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Abstract

We describe a two-stage method for detecting hands and their orientation in uncon-

strained images. The first stage uses three complementary detectors to propose hand

bounding boxes. Each bounding box is then scored by the three detectors independently,

and a second stage classifier learnt to compute a final confidence score for the proposals

using these features.

We make the following contributions: (i) we add context-based and skin-based pro-

posals to a sliding window shape based detector to increase recall; (ii) we develop a new

method of non-maximum suppression based on super-pixels; and (iii) we introduce a

fully annotated hand dataset for training and testing.

We show that the hand detector exceeds the state of the art on two public datasets,

including the PASCAL VOC 2010 human layout challenge.

1 Introduction

The objective of this work is to detect and localise human hands in still images. This is a

tremendously challenging task as hands can be very varied in shape and viewpoint, can be

closed or open, can be partially occluded, can have different articulations of the fingers, can

be grasping other objects or other hands, etc. Our motivation for this is that having a reliable

hand detector facilitates many other tasks in human visual recognition, such as determining

human layout [2, 13, 17, 24] and actions from static images [10, 13, 19, 29]. It also benefits

human temporal analysis, such as recognizing sign language [5, 14], gestures and activities

in video.

Methods based on detecting hands independently using skin detection [27, 28, 30] or

Viola & Jones like cascade detectors built from Harr features [23, 25, 26] have had limited

success and impact on unconstrained images, perhaps due to lack of sufficient training data.

There has been quite some success in detecting hands as part of a human pictorial structure

[5, 22, 24] which provides spatial context for the hand position. However, these methods

require that several parts of the human (e.g. head and arms) are also visible in the image and

have some limitations on the body poses they are trained for (e.g. no self-occlusion).

In this paper we propose a detector using a two-stage hypothesize and classify frame-

work. First, hand hypotheses are proposed from three independent methods: a sliding win-

dow hand-shape detector, a context-based detector, and a skin-based detector. Then, the

proposals are scored by all three methods and a discriminatively trained model is used to
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(a) (b) (c) (d) (e)

Figure 1: Overview of the method. (a) Original image. (b) Some of the hypotheses pro-

posed by hand and context detector. Bounding boxes in red are proposed by the hand detector

and in green by the context detector. (c) Skin detection and hypotheses generation. (d) Super-

pixel segmentation of the image with combined hypothesised bounding boxes from the three

proposal schemes. Using super-pixel based non-maximum suppression (NMS), overlapping

bounding boxes are suppressed. (e) Final detection after post-processing.

verify them. Figure 1 overviews the detector. The three proposal mechanisms ensure good

recall, and the discriminative classification ensures good precision. In addition, we have col-

lected a large dataset of images with ground truth annotations for hands, and this provides

sufficient training data for the methods.

We show that this detector can achieve very good recall and precision on unconstrained

images from multiple sources, and that it exceeds the state of the art performance of Karlin-

sky et al.[22], and the PASCAL VOC layout challenge[13].

2 Proposal methods

In this section we describe the three proposal methods: shape, context, and skin colour.

Each of these delivers a number of hypotheses for a bounding box for the hand, specified as

a rotated rectangle (i.e. it is not axis aligned).

2.1 Hand shape detector

This detector proposes bounding boxes for hands using Felzenszwalb et al. [16]’s part based

deformable model based on HOG features [9]. The detector is a mixture over three compo-

nents (Figure 2(a)), where each component represent a different aspect of the hand. Learning

is done using the training set of the hand dataset (Section 4). The training images are rotated,

such that all the hand instances are aligned (as shown in Figure 2(b)). Testing is performed at

36 different rotations of the image (at standard 10◦ intervals). For each image the proposed

bounding boxes are given by the set BHD = {b ∈ B | βHD(b) > th}, where βHD is the scoring

function [16] of the hand detector, B is the set of all detected hand bounding boxes, and th
is the threshold of the hand detector chosen to give 90% recall on the training set.

2.2 Context detector

This detector proposes hand bounding box depending on its context. The motivation behind

this is that the end of arm may be more visible or recognizable than the hand, and could

provide vital cues for hand detection. In order to learn the context, a part based deformable

model [16] is trained from the hand bounding box training annotations extended to include
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(a) (b) (c)

Figure 2: (a) Root filters for the three components of the hand-shape detector. The first

two filters cover frontal pose and the third filter profile. (b) Rotated Training images so that

bounding boxes are axis aligned. (c) Context captured around the hand bounding box. The

blue rectangle shows the hand bounding box and the red shows the extended box used to

capture context around the hand. The context is captured over a region having the same

height and twice the width as the hand.

the surrounding region, as shown in figure 2(c). Again, a mixture model with three compo-

nents is learnt. It should be noted that unlike other methods, which model adjacent body parts

such as the arm explicitly, here the area surrounding the hand is instead modelled directly in

a discriminative manner. Due to this although the detector is learned over a relatively varied

region, it is less altered by occlusion of body parts. For training all the images are rotated so

that the bounding boxes have the same orientation (axis aligned) (Figure 2(c)), and testing is

performed at 10◦ intervals of rotation. Hand bounding boxes are obtained from the detected

context boxes by shrinking them. Thus, for each image the proposed boxes are given by the

set BCD = {b ∈ B | βCD(b) > tc}, where βCD is the scoring function of the context detector

[16], B is the set of all hand bounding boxes, and tc is the threshold of the context detector

chosen to give 90% recall on the training set.

2.3 Skin-based detector

This proceeds in two steps: first skin regions are obtained, then they are used to instantiate

hypotheses for hands.

Skin detection. A global skin detector is used to detect the skin regions in the image [8].

The skin detection results are further enhanced by using detected face regions (using the

openCV face detector [26]) to determine the colour of skin in the target image [18] (Figure

3). This enables skin to be detected despite unusual lighting and colour balances which may

be peculiar to the target image. A simple classifier of colour likelihood is used based on a

histogram of the face pixels. We proceed in two stages. First, in the manner of hysteresis

in the Canny operator, two thresholds (confidences) for likelihood are learnt. Pixels which

are above the high threshold are classified as skin. Then pixels which are above the low

threshold are also classified as skin if they are spatial neighbours of a pixel above the high

threshold (these thresholds are learnt by cross-validation on ground truth segmentations).

Second, a bootstrapping stage, the colour of the neighbouring pixels is used to update the

colour likelihood classifier and the process is repeated.

Pixels are classified using likelihood here, rather than a posterior or discriminative clas-

sifier, as learning a distribution for the background pixels at this stage is error prone due to

the possible presence of arms and other people in unknown locations.

Hypothesis generation. Lines are fitted to the skin regions using a Hough transform, and

also by finding the medial axis of the blob-shaped skin regions. The medial axis often pro-

duces useful lines in the cases where only hands are visible (and the resulting skin regions

are then approximately elliptical). The Hough fitting is more useful in the case of skin from

arms. The hands are then hypothesised at either ends of the line (Figure 4). The size of
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(a) (b) (c) (d)

Figure 3: Skin detection. (a) Input image with the face highlighted. (b) A colour histogram

is computed from the face skin pixels. (c) Likelihood values for skin pixels. (d) Likelihood

values after bootstrapping. Note that many more of the true skin pixels are now detected

compared to (c). In the figure, red colour corresponds to the highest value and blue the

lowest.

(a) (b) (c) (a) (b) (c)

Figure 4: Hypotheses generation from the skin regions. (a) Original image. (b) Lines are

fitted to the skin region which are used to hypothesise the extent and orientation of the hand.

Hands are hypothesised at both ends of the fitted lines. If the skin region resembles a blob

then the whole skin region is hypothesised as a hand. (c) Hand detections remaining after

verification using the model.

the box for the hand depends upon the width of the skin region at end of the line. The set

of boxes from all lines are the proposals from the skin detection, BSD. No hypothesis is

proposed from the facial skin regions. If the face is not detected in the first stage, then skin

colour based proposal method is not applied for that image.

3 Hypothesis classification

The hypotheses proposed by the different proposal schemes are combined and are then eval-

uated using a second stage classifier. The complete set of hypotheses is given by the union

Bh = {BHD ∪BCD ∪BSD}. Three scores are then computed for each hypothesised bounding

box (b ∈ Bh) as follows:

Hand detector score. A score (α1) obtained from the hand detector.

α1 = βHD(b) (1)

where βHD is the scoring function of the hand detector.

Context detector score. In order to include some deformation between the hand and its

context, max-pooling of scores is done over all boxes (translated and rotated) having an

overlap with the given bounding box, b, above a 0.5 threshold. This gives some degree

of invariance to rotation and translation changes. Let B
′

h be the set of all bounding boxes

having overlap score greater than the threshold value with the given bounding box b. Then

the context detector score is given by,
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(a) (b)

Figure 5: Bayes risk plots. The distribution of skin fraction value for positive bounding

boxes is shown in blue, the negative bounding boxes in red, and the Bayes risk in purple. (a)

Skin fraction computed over all the pixels of the bounding box. (b). Skin fraction computed

for pixels belonging to the biggest super-pixel in the bounding box. It can be seen that (b)

has a far lower Bayes risk and therefore can discriminate better between the positive and

negative boxes.

α2 = max
bh∈B

′
h

(βCD(bh)) (2)

where βCD is the scoring function of the context detector.

Skin detection score. For the skin detection score, a straight forward choice would be to

use the skin fraction (i.e., the fraction of pixels that are skin in a bounding box b) as the

feature. This approach is not suitable for bounding boxes as the boundaries are not tightly

aligned with the hand, and may include the arm or other skin regions for example. However,

a hand’s appearance is often visually coherent and can be obtained as a single super-pixel.

Thus, the image is first split into super-pixels [3], then for a bounding box, the skin fraction

(α3) is computed for the biggest super-pixel within it. This gives a better discriminative

feature than skin fraction alone (Figure 5).

Classification of scores. The three scores for a given bounding box are combined into a

single feature vector, (α1,α2,α3), and a linear SVM classifier [6] is learned over the com-

bined feature space using a standard SVM-solver [20]. This final classifier is used to com-

pute confidence score for all the bounding boxes.

Super pixel based non-maximum suppression. Typically a detection algorithm returns

a number of overlapping bounding boxes, and non-maximum boxes are then suppressed

depending on their overlap with other high-scoring boxes [7]. However, this suppression in

general does not use any visual information from the image. This sometimes results in losing

detections for the objects if multiple partially overlapping instances are present in the image.

We propose a modification of the traditional non-maximum suppression (NMS) tech-

nique, and instead incorporate further image information into the NMS process. As in the

case of the skin detection score, we make use of super-pixels to capture the visual coherence

of the hand. The image is first split into super-pixels, and then NMS is applied over all the

boxes overlapping the same super-pixel. The overlap threshold for NMS is 0.4. If a box is

overlapping more than one super-pixel then it is associated with the one that it is overlapping

with the most. Figure 6 shows some examples where super-pixel based NMS performs better

than the conventional NMS technique.

To avoid cases where the detected bounding boxes do not fit tightly around the true

hand, the NMS surviving box is fitted tightly around its enclosed super-pixels if the super-
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(a) (b) (c) (d)

Figure 6: Comparison of conventional NMS with super-pixel based NMS. (a) Bounding

boxes shown in blue and red are overlapping. (b) Superpixel segmentation of the image. (c)

The red bounding box is suppressed by conventional NMS. (d) Super-pixel NMS retains the

correct boxes.

pixel resembles a blob. A super-pixel is deemed a blob if the ratio between its major and

minor axis is less than a threshold (2.5). Detected hand boxes which overlap with the face

regions (localised using the face detector) are also removed as part of the post-processing.

By applying these post-processing steps, performance of the system improves significantly

(Table 2).

The time taken for the whole detection process is about 2 minutes for an image of size

360×640 pixels on a standard quad-core 2.50 GHz machine. The hand and context detectors

employ the efficient cascade implementation of Felzenszwalb et al. [15].

4 Hand dataset

We introduce a comprehensive dataset of hand images collected from various different pub-

lic image data set sources as listed in Table 1. While collecting the data, no restriction was

imposed on the pose or visibility of people, nor was any constraint imposed on the environ-

ment.

In each image, all the hands that can be perceived clearly by humans are annotated. The

annotations consist of a bounding rectangle, which does not have to be axis aligned, oriented

with respect to the wrist. Examples are shown in Figure 7.

The data is split into training, validation and test sets in such a way that there is no

repetition of any given person among these datasets. Hand instances larger than a fixed area

of bounding box (1500 sq. pixels) are used in the subsequent experiments. This gives around

4170 high quality hand instances. The distribution of these images into training, validation

and test sets is also given in Table 1. A total of 13050 hand instances are annotated (including

the 4170 larger instances). The dataset is available at (http://www.robots.ox.ac.

uk/~vgg/data/hands/).

Evaluation Measure. The performance is evaluated using average precision (AP) (the area

under the Precision Recall curve). As used in PASCAL VOC [12], a hand detection is

considered true or false according to its overlap with the ground-truth bounding box. A box

is positive if the overlap score is more than 0.5, where the overlap score (O) between two

boxes is defined as: O =
area(Bg∩Bd)
area(Bg∪Bd) , where Bg is the axis aligned bounding rectangle around

ground-truth bounding box and Bd is the axis aligned rectangle around detected bounding

box.

http://www.robots.ox.ac.uk/~vgg/data/hands/
http://www.robots.ox.ac.uk/~vgg/data/hands/
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Training Dataset Validation Dataset

Source # Ins # Img Source # Ins # Img

Buffy stickman [1] 438 346 Movie dataset* 649 406

INRIA pedestrian [9] 137 97

Poselet (H3D) [4] 580 237 Test Dataset

Skin dataset [21] 139 87 Source # Ins # Img

PASCAL VOC 2007 train and val

set [11]

507 345 PASCAL VOC 2010

human layout val set [13]

98 63

PASCAL VOC 2010 train and val

set (except human layout set) [13]

1060 732 PASCAL VOC 2007 test

set[11]

562 373

Total number 2861 1844 Total number 660 436

Table 1: Distribution of larger hand instances in the hand dataset. ‘# Ins’ is the number of

hand instances, and ‘# Img’ the number of images. The movie dataset contains frames from

the films ‘Four weddings and a funeral’, ‘Apollo 13’, ‘About a boy’ and ‘Forrest Gump’.

Figure 7: Sample images from the hand dataset with bounding box annotations overlaid. In

the annotation, rectangle sides are ordered so that the wrist is along the first side marked with

‘*’.

5 Experimental Results

The model is evaluated on our test dataset and two external datasets (signer dataset [5] and

PASCAL VOC 2010 person layout test dataset [13]). We compare to the performance of

previous work on these external datasets.

5.1 Hand dataset
For all of the following experiments the model is trained on the hand training dataset and

model parameter values are determined on the hand validation dataset, see Table 1.

Parameter estimation. The model parameters include: size of context bounding box around

the hand, weight values of the second stage classifier and the SVM parameter C.

For the context box, the following parameter values were investigate: ({h, 2w}, {2h, 2w},

{h, 3w} and {2h, 3w}), where ‘h’ and ‘w’ are the height and width of the hand bounding box

respectively. The AP obtained for theses different sizes is [46.13, 38.75, 44.04, 40.97]. Con-

sequently, a context region is of the same height and twice the width as the hand bounding

box is used (refer Figure 2(c)). The weights learnt for the linear SVM used to blend scores

from the proposal schemes are w = (1,0.4,0.36)⊤ for hand detector score, context detector

score and skin detection score respectively. The value of parameter C was learnt as 1.0.

Test set performance. The basic hand detector (i.e. no context or skin detection) is used

as the baseline. Table 2 shows the average precision for different proposal schemes after

including different scores in the model. The baseline precision is the precision obtained by

using just the hand detector as the proposal scheme and the hand score as the only score

for the final classifier. Compared to this baseline it can be seen that there is around 15%

improvement in average precision and 11% increase in recall by the final model.
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Proposal schemes Hand score Hand and

context scores

Hand, context

and skin scores

Recall

Hand 33.57 / 36.54 34.23 / 37.78 35.31 / 41.09 74.09

Hand and context 36.19 / 39.22 39.06 / 42.68 41.59 / 47.13 82.12

Hand, context and skin 36.30 / 39.63 39.38 / 43.48 42.25 / 48.20 85.30

Table 2: Performance on the hand test dataset in terms of average precision (before post-

processing / after post-processing). The final column gives the recall after post-processing.

Along a row the variation in performance can be seen for a given proposal scheme after

including different scores in the final classifier. The increase in recall with the addition of

the different proposal schemes is evident. The baseline is the ‘hand proposal, hand score’ (in

italics), and the final performance is shown in bold.

(a) (b)

Figure 8: (a) Precison-Recall curve comparing the baseline and final results. (b) Variation

in Average Precision with the number of training instances. To generate the plot, five sets of

the specified size are randomly sampled from the hand training set and a model learnt from

each. The graph shows the mean AP and standard deviation obtained over the test set for the

five models. For the last data-point no such split is done as all of the training data is used. It

can be seen that AP increases with the the size of the training set and reaches saturation after

2500 images.

If the conventional NMS is used for post-processing, then the AP of the system reduces

from 42.25 to 40.79. The PR curve comparing baseline results with our results after post-

processing is shown in the Figure 8(a). Figure 8(b) shows the variation in AP with increase

in the training data.

5.2 Signer dataset
The model used for this experiment is trained on the hand training dataset (Table 1). The

dataset that is used for this experiment is the ‘5-signers’ dataset which is a collection of

frames from five news sequences (39 frames each) with different signers [5].

Karlinsky et al. [22] use the ground-truth position and scale of the head bounding box

to fit a chain model originating from head up-to the hand. They consider the hand detection

to be correct if it is within half face width from the ground-truth location of the hand. They

report their detection performance within the top k hand detections per ground-truth hand

instance. Table 3(a) compares the result from their method with ours. For evaluation the

same criteria is used as that used by the authors.

It can be seen that for k = 3 and 4, our method performs better than [22]. For smaller

values of k, Karlinsky et al.’s method works well because the chain model enables them to

disambiguate hands from the background better. However, this can also be a disadvantage of

their model as the method requires the position of head at test time, and can not work if the



MITTAL et al.: HAND DETECTION USING MULTIPLE PROPOSALS 9

Setting 1 max 2 max 3 max 4 max

Karlinsky

et. al. [22]

84.9 92.8 95.4 96.7

Our method 76.67 90 95.64 97.44

Method BCNPCL Oxford Ours

AP 3.3 10.4 23.18

(a) (b)

Table 3: (a) Comparison of results on the Signer dataset.‘1 max’, ‘2 max’ etc. are the de-

tection performance within the top ‘k’ hand detections per ground-truth hand instance. (b)

Comparison of our method with other submissions for PASCAL VOC 2010 person layout

challenge for hand detection task [13]. Scores are obtained by submitting results to the

competition evaluation server.

Figure 9: Examples of high-scoring detections on the three datasets. Top row: images from

the hand dataset; Middle row: images from the Signer dataset; Bottom row: images from the

PASCAL VOC 2010 person layout test set.

head or some-other body parts are occluded. Our method does not require other body parts

to be visible (and is therefore not restricted to images having un-occluded humans in frontal

poses).

5.3 PASCAL VOC 2010 person layout test dataset
The dataset for PASCAL VOC 2010 person layout challenge [13] has 320 images with 505

humans annotated. Bounding boxes are provided around every human figure and the task is

judged by how well the three body parts (head, hand and feet) are predicted individually in

the given region. The prediction of a part is considered to be correct if the overlap score with

the ground truth is more than 0.5. A method must provide a single score for each human

annotated, and results are ranked according to this score (i.e. head, hand and feet detections

are not ranked separately). The performance is measured using AP.

For this problem, we train the model on hand training dataset (Table 1) and evaluate it

for competition 8 (i.e., training on own data). Each of the provided human bounding boxes

is re-sized such that the minimum width is at-least 300 pixels. This is done to ensure that

the hands in the image are reasonably large for detection. For every figure, either one or two

hand bounding boxes are returned depending upon the confidence scores obtained from the

model. The final confidence score for the human is the average of the scores for each of the

hands.

As shown in table 3(b), we report a very good performance over this dataset, beating our

previous winning entry by a factor of two.
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A sample of high scoring detections from the three datasets are shown in figure 9.

6 Conclusions and future work
We have demonstrated that the proposed two stage hypothesise and classify method is capa-

ble of improving recall and precision over state of the art results. A natural extension would

be to add a fast first stage to the cascade so that the time for the entire process can be reduced.
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