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ABSTRACT 

This paper describes a novel hand gesture recognition system 
that utilizes both multi-channel surface electromyogram 
(EMG) sensors and 3D accelerometer (ACC) to realize 
user-friendly interaction between human and computers. 
Signal segments of meaningful gestures are determined from 
the continuous EMG signal inputs. Multi-stream Hidden 
Markov Models consisting of EMG and ACC streams are 
utilized as decision fusion method to recognize hand gestures. 
This paper also presents a virtual Rubik’s Cube game that is 
controlled by the hand gestures and is used for evaluating the 
performance of our hand gesture recognition system. For a set 
of 18 kinds of gestures, each trained with 10 repetitions, the 
average recognition accuracy was about 91.7% in real appli-
cation. The proposed method facilitates intelligent and natural 
control based on gesture interaction. 
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INTRODUCTION 

Hand gesture recognition provides an intelligent and natural 
way of human computer interaction (HCI). Its applications 
range from medical rehabilitation to consumer electronics 
control (e.g. mobile phone). In order to distinguish hand 
gestures, various kinds of sensing techniques are utilized to 
obtain signals for pattern recognition [5]. Acceleration-based 
and electromyogram-based techniques are two research 
branches in the field of hand gesture pattern recognition. 

Acceleration-based (ACC-based) gesture control is usually 
studied as a supplementary interaction modality [6]. It is well 
suited to distinguish noticeable, larger scale gestures with 
different hand trajectories of forearm movements. With 
ACC-based techniques some subtle finger or hand movement 
may be ignored whereas electromyogram-based (EMG-based) 
gesture recognition techniques use multi-channel EMG sig-
nals which contain rich information about hand gestures of 
various size scales. Due to some problems inherent in the 
EMG measurements, including the separability and repro-
ducibility of measurement, the size of discriminable hand 
gesture set is still limited to 4-8 classes [1,4]. 

In order to realize a natural and robust gesture-based HCI 
system, the selection of input hand gestures that are well 
discriminable from each other is of crucial importance. Con-
sidering the complementary features of ACC- and 
EMG-measurements, we believe that their combination will 
increase the number of discriminable hand, wrist and forearm 
gestures and the accuracy of the recognition system. 

This paper describes the design of a novel hand gesture rec-
ognition system based on multi-channel EMG sensors and 3D 
accelerometer. Methods for hand gesture recognition based on 
EMG and ACC signals using multi-stream Hidden Markov 
Models are described first; and a control strategy for Virtual 
Rubik’s Cube game is then proposed for the evaluation of the 
performance of the recognition methods. Next two kinds of 
testing schemes are implemented. The experimental results 
across five subjects show the great potential of our system for 
intelligent user interfaces. Finally, discussion and suggestions 
for future work are given together with conclusions. 

RELATED WORK 

Generally, existing sensing techniques for hand gesture rec-
ognition and interaction could be categorized into three main 
groups: vision-based, movement-based, and EMG-based 
techniques. Vision-based techniques can track and recognize 
hand gestures effectively [5]. At the same time, they are sen-
sitive to user’s circumstances such as background texture, 
color, and lighting. This limits their extensive application. 
Movement-based approach utilizes different sensors to 
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measure movement. Glove-based gesture interaction is a 
typical movement-based technique and it achieves good per-
formance especially in sign language recognition. In this 
approach user is required to wear a cumbersome data glove to 
capture hand and finger movement. This hinders the conven-
ience and naturalness of HCI [5]. ACC-based approach is 
another popular movement-based technique. Accelerometers 
can be made easy to wear and are helpful in providing in-
formation about hand movements. The important advantage 
of EMG-based gesture interaction is its hands-free application. 
Yet, the current EMG-based HCI for fine control have a sig-
nificant distance to the commercial applications [1,3]. 

Since each sensing technique has its own advances and ca-
pabilities, the multiple sensor fusion techniques can widen the 
spread of potential applications. For example, Brashear et al. 
[2] have built a lab-based sign language recognition system 
using both vision-based and accelerometer-based techniques. 
Their experimental results show that the combined sensing 
approach can improve recognition accuracy significantly. 
Sherrill et al. [8] have compared the performance of ACC- 
based and EMG-based techniques in the detection of func-
tional motor activities for rehabilitation and provided evi-
dence that the system based on combination of EMG and 
ACC signals can be built successfully. However, the ACC and 
EMG sensors fusion technique has not yet been applied to 
gesture-based interaction. 

As for intelligent interaction, it is important to automatically 
specify the start and end points of a gesture action from con-
tinuous streams of input signals [5]. Yet, most of the previous 

work has taken this granted or have accomplished it manually. 
Mäntyjärvi et al. [6] utilized a sensing device, SoapBox, to 
realize ACC-based gesture interaction with fast and effortless 
customization. The gesture commands still had to be marked 
by pushing a button on SoapBox for temporal signal seg-
mentation. Actually, it is easy and natural to detect muscle 
activation with EMG sensors, which indicate meaningful and 
intentional gestures. In our method, the start and end points of 
gestures are detected automatically by the intensity of EMG 
signals, and then both ACC and EMG segments are acquired 
for further processing. 

 
Figure 1: The structure of our hand gesture recognition system 

 
Figure 2. Illustration of data segmentation and 

EMG framing 

METHOD 
Hand Gesture Recognition Algorithms 

Figure 1 shows the structure of our hand gesture recognition 
system using both multi-channel EMG and 3D ACC signals, 
which are recorded at 1kHz sampling rate. The processing of 
the two signal streams is carried out in following steps. 

Data segmentation. The multi-channel signals recorded in the 
process of the hand gesture actions which represent mean-
ingful hand gestures are called active segments. The gesture 
data segmentation procedure is very difficult due to segmen-
tation ambiguity [5]. The EMG signal level represents directly 
the level of muscle activity. As hand movement switches from 
one gesture to another one, the corresponding muscles relax 
for a while, and the amplitude of EMG signal is momentarily 
very low. Thus the use of EMG signal intensity alleviates 
segmentation ambiguity and helps to implement data seg-
mentation in multi-sensor system. In our method, the average 
signal of the multiple EMG channels is used for determining 
the boundaries of active segments. The segmentation is based 
on a moving average algorithm and thresholding. The ACC 
signal stream is segmented synchronously with the EMG 
signal stream. 

Figure 2 illustrates the thresholding principles of the data 
segmentation method. The 3D ACC signal and two illustra-
tional EMG signal channels are shown in Figure 2. First, the 
average value of the multi-channel EMG signal at time t is 
computed according to equation (1), where S is the number of 
EMG channels. Then, the moving average algorithm is ap-
plied with window size of W=60 sample points on the squared 
average EMG stream according to equation (2). Next, two 
thresholds, onset and offset threshold, are used for determin-
ing active segments. Typically, the offset threshold is lower 
than the onset threshold. The active segment begins when the 
moving averaged signal EMGMA(t) is above the onset thresh-
old, and continues until all sample points in a 100ms time 
period have been below the offset threshold. The higher onset 
threshold helps to avoid false gesture detection whereas the 
lower offset threshold is for preventing the fragmentation of 
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active segment as EMGMA(t) may oscillate around the onset 
offset during the gesture execution. As next step, segments 
whose lengths are less than a certain value (100ms) are 
abandoned as measurement noise. Finally, active gesture 
segments for both EMG and ACC signals are determined by 
the same beginning and ending points. 
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Feature Extraction. In active segments, the EMG stream is 
further blocked into frames with the length of 250ms at every 
125ms utilizing overlapped windowing technique [1], as 
shown in Figure 2. Each frame in every EMG channel is 
filtered by Hamming window in order to minimize the signal 
discontinuities at the frame edges. Then, each windowed 
frame is converted into a parametric vector consisting of 3rd 
order Auto-regressive (AR) model coefficients and Mean 
Absolute Value (MAV) [1]. Hence, each frame of an 
n-channel EMG signal is presented by a 4n-dimensional fea-
ture vector, and the active EMG segments are represented by 
4n-dimensional vector sequences of varying length. 

Feature extraction of the 3D ACC stream in each active seg-
ment consists of two steps: scaling and extrapolation, with the 
method described in [6]. The amplitude of the 3D data in 
active segment is scaled using linear min-max scaling method. 
Then the scaled ACC active segment is linearly extrapolated 
to 32 points, so that the temporal lengths of all the 3D ACC 
data sequences are the same. These two steps normalize the 
variations in the scale and speed of gesture execution and thus 
improve the recognition of the type of the gesture. Normalized 
ACC active data segments are regarded as 3x32-dimesional 
feature vectors as such.  

Hidden Markov Models for Recognition. The basic tool for the 
recognition of sequences of variable length is Hidden Markov 
Model (HMM). HMM represents a stochastic process that 

takes time series of observation data as input. The output of 
the HMM is the probability that the input data is generated by 
that model [5]. 

In our system, we utilize continuous density HMMs, where 
the observation data probability is modeled as a multivariate 
Gaussian distribution. Multi-stream HMMs [9] consisting of 
an EMG and ACC stream are proposed. The two-stream 
HMMs have the advantage that they can effectively combine 
EMG and ACC information, despite the time lengths of ob-
servation are different in the two streams. Each gesture class 
(or control command) ωc is represented by two HMMs. There 
is a set of HMM pairs λc={λc

(E), λc
(A)}. 

The logarithmic likelihoods P(Ot|λc) of a pair of EMG and 
ACC feature sequences Ot={Ot

(E), Ot
(A)} for the cth model is 

represented by the following expression [9]: 
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where t is the time, and P(Ot
(E)|λc

(E)) and P(Ot
(A)|λc

(A)) are 
logarithmic likelihoods for EMG feature sequence 
Ot

(E)={O1
(E), O2

(E)
 ,…,OT

(E) } and ACC feature sequence 
Ot

(A)={O1
(A), O2

(A) ,…,OT
(A) }, respectively. δE and δA are 

EMG and ACC stream weight factors with the following 
restriction [9]: 

1E Aδ δ+ = , 0 ,E A 1δ δ≤ ≤  (4)

The recognition result for an unknown gesture observation Ot 
is the class whose HMM pair achieves the highest combined 
likelihood for the given EMG and ACC observed feature 
sequences: 

( )ˆ arg max |t c
c

c P λ= O , then t cω∈O  (5)

Virtual Game Control 

The ACC and EMG signals are processed in real-time and the 
recognized gestures are translated into control commands in 
our interactive system. In order to assess the performance of 
our hand gesture recognition system and to create an enter-

 
Figure 3: Twelve circular gestures to turn the six 

planar faces of the Cube 

 
Figure 4: Six circular gestures to rotate the entire 

cube.
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Figure 5: The sensor setup of four-channel EMG 

sensors and a 3D accelerometer. 

taining application of this novel HCI technique, Virtual Ru-
bik’s Cube game was built. It demonstrates the advantages of 
EMG and ACC combination by providing multiple degrees of 
freedom in control. Rubik's Cube is a mechanical puzzle 
invented in 1974. Please refer to [7] for more information 
about Rubik’s Cube. 

Finger action Direction Plane 

H Hand grasp CW Clockwise H In left-front plane

T Thumb V In top-left plane 

L Little finger 
CC 

Counter- 
Clockwise S In front-top plane

Table 1: Hand gesture name abbreviation 

Utilizing the complementary characteristics of EMG and 
ACC signals, the set of defined hand gestures include both 
finger actions and circular hand movements of various ori-
entations. Since any arbitrary transformation of the cube can 
be achieved by a series of steps of rotating the six external 
faces of the cube [7], we defined twelve circular gestures to 
rotate the six cube faces by 90 degrees clock-wise or 
counter-clockwise, as illustrated in Figure 3. Since the inter-
face screen can only show three faces (e.g. the top, front and 
left as in Figure 3) of the cube at the time, six gestures with 
hand grasp (as shown in Figure 4) are proposed for rotating 
the entire cube by 90 degrees clockwise or counter-clockwise 
around three axes so that all six faces of the virtual cube can 
be brought into front view. 

Each gesture defined is named by 4-letter abbreviation. These 
names indicate gesture meanings which are described in Table 
1. With the Figure 3 and 4, it is intuitive to comprehend the 
gesture controls of Virtual Rubik’s Cube. For example, ges-
ture TCWH means thumb extension and hand circles drawn 
clock-wise in left-front plane. This gesture makes the topmost 
face of Virtual Rubik’s Cube turn clockwise. Gesture HCCV 
means hand grasp and hands circles drawn counter-clockwise 
in top-left plane around front-axis. This gesture makes the 
entire cube rotate counter-clockwise around front-axis. With 
the gesture commands defined above, Virtual Rubik’s Cube 
game can be played in a natural way. Figure 6 displays a 
subject playing with Virtual Rubik’s Cube by using the hand 
gesture commands. 

EXPERIMENTS 
Experimental Setups 

The EMG and ACC signal measurements were made with 
Delsys Myomonitor IV sensor system with inbuilt amplifier 
(60 dB). The sensor setup of four-channel EMG sensors and a 
3D accelerometer are shown in Figure 5. In each EMG sensor, 
there are two silver bar-shaped electrodes with 10mm x 1mm 
contact dimension and 10mm electrode-to-electrode spacing. 
The four EMG sensors were attached to the inner side of a 
stretch belt, so the EMG sensors could be fixed conveniently 
in the middle of the subject’s forearm. The 3D accelerometer 
(consisting of two mutually perpendicular 2D accelerometers) 
was placed on the back of forearm near the wrist. When user’s 
palm was facing downwards, the three axes of accelerometer 
were pointing left, front, and top. 

Five subjects (2 males and 3 females) with ages ranging from 
20 to 25 years participated into the hand gesture recognition 
experiments. These subjects have no history of neuromuscular 
or joint diseases and were informed of the associated risks and 
benefits specific to the study. Subjects signed an informed 
consent form prior to data collection and the experimental 
protocol was approved by the ethics committee of University 
of Science and Technology of China for human subjects. 
Each subject performed 18 hand gestures defined above in a 
sequence and in a way that felt natural to them. Each gesture 
was repeated 10 times for training the recognition system.  

 
Figure 6: Subject performed hand gesture to 

control the Virtual Rubik’s Cube. 

Left-to-right HMMs with five states were utilized in our sys-
tem. The EMG and ACC HMMs were built independently. 
Both EMG and ACC HMMs were modeled using mixtures of 
three diagonal multivariate Gaussians distributions for each 
state. In the decision fusion step, the ACC and EMG stream 
weights were set equal: δE = δA = 0.5.  

Two kinds of tests were implemented. In the first test, subjects 
performed gestures in order to confirm the validity of our 
hand gesture-based interaction method and to evaluate the 
system’s recognition accuracy. In the second test, Virtual 
Rubik’s Cube was scrambled in certain unsolved arrange-
ments. Subjects tried to sort Virtual Rubik's Cube using the 
hand gesture commands. Since not all the subjects were fa-
miliar with the solution algorithms of Rubik’s Cube, subjects 
were instructed how to solve the scrambled Rubik’s Cube 
with 50 moves in advance. After that, they performed hand 
gesture commands step by step until the puzzle was solved. 

Experimental Results 

There were three experimental conditions in the first test: 
EMG-only, ACC-only and combination of EMG and ACC. 
Each gesture was performed more than 10 times for every test 
task. The average recognition accuracies for 18 gestures 
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across five subjects are shown in Figure 7. The proposed 
method EMG+ACC achieved the highest accuracy, nearly 
100%. Results for EMG-only condition were between 65.9- 
80.3% and for ACC-only condition between 85.5-90.7%. The 
large standard deviations of the accuracies for EMG-only and 
ACC-only indicate that several gestures are unclassifiable. 

In the second test, every subject found it fun to play Virtual 
Rubik’s Cube game. All the gesture commands were defined 
in pairs. If an occasional recognition error occurred, it seldom 
influenced the game: users could easily perform the gesture 
controlling the counter-action of the error command and con-
tinue to play. Table 2 shows the statistical results for five 
subjects. The recognition results achieved with our system 
were satisfactory as the overall accuracy was 91.7%. 

The time delay between finished gesture command and sys-
tem response as a cube action is less than 300ms. So the 
proposed system is capable for real-time operation [1]. The 
average input rate for gesture commands was about 16 per 
minute. These figures indicate that the proposed hand ges-
ture-based interaction method is efficient. 

CONCLUSION AND FUTURE WORK 

This paper has proposed a novel approach to hand gesture 
recognition which can be utilized in natural interaction be-
tween human and computers. The system combines informa-
tion from a 3D accelerometer and multi-channel EMG sensors 
to achieve real-time hand gesture recognition using two- 
stream HMMs. Virtual Rubik’s Cube game which is con-
trolled by using hand gestures as input commands was in-
troduced and implemented. Experiments were conducted to 
evaluate the performance of our gesture recognition system. 
For a set of 18 gestures, each trained with 10 repetitions, the 
overall recognition accuracy was about 91.7% in a real ap-
plication. The proposed method facilitates quick and natural 
control in gesture-based interaction. 

Our future work will focus on enhancing the robustness of the 
system and extending our methods to other types of applica-
tions, for example, to gesture-based mobile interfaces. We 
also intend to test the repeatability for multi-user and 
user-independent system. In addition, the design of tiny, 
wireless, and flexible sensors that are better suited for com-
mon users in real application is another goal of our research. 
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Figure 7: Average recognition accuracy (with 

standard deviation bars) for the five subjects 

Subject
Gesture 

Performed
Correctly 

Recognized 
Accuracy 

(%) 
Time 

Consumption
Commands 
per Minute

Sub 1 58 54 93.1 3’ 28” 16.73 

Sub 2 62 57 91.9 3’ 55” 15.83 

Sub 3 63 56 88.9 3’ 43” 16.95 

Sub 4 52 51 98.1 3’22” 15.44 

Sub 5 66 58 87.9 4’11” 15.78 

Overall 301 276 91.7 18’39’’ 16.14 

Table 2: The statistical results for five subjects in 

puzzle solving mode 
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