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Hanbury-Brown and Twiss 
exchange and non-equilibrium-
induced correlations in disordered, 
four-terminal graphene-ribbon 
conductor
Z. B. Tan1, T. Elo1, A. Puska1, J. Sarkar1, P. Lähteenmäki1, F. Duerr2, C. Gould2, 

L. W. Molenkamp2, K. E. Nagaev3,4 & P. J. Hakonen  1

We have investigated current-current correlations in a cross-shaped conductor made of graphene. The 

mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor 

where there is diffusive transport in the device arms while the central connection region displays near 
ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-

Büttiker theory, and agreement can be obtained only by taking into account contributions from non-

thermal electron distributions at the inlets to the semiballistic center, in which the partition noise 

becomes strongly modified. The experimental results display distinct Hanbury – Brown and Twiss 
(HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-

number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron 
coherence along atomically-thin, two-dimensional conductors has significant implications on their 
noise and cross correlation properties.

Disordered graphene is an extraordinary tunable system for studying electrical conduction ranging from nearly 
ballistic transport1,2 to hopping conductivity3–8. In narrow graphene ribbon, in particular, the number of trans-
port channels can be varied signi�cantly by tuning charge density by gate voltage and conduction can be pinched 
o� fully near the charge neutrality point (CNP). �e elastic mean free path can be maintained relatively large 
compared with device dimensions, while the importance of localization and Coulomb interactions can be varied 
by adjusting the charge density9–11. Disorder in graphene can lead either to increase or decrease of shot noise, 
depending on the amount and nature of scatterers12–15. �us, in graphene nanoribbon (GNR) systems, it is pos-
sible to study physics of current-current correlations in a regime where disorder can be tuned, which makes it an 
excellent platform for investigating noise properties of disordered conductors.

Shot noise originates from the granular nature of charge carriers, and it can be used as an independent test 
for the conduction mechanism16,17. However it is di�cult to distinguish between di�erent models of noise in 
graphene using two-terminal measurements because several of them give nearby strength, on the order of 0.3–0.4, 
when compared to Poissonian noise. One of the ways to overcome this di�culty is measuring the cross-correlated 
noise in multiterminal graphene systems.

In mesoscopic conductors with purely elastic scattering, there are two fundamental sources of noise16. �e 
�rst source are �uctuations of the occupation numbers of electron states in the reservoirs. �ese �uctuations 
take place if the average occupation numbers are di�erent from zero and 1 and they account for the equilib-
rium thermal noise at a �nite temperature. �is noise is proportional to the conductance of the system, and it is 
nonzero even for ballistic conductors, which lack any internal scattering. Another type of �uctuations is related 
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to the scattering of particles inside the conductor, which partially re�ects them back. �ese �uctuations are called 
partition noise, and it may be observed even at zero temperature if there is a net current through the conductor. 
�is noise is typical of systems with tunneling or di�usive transport where the incoming electrons are described 
by a Fermi distribution. In our experiment, however, we have locally non-equilibrium distribution functions for 
electrons instead of Fermi distributions, which leads to clear modi�cations in the partitioning noise18. Hence, the 
goal of our paper is not to test the exactness of individual noise models but rather to test whether the structure 
under investigation satis�es the assumptions of a particular model.

�eoretical analysis of low frequency current-current cross correlations δ δ= −〈 〉S I Inm n m  of current �uctua-
tions Iiδ  in terminals =i n and m in a di�usive cross geometry has been performed in refs19 and20 with virtually 
equivalent �ndings. In the semiclassical theory20, the spectral density of noise in a di�usive system is governed by 
the local distribution function. �is function is sensitive to di�usion of electrons, which is dependent on the local 
conductance and geometry of the conductor. �e semiclassical theory predicts similar behavior for shot noise (i.e. 
auto correlation Snn) in all cross-shaped di�usive conductors with negligible resistance of the central region. �e 
Fano factor, i.e. the ratio between the autocorrelation Snn and the Poissonian noise =S eIP n related to current In in 
terminal n, is found to remain at F 1/3= , i.e. as for a single wire, when biasing is done at terminal n and the other 
terminals are grounded. In particular, the semiclassical theory predicts additivity of cross correlations in such a 
cross-shaped conductor, which would mean the absence of Hanbury–Brown and Twiss (HBT) exchange e�ects19 
in our sample.

In this paper, we report and analyze experimental results on auto and cross correlations in a graphene nanor-
ibbon cross where the mean free path mfp  of charge carriers is on the order of the ribbon width. �e relatively 
long mfp  makes this device as a hybrid conductor with di�usive transport in the device arms and ballistic propa-
gation in the central connection region. Our data on current-current correlations deviate from the multiterminal 
noise predictions for di�usive systems16,19,20, and agreement can be obtained only by taking into account contri-
butions from non-equilibrium charge carrier distributions that modify the occupation-number noise at the bor-
der of the central region connecting the arms of the cross. �e presence of this additional noise contribution is 
corroborated by the observation of negative bend resistance which is a signature of ballistic propagation in the 
centre. Our experiments also reveal distinct HBT exchange correlations, the strength of which is boosted by the 
non-equilibrium occupation-number �uctuations internal to this hybrid conductor. �e observed HBT e�ect 
varies substantially with gate voltage and it becomes very strong near the CNP.

�e basic assumption of di�usive transport theory is that the mean free path ℓ ≪ L Wmin { , }mfp  compared 
with the length L and width W  of the sample. �e latter condition, however, is not well ful�lled in a narrow GNR, 
such as our sample illustrated in Fig. 1a. Deviations from �nite size e�ects are estimated in ref.19, which predicts 
a small positive HBT exchange term on the order of  L G eV( / )mfp 0  for a metallic di�usive cross, where G0 is the 
average arm conductance of the cross. �is prediction turns out to have an opposite sign with respect to our 
experimental results, which are more in line with the behavior of a multiterminal chaotic quantum dot with inter-
nal ballistic transport21. Our measurements do reveal non-local conductance, which indicates that ℓ ≃ Wmfp , and 
that the transport over the central area of the cross for many charge carriers is ballistic. Our results show that the 
noise properties of the system can be accounted for by the standard Langevin theory provided that the central 
region is considered as a distinct four-terminal ballistic conductor with nonequilibrium electron distributions f

i
c 

Figure 1. Le�: False color scanning electron micrograph of the measured GNR sample; green color marks 
graphene and blue denotes the silicon oxide substrate. Terminals 1 and 3 were employed for cross correlation 
while bias was supplied via 2 and 4 in the HBT experiments. �e white scale bar corresponds to 100 nm. �e 
overlaid arrows de�ne the straight and bent carrier paths with conductances of Gp and Gt in the central region, 
respectively, for electrons coming from terminal 1; the same de�nition of Gp and Gt repeats for electrons coming 
from each terminal. Right: Schematic illustration of our theoretical model with its most essential features: G0 
denotes the average arm conductance, G describes the transport in the semiballistic central region, f

i
c and ϕi

c 
mark the non-equilibrium distribution and the local voltage at the contact point between the di�usive arm and 
the central region, and f E( )

0
 denotes the Fermi distribution. In the di�usive arm, the distribution function 

varies as ( )f x E f E eV f E( , ) 1 ( ) ( )
i

x

L i
x

L i
c

0
= − − + . For details, see text.
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at the internal terminals (see Fig. 1b), which also contributes to the noise through the occupation-number �uctu-
ations of incident electrons18.

We investigated current-current cross correlations in a disordered cross-shaped graphene conductor. �e 
length and the nominal width of the arms amount to L 240∼  nm and W 50∼  nm, respectively. A scanning elec-
tron micrograph of the actual measured sample is displayed in Fig. 1a. Figure 1b outlines the main features of the 
Langevin circuit model employed in our analysis. G is a symmetric conductance matrix (see Eq. 5), which is 
composed of direct transmission with conductance Gp through the central region and sideways transmission with 
conductance Gt (le� and right symmetric). �e non-equilibrium distribution function f

i
c at the contact point 

between the di�usive arm and the central region are calculated self-consistently using circuit analysis, and they 
govern the non-standard partition noise caused by the central region. In the di�usive arm, the distribution func-
tion varies as ( )f x E f E eV f E( , ) 1 ( ) ( )

i

x

L i
x

L i
c

0
= − − +  where L is the length of the arm and Vi  is the applied 

voltage to the arm i.

Theoretical Results
In contrast to ref.19 in which full quantum coherence was presumed over the system, we estimate that the coher-
ence length is on the order of c  = 100–200 nm, which is based on weak localization experiments of ref.22 yielding 
 200c ∼  nm on similarly-fabricated micron-sized samples; our smaller estimate for c is due to enhanced edge 
scattering in our 50-nm-wide GNRs, which leads to a decrease of the diffusion coefficient in the sample23. 
Consequently, c is smaller than the length of the arms of the cross but larger than the size of its central region. 
�is allows us to employ semiclassical circuit theory with Langevin noise generators for calculating incoherent 
noise contributions which originate from di�erent parts of the graphene nanoribbon sample. Details of our 
Langevin model for a hybrid conductor (di�usive and ballistic transport in di�erent parts) are presented in 
Methods section. In addition to regular ingredients of the di�usive Langevin formulation, our hybrid-conductor 
Langevin model (HCL model) contains a conductance matrix G for the semiballistic central region (see Eq. 5), as 
well as separate potentials ϕi

c and distribution functions at the contact points of terminals i to the central region. 
As we assume incoherent transport, the di�erent noise contributions can be incoherently added. For the cross 
correlation S13 biased by Vb from terminal 1 with all the other terminals grounded we �nd

( )
S I I

G G G G G G

G G
eV

2 12 21 32

3( 4 )
,

(1)

p p p

p
b13 1 3

0
2

0
2

0
2

0
4

δ δ= −〈 〉 =
+ +

+

where we have set G Gt p=  for simplicity as this corresponds to our experimental case. In the limit Gp → ∞, we 
recover the diffusive limit. The calculated auto correlation with bias at terminal 1 and the other terminals 
grounded is given by

=
+ +

+
.S G G

G G G G

G G
eV2

18 45 32

( 4 ) (2)
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p
b11 0

2 0
2

0
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For the general formula for G Gt p≠ , see the Methods section. �e above ratio for S S/13 11 depends on G G/p 0 
and, thus, it can be used to obtain information on G G/p 0 of the graphene cross.

We define the Hanbury – Brown and Twiss exchange correlation term in accordance with ref.19 by 
∆ = − −S S S SC A B, where SA, SB, and SC denote the absolute values of the cross-correlated noise power spectra 
between terminals 1 and 3 in three di�erent measurement con�gurations A, B and C: in the HBT con�guration 
A, (B), bias was applied to terminal 2 (4) while the other terminals were connected to DC ground; in the case C, 
both 2 and 4 were biased and 1 and 3 DC-grounded. Using Eq. 1 and its variants for A, B, and C bias con�gura-
tions, we obtain

S
G G

G G
eV20

( 4 ) (3)

p

p
b

0
2 3

0
4

∆ = −
+

.

for the HBT exchange term. Our negative, non-zero result is in clear contrast with S 0∆ =  obtained for regular 
di�usive systems by the semiclassical theory20, as well as ∆ >S 0 predicted for ballistic graphene24. �e calculated 
result for ∆ +S S S/( )A B  is displayed in Fig. 2 on the plane spanned by Gp and Gt. �e regular di�usive behavior 
∆ =S 0 is obtained in the limit G G,p t → ∞.

Experimental Results
Conductance. We �rst characterized the sample conductances. �e conductances of the arms were derived 
from the data for I V/  in Fig. 3 measured for the biasing con�guration C, where the biasing leads 2 and 4 are seen 
with positive (ingoing) current, while currents in 1 and 3 are negative (outgoing). �e currents in the four termi-
nals are symmetric in general. �erefore, in semiclassical treatment, we may set the potential of the center of the 
cross to V/2 in this measurement con�guration. We obtain the arm conductances given in Table 1. �e arm con-
ductances in the proper di�usive regime far away from the Dirac point display symmetry within approximately 
±6% % at V 30g = −  V and ±9% at = −V 10g  V. �e symmetry of the four arms was also proven in measurements 
at V 30g = −  V in other con�grations, in which g

1,2
, g

1,3
, g

1,4
, and g

2,4
 were determined with the remaining termi-

nals �oating, respectively. �e di�erence of g
1,2

, g
1,3

, g
1,4

, and g
2,4

 was less than ±6%, which corroborates the 
symmetry of the four arms far away from the CNP. �e measured conductivities correspond to a �eld e�ect 
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mobility of  500
FE
µ  cm2/Vs, which is by a factor of two smaller than in the graphene cross experiments of ref.25. 

Some asymmetry in conductances is observed at V 0g ∼  and ∼V 15g  V. However, the asymmetry in these regions 
is bias dependent and its in�uence on cross correlations becomes reduced by using a �xed current-level correla-
tion determination if necessary (For a linear cross-shaped conductor, when switching to measurement con�gu-
ration C, the currents at terminals 1 and 3 double from the single source con�gurations A and B. For a nonlinear 
system, this is not the case unless one �xes the currents by adjusting voltages).

�e conductances Gp and Gt, de�ning the behaviour in the central region, were estimated from non-local 
measurements and the geometric dimensions. �ough the arms of our sample are undoubtedly di�usive, the 
observed negative bend voltage is a clear sign of enhanced ballistic transport through the central area26–28. �e 
observed bend voltage illustrated in Fig. 3 is rather small but it indicates nevertheless that part of the charge car-
riers traverse the central region ballistically. �e bend voltage Vbend can be calculated using the Landauer-Buttiker 
theory. �e result using the parametrization of Fig. 1a reads

Figure 2. �eoretically calculated HBT e�ect ∆ +S S S/( )A B  as a function of G G/p 0 and G G/t 0. In our analysis we 
are using the overlaid trace for ∆ +S S S/( )A B  on the diagonal at which =G Gp t.

Figure 3. Conductance =G I V/  vs. Vg  measured at =V 30b  mV using the bias con�guration C: Ingoing currents 
I2 and I4 are positive, while <I 01  and <I 03 . �e inset at = −V 30g  V displays negative bend voltage V Vbend 1,2= , 
where the bias is fed between terminals 4 and 3 and the voltage is measured across terminals 1 and 2.

Vg Arm 1 Arm 2 Arm 3 Arm 4

−10 V 22 20 22 24

−30 V 33 35 37 35

Table 1. Arm conductances (in µS) at gate voltages V 10g = −  V and V 30g = −  V, indicating symmetry of the 
four arms.
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=
−

+ + +
.V

G G G

G G G G G G
V
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t p

p t t p t
bbend

0

0

�e smallness of the measured bend voltage in Fig. 3 (approximately a few per cent of bias voltage) indicates 
that =G Gp t within approximately ±20%. �e size of the central region, taken as a square �tting within the mid-
dle of the cross, yields for the relative direct conductance G G L W/ / 2 3 4p 0 = = . .

Auto and Cross Correlations. Autocorrelation S11 was investigated with bias Vb in terminal 1 and the other 
terminals grounded. In this con�guration, we found .F 0 4, close to the values reported in ref.25 for a con�gura-
tion with �oating side terminals; similarly F was increased near the CNP where the IV curves become strongly 
non-linear at small bias V 10b <  mV. �is Fano factor is higher than the universal value =F 1/3 for di�usive 
systems.

For a symmetric di�usive cross with negligible resistance of the central region =S S/ 1/313 11 . Our calculated 
result deviates from this universal di�usive-system value and our ratio depends on the signi�cance of the occupa-
tion number noise induced by non-equilibrium distribution functions. �e inset in Fig. 4 depicts the theoretical 
ratio as a function of G G/p 0 at =G Gp t. When → ∞Gp , our theory recovers the di�usive value =S S/ 1/313 11  as an 
extremum case, while in the limit of = →G G 0p t  we obtain 2/9. Hence, the non-equilibrium-induced occupation 
number noise will lead to a clear deviation from the di�usive behavior even though no asymmetry exists in the 
conduction and =G Gp t at the crossing.

Figure 4 displays the measured ratio S S/13 11 for our GNR cross. O� from the CNP, our measured ratio �uctu-
ates between 0.22–0.32. We assign this variation to universal noise �uctuations29 which exist in all di�usive con-
ductors30. �ese �uctuations allow only for a comparison of average values away from the CNP point. Our 
theoretical calculation for G G/ 3 4p 0 = .  yields S S/ 0 27513 11 = . , which agrees well with the average value of the 
experimental ratio at − < < −30V V 5Vg ; the data at + < < +20V V 30Vg  would agree with a slightly smaller 
value for G G/p 0, but the statistics here is too small to make de�nite conclusions. In the range of = … +V 3 13g  V, 
in particular, the electrical transport is in�uenced by hopping conduction. Near the CNP ( < <8V V 10g  V), we 
�nd a decrease of S S/13 11 down to 0.13–0.14 which is beyond the range of values produced by our HCL model. 
Inelastic hopping conduction via localized states near the CNP is a likely cause for the decrease of S S/13 11.

Hanbury – Brown and Twiss Exchange Correlations. Figure 5 displays our results for the HBT corre-
lations. In order to compare the experimental results more accurately with theoretical predictions, we present the 
scaled HBT ratio ∆ +S S S/( )A B  in Fig. 5. Our data display clearly a deviation from ∆ + =S S S/( ) 0A B  which is the 
prediction of the regular di�usive theory. �e dashed line in Fig. 5, obtained from Eq. (3) using G G/ 3 4p 0 = . , 
corresponds to S 0 175 0 007∆ = . ± .  where the error estimate indicates the 20% uncertainty in the ratio G G/p t. 
�e agreement between the model and the data is good in the regime where the charge density in the sample is 
large. However, there is a strong modi�cation of the HBT exchange factor near the Dirac point. �e strength of 
this change, however, cannot be captured by our HCL model. In our theoretical model (see Fig. 2), ∆S is seen to 
vary with the ratio of G G/p 0 which is likely to be modi�ed near the CNP point. �ereby, a moderate decrease in 

Figure 4. Ratio of S S/13 11 vs. Vg  with bias applied via terminal 1 having the other terminals DC grounded. �e 
two data sets, light and dark, relate to V 0b , respectively: their di�erence is indicative of the small uncertainty in 
the data. �e dashed line indicates the result from our HCL model with G G/ 3 4p 0 = . . Our data deviates from the 
di�usive theory value 1/3 as shown in the dot line. �e �uctuations in the data are related to universal noise 
�uctuations30. �e inset displays the calculated behavior of S S/13 11 vs. the ratio G G/p 0 (at G G/ 1p t = ).
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S∆  could be understood in terms of a stronger gate dependence in the conductance in the central region com-
pared to that in the arms. Such a mechanism, however, could only account for results with absolute values 
|∆ | + < .S S S/( ) 0 30A B , which clearly falls short from our measured results.

Discussion
Our results on the auto and cross correlation power show linear bias dependence at currents <1 µA (see the inset 
of Fig. 5), which becomes slightly weaker at currents well above 1 µA where inelastic scattering starts to take place. 
When inelastic processes are important (inelastic length l Lin  ), shot noise in graphene is reduced by the most 
strongly coupled energy relaxation processes, i.e. either by impurity-assisted acoustic phonon collisions or by 
optical phonons31–34. Inelastic processes were strongest in our work near the CNP, as rather large voltages were 
needed for biasing. However, the �nal quoted results were always obtained in the limit →V 0b , which eliminates 
any e�ects due to inelastic phonons.

�e shot noise results away from the CNP with  .F 0 4 are in agreement with the theoretical results for disor-
dered graphene ribbons13. In ref.25 it was concluded that these results are in accordance with Gaussian disorder 
having a dimensionless strength of ≈K 100 , which meant that the conductance is strongly a�ected by disorder13. 
However, almost the same result is obtained in our HCL model with di�usive arms and ballistic central region. 
Indeed, the calculations for G G G3 4p t 0= = .  give F 0 367f = .  for the �oating side terminals and F 0 394g = .  for 
the three grounded ones (See Methods). �is excellent agreement between our HCL Langevin circuit theory and 
the experimental results indicates that transport in graphene is well amenable to analysis using semiclassical 
methods having only a few overall parameters.

Besides shot noise, �ne agreement is found between the measured HBT exchange and our HCL model at large 
charge density. �is indicates that our theory is able to capture well the correlations that are generated by two 
particle scattering16 in a disordered graphene conductor. Our results signify that not only the geometry is impor-
tant for HBT correlations but also there is a need to know the local distribution functions driving partitioning in 
multiterminal graphene conductors. �e HBT correlations become more complex when approaching the CNP 
with localized states. �e strong growth of the absolute value of HBT exchange e�ect near the CNP is presumably 
caused by Coulomb blockade and tunneling conductance becoming more important. For a metallic island con-
nected to four metallic leads by four tunnel junctions, we have measured ∆ + = −S S S/( ) 1A B  within 3%35. In 
addition, we did analyze whether enhanced electron-electron interactions near the CNP could account for the 
increased HBT e�ect at small charge density. However, a calculation using local hot electron distribution func-
tions (without a ballistic center) yields S S S/( ) 0 295A B∆ + = − . , which is clearly di�erent from the measured 
results, both near the CNP and far away from it.

To conclude, we have studied cross correlations in a di�usive, disordered graphene conductor where the elas-
tic mean free path is on the order of the feature size of the geometric layout. Even though only weak non-local 
transport features can be observed due to ballistic propagation in the central region of the graphene cross, their 
presence promotes non-equilibrium-induced occupation-number noise that has an essential in�uence on the 
current-current correlations in such a hybrid multiterminal conductor. As a consequence, the noise properties of 
this disordered system cannot be treated by standard di�usive theories. By inclusion of a combinational occupa-
tion noise, i.e., partitioning noise driven by current-generated non-equilibrium distribution functions, remarka-
ble agreement is obtained between our semiclassical (HCL) model and the measured noise properties, including 
the Hanbury–Brown and Twiss exchange e�ects in the transport regime where charge density is large. Altogether, 
our experiment casts important light on transport phenomena in multiterminal graphene conductors where com-
plementary quantum noise issues due to local ballistic propagation have to be taken into account to treat these 

Figure 5. HBT exchange correction ∆S vs. Vg  obtained from low-bias cross correlation experiments 
extrapolated to V 0b → . �e solid line indicates our HCL model result S S S/( ) 0 175A B∆ + = − .  using 

= .G G/ 3 4p 0 . �e inset displays the linear dependence of ∆S on Vb measured at V 30g = −  V.
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hybrid conductors with simultaneous di�usive and ballistic characteristics. �e conclusions of our work are rele-
vant also to other atomically-thin, two-dimensional conductors with similar characteristics36.

Methods
Experimental methods. �e ribbon samples were fabricated from micromechanically cleaved graphene 
on a heavily p-doped substrate with a 280-nm thick layer of SiO2. Metallic leads to contact the graphene sheet 
were �rst patterned using standard e-beam lithography followed by a Ti(2 nm)/Au(35 nm) bilayer deposition. 
A�er li�-o� in acetone, a second lithography step facilitated patterning of the GNRs. Our measurements down 
to 50 mK were performed on a dry dilution refrigerator. Standard lock-in techniques using DL Instruments 1211 
preampli�er followed by a Stanford SR830 lock-in ampli�er were employed for conductance measurements. �e 
IV measurements have been done by using Agilent 33120a generator and 34401a multimeter.

Our cross and auto correlation measurement system operates over frequencies fBW = 600–900 MHz37. �is 
frequency is typically well above any �uctuator noise due to switching in transmission eigenvalues at the con-
tacts31. Still, the employed frequency range is low enough to correspond to zero-frequency noise because the 
frequency is low compared with the internal RC1/  scale and the temperature. An aluminum tunnel junction was 
used for calibration of the noise spectrometers38. Auto and cross correlations were measured using two so�ware 
de�ned digital radio receivers37. For IV curves with signi�cant non-linearity, Snm values were �rst derived as a 
function of current in the limit →I 0. �e resulting reading of dS dI/nm  was converted to dS dV/nm b by using the 
measured di�erential conductance dI dV/ b. Note that we always take the opposite of the cross correlations when 
n m≠ , which makes Snm positive as all these non-diagonal correlations are negative in a fermionic system.

Theoretical modeling. �e system we address is of hybrid type as its di�erent parts exhibit both di�usive 
and ballistic conduction. It represents a conducting cross whose arms are much longer than the elastic mean free 
path mfp, but the central region at the intersection is on the order of mfp . We also assume that the motion of elec-
trons along the arms is incoherent. �erefore it is possible to adopt a circuit model of the system shown in Fig. 1b. 
�e equivalent circuit of the system consists of four di�usive wires shown by dark rectangles, the central ballistic 
region shown by the white circle, and four transition regions between the di�usive wires and the ballistic region, 
which serve as “reservoirs” with nonequilibrium electron distributions acting on the central region. �e length of 
these “reservoirs” is assumed to be on the order of mfp and hence their resistance is negligible when compared 
with G1/ 0 of the di�usive arms. To calculate the average current in each arm, we treat the four di�usive arms and 
the central connecting region as separate elements of the circuit, and the average current in each arm can be 
found from a system of Kirchho� ’s circuit laws. �e four arms of the cross are modelled as two-terminal resistors 
with equal conductances G0, �e ballistic central region may be treated as a four-terminal conductor with +m n2  
re�ectionless channels originating from each arm. Of these channels, n go straight ahead into the opposite arm, 
while m channels turn le� and right, respectively. Hence the conductance matrix of the central region may be 
written in the form

=







+ − − −

− + − −

− − + −

− − − +







G

G G G G G

G G G G G

G G G G G

G G G G G

2

2

2

2 (5)

t p t p t

t t p t p

p t t p t

t p t t p

where G me h2 /p
2=  and =G ne h2 /t

2 . If the electrical potential in arm i at the crossing is i
cϕ , the total current 

�owing from this arm into the other arms equals

∑ ϕ= .I G
(6)

i
j

ij j
c

On the other hand, this current is given by the Ohm’s law in the di�usive arm i

ϕ= −I G V( ), (7)i i i
c

0

where Vi is the external voltage applied to the outer end of the arm. Equations (6) and (7) form a full system for 
�nding the currents Ii in each arm of the cross.

�e two-terminal resistance between the opposite ends of the cross is calculated by setting =V Vb1 , V 03 = , and 
I I 02 4= = . Solving Eqs (6) and (7) for I1 readily gives

R V I
G G G

G G G
/

2( )

( ) (8)
t b

p t

p t
2 1

0

0

≡ =
+ +

+
.

To calculate the bend voltage, it is su�cient to substitute =V 03 , V Vb4 = , and = =I I 01 2  into the system (6)–
(7) and solve it for V1 and V2. As a result, one obtains

= − =
−

+ + +
.V V V

G G G

G G G G G G
V

( )

( 3 ) 8 ( ) (9)
bend

t p

p t t p t
b1 2

0

0
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�e current �owing through arms 4 and 3 is

I I
G G G G

G G G G G G
V

4 ( )

( 3 ) 8 ( )
,

(10)

t p t

p t t p t
b4 3

0

0

= − =
+

+ + +

and the bend resistance equals

R V V I
G G

G G G
( )/

1

4 ( ) (11)
b

t p

t p t
2 1 4≡ − =

−

+
.

If the motion of electrons in the di�usive arms is incoherent, the arms of the cross and the central region may 
be considered as independent sources of noise. �e �uctuations of current in the arms are conveniently described 
by the semiclassical Langevin equation

I I x LG
d x

dx
( )

( )
,

(12)
i i

ext
i

i i

i
0δ δ
δϕ

= +

where I x( )i
ext

iδ  is the extraneous Langevin current, xi is the coordinate along the arm, L is its length, and x( )i iδϕ  is 
the �uctuation of electric potential in this arm. �e correlation function of the Langevin currents is39

I x I x x x LG d f x E f x E( ) ( ) 4 ( ) ( , ) [1 ( , )], (13)i
ext

j
ext

ij i i0 ∫δ δ δ δ ε〈 ′ 〉 = − ′ −

where f x E( , )
i

 is the distribution function of electrons in arm i. An integration of Eq. (12) over x with the condi-
tion (0) 0iδϕ =  brings it to the form

∫δ δϕ δ= +I G
dx

L
I x( ),

(14)i
c

L

i
ext

1 0
0

where L( )i
c

iδϕ δϕ≡  is the potential �uctuation of the reservoir in arm i at the crossing.
On the other hand, the central ballistic region is also a source of noise. Although there is no electron backscat-

tering and thus no true partition noise there, it can generate the noise due to occupation-number �uctuations in 
its “reservoirs” because the distribution functions f E f L E( ) ( , )

i
c

i
≡  at the ends of the corresponding arms are 

nonequilibrium and di�erent from zero and 1 in a range of energies. �e �uctuation of current �owing from arm 
i into the rest of arms equals

∑δ δϕ δ= +I G I ,
(15)

i
j

ij j
c

i

ext

where Ii

ext
δ  are extraneous random currents generated at the crossing due to the nonequilibrium distribution of 

incident electrons with the correlation function16

∫δ δ〈 〉 = − + − .I I G dE f f f f2 [ (1 ) (1 )] (16)i

ext

j

ext

ij i
c

i
c

j
c

j
c 

�e values of f
i
c may be obtained from a system of equations similar to Eqs (6) and (7) with f

i
c in place of i

cϕ  
and −f E eV( )i0

 in place of Vi  where f E( )
0

 is the Fermi distribution function. �e distribution function of elec-
trons in the arms is governed by simple di�usion at a given energy, which yields a linear combination of distribu-
tions at its ends

f x E
x

L
f E eV

x

L
f E( , ) 1 ( ) ( )

(17)i i i
c

0
=


 −



 − + .

�e system of equations (14) and (15) has to be solved for δIi and Ijδ , and then the correlation function 
S I Iij i jδ δ= −〈 〉 has to be calculated using Eqs (13) and (16).

First of all, we calculate the two-terminal Fano factor for the case where the current �ows only through arms 
1 and 3, whereas side arms 2 and 4 are �oating. Hence one has to set =V Vb1 , =V 03  and = =I I 02 4  for the aver-
ages and δ δ δ δ= = = =V V I I 01 3 2 4  for the �uctuations. �is gives us the Fano factor in the form

F S eI G G
G G G G G G

G G G
/

2

3
( )

6 9 ( ) 4( )

[ 2( )] (18)
f p t

p t p t

p t
11 1

0
2

0
2

0
3

≡ | | = +
+ + + +

+ +
.

It is easily seen that Ff  depends only on the ratio between +G Gp t and G0. It tends to zero as for a purely ballis-
tic system when this ratio is small and approaches the 1/3 value for a di�usive conductor when G G Gp t 0+ . 
�e value passes through a maximum ≈ .F 0 48f  at G G G( )/ ( 5 1)/2 0 62p t 0+ = − ≈ . , while it equals 0.367 for 
G G G3 4p t 0= = . . �e latter value is larger than the shot noise for di�usive conductor with purely elastic scatter-
ing, but somewhat smaller than the noise in the hot-electron regime.

In a con�guration where the voltage is applied to terminal 1 and the rest of terminals are grounded, one sets 
V 0iδ =  for all i. �e general expression for the Fano factor is too cumbersome, and we present it here only for the 

particular case of =G Gp t, where it reads
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≡ | | =
+ +

+
.F S eI G

G G G G

G G
/

2

3

18 45 32

( 4 ) (19)
g p

p p

p
11 1

0
2

0
2

0
3

�e F G G( / )g p 0  curve is similar in shape to F G G( / )f p 0  but lies higher and reaches its maximum = .F 0 65g  at 
≈ .G G/ 0 24p 0 . For our particular values = = .G G G3 4p t 0, Fg  equals 0.394 as mentioned in the main text.

In a similar way, one calculates S A
13 for V V V 01 3 4= = =  and =V Vb2 , S B

13 for = = =V V V 01 2 3  and V Vb4 = , 
and S C

13 for V V 01 3= =  and = =V V Vb2 4 . �e resulting exchange term in the noise equals

∆ ≡ − − = − .
+ + + +

+ + +
S S S S eV

(20)
C A B G G G G G G G G G G

G G G G G b13 13 13
20

3

(10 2 3 )( 2 2 )

( 2 2 ) ( 4 )

t t p p p t t

p t t

0
2 2

0 0
2

0
2

0
4

�is formula yields Eq. 3 in the main text using G Gt p= .

Data Availability Statement
�e datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

References
 1. Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530–1533 (2007).
 2. Danneau, R. et al. Shot noise in ballistic graphene. Phys. Rev. Lett. 100, 196802 (2008).
 3. Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).
 4. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 

(2007).
 5. Özyilmaz, B., Jarillo-Herrero, P., Efetov, D. & Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. 

Lett. 91, 192107 (2007).
 6. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
 7. Oostinga, J. B., Sacépé, B., Craciun, M. F. & Morpurgo, A. F. Magnetotransport through graphene nanoribbons. Phys. Rev. B 81, 

193408 (2010).
 8. Danneau, R. et al. Shot noise suppression and hopping conduction in graphene nanoribbons. Phys. Rev. B 82, 161405(R) (2010).
 9. Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).
 10. Dröscher, S., Knowles, H., Meir, Y., Ensslin, K. & Ihn, T. Coulomb gap in graphene nanoribbons. Phys. Rev. B 84, 073405 (2011).
 11. Güttinger, J. et al. Transport through graphene quantum dots. Rep. Prog. Phys. 75, 126502 (2012).
 12. San-Jose, P., Prada, E. & Golubev, D. S. Universal scaling of current �uctuations in disordered graphene. Phys. Rev. B 76, 195445 

(2007).
 13. Lewenkopf, C. H., Mucciolo, E. R. & Castro Neto, A. H. Numerical studies of conductivity and Fano factor in disordered graphene. 

Phys. Rev. B 77, 081410(R) (2008).
 14. Titov, M., Ostrovsky, P. M., Gornyi, I. V., Schuessler, A. & Mirlin, A. D. Charge transport in graphene with resonant scatterers. Phys. 

Rev. Lett. 104, 076802 (2010).
 15. Mucciolo, E. R. & Lewenkopf, C. H. Disorder and electronic transport in graphene. J. Phys.: Condens. Matter 22, 273201 (2010).
 16. Blanter, Y. M. & Büttiker, M. Shot Noise in Mesoscopic Conductors. Phys. Rep. 336, 1 (2000).
 17. Lesovik, G. B. & Sadovskyy, I. A. Scattering matrix approach to the description of quantum electron transport. Physics-Uspekhi 54, 

1007–1059 (2011).
 18. Martin, T. & Landauer, R. Wave-packet approach to noise in multichannel mesoscopic systems. Phys. Rev. B 45, 1742–1755 (1992).
 19. Blanter, Y. M. & Büttiker, M. Shot-noise current-current correlations in multiterminal di�usive conductors. Phys. Rev. B 56, 

2127–2136 (1997).
 20. Sukhorukov, E. & Loss, D. Noise in multiterminal di�usive conductors: Universality, nonlocality, and exchange e�ects. Phys. Rev. B 

59, 13054–13066 (1999).
 21. van Langen, S. & Büttiker, M. Quantum-statistical current correlations in multilead chaotic cavities. Phys. Rev. B 56, R1680–R1683 

(1997).
 22. Bohra, G. et al. Nonergodicity and microscopic symmetry breaking of the conductance �uctuations in disordered mesoscopic 

graphene. Phys. Lett. B 86, 161405(R) (2012).
 23. Beams, R., Cançado, L. G. & Novotny, L. Low temperature raman study of the electron coherence length near graphene edges. Nano 

Lett. 11, 1177–1181 (2011).
 24. Laakso, M. A. & Heikkilä, T. T. Charge transport in ballistic multiprobe graphene structures. Phys. Rev. B 78, 205420 (2008).
 25. Tan, Z. B. et al. Shot noise in lithographically patterned graphene nanoribbons. Phys. Rev. B 88, 245415 (2013).
 26. Takagaki, Y. et al. Nonlocal quantum transport in narrow multibranched electron wave guide of GaAs-AlGaAs. Solid State Commun. 

68, 1051–1054 (1988).
 27. Tarucha, S., Saku, T., Hirayama, Y. & Horikoshi, Y. Bend-resistance characteristics of macroscopic four-terminal devices with a high 

electron mobility. Phys. Rev. B 45, 13465–13468 (1992).
 28. Weingart, S. et al. Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions. and L. Ley. Appl. Phys. Lett. 

95, 262101 (2009).
 29. Cox, D. et al. Universal noise �uctuations in graphene. to be submitted.
 30. de Jong, M. J. M. & Beenakker, C. W. J. Mesoscopic �uctuations in the shot-noise power of metals. Phys. Rev. B 46, 13400–13406 

(1992).
 31. Laitinen, A. et al. Electron-phonon coupling in suspended graphene: Supercollisions by ripples. Nano Lett. 14, 3009–3013 (2014).
 32. Laitinen, A. et al. Coupling between electrons and optical phonons in suspended bilayer graphene. Phys. Rev. B 91, 121414 (2015).
 33. Fay, A. et al. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Phys. Rev. 

B 84, 245427 (2011).
 34. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2012).
 35. Sarkar, J., Padurariu, C., Puska, A., Golubev, D. & Hakonen, P. J. Hanbury-Brown and Twiss exchange e�ects in a four-terminal 

tunnel junction. Preprint at https://arxiv.org/abs/1706.02895 (2017)
 36. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 

7, 4598–4810 (2014).
 37. Elo, T. et al. Low-noise correlation measurements based on so�ware-de�ned-radio receivers and cooled microwave ampli�ers. Rev. 

Sci. Instrum. 87, 114706 (2016).

https://arxiv.org/abs/1706.02895


www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS |  (2018) 8:14952  | DOI:10.1038/s41598-018-32777-5

 38. Danneau, R. et al. Evanescent wave transport and shot noise in graphene: Ballistic regime and e�ect of disorder. J. Low Temp. Phys. 
153, 374–392 (2008).

 39. Nagaev, K. E. On the shot noise in dirty metal contacts. Phys. Lett. A 169, 103–107 (1992).

Acknowledgements
We thank D. Golubev, C. Flindt, G. Lesovik, F. Libisch, C. Padurariu, P. Virtanen, and T. Heikkilä for fruitful 
discussions. �is work has been supported in part by the EU 7th Framework Programme (Graphene Flagship and 
Grant No. 228464 Microkelvin), by the Academy of Finland (projects no. 250280 LTQ CoE, 132377 and 290346), 
and by the Russian Science Foundation under Grant No. 16-42-01050.

Author Contributions
P.H. and L.M. initiated the research, F.D. and C.G. fabricated the samples, A.P. and T.E. constructed the noise 
measurement setup, Z.T. and J.S. conducted the experiments, Z.T., T.E., and P.H. analyzed the data, and K.N. 
developed the theory. All authors took part in writing and revising the manuscript.

Additional Information
Competing Interests: �e authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Hanbury-Brown and Twiss exchange and non-equilibrium-induced correlations in disordered, four-terminal graphene-ribbon cond ...
	Theoretical Results
	Experimental Results
	Conductance. 
	Auto and Cross Correlations. 
	Hanbury – Brown and Twiss Exchange Correlations. 

	Discussion
	Methods
	Experimental methods. 
	Theoretical modeling. 

	Acknowledgements
	Figure 1 Left: False color scanning electron micrograph of the measured GNR sample green color marks graphene and blue denotes the silicon oxide substrate.
	Figure 2 Theoretically calculated HBT effect as a function of and .
	Figure 3 Conductance vs.
	Figure 4 Ratio of vs.
	Figure 5 HBT exchange correction vs.
	Table 1 Arm conductances (in μS) at gate voltages V and V, indicating symmetry of the four arms.


