens tij for all j. Let
the suspicious pool M contain 99 copies of each of the

worm samplesWi and 1 copy of each of the normal sample

Ni. Therefore there is 1% noise in the traffic pool. During

the first few iterations hierarchical clustering will cluster

all the copies of Wi in one cluster to have six clusters -

3 with 99 samples corresponding to Wi’s and 3 with a

single copy of all the Ni’s. Since the false positive of

{ti1, ti2, ti3, ti4} is smaller than that of {ta, tb, tc}, the
hierarchical clustering will merge the cluster of Wi with

that ofNi and terminate with three clusters whose signature

is {ti1, ti2, ti3, ti4}. Hence, it fails to find the invariant
content as the signature.

Therefore, presence of noise makes the problem of

signature generation for polymorphic worms considerably

harder. In Section 4 we present an algorithm which is able

to bound the false positive and false negative of the output

signature while allowing the attacker full flexibility in in-

cluding any content in the variant part of different instance

of the polymorphic worms. We note that the proposed al-

gorithm outputs the right signature {ta, tb, tc} in the above
example.

4 Model-based Greedy Signature Generation
Algorithm

Though the problem NTMSG is NP-hard in general, un-

der some special conditions it becomes tractable. To capture

these conditions, we make the assumption that the input set

of flows is generated by a model as follows.
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Majority of flows inM are worms while the remaining

are normal flows which have the same token distribution

as the flows in N . The worm flows are generated by an
adversary who is constrained to include a multiset of tokens

I, called the invariant, in any order in each of the worm
flow. Other than this the adversary has full flexibility over

the rest of worm flow.

We now define an ordering of the tokens in I as follows.
Let I = {t̂1, t̂2, . . . , t̂k} such that

FP{t̂1}
≤ FP{ti} ∀ i

FP{t̂1,t̂2}
≤ FP{t̂1,ti}

∀ i > 1

FP{t̂1,...,t̂j}
≤ FP{t̂1,..., ˆtj−1,ti}

∀ j ∀ i > j − 1

In words, t̂1 is the token with the smallest false positive
rate. The token which has the least false positive value in

conjunction with t̂1 is t̂2. Similarly for the rest of t̂i’s.
We propose a model Γ with parameters k∗,

u(1), u(2), . . . , u(k∗) to characterize the invariant I.
The constraint imposed by Γ(k∗, u(1), . . . , u(k∗)) on
I = {t̂1, t̂2, . . . , t̂k} is that FP{t̂1,...,t̂j}

≤ u(j) for j ≤ k∗;

k ≤ k∗ and the occurrence of t̂i in the normal traffic pool
is independent of any other token.

In other words, the model makes the assumption that

there exists an ordering of tokens such that for each i, the
first i tokens appear in only u(i) fraction of the normal traf-
fic pool. Consider the following values for the u-parameters
for k∗ = 5: u(1) = 0.2, u(2) = 0.08, u(3) = 0.04,
u(4) = 0.02 and u(5) = 0.01. The constraint imposed by
the model is that the invariant for the worm contains at least

one token t̂1 which occurs in at most 20% (u(1)) of normal
flows. There also exists at least another token t̂2 such that
at most 8% (u(2)) of the normal flows contain both t̂1 and
t̂2. Similarly for the rest of u(j).
Note that the assumption is only on the invariant part

over which the attacker has no control. Such invariant bytes

can include protocol framing bytes, which must be present

for the vulnerable server to branch down the code path

where a software vulnerability exists; and the value used

to overwrite a jump target (such as a return address or func-

tion pointer) to redirect the servers execution. The attacker
is allowed full control over how to construct the worm flow
as long as they contain the tokens in I. We also allow the
attacker to order the tokens in the invariant in any manner

though in some cases he may not enjoy such flexibility.

In essence, the model imposes some uniqueness con-

straint on the tokens that comprise the worm invariant. This

uniqueness constraint is captured by the u-values as dis-
cussed above. If all the tokens in the worm invariant are

very popular in normal traffic, then the proposed greedy

algorithm cannot be guaranteed to find a good signature.

However, since the invariant content is not under the con-

trol of the worm author, such an assumption is reasonable.

We use experimental valuations to validate this and propose

some reasonable values for the u-values.

Algorithm 1 NTMSG(M,N )
1. S ← Φ

2. For i = 1 to k∗

(a) Find the token t such that FPS∪{t} ≤ u(i) and
|MS∪{t}| is maximized. If no such token exists,
then output ”No Signature Found”.

(b) S ← S ∪ {t}

(c) if FPS < ρ, then output S.

3. Output S.

4.1 Runtime Analysis

We first execute a preprocessing stage which consists of

token extraction and labeling each token with the flows in

M and N that it occurs in. If � is the maximum token
length, T the total number of tokens and m and n the to-
tal byte size of suspicious pool and the normal pool respec-

tively, then this can be achieved in time O(m + n + T� +
T (|M|+ |N |)) by making use of suffix arrays [15].
Given T tokens, Algorithm 1 goes through at most k∗

iterations where k∗ is a model parameter. In each iterations,

for each token t we need to determine the false positive and
coverage of the signature obtained by including the token in

the current set. Using the labels attached to each token, this

can be achieved in time O(|M| + |N |). Therefore the run-
ning time of the algorithm is O(T (|M|+ |N |)). Since |N |
is usually greater than |M|, we get a runtime of O(T ·|N |).

4.2 Attack Resilience Analysis

Let M1 be the set of true worm flows in M and let

M2 = M \ M1. Let the fraction of worm traffic flows

inM be α, i.e. |M
1|

|M| = α·.

Theorem 2. Under the adversary model
Γ(k∗, u(1), . . . , u(k∗)), if the invariant contains k∗

tokens Algorithm 1 outputs a signature SOUT such that
|M1

SOUT
|

|M1| ≥ 1 − σk∗ · (1−α)
α
where σi =

∑i

j=1 u(j).

Proof. We prove the above by induction on the number of
iterations for the loop in Algorithm Model-Based-Greedy-

Set-Signature.

LetH(j) denote the statement that after the jth iteration

|M1
S | ≥ α·|M| −

∑j

i=1 u(i)·(1 − α)·|M|.
Base Case: j = 1. Let the token selected in the first it-

eration be t̃1. SinceM{t̂1}
≥ α·|M|, M{t̃1} ≥ α·|M|.
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Since FP{t̃1} ≤ u(1) and the distribution of tokens in

M2 is the same as that in N , |M2
{t̃1}

| ≤ u(1)·|M2| =

u(1)·(1 − α)·|M|.
Therefore, |M1

{t̃1}
| = |M{t̃1} \ M2

{t̃1}
| = |M{t̃1}| −

|M2
{t̃1}

| ≥ α·|M| − u(1)·(1 − α)·|M|. Hence, H(0) is
true.

Induction Step: H(j − 1) holds for some j, where 0 ≤
j − 1 ≤ k∗ − 1. Let the signature at the end of (j − 1)th

iteration be Sj−1. Let the token selected at the jth iteration

be t̃j and let Sj = Sj−1 ∪ {t̃j}. Let S ′ = Sj−1 ∪ {t̂j}
By induction hypothesis, |M1

Sj−1
| ≥ α·|M| −∑j−1

i=1 u(i)·(1 − α)·|M|. Since M1
{t̂j}

= M1,

|M1
S′ | = |M1

Sj−1
|. Therefore, |MS′ | ≥ |M1

Sj−1
|.

Since t̃j has the maximum coverage at the jth it-

eration, |MSj
| ≥ |MS′ | ≥ |M1

Sj−1
|. Since |M2

Sj
| ≤

u(j)·(1−α)·|M|, |M1
Sj
| ≥ |M1

Sj−1
|−u(j)·(1−α)·|M| ≥

α·|M| −
∑j−1

i=1 u(i)·(1 − α)·|M|.

Further, since
|M1|
|M| = α·, we get

|M1

SOUT
|

|M1| ≥ 1 −

σk∗ · (1−α)
α
.

Discussion of Theorem 2 Let the false negative of a sig-

nature S be the fraction of worm flows inM that are not

covered by S. Theorem 2 implies that the false negative rate

of the output signature SOUT is at most
σk∗ ·(1−α)

α
which is

inversely proportional to α, the fraction of worm samples
in the suspicious pool. So as this fraction decreases, the

false negative increases. In other words, the signature has a

higher false negative if there is more noise in the suspicious

pool. However the false positive of the output signature is

always low (< ρ).

For example, for k∗ = 5, u(1) = 0.2, u(2) = 0.08,
u(3) = 0.04, u(4) = 0.02 and u(5) = 0.01, if the noise in
the suspicious pool is 5%, then the bound on the false nega-

tive is 1.84%. If the noise is 10%, then the bound becomes

3.89% and for noise of 20%, it is 8.75%. Hence, the better
the flow classifier, the lower are the false negatives.
Note that Theorem 2 gives a lower bound on the cover-

age of the signature of the suspicious pool (and thereby an

upper bound on false negative) that the algorithm generates

in the worst case. However, in practice the signatures gen-

erated by the algorithm have a much lower false negative

than this worst case bound. To create worms for the worst

case scenario the attacker needs to include a precise amount

of spurious tokens in the variant part of the worm flows. In-

cluding either more or less than that amount will result in

better false negatives. This precise amount depends on α,
the fraction of true worms in the suspicious traffic pool. It

is unlikely that an attacker knows the exact value of α in
advance.

Also note that while Theorem 2 assumes the number of

tokens k in the invariant content to be equal to k∗, since

k is generally not known in advance, k∗ is chosen to be

an upper bound on k. Therefore, in practice, the signature
with k∗ tokens may be too specific. Algorithm 1 deals with

this issue crudely by breaking from the for loop as soon

as a signature with low enough false positive rate is found.

In Section 5 we address this issue in a greater detail and

select the optimal number of tokens in the output signature

to achieve both good sensitivity and specificity.

4.3 Attack Resilience Assumptions

In the previous section we give analytical guarantees on

the coverage of the output signature of the suspicious traf-

fic pool under the adversary model Γ. In this section we
note that these attack resilience guarantees hold under cer-

tain assumptions on the system. Such assumptions provide

potential avenues of attack and many of them have been

discussed before. For each assumption we also discuss how

they can be exploited by the attacker and how can the sys-

tem be made further resilient to such attacks.

We first discuss the assumptions common to any auto-

matic signature generation system using this model an is

hence a potential vulnerability of the approach in general.

Common Assumption 1. The attacker cannot control
which worm samples are encountered by Hamsa.

Note that if we allow the attacker to control which

worm samples are encountered by the signature gen-

eration system, then it is not possible for any system to

generate good signatures. Therefore, it is reasonable

to assume that the attacker doesn’t have such control

and the worm samples in the suspicious pool are ran-

domly selected from all the worm flows. One way to

achieve this could be by collecting the worm samples

from different locations on the internet.

Common Assumption 2. The attacker cannot con-
trol which worm samples encountered by Hamsa are
classified as worm samples by the worm flow classifier.

An attack exploiting this is similar to the previous one

and is an issue of the resilience of the worm flow clas-

sifier. To make such attacks difficult, we can use more

than one worm flow classifier and aggregate their opin-

ion to classify a flow as either worm or normal.

The following assumptions are unique to our system.

Though they may also be required by other systems based

on this model, they are not inherent to the model.

Unique Assumption 1. The attacker cannot change the
frequency of occurrence of tokens in normal traffic.

If the attacker knows when the flows constituting the

normal traffic pool are collected, she can attempt to
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send spurious normal traffic to corrupt the normal traf-

fic pool. Since the byte frequencies/token frequencies

in the normal traffic pool are relatively stable, we can

collect the samples for the normal pool at random over

a larger period of time to counter this attack. For in-

stance, one can use tokens generated over a one hour

period the previous day to serve as the normal pool for

the same hour today. Using any deterministic strategy

like this will still be vulnerable to normal pool poison-

ing. By including some randomness in the period for

which the normal traces are chosen makes such attacks

increasing difficult. The success of these measures de-

pends on the relative stability of token frequencies in

the normal pool.

Unique Assumption 2. The attacker cannot control which
normal samples encountered by Hamsa are classified
as worm samples by the worm flow classifier.

This assumption is required to ensure that the normal

traffic misclassified as suspicious by the worm flow

classifier has the same token distribution as the normal

traffic. Note that this is an assumption on the worm

classifier and not the signature generator. However, the

recent work [20] propose an approach which could in-

ject arbitrary amount of noise into the suspicious pool.

This approach potentially could invalid the assumption

we made here. It is an open question for us to develop

better semantic based flow classifier which will not in-

fluence by it.

Note that the first two assumptions are generic for any

signature generation algorithm while the last two are as-

sumptions on the performance of the worm flow classifier.

For the core generation algorithm we propose, the only as-

sumptions are on the invariant part of the worm samples

over which the attacker has no control on the first place.

For the variant part, we allow the attacker to choose any

byte sequences whatsoever.

If we make the assumption that the worm samples en-

countered by Hamsa are randomly chosen from the entire

population of worm samples, then we can give high proba-

bility bounds on the true positives which will depend upon

the size of the suspicious traffic pool or the number of worm

samples in the pool. This is akin to sample complexity anal-

ysis.

5 Generalizing Signature Generation with
Noise

The signature generation problem formulation as dis-

cussed in Section 4 contains a parameter ρ which is a bound
on the false positive. The goal is to generate a signature that

maximizes coverage of the suspicious pool while not caus-

ing a false positive of greater than ρ. In our experiments we

found that for a fixed value of ρ, while some worms gave a
“good” signature, others didn’t. This indicates that Problem

NTMSG does not accurately capture the notion of a “good”

signature. In this section we generalize our problem formu-

lation to do so.

5.1 Criterion for a “Good” Signature

To generate good signatures, it is imperative to formal-

ize the notion of a good signature. For the single worm,

the goodness of a signature will depend on two things, the

coverage of the signature of the suspicious pool (coverage)

and the coverage of the normal pool (false positive). Intu-

itively a good signature should have a high coverage and a

low false positive.

NTMSG tries to capture this intuition by saying that

given two signatures, if the false positive of both is above a

certain threshold, both are bad signatures, if the false pos-

itive of only one is below the threshold, it is a good signa-

ture, and if the false positive of both is below the threshold,

then the one with the higher coverage is better. Sometimes

this criterion leads to counter intuitive goodness ranking.

For example, if the threshold for false positive is say 2%,

and signature A has a false positive of 1.5% and coverage

of 71% while signature B has a false positive of 0.3% and

coverage of 70%. According to our goodness function, sig-

nature A is better though conceivably one may prefer signa-

ture B over A for even though it has a slightly higher false

negative, its false positive is considerably lower.

Arguably, there is a certain amount of subjectivity in-

volved in making this trade-off between false positive and

false negative. To capture this, we define a notion of scoring

function which allows full flexibility in making this trade-

off.

Scoring Function Given a signature S let

score(COVS , FPS) be the score of the signature where
the scoring function score(·, ·) captures the subjective
notion of goodness of a signature. While there is room

for subjectivity in the choice of this scoring function, any

reasonable scoring function should satisfy the following

two properties.

1. score(x, y) is monotonically non-decreasing in x.

2. score(x, y) is monotonically non-increasing in y.

5.2 Generalization of NTMSG

We capture this generalized notion of goodness in the

following problem formulation.

Problem 2 (Generalized NTMSG(GNTMSG)).
INPUT: Suspicious traffic poolM = {M1, M2, . . .} and
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normal traffic poolN = {N1, N2, . . .}.

OUTPUT: A set of tokens S = {t1, . . . , tk} such that
score(COVS , FPS) is maximized.

Theorem 3. GNTMSG is NP-Hard.

Algorithm 2 Generalized-NTMSG(M,N ,score(·, ·))

1. For i = 1 to k∗

(a) Find the token t such that FPSi−1∪{t} ≤ u(i)
and |MSi−1∪{t}| is maximized

(b) Si ← Si−1 ∪ {t}

(c) if FPSi
> u(i), then goto Step 2

2. Output Si which maximizes score(COVSi
, FPSi

).

5.3 Performance Guarantees for
GNTMSG

Let α be the coverage of the true worm and let β be the
false positive of its invariant content.

Theorem 4. Under the adversary model
Γ(k∗, u(1), . . . , u(k∗)), if the fraction of worm traffic flows
inM is α, then Algorithm 2 outputs a signature SOUT such

that for all i ≤ k, score(α, β) ≤ score

(
COVSi

+σi

1+σi
, 0

)
.

After executing Algorithm GNTMSG and finding all the

Si’s, Theorem 4 can be used to get an upper bound on the

score of the true worm. This way we can determine how

far could the score of our signature be from that of the true

worm.

Theorem 5. Under the adversary model
Γ(k∗, u(1), . . . , u(k∗)), if the fraction of worm
traffic flows in M is α, then Algorithm 2 out-
puts a signature SOUT such that for all i ≤ k,
score(COVSOUT

, FPSOUT
) ≥ score(α− σi(1−α), u(i)).

Theorem 5 is a guarantee on the performance of the al-

gorithm. That is independent of the run of the algorithm,

we can lower bound the score of the signature that our algo-

rithm is guaranteed to output.

6 Implementation Details

6.1 Scoring Function

As discussed in Section 5.1, to select a reasonable scor-

ing function score(COVS , FPS) is to make a subjective

trade off between the coverage and false positive to catch

the intuition of what is a good signature. [9] proposes an

information theoretic approach to address this issue. How-

ever, for our implementation we use the following scoring

function:

score(COVS , FPS , LENS) = − log((δ + FPS), 10)

+ a ∗ COVS + b ∗ LENS

a >> b

δ is used to avoid the log term becoming too large for
FPS close to 0. We add some weight to the length of the
token LENS to break ties between signatures that have the

same coverage and false positive rate. This is because even

though two signatures may have the same false positive on

our limited normal pool size, the longer signature is likely

to have smaller false positive over the entire normal traffic

and is therefore preferable.

For our experiments, we found δ = 10−6, a = 20 and
b = 0.01 yields good results.

6.2 Token Extraction

Like Polygraph, we extract tokens with a minimum

length �min and a minimum coverage λ in the suspicious
pool. However, Polygraph’s token extraction algorithm

does not include a token if it is a substring of another to-

ken, unless its unique coverage (i.e. without counting the

occurrences where it is a substring of other tokens) is larger

than λ. This may potentially miss some invariant tokens,
e.g.“%u”may occur only as either “%uc” and “%uk”, which
means that the unique coverage of “%u” is 0. However, it

might be possible that “%u” covers all of the worm sam-

ples, but “%uc” and “%uk” do not, and so “%u” yields a

better signature. Therefore, for our token extraction algo-

rithm, every string with a coverage larger than λ is treated
as a token.

Problem 3 (Token Extraction).
INPUT: Suspicious traffic pool M = {M1, M2 . . .}; the
minimum token length �min and the minimum coverage λ.

OUTPUT: A set of tokens T = {t1, t2, . . .} which
meet the minimum length and coverage requirements
and for each token the associated sample vector
V(ti) = [ai1, . . . , ai|M|], i ∈ [1, |M|] where aij de-
note the number of times token ti occurs in flowMj .

Polygraph used a suffix tree based approach for token

extraction. The basic idea is to do a bottom up traversal

of the suffix tree to calculate a frequency vector of occur-

rences for each node (token candidate), and then via a top

down traversal output the tokens and corresponding sam-

ple vectors which meet the minimum length and coverage
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requirement.

Although asymptotically linear, the space consumption

of a suffix tree is quite large. Even recently improved imple-

mentations of linear time constructions require 20 bytes per

input character in the worst case. [1] have proposed tech-

niques that allows us to replace the suffix tree data structure

with an enhanced suffix array for the token extraction algo-

rithm. The suffix array based algorithm runs in linear time

and requires a space of at most 8 bytes per input character.

Another advantage of suffix array based approach is that it

allows some pruning techniques to further speed up token

extraction and improve memory consumption.

Though there are linear time suffix array creation algo-

rithms, some lightweight algorithms with a worse bound on

the worst case time complexity perform better for typical

input sizes (such as less than 1000 samples). The reason as

discussed in [23] is that the linear time algorithm makes too

many random accesses to the main memory which makes

the cache hit ratio low and result in poor performance. So

for our implementation we choose a lightweight algorithm,

deepsort [15], which is one of fastest suffix array con-
struction algorithm in practice. Our experiments with one

of the best known suffix tree libraries [11] show that we

get around 100 times speedup for token extraction by using

suffix arrays.

6.3 False Positive Calculation

For false positive estimation, we build a suffix array [15]

of the normal traffic pool in a preprocessing step and store it

on the disk. To calculate the false positive of a given token,

we use binary search on the suffix array. We can employ

a variety of different policies for maintaining the normal

traffic pool in order to prevent an attacker from polluting it.

The normal traffic pool could be large, e.g., 100MB and
a suffix array for 100MB requires around 400MB of mem-

ory. Currently, we use mmap to map the suffix array to
the memory space of our program. When we need to ac-

cess some part of the array, a page fault happens and the

relevant page (4KB) is loaded to the memory. In our expe-

rience, we found that we get good performance with only

50MB–200MBmemory using this approach.

The large memory requirement due to suffix arrays can

also be alleviated at the cost of accuracy, speed or expense

as follows.

1. By dividing the normal pool randomly into a num-

ber of equal sized chunks and creating a suffix array

over each of these chunks, the false positive can be ap-

proximated by the false positive over any one of these

chunks kept in primary storage while the rest are in

secondary storage. For tokens whose false positive is

close to the threshold, a more accurate estimation can

be performed by using chunks of normal traffic pool

from secondary storage.

2. Each normal flow can be compressed using compres-

sion schemes such as LZ1. To compute the false pos-

itive for a token t, we can employ the string match-
ing algorithms over compressed strings as discussed

by Farach et al. [8]. This approach is more time con-

suming than suffix array based approach but doesn’t

sacrifice accuracy.

3. Since the false positive calculation is just a special case

of string matching, hardware-based memory-efficient

string matching algorithms can be employed. The

ASIC/FPGA based implementation [27] can archive a

matching speed of 6–8Gb/s. However, such special-

ized hardware makes the system expensive.

7 Evaluation

7.1 Methodology

Since there are no known polymorphic worms on the In-

ternet, a real online evaluation is not possible. Instead, we

test our approach offline on synthetically generated poly-

morphic worms. Since the flow classification is not the fo-

cus of this paper, we assume we have a flow classifier that

can separate network traffic into two pools, a normal traf-

fic pool and a suspicious pool (with polymorphic worms

and possible noise). We take the two traffic pools as in-

put and output a set of signatures and also their coverage

of the suspicious pool and the false positives in the normal

traffic pool. The input traffic pools can be treated as training

datasets. After signature generation, we match the signature

of each worm against 5000 samples generated by the same

worm to evaluate false negatives and also against another

16GB of normal network traffic to evaluate false positives.

Since most of the worm flow is usually binary code, we also

create a binary evaluation dataset for testing false positives

against the Linux binary distribution of /usr/bin in Fedora

Core 4.

7.1.1 Polymorphic WormWorkload

In related work, Polygraph [16] generates several pseudo

polymorphic worms based on real-world exploits for eval-

uation purposes. Polygraph’s pseudo polymorphic worms

are based on the following exploits: the Apache-Knacker

exploit and the ATPhttpd exploit.

For our experiments, we use Polygraph’s pseudo poly-

morphic worms and also develop a polymorphic version of

Code-Red II. The polymorphic version of Code-Red II con-

tains invariant content inherent to Code-Red II. We were

able to detect and generate signatures for all of the poly-

morphic worms even in presence of normal traffic noise.
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We also used two polymorphic engines found on the In-

ternet, the CLET [7] and TAPiON [21] polymorphic en-

gines to generate polymorphicworms. The CLET polymor-

phic engine is a sophisticated engine that is designed to gen-

erate polymorphic worms that fit closely to normal traffic

distributions. For example, CLET can generate a NOP field

for a polymorphic worm using English words. In addition,

given a spectral file of byte frequencies, the CLET engine

can give precedence to certain byte values when generat-

ing bytes for a polymorphic worm. We created a spectral

frequency distribution from normal HTTP traffic to use as

input to the CLET engine when creating our samples. With

all the advanced features of the CLET engine enabled we

were still able to detect and generate signatures for samples

created by the CLET engine.

The TAPiON polymorphic engine is a very new and re-

cent polymorphic engine. We used the TAPiON engine to

generate 5000 samples of a known MS-DOS virus called

MutaGen. Again we are able to apply our technique and

generate signatures for samples created by the TAPiON en-

gine.

7.1.2 Normal Traffic Data

We collected several normal network traffic traces for the

normal traffic pool and evaluation datasets. Since most of

our sample worms target web services, we use HTTP traces

as normal traffic data. We collected two HTTP traces. The

first HTTP trace is a 4-day web trace (12GB) collected from

our departmental network gateway. The second HTTP trace

(3.7GB) was collected by using web crawling tools that in-

cluded many different file types: .mp3 .rm .pdf .ppt .doc

.swf etc..

7.1.3 Experiment Settings

Parameters for token extraction We set the minimum

token length �min = 2 and require each token to cover at
least λ = 15% of the suspicious pool.

Signature generation We used the scoring function de-

fined in Section 6.1 with a = 20 and b = 0.01. Moreover,
we rejected any signature whose false positive rate is larger

than 1% in the normal traffic pool. For u-parameters, we
chose: k∗ = 15, u(1) = 0.15, and ur = 0.5. Based on ur

we can calculate u(i) = u(1) ∗ u
(i−1)
r . In Section 7.3, we

evaluate this choice of u-parameters.
All experiments were executed on a PC with a 3.2GHz

Intel Pentium IV running Linux Fedora Core 4.

7.2 Signature Generation without Noise

We tested our five worms separately without noise.

Comparing our approach with Polygraph, we found the sig-

natures we generated were very close to conjunction sig-

natures generated with Polygraph (single worm without

noise). We found that our signatures are sometimes more

specific than those of Polygraph while maintaining zero

false negatives.

For a suspicious pool size of 100 samples and a normal

traffic pool size of 300MB, the false negative and false pos-

itive measurements on training datasets are very close to

those for much larger evaluation datasets. Moreover, we

also tested on smaller normal traffic pool sizes: 30MB and

50MB. We found our approach to work well for both large

and small pool sizes. Thus, we are not very sensitive to the

size of the normal traffic pool. In Section 7.5, we discuss

the effects of the number of worms in the suspicious pool

on generating correct signatures.

7.3 u-parameter Evaluation

As mentioned before, we can use k∗, u(1), and ur to

generate all the u-parameters. If we set u(1) and ur too

high, it loosens our bound on attack resilience and may

also result in signature with have high false positive. If we

choose too low a value, we risk generating a signature alto-

gether. Therefore, for all the worms we tested, we evaluated

the minimum required value of u(1) and ur. We randomly

injected 80 worm samples and 20 normal traffic noises into

the suspicious pool (20% noise), and used the 300MB nor-

mal traffic pool. We tested our worms with various com-

binations of (u(1),ur) with u(1) taking values from {0.02,
0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40, 0.50}, and ur from

{0.20, 0.40, 0.60, 0.80}. We found the minimum value of
(u(1),ur) that works for all our test worms was (0.08,0.20).

We choose a far more conservative value of u(1) = 0.15
and ur = 0.5 for our evaluation. Note that for k∗ = 15,
u(k∗) = 9.16 ∗ 10−6.

7.4 Signature Generation in Presence of
Noise

The first experiment consists of randomly selecting 100

worm samples for each worm, and injecting different por-

tions of noise, to create different noise ratios: 0%, 10%,

30%, 50%, and 70%. In our second experiment we fix the

suspicious pool size to 100 and 200 samples, and evaluate

for the noise ratios used in the first experiment.

As shown in Figure 3, Hamsa generates the signatures

for the suspicious pool iteratively. So it can generate

more than one signature if required and thus detect mul-

tiple worms. As shown in Table 2, we always generate

worm signatures with zero false negative and low false pos-

itive. Since our algorithm generates signatures that have

high coverage of the suspicious pool and low false positive

of the normal traffic pool, if the noise ratio is larger than
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Worm Training Training Evaluation Evaluation Binary
Signaturename FN FP FN FP eval FP

Code-Red II 0 0 0 0 0 {’.ida?’: 1, ’%u780’: 1, ’ HTTP/1.0\r\n’: 1,
’GET /’: 1, ’%u’: 2}

Apache- 0 0 0 0 0.038% {’\xff\xbf’: 1, ’GET ’: 1, ’: ’: 4, ’\r\n’: 5,
Knacker ’ HTTP/1.1\r\n’: 1, ’\r\nHost: ’: 2}

ATPhttpd 0 0 0 0 0 {’\x9e\xf8’: 1, ’ HTTP/1.1\r\n’: 1,
’GET /’: 1}

CLET 0 0.109% 0 0.06236% 0.268% { ’0\x8b’: 1, ’\xff\xff\xff’: 1,
’t\x07\xeb’: 1}

TAPiON 0 0.282% 0 0.1839% 0.115% {’\x00\x00’: 1, ’\x9b\xdb\xe3’: 1}

Table 2. Signatures for the five worms tested and accuracy of these signatures. {’\r\nHost: ’: 2}
means token ’\r\nHost: ’ occurs twice in each worm sample. FN stands for “False Negative” and FP
stands for “False Positive”.

50%, sometimes, we will generate two signatures. How-

ever, only one of them is the true signature for the worm in

the suspicious pool; the other is due to normal traffic noise.

We tested the noise signatures against the binary evaluation

dataset and found they all have zero false positives. The av-

erage and maximum false positive rate for the 16GB normal

traffic pool is 0.09% and 0.7% respectively. The following

is an example of a noise signature.

’47 ’: 1, ’en’: 3, ’od’: 3, ’ed’: 1, ’b/’: 1,
’: ’: 6, ’ GMT\r\nServer: Apache/’: 1, ’0 m’: 1
’ mod_auth_’: 1, ’\r\n\r\n’: 1, ’odi’: 1,
’(Unix) mod_’: 1, ’e: ’: 2, ’ep’: 1, ’er’: 3,
’ec’: 1, ’00’: 3, ’mod_ssl/2.’: 1, ’, ’: 2,
’1 ’: 2, ’47’: 2, ’ mod_’: 2, ’4.’: 1, ’2’: 1,
’rb’: 1, ’pe’: 2, ’.1’: 3, ’te’: 3, ’0.’: 3,
’.6’: 1, ’\r\nCon’: 2, ’ 20’: 3, ’.3.’: 1,
’7 ’: 2, ’10 ’: 1, ’13’: 1, ’HTTP/1.1 ’: 1,
’b D’: 1, ’ PHP’: 1, ’ker’: 1, ’on’: 5,
’2.0.’: 2, ’ma’: 1, ’ 200’: 2, ’/2’: 3,
’\r\nDate: Mon, 11 Jul 2005 20:’: 1, ’.4’: 1,
’ OpenSSL/0.9.’: 1, ’\r\n’: 9, ’e/2’: 1,

Noise signatures can be identified as follows. If a sig-

nature has low coverage than some threshold for a differ-

ent suspicious pool, then it is likely to be a noise signa-

ture. However, since noise signatures have low false posi-

tive rates, it is safe to include them as valid signatures.

7.5 Suspicious Pool Size Requirement

For worms obtained from Polygraph and the polymor-

phic Code-Red II worm, we only need a suspicious pool size

of 10 samples (in presence of 20% noise) to obtain the exact

same signature as shown in Table 2. However, for worms

generated using CLET and TAPiON engines, a small suspi-

cious pool size of 10–50 samples in presence of 20% noise

could result in too specific a signature, such as { ’0\x8b’:

1, ’\xff\xff\xff’: 1, ’t\x07\xeb’: 1 ’ER’: 1 }. This is due
to the polymorphic engines using common prefixes or suf-

fixes in English words to pad the variant parts in the worm.

This is similar to the coincidental-pattern attack mentioned
in the Polygraph paper. In the above mentioned example,

95% of the worms have the token ’ER’. It is possible that

when the suspicious pool is small, all the samples contain

token ’ER’, thus making ’ER’ seem invariant and hence a

part of the signature. This is why the signature above has

0% training false negative, but 5% false negative over the

evaluation dataset. Therefore, for unknown worms it is best

to use a large suspicious pool size, such as 100 samples.

7.6 Speed Comparison with Polygraph

Signature generation speeds are critical for containing

worms in their early stages of infection. Both Polygraph

and Hamsa have similar pre-processing requirements. In

Section 4.1, we analyzed the time complexity of signa-

ture generation for Hamsa to be O(T ·|N |) where T is the
number of tokens. The hierarchical clustering algorithm

proposed by Polygraph needs O(|M|2) comparison and
for each comparison we need to compute its false positive

which takes O(|N |) time. By making use of appropriate
data structures, it is possible to merge the clusters and gen-

erate the signature for the new clusters so that the total run-

time is O(|M|2·|N |).
So the asymptotic runtime difference between the two

approaches is O(T ) vs. O(|M|2). In our experiments, we
determine the average number of tokens T of 5 different
runs for the same pool size |M|. Table 3 summarizes our
experimental observations. Note that the number of tokens

T decreases as |M| increases. The larger the suspicious
pool size |M |, the bigger the speed up ratio. Table 4 shows
that Hamsa is analytically tens to hundreds of times faster
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than Polygraph. In our experiments over various parameter

settings, Hamsa was found to be 64 to 361 times faster than

Polygraph 2.

Noise Ratio

|M | 20% 30% 40% 50%

150 303 589 1582 2703

250 290 559 1327 2450

350 274 558 1172 2062

Table 3. The number of tokens for different
pool sizes and noise ratios.

Noise ratio

|M | 20% 30% 40% 50%

150 74.26 (64.28) 38.20 14.22 8.32 (69.89)

250 215.52 (361.32) 111.81 47.10 25.51

350 447.08 219.53 104.52 59.41

Table 4. |M|2/T , the asymptotic speed up ra-
tio with respect to Polygraph. The number in
braces indicate the empirical speed up ratio.

7.7 Speed and Memory Consumption Re-
sults

We evaluate the speed and memory consumption of our

optimized C++ implementation for different settings shown

in Table 5. For each of the settings, we run our experiments

for all the 5 different worms. The value reported in Table 5

is the maximum of the values obtained for the 5 worms. For

the “pre-load” setting, we pre-load the normal traffic pool

and its suffix array in the memory before running the code.

Since the data is readily available in memory, we achieve

very good speeds. However, the pre-load size is 5 times the

normal pool size which could be too large for some cases.

By using MMAP, we break the suffix array and the normal

traffic pool into 4KB pages, and only load the parts which

are required by the system. This saves a lot of memory but

introduces some disk overheads. In all our experiments, we

use a noise ratio of 20%.

2For a fair comparison, both systems are implemented in Python and
use the same suffix tree based token extraction and the suffix array based

false positive calculation techniques.

Number of Normal Memory Speed Speed

samples in pool usage MMAP pre-load

suspicious size MMAP (secs) (secs)

pool (MB) (MB)

100 101 64.8 11.9 1.7

100 326 129.0 32.7 4.9

200 101 75.4 14.3 2.4

200 326 152.1 39.4 7.2

500 101 112.1 14.9 6.0

500 326 166.6 38.1 8.6

Table 5. Speed and memory consumption un-
der different settings.

7.8 Attack Resilience

Here, we propose a new attack that is similar to the

coincidental-pattern attack mentioned in Polygraph, but
stronger. We call it the token-fit attack. It is possible that
a hacker may obtain normal traffic with a similar token dis-

tribution as the normal noise in the suspicious pool. She can

then extract tokens from the normal traffic and intentionally

encode tokens into a worm. She may include different sets

of tokens into different worm samples. This does not in-

creases the similarity of worm samples in terms of shared

tokens, but can increase the similarity of worm samples to

normal traffic noise in the suspicious pool; thus, degrading

the quality of the signature.

We evaluate both Hamsa and Polygraph for this attack

by modifying the ATPhttpd exploit to inject different 40 to-

kens to the variant part of each worm sample. The tokens

are extracted from the normal traffic noise in the same sus-

picious pool. We test both systems for suspicious pool with

50 samples using a noise ratio of 50%. We run two different

trials, and find that Hamsa always output a correct signature

as shown in Table 2. However, with the signature produced

by Polygraph, no such polymorphic worms can be detected

(100% false negative), although there is no false positive.

8 Related Work

Early automated worm signature generation efforts

include Honeycomb [12], Autograph [10], and Early-

Bird [24]. While these systems use different means to

classify worm flows and normal traffic, all of them assume

that a worm will have a long invariant substring. However,

these techniques cannot be used for polymorphic worms

since different instances of polymorphic worms do not

contain a long enough common substring.
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Hamsa Polygraph
[16]

Similarity of
CFG [13]

PADS [26] Nemean
[31]

COVERS
[14]

Malware
Detection [4]

Network or Host based Network Network Network Host Host Host Host

Content or behavior based Content

based

Content

based

Behavior

based

Content

based

Content

based

Behavior

based

Behavior based

Noise tolerance Yes Yes (slow) Yes No No Yes Yes

On-line detection speed Fast Fast Slow Fast Fast Fast Slow

General purpose or applica-

tion specific

General

purpose

General

purpose

General pur-

pose

General

purpose

Protocol

specific

Server spe-

cific

General pur-

pose

Provable attack resilience Yes No No No No No No

Information exploited εγπ εγπ π εγπ ε εγ π

Table 6. Summary of relative strengths and weaknesses of different polymorphic worm detection
and signature generation techniques proposed recently.

Recently, there has been active research on polymor-

phic worm signature generation and the related polymor-

phic worm and vulnerability study [4, 13, 14, 16, 26, 31]. In

Table 8, we compare Hamsa with them in terms of the fol-

lowing seven metrics: 1) Network vs. host based: a net-

work based system uses only the network traffic for detec-

tion and can be deployed on routers/gateways; 2) Content

vs. behavior based detection approach; 3) Noise tolerance;

4) Online worm detection: this depends on the speed with

which the signature generated can be compared with net-

work traffic; 5) General purpose vs. application specific:

some schemes like Nemean [31] and COVERS [14] require

detailed protocol/application specification knowledge to de-

tect the worms for each protocol/application (thus they are

mostly host-based); 6) provable attack resilience; and 7) in-

formation exploited.

Polygraph [16] comes closest to our system. It considers

three methods of generating signatures: (1) set of tokens (2)

sequences of tokens, and (3) weighted set of tokens. As

shown in Section 7, Hamsa is a significant improvement

over Polygraph in terms of both speed and attack resilience.

Position-Aware Distribution Signatures [26] (PADS)

bridge signature-based approaches with statistical anomaly-

based approaches and are able to detect variants of the

MSBlaster worms. However, in presence of noise the

accuracy of PADS suffers.

There are also some semantic based approaches. Basi-

cally, there are two kinds of semantic information which

can be exploited for containing polymorphic worms: proto-

col information and binary executable code information.

Nemean [31] uses protocol semantics to cluster the worm

traffic of the same protocol to different clusters for different

worms. It then uses automata learning to reconstruct the

connection and session level signature (automata). How-

ever, it requires detailed protocol specifications for each and

every application protocol. Also, Nemean may fail to pro-

duce effective signatures when the suspicious traffic pool

contains noise.

Christopher et al., [13] propose an approach based on

structural similarity of Control Flow Graphs (CFG) to

generate a fingerprint for detecting different polymorphic

worms. However, their approach can possibly be evaded by

using SED as discussed in Section 2.1. Furthermore, match-

ing fingerprints is computationally expensive and hence

may not be useful for filtering worm traffic on high traffic

links.

TaintCheck [17] and DACODA [5] dynamically traces

and correlates the network input to control flow change to

find the malicious input and infer the properties of worms.

Although TaintCheck can help in understanding worms and

vulnerabilities, it cannot automatically generate the signa-

ture of worms. Moreover their technique is very application

specific: a certain version of a server must be deployed to

monitor a vulnerability to discover how the worm interacts

with the server.

COVERS [14], a system based on address-space ran-

domization (ASR) [3] can detect and correlate the network

input and generate signatures for server protection. How-

ever, although the signature generated can efficiently protect

the servers, it cannot be used by NIDSes or firewalls since

the hacker can potentially evade it3. Moreover, COVERS is
application specific.

Mihai et al., [4] model the malicious program behavior

and detect the code pieces similar to the abstract model.

3Their signature is based on a single worm sample, so the length thresh-
old sometimes can cause false negatives.
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However, the their approach is computationally expensive.

9 Conclusion

In this paper we propose Hamsa, a network-based sig-

nature generation system for zero-day polymorphic worms

which generates multiset of tokens as signatures. Hamsa

achieves significant improvements in speed, accuracy, and

attack resilience over Polygraph, the previously proposed

token-based approach. We prove that multiset signature

generation problem is NP-Hard in presence of noise and

design model based signature generation algorithms with

analytical attack resilience guarantees. The signature gen-

erated by Hamsa can be easily deployed at IDSes such as

Snort [22] or Bro [19].
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