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Abstract � Whenever a sensor is mounted on a robot hand it is important to know the relation�
ship between the sensor and the hand� The problem of determining this relationship is referred
to as the hand�eye calibration problem� Hand�eye calibration is important in at least two types
of tasks� �i� map sensor centered measurements into the robot workspace frame and �ii� allow the
robot to precisely move the sensor� In the past some solutions were proposed in the particular
case of the sensor being a TV camera� With almost no exception� all existing solutions attempt to
solve a homogeneous matrix equation of the form AX � XB� This paper has the following main
contributions� First we show that there are two possible formulations of the hand�eye calibration
problem� One formulation is the classical one that we just mentioned� A second formulation takes
the form of the following homogeneous matrix equation� MY �M �Y B� The advantage of the latter
formulation is that the extrinsic and intrinsic parameters of the camera need not be made explicit�
Indeed� this formulation directly uses the ��	 perspective matrices �M and M �� associated with 

positions of the camera with respect to the calibration frame� Moreover� this formulation together
with the classical one cover a wider range of camera�based sensors to be calibrated with respect
to the robot hand� single scan�line cameras� stereo heads� range �nders� etc� Second� we develop
a common mathematical framework to solve for the hand�eye calibration problem using either of
the two formulations� We represent rotation by a unit quaternion� We present two methods� �i� a
closed�form solution for solving for rotation using unit quaternions and then solving for translation
and �ii� a non�linear technique for simultaneously solving for rotation and translation� Third� we
perform a stability analysis both for our two methods and for the classical linear method developed
by Tsai � Lenz 
TL���� This analysis allows the comparison of the three methods� In the light
of this comparison� the non�linear optimization method� that solves for rotation and translation
simultaneously� seems to be the most robust one with respect to noise and to measurement errors�
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� Introduction

Whenever a sensor is mounted on a robot hand it is important to know the relationship between the
sensor and the hand� The problem of determining this relationship is referred to as the hand�eye
calibration problem� Hand�eye calibration is important in at least two types of tasks�

Map sensor centered measurements into the robot workspace frame
 Consider for example the task
of grasping an object at an unknown location� First� an object recognition system determines
the position and orientation of the object with respect to the sensor� Second� the object
location �position and orientation� is mapped from the sensor frame to the gripper �hand�
frame� The robot may now direct its gripper towards the object and grasp it 
HDBL����

Allow the robot to precisely move the sensor
 This is necessary for inspecting complex ��D parts

HML�
�� 
HML���� for reconstructing ��D scenes with a moving camera 
BMV���� or for
visual servoing �using a sensor inside a control servo loop� 
ECR�
��

In the past some solutions were proposed in the particular case of the sensor being a TV camera�
With almost no exception� all existing solutions attempt to solve a homogeneous matrix equation
of the form �
SA���� 
TL���� 
CK���� 
Che���� 
Wan�
���

AX � XB ���

This paper has the following main contributions�
First we show that there are two possible formulations of the hand�eye calibration problem�

One formulation is the classical one that we just mentioned� A second formulation takes the form
of the following homogeneous matrix equation�

MY �M �Y B �
�

The advantage of the latter formulation is that the extrinsic and intrinsic parameters of the camera
need not be made explicit� Indeed� this formulation directly uses the ��	 perspective matrices �M
andM �� associated with 
 positions of the camera with respect to the calibration frame� Moreover�
this formulation together with the classical one cover a wider range of camera�based sensors to be
calibrated with respect to the robot hand� single scan�line cameras� stereo heads� range �nders�
etc�
Second� we develop a common mathematical framework to solve for the hand�eye calibration

problem using either of the two formulations� We represent rotation by a unit quaternion� We
present two methods� �i� a closed�form solution for solving for rotation using unit quaternions and
then solving for translation and �ii� a non�linear technique for simultaneously solving for rotation
and translation�
Third� we perform a stability analysis both for our two methods and for the classical linear

method developed by Tsai � Lenz 
TL���� This analysis allows the comparison of the three meth�
ods� In the light of this comparison� the non�linear optimization method� that solves for rotation
and translation simultaneously�seems to be the most robust one with respect to noise and to mea�
surement errors�
The remaining of this paper is organized as follows� Section 
 states the problem of determining

the hand�eye geometry from both the standpoints of the classical formulation and our new formu�
lation� Section � overviews the main approaches that attempted to determine a solution� Section 	






shows that the newly proposed formulation can be decomposed into two equations� Section � sug�
gests two solutions� one based on the work of Faugeras and Hebert 
FH��� and a new one� Boths
these solutions solve for the classical and for the new formulations� Section � compares our methods
with the well known Tsai�Lenz method through a stability analysis� Finally� Section � describes
some experimental results and Section � provides a short discussion� Appendix A brie�y reminds
the representation of rotations in terms of unit quaternions�

� Problem formulation

The hand�eye calibration problem consists of computing the rigid transformation �rotation and
translation� between a sensor mounted on a robot actuator and the actuator itself� i�e�� the rigid
transformation between the sensor frame and the actuator frame�

��� The classical formulation

The hand�eye problem is best described on Figure �� Let position � and position 
 be two positions
of the rigid body formed by a sensor �xed onto a robot hand and which will be referred to as the
hand�eye device� Both the sensor and the hand have a Cartesian frame associated with them� Let A
be the transformation between the two positions of the sensor frame and let B be the transformation
between the two positions of the hand frame� Let X be the transformation between the hand frame
and the sensor frame� A� B� and X are related by the formula given by eq� ��� and they are 	�	
matrices of the form�

A �

�
RA tA
� �

�

In this expression� RA is a ��� orthogonal matrix describing a rotation� and tA is a ��vector
describing a translation�
Throughout the paper we adopt the following notation� matrix T �A� B� X� Y � � � � � is the

transformation from frame b to frame a�

�
BBB�

xa
ya
za
�

�
CCCA � T

�
BBB�

xb
yb
zb
�

�
CCCA

where a ��D point indexed by a is expressed in frame a�
In the particular case of a camera�based sensor� the matrix A is obtained by calibrating the

camera twice with respect to a �xed calibrating object and its associated frame� called the calibration
frame� Let A� and A� be the transformations from the calibration frame to the camera frame in
its two di�erent positions� We have�

A � A�A
��
� ���

The matrix B is obtained by moving the robot hand from position � to position 
� Let B� and
B� be the transformations from the hand frame in positions � and 
� to the robot�base frame� We
have�

B � B��
� B� �	�

�



��� The new formulation

The previous formulation implies that the camera is calibrated at each di�erent position i of the
hand�eye device� Once the camera is calibrated� its extrinsic parameters� namely the matrix Ai for
position i� are made explicit� This is done by decomposing the ��	 perspective matrix Mi� that is
obtained by calibration� into intrinsic and extrinsic parameters 
FT���� 
Tsa���� 
HM����

Mi � CAi

�

�
B�

�u � u� �
� �v v� �
� � � �

�
CA
�
Ri
A tiA
� �

�
���

The parameters �u� �v� u� and v� describe the a�ne transformation between the camera frame and
the image frame� This decomposition assumes that the camera is described by a pin�hole model
and that the optical axis associated with this model is perpendicular to the image plane�
The new formulation that we present here avoids the above decomposition� Let Y be the

transformation matrix from the hand frame to the calibration frame� when the hand�eye device is
in position �� Clearly we have� e�g�� Figure ��

X � A�Y ���

Therefore matrix Y is equivalent to matrix X� up to a rigid transformation A�� By substituting X
given by this last equation and A given by eq� ��� into eq� ���� we obtain�

A�Y � A�Y B

By pre multiplying the terms of this equality with matrix C and using eq� ��� with i � �� 
 we
obtain�

M�Y �M�Y B ���

which is equivalent to eq� �
��
In this equation the unknown Y is the transformation from the hand frame to the calibration

frame� e�g�� Figure �� The latter frame may well be viewed as the camera frame provided that the
��	 perspective matrix M� is known� Mathematically� choosing the calibration frame rather then
the camera frame is equivalent to replacing the ��	 perspective matrix C with the more general
matrix M�� The advantage of using M� rather than C is that one has not to assume a perfect pin
hole camera model anymore� Therefore� problems due to the decomposition of M� into external
and internal camera parameters� i�e�� Mi � CAi� will disappear�
Referring to Figure 
� the projection of a point P onto the image is described by�

�
B� su

sv
s

�
CA �M�

�
BBB�

x
y
z
�

�
CCCA ���

or�

u �
m��x �m��y �m��z �m��

m��x �m��y �m��z �m��
���

	



v �
m��x�m��y �m��z �m��

m��x�m��y �m��z �m��

����

where x� y� and z are the coordinates of P in the calibration frame� u and v are the image coordinates
of p�the projection of P � and the mij�s are the coe�cients of M�� Notice that these two equations
can be rewritten as�

�m�� � um��� x � �m�� � um��� y � �m�� � um��� z � um�� �m�� ����

�m�� � vm��� x � �m�� � vm��� y � �m�� � vm��� z � vm�� �m�� ��
�

These equations may be interpreted as follows� Given a matrix M� and an image point p�
eq� ���� and eq� ��
� describe a line of sight passing through the center of projection and through
p� This line is given in the calibration frame which may well be viewed as the camera frame�
The determination of the hand�eye geometry �matrix X in the classical formulation or matrix

Y in our new formulation� allows one to express any line of sight associated with an image point p
in the hand frame and hence� in any robot centered frame�

��� Summary

In practice� the classical and the new formulations summarize as follows� Let n be the number of
di�erent positions of the hand�eye device with respect to a �xed calibration frame� We have�

�� Classical formulation� The matrix X is the solution of the following set of n � � matrix
equations� ���������

��������

A��X � XB��
���

Ai�� iX � XBi�� i
���

An�� nX � XBn�� n

����

where Ai�� i denotes the transformation between position i� � and position i of the camera
frame and Bi�� i denotes the transformation between position i�� and position i of the hand
frame�


� New formulation� The matrix Y is the solution of the following set of n�� matrix equations�
���������
��������

M�Y � M�Y B��
���

MiY � M�Y B�i
���

MnY � M�Y B�n

��	�

where Mi is the projective transformation between the calibration frame and the camera
frame in position i and B�i denotes the transformation between position � and position i of
the hand frame�

�



� Previous approaches

Previous approaches for solving the hand�eye calibration problem attempted to solve eq� ��� �AX �
XB� by farther decomposing it into two equations� A matrix equation depending on rotation and
a vector equation depending both on rotation and translation�

RARX � RXRB ����

and�
�RA � I�tX � RXtB � tA ����

In this equation I is the ��� identity matrix�
In order to solve eq� ���� one may take advantage of the particular algebraic and geometric

properties of rotation �orthogonal� matrices� Indeed this equation can be written as�

RA � RXRBR
T
X ����

which is a similarity transformation since RX is an orthogonal matrix� Hence� matrices RA and
RB have the same eigenvalues� A well�known property of a rotation matrix is that is has one of its
eigenvalues equal to �� Let nB be the eigenvector of RB associated with this eigenvalue� By post
multiplying eq� ���� with nB we obtain�

RARXnB � RXRBnB

� RXnB

and we conclude thatRXnB is equal to nA� the eigenvector ofRA associated with the unit eigenvalue�

nA � RXnB ����

To conclude� solving for AX � XB is equivalent to solving for eq� ���� and for eq� �����
Solutions were proposed� among others� by Shiu � Ahmad 
SA���� Tsai � Lenz 
TL���� Chou �
Kamel 
CK���� and Wang 
Wan�
�� All these authors noticed that at least three positions are
necessary in order to uniquely determine X� i�e�� RX and tX � Shiu � Ahmad cast the rotation
determination problem into the problem of solving for � linear equations in 	 unknowns and they
used standard linear algebra techniques in order to obtain a solution�
Tsai � Lenz 
TL��� suggested to represent RX by its unit eigenvector nX and an angle �X �

They noticed that�
nX � �nA � nB� � �

and
�nA � nB� � �nA � nB� � �

These expressions allow one to cast eq� ���� into�

�nA � nB�� n � nA � nB ����

with�

n �

�
tan

�X



�
nX

�



It is easy to notice that eq� ���� is rank de�cient and hence� at least two independent hand�eye
motions �at least three positions� are necessary for determining a unique solution� In the general
case of n motions �n�� positions of the hand�eye device relative to the calibration frame� one may
solve for an over constrained set of 
n linear equations in � unknowns�
Chou � Kamel 
CK��� suggested to represent rotation by a unit quaternion and they used the

singular value decomposition method in order to solve for the linear algebra� The idea of using
a unit quaternion is a good one� Unfortunately the authors were not aware of the closed�form
solution that is available in conjunction with unit quaternions for determining rotation optimally
as it was proposed both by Horn 
Hor��� and by Faugeras � H�ebert 
FH����
Wang 
Wan�
� suggested three methods that roughly correspond to the solution proposed by

Tsai � Lenz� Then he compared his best method to the methods proposed by Shiu � Ahmad and
by Tsai � Lenz� The conclusions of his comparison are that the Tsai � Lenz method yield the best
results�
Chen 
Che��� showed that the hand�eye geometry can be conveniently described using a screw

representation for rotation and translation� This representation allows a uniqueness analysis�
All these approaches have the following features in common�

� rotation is decoupled from translation�
� the solution for rotation is estimated using linear algebra techniques�
� the solution for translation is estimated using linear algebra as well�
Decoupling rotation and translation is certainly a good idea� It leads to simple numerical

solutions� However� in the presence of errors the linear problem to be solved becomes ill�conditioned
and the solution available with the linear system is not valid� This is due to the fact that the
geometric properties allowing the linearization of the rotation equation do not hold in the presence
of noise� Errors may be due both to camera calibration inaccuracies and to inexact knowledge of
the robot�s kinematic parameters�

� Decomposing the new formulation

In this section we show that the new formulation that we introduced in section 
�
 has a mathe�
matical structure that is identical to the classical formulation� This will allow us to formulate a
uni�ed approach that solves for either of the two formulations�
We start by making explicit the ��	 perspective matrixM as a function of intrinsic and extrinsic

parameters� i�e�� eq� ����

M �

�
B� �ur�� � u�r�� �ur�� � u�r�� �ur�� � u�r�� �utx � u�tz

�vr�� � v�r�� �vr�� � v�r�� �vr�� � v�r�� �vty � v�tz
r�� r�� r�� tz

�
CA

Notice that a matrix Mi of this form can be written as�

Mi �
	
Ni ni




�



where Ni is a ��� matrix and ni is a ��vector� One may notice that in the general case Ni has an
inverse since the vectors �r�� r�� r���

T � �r�� r�� r���
T � and �r�� r�� r���

T are mutually orthogonal
and �u �� �� �v �� �� With this notation eq� ��� may be decomposed into a matrix equation�

N�RY � N�RYRB �
��

and a vector equation�
N�tY � n� � N�RY tB �N�tY � n� �
��

Introducing the notation�
N � N��

� N�

eq� �
�� becomes�
NRY � RYRB �

�

or�
N � RYRBR

T
Y

Two properties of N may be easily derived�

�� N is the product of three rotation matrices� it is therefore a rotation itself and�

N�� � NT


� Since RY is an orthogonal matrix� the above equation de�nes a similarity transformation� It
follows that N has the same eigenvalues as RB� In particular RB has an eigenvalue equal to
� and let nB be the eigenvector associated with this eigenvalue�

If we denote by nN the eigenvector of N associated with the unit eigenvalue� then we obtain�

NRY nB � RYRBnB

� RY nB

and hence we have�
nN � RY nB �
��

This equation is identical to eq� ���� in the classical formulation�
By premultiplying eq� �
�� with N��

� we obtain�

�N � I�tY � RY tB � tN �
	�

with�
tN � N��

� �n� � n��

and one may easily notice that this equation is identical to eq� ���� in the classical formulation�
To conclude� the classical formulation decomposes in eq� ���� and in eq� ���� and� equivalently�

the new formulation decomposes in eq� �
�� and eq� �
	��

�



� A uni�ed optimal solution

In the previous sections we showed that the classical and the new formulations are mathematically
equivalent� Indeed� the classical formulation� AX � XB decomposes into eqs� ���� and �����

nA � RXnB

�RA � I�tX � RXtB � tA

and the new formulation� MY �M �Y B decomposes into eqs� �
�� and �
	��

nN � RY nB

�N � I�tY � RY tB � tN

These two sets of equations are of the form�

v� � Rv �
��

�K � I�t � Rp� p� �
��

where R and t are the parameters to be estimated �rotation and translation�� v�� v� p�� p are
��vectors� K is a ��� orthogonal matrix and I is the identity matrix�
Eqs� �
�� and �
�� are associated with one motion of the hand�eye device� In order to estimate

R and t at least two such motions are necessary� In the general case of n motions one may cast the
problem of solving 
n such equations into the problem of minimizing two positive error functions�

f��R� �
nX
i��

kv�i � Rvik� �
��

and

f��R� t� �
nX
i��

kRpi � �Ki � I�t� p�ik� �
��

Therefore� two approaches are possible�

�� R then t� Rotation is estimated �rst by minimizing f�� This minimization problem has
a simple closed�form solution that will be detailed below� Once the optimal rotation is
determined� the minimization of f� over the translational parameters is a linear least�squared
problem�


� R and t� Rotation and translation are estimated simultaneously by minimizing f� � f�� This
minimization problem is non�linear but� as it will be shown below� it provides the most stable
solution�

��� Rotation then translation

In order to minimize f� given by eq� �
�� we represent rotation by a unit quaternion� With this
representation one may write� �see Appendix A� eq� ��	���

Rvi � q � vi � q

�



Moreover� using eq� ����� one may successively write�

kv�i � q � vi � qk� � kv�i � q � vi � qk�kqk�
� kv�i � q � q � vik�
� �Q�v�i�q �W �vi�q�

T �Q�v�i�q �W �vi�q�

� qTAiq

with Ai being a 	�	 positive symmetric matrix�

Ai � �Q�v
�
i��W �vi��

T �Q�v�i��W �vi��

Finally the error function becomes�

f��R� � f��q�

�
nX
i��

kv�i � q � vi � qk�

�
nX
i��

qTAiq �
��

� qT
�

nX
i��

Ai

�
q

� qTAq

withA � Pn
i��Ai and one has to minimize f� under the constraint that q must be a unit quaternion�

This constrained minimization problem can be solved using the Lagrange multiplier�

min
q

f� � min
q
�qTAq � ���� qT q��

By di�erentiating this error function with respect to q one may easily �nd the solution in closed
form�

Aq � �q

The unit quaternion minimizing f� is therefore the eigenvector of A associated with its smallest
�positive� eigenvalue� This closed�form solution was introduced by Faugeras � H�ebert 
FH��� for
�nding the best rotation between two sets of ��D features�
Once the rotation has been determined� the problem of determining the best translation becomes

a linear least�squares problem that can be easily solved using standard linear algebra techniques�

��� Rotation and translation

The problem of estimating rotation and translation simultaneously can be stated in terms of the
following minimization problem�

min
q�t
�f� � f��

We have been unable to solve this problem in closed form� One may notice that the error function
to be minimized is a sum of squares of non linear functions� Because of the special structure of

��



the Jacobian and Hessian matrices associated with error functions of this type� a number of special
minimization methods have been designed speci�cally to deal with this case� 
GMW���� Among
these methods� the Levenberg�Marquardt method and the trust�region method 
Fle���� 
PHYP��a��

PHYP��b� are good candidates�
Using unit quaternions the error function to be minimized is�

min
q�t
�f�q� t� � ���� qT q��� ����

with�

f�q� t� � ��f��q� � ��f��q� t�

� ��
nX
i��

kv�i � q � vi � qk� � ��
nX
i��

kq � pi � q � �Ki � I�t� p�ik�

which has the form of sum of squares of non linear functions and ���� qT q�� is a penalty function
that guarantees that q �a quaternion� has a module equal to �� �� and �� are two weights and �
is a real positive number� High values for � insure that the module of q is closed to �� In all our
experiments we have�

�� � �� � �

� � 
 ���

There are two possibilities for solving the non linear minimization problem of equation �����
The �rst possibility is to consider it as a classical non linear least squares minimization problem
and to apply standard non linear optimization techniques� such as Newton�s method and Newton�
like methods 
GMW���� 
Fle���� In the next two sections we give some results obtained with the
Levenberg�Marquardt non linear minimization method as described in 
PFTW����
The second possibility is to try to simplify the expression of the error function to be minimized�

Using properties associated with quaternions� the error function may indeed be simpli�ed� We
already obtained a simple analytic form for f�� i�e�� eq� �
��� Similarly� f� simpli�es as well�
Indeed� f� is the sum of terms such as�

kq � pi � q � �Ki � I�t� p�ik�

and we have�

kq � pi � q � �Ki � I�t� p�ik�kqk� � kq � pi � �Ki � I�t � q � p�i � qk�

Using the matrix representation for quaternion multiplication one can easily obtain �see Appendix B
for the derivation of this equation��

f��q� t� � qT �
nX
i��

Bi�q � tT �
nX
i��

Ci�t� �
nX
i��

�i�t� �
nX
i��

�i�Q�q�
TW �q�t ����

The 	�	 matrices Bi and Ci� and the ��	 vectors �i and �i are�
Bi � �pTi pi � p�Ti p

�
i�I �W �pi�

TQ�p�i��Q�p�i�
TW �pi�

Ci � KT
i Ki �Ki �KT

i � I

�i � 
p�Ti �Ki � I�

�i � �
pTi �RBi � I�

��



With the notations� B � Pn
i�� Bi� C � Pn

i�� Ci� � �
Pn

i�� �i� � �
Pn

i�� �i� and with A already
de�ned� we obtain the following non linear minimization problem�

min
q�t
�qT �A� B�q � tTCt � �t� �Q�q�TW �q�t� ���� qT q��� ��
�

which is the sum of � terms� The number of parameters to be estimated is � �	 for the unit
quaternion and � for the translation�� It is worthwhile to notice that the number of terms of
this error function is constant with respect to n� i�e�� the number of hand�eye motions� For such
minimization problems one may use constrained step methods such as the trust region method

Fle���� 
Yas����

� Stability analysis and method comparison

One of the most important merits of any hand�eye calibration method is its stability with respect
to various perturbations� There are two main sources of perturbations� errors associated with
camera calibration and errors associated with the robot motion� Indeed� the parameters of both
the direct and inverse kinematic models of robots are not perfect� As a consequence the real motions
associated with both the hand and the camera are known up to some uncertainty� It follows that
the estimation of the hand�eye transformation has errors associated with it and it is important to
quantify these errors in order to determine the stability of a given method and to compare various
methods�
In order to perform this stability analysis we designed a stability analysis based on the following

grounds�

� Nominal values for the parameters of the hand�eye transformation �X or Y � are provided�
� Also are provided n � � matrices A�� � � �An�� from which n hand motions can be computed
either with �see Section 
��

Bii�� � X��Ai��A
��
i X

or with�
B�i � Y ��A��

� AiY

� Gaussian noise or uniform noise is added to both the camera and hand motions and X �or Y �
is estimated in the presence of this noise using three di�erent methods� Tsai�Lenz� closed�form
solution� and non�linear optimization� and

� We study the variations of the estimation of the hand�eye transformation as a function of the
noise being added and�or as a function of the number of motions �n��

Since both rotations and translations may be represented as vectors� adding noise to a trans�
formation consists of adding random numbers to each one of the vectors� components� Random
numbers simulating noise are obtained using a random number generator either with a uniform
distribution in the interval 
�C�
��C�
�� or with a Gaussian distribution with a standard devia�
tion equal to �� Therefore the level of noise that is added is associated either with the value of C
or with the value of � �or� more precisely� with the value of 
��� In what follows the level of noise

�




is in fact represented as a ratio� the values of the actual random numbers divided by the values of
the perturbed parameters�
In the case of a rotation� the vector associated with this rotation has a module equal to � and

therefore the ratio is simply either C or 
�� In the case of a translation the ratio is computed with
respect to a nominal value estimated over all the perturbed translations�

ktnominalk �
Pn

i���ktAii��k� ktBii��k�

n

where tAii�� is the translation vector associated with Aii���
For each noise level and for a large number J of trials we compute the errors associated with

rotation and translation as follows�

erot �

vuuut �
J

JX
j��

k �Rj � Rk�

and�

etr �

q
�
J

PJ
j�� k�tj � tk�
ktk

where R and t are the nominal values of the transformation being estimated �X or Y �� �Rj and �tj
are the estimated rotation and translation for some trial j� and J is the number of trials for each
noise level �de�ned either by C or by ��� In all our experiments we set J � ���� and ktk � ���mm�
The following �gures show the above errors as a function of the percentage of noise� The

percentage of noise varies from �� to ��� The full curves � � correspond to the method of Tsai
� Lenz� the dotted curves � � � � � correspond to the closed�form method and the dashed curves ��
� �� correspond to the non�linear method� Figure � through Figure �� correspond to two motions
�n � 
� of the hand�eye device while on Figure �� and Figure �
 the number of motions varies from

 to ��
Figure � and Figure 	 show the rotation and translation errors as a function of uniform noise

added to the rotational part of the hand and camera motions� Figure � and Figure � show the
rotation and translation errors as a function of uniform noise added both to the rotational and
translational parts of the camera and hand motions� Figure � through Figure �� are similar to
Figure � through Figure � but the uniform distribution of the noise has been replaced by a Gaussian
distribution�
It is interesting to notice that the Tsai�Lenz method and closed�form method have almost the

same behaviour while the non�linear method provides more accurate results in all the situations�
The fact that the results obtained with the �rst two methods are highly correlated may be due
to the fact that both these methods decouple the estimation of rotation from the estimation of
translation� This behaviour seems to be independent with respect to the noise type �uniform or
Gaussian� and of whether only rotation is perturbed or rotation and translation are perturbed
simultaneously� We conclude that the decoupling of rotation and translation introduces a bias in
the estimation of the hand�eye transformation�
As other authors have done in the past� it is interesting to analyse the behaviour of hand�eye

calibration with respect to the number of motions� In order to perform this analysis we have to
�x the percentage of noise� Figure �� and Figure �
 show the rotational and translational errors

��



as a function of the squared root of the number of motions �
p
n varies from ��	�	 to ��� The noise

ratio has been �xed to the worst case for rotations� e�g�� �� and to 
� for translations� Both
rotational and translational noise distributions are Gaussian� For example� for 	 motions the error
in translation is of 	� for the non�linear method and of ���� for the other two methods�

� Experimental results

In this section we report some experimental results obtained with three sets of data� The �rst
data set was provided by Fran!cois Chaumette from IRISA and the second and third data sets
were obtained at LIFIA� The �rst data set was obtained with �� di�erent positions of the hand�
eye device with respect to a calibrating object� The second data set was obtained with � such
positions� The third data set was obtained with � positions� For the �rst set only the extrinsic
camera parameters were provided while for the latter sets we had access to the full ��	 perspective
matrices� Therefore� the latter sets allowed us to test both the classical and the new formulations�
The only restrictions imposed onto the robot motions are due to the fact that in eachone of its
positions the camera mounted onto the robot must see the calibration pattern�
In order to calibrate the camera we used the method proposed by Faugeras � Toscani 
FT���

and the following setup� The calibrating pattern consists of a planar grid of size 
������mm that
can move along an axis perpendicular to its plane� The distance from this calibrating grid to the
camera varies during hand�eye calibration between ���mm and ����mm� This calibration setup
combined with the Faugeras�Toscani method provides very accurate camera calibration data� This
is mainly due to the accuracy of the grid points ����mm�� to the accuracy of point localization
in the image ���� pixels�� and to the large number of calibrating points being used �	�� points��
Moreover� camera calibration errors can be neglected with respect to robot calibration errors �see
below��
Since the two formulations are mathematically equivalent� we have been able to test and compare

the classical Tsai�Lenz method with the two methods developed in this paper� Table �� Table 
�
and Table � summarize the results obtained with the three data sets mentioned above� The lengths
of the translation vectors thus obtained are� ktXk � ��mm and ktY k � ���mm�
The second columns of these tables show the sum of squares of the absolute error in rotation�

The third columns show the sum of squares of the relative error in translation�
These experimental results seem to con�rm that� on one hand� the non�linear method provides

a better estimation of the translation vector � at the cost of a� sometimes� slightly less accurate

rotation � and� on the other hand� the new formulation provides a better estimation of the trans�
formation parameters than the classical formulation�
It is worthwhile to notice that� while the non�linear technique provides the most accurate

results with simulated data� the linear and closed�form techniques provide sometimes a better
estimation of rotation with real data� This is due to the fact that the robot�s kinematic chain
is not perfectly calibrated and therefore there are errors associated with the robot�s translation
parameters� Obviously� these errors do not obey the noise models used for simulations� The
linear and closed�form techniques estimate the rotation parameters independently of the robot�s
translation parameters and therefore the rotation thus estimated is not a�ected by translation
errors� However� in practice we prefer the non�linear technique�

�	



	 Discussion

In this paper we attacked the problem of hand�eye calibration� In addition to the classical for�
mulation� i�e�� AX � XB� we suggest a new formulation that directly uses the ��	 perspective
matrices available with camera calibration� MY �M �Y B� The advantage of the new formulation
with respect to the classical one is that it avoids the decomposition of the perspective matrix into
intrinsic and extrinsic camera parameters� Indeed� it has long been recognised in computer vision
research that this decomposition is unstable�
Moreover� we show that the new formulation has a mathematical structure that is identical

with the mathematical structure of the classical formulation� The advantage of this mathematical
analogy is that� the two formulations being variations of the same one� any method for solving the
problem applies to both formulations�
We develop two resolution methods� the �rst one solves for rotation and then for translation

while the second one solves simultaneously for rotation and translation� Using unit quaternions
to represent rotations� the �rst method leads to a closed form solution introduced by Faugeras �
Hebert 
FH��� while the second one is new and leads to non�linear optimization� Among the many
robust non�linear optimization methods that are available� we chose the Levenberg�Marquardt
technique�
Both the stability analysis and the results obtained with experimental data from two laboratories

show that the non�linear optimization method yields the most accurate results� Linear algebra
techniques �the Tsai�Lenz method� and the closed�form method �using unit quaternions� are of
comparable accuracy�
The new formulation provides much more accurate hand�eye calibration results than the clas�

sical formulation� This improvement in accuracy seems to con�rm that the decomposition of the
perspective matrix into intrinsic and extrinsic parameters introduces some errors� Nevertheless�
the intrinsic parameters� even if they don�t need to be made explicit� are assumed to be constant
during calibration� We are perfectly aware that this assumption is not very realistic and may cause
problems in practice� We are currently investigating ways to give up this assumption�
Also� we investigate ways to perform hand�eye calibration and robot calibration simultaneously�

Indeed� in many applications such as nuclear and space environments it may be useful to calibrate
a robot simply by calibrating a camera mounted onto the robot�

A Rotation and unit quaternion

The use of unit quaternions to represent rotations is justi�ed by an elegant closed�form solution as�
sociated with the problem of optimally estimating rotation from ��D to ��D vector correspondences

FH���� 
Hor���� 
SA���� 
HM���� In section � we stressed the similarity between the hand�eye
calibration problem and the problem of optimally estimating the rotation between sets of ��D fea�
tures� In this appendix we brie�y recall the de�nition of quaternions� some useful properties of
the quaternion multiplication operator� and the relationship between ��� orthogonal matrices and
unit quaternions�
A quaternion is a 	�vector that may be viewed as a special case of complex numbers that have

one real part and three imaginary parts�

q � q� � iqx � jqy � kqz

��



with�
i� � j� � k� � ijk � ��

One may de�ne quaternion multiplication �denoted by �� as follows�

r � q � �r� � irx � jry � krz��q� � iqx � jqy � kqz�

which can be written using a matrix notation�

r � q � Q�r�q �W �q�r

with�

Q�r� �

�
BBB�

r� �rx �ry �rz
rx r� �rz ry
ry rz r� �rx
rz �ry rx r�

�
CCCA

and�

W �r� �

�
BBB�

r� �rx �ry �rz
rx r� rz �ry
ry �rz r� rx
rz ry �rx r�

�
CCCA

One may easily verify the following properties�

Q�r�TQ�r� � Q�r�Q�r�T � rT rI

W �r�TW �r� � W �r�W �r�T � rT rI

Q�r�q � W �q�r

Q�r�T r � W �r�Tr � rT re

Q�r�Q�q� � Q�Q�r�q�

W �r�W �q� � W �W �r�q�

Q�r�W �q�T �W �q�TQ�r�

e being the unity quaternion� e � �� � � ���
The dot�product of two quaternions is�

r � q � r�q� � rxqx � ryqy � rzqz

The conjugate quaternion of q� q is de�ned by�

q � q� � iqx � jqy � kqz

and obviously we have�
q � q � q � q � kqk�

An interesting property that is straightforward and which will be used in the next section is�

kr � qk� � krk�kqk� ����

��



A ��vector may well be viewed as a purely imaginary quaternion �its real part is equal to zero��
One may notice that W �v� and Q�v� associated with a ��vector v are skew�symmetric matrices�
Let q be a unit quaternion� that is q � q � �� and let v be a purely imaginary quaternion� We

have�

v� � q � v � q
� �Q�q�v� � q ��	�

� �W �q�TQ�q��v

and one may easily �gure out that�

W �q�TQ�q� �

�
BBB�
� � � �
� q�� � q�x � q�y � q�z 
�qxqy � q�qz� 
�qxqz � q�qy�
� 
�qxqy � q�qz� q�� � q�x � q�y � q�z 
�qyqz � q�qx�
� 
�qxqz � q�qy� 
�qyqz � q�qx� q�� � q�x � q�y � q�z

�
CCCA

is an orthogonal matrix� Hence� v� given by eq� ��	� is a ��vector �a purely imaginary quaternion�
and is the image of v by a rotation transformation R�

R �

�
B�

q�� � q�x � q�y � q�z 
�qxqy � q�qz� 
�qxqz � q�qy�

�qxqy � q�qz� q�� � q�x � q�y � q�z 
�qyqz � q�qx�

�qxqz � q�qy� 
�qyqz � q�qx� q�� � q�x � q�y � q�z

�
CA

B Derivation of equation 
���

The expression of f��q� t�� i�e�� equation ����� can be easily derived using the properties of W �q�
and Q�q� outlined in section ��

kq � pi � �Ki � I�t � q � p�i � qk�
� �W �pi�q �W �q��Ki � I�t�Q�p�i�q�

T
�W �pi�q �W �q��Ki � I�t�Q�p�i�q�

� qTBiq � tTCit �Dit� 
qTW �pi�TW �q��Ki � I�t

where the expressions of Bi� Ci� and �i are�
Bi � �pTi pi � p�Ti p

�
i�I �W �pi�

TQ�p�i��Q�p�i�
TW �pi�

Ci � KT
i Ki �Ki �KT

i � I

�i � 
p�Ti �Ki � I�

The last term may be transformed as follows�

�
qTW �pi�TW �q��Ki � I�t � �
pTi Q�q�TW �Q��Ki � I�t

� �
pTi
	
W �q�TQ�q�


T
�Ki � I�t

The matrix W �q�TQ�q� is the unknown rotation and is equal to either RX or RY � The matrix
Ki is a rotation as well and is equal to either RAi or Ni� Notice that we have from equations ����
and �

��

RT
XRAi � RBiR

T
X

RT
YNi � RBiR

T
Y

��



Therefore one may write�

	
W �q�TQ�q�


T
�Ki � I� � �RBi � I�

	
W �q�TQ�q�


T
Finally we obtain for the last term�

�
qTW �pi�TW �q��Ki � I�t � �
pTi
	
W �q�TQ�q�


T
�Ki � I�t

� �
pTi �RBi � I�
	
W �q�TQ�q�


T
t

� �
pTi �RBi � I�Q�q�TW �q�t

and�
�i � �
pTi �RBi � I�
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Figure �� Error in rotation in the presence of uniform noise perturbing the rotation axes�

Figure 	� Error in translation in the presence of uniform noise perturbing the rotation axes�
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Figure �� Error in rotation in the presence of uniform noise perturbing the translation vectors and
the rotation axes�

Figure �� Error in translation in the presence of uniform noise perturbing the translation vectors
and the rotation axes�


	



Figure �� Error in rotation in the presence of Gaussian noise perturbing the rotation axes�

Figure �� Error in translation in the presence of Gaussian noise perturbing the rotation axes�
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Figure �� Error in rotation in the presence of Gaussian noise perturbing the translation vectors
and the rotation axes�

Figure ��� Error in translation in the presence of Gaussian noise perturbing the translation vectors
and the rotation axes�
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Figure ��� Error in rotation as a function of the number of motions�

Figure �
� Error in translation as a function of the number of motions�
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AX � XB
P kRARX �RXRBk�

P
k�RA�I	tX�RX tB�tAk

�P
kRX tB�tAk�

Tsai�Lenz ������ ����

Closed�form solution ������ ���
�
Non�linear optimization ������ �����

Table �� The classical formulation used with the �rst data set�

AX � XB
P kRARX �RXRBk�

P
k�RA�I	tX�RX tB�tAk

�P
kRX tB�tAk�

Tsai�Lenz �����	 �����
Closed�form solution �����	 ���
�
Non�linear optimization ������ �����

MY �M �Y B
P kNRY � RYRBk�

P
k�N�I	tY �RY tB�tNk�P

kRY tB�tNk�

Tsai�Lenz ������ ����
�
Closed�form solution ������ �����
Non�linear optimization ������ ������

Table 
� The classical and the new formulations used with the second data set�

AX � XB
P kRARX �RXRBk�

P
k�RA�I	tX�RXtB�tAk

�P
kRX tB�tAk�

CPU time

Tsai�Lenz ����	 ��
� ����
Closed�form solution ����� ��

� ����
Non�linear optimization ��
�� ����� ��
�

MY �M �Y B
P kNRY � RYRBk�

P
k�N�I	tY �RY tB�tNk�P

kRY tB�tNk�

Tsai�Lenz ����� ����� ����
Closed�form solution ����� ����� ����
Non�linear optimization ���	 ����	 ��
�

Table �� The classical and the new formulations used with the third data set� The last column
indicates the CPU time in seconds on a Sparc��� Sun computer�
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