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Hand gesture recognition is an intuitive and effective way for humans to interact with a computer due to its high processing speed
and recognition accuracy. -is paper proposes a novel approach to identify hand gestures in complex scenes by the Single-Shot
Multibox Detector (SSD) deep learning algorithm with 19 layers of a neural network. A benchmark database with gestures is used,
and general hand gestures in the complex scene are chosen as the processing objects. A real-time hand gesture recognition system
based on the SSD algorithm is constructed and tested.-e experimental results show that the algorithm quickly identifies humans’
hands and accurately distinguishes different types of gestures. Furthermore, the maximum accuracy is 99.2%, which is sig-
nificantly important for human-computer interaction application.

1. Introduction

With the rapid development of computer technology and
artificial intelligence, noncontact gesture recognition plays
important roles in human-computer interaction (HCI)
applications [1–4]. Due to its natural human-computer
interaction characteristics, the hand gesture recognition
system allows users to interact intuitively and effectively
through a computer interface [5, 6]. Additionally, gesture
recognition based on vision is widely applied in artificial
intelligence, virtual reality, multimedia, and natural lan-
guage communication [7–10].
However, traditional hand gesture recognition based on

image processing algorithms was not widely applied in HCI
because of its poor real-time capacity, low recognition accu-
racy, and complex algorithm. Recently, gesture recognition
based on machine learning has been developed rapidly in HCI
due to the introduction of the graphics processor unit (GPU)
and the artificial intelligence (AI) image processing [11, 12].
-e machine learning algorithms such as local orientation
histogram, support vector machine (SVM) [13], neural net-
work, and elastic graph matching are widely used in gesture

recognition systems [14–16]. Owning to its learning ability, the
neural network does not need manual feature setting during
the simulating human learning process and can carry out
training the gesture samples to form a network classification
recognitionmap [17, 18]. Deep learningmodels are inspired by
information processing and communication patterns devel-
oped from biological nervous systems, which involve neural
networks with more than one hidden layer. -ey can acquire
the characteristics of the learning object easily and accurately
under the complex object and exhibit superior performance in
computer vision (CV) and natural language processing (NLP)
[19–21]. Current state-of-the-art object detection systems are
variants of Faster R-CNN [22]. -e Single-Shot Multibox
Detector (SSD) further optimizes object detection [23, 24]. As
compared to Faster R-CNN, SSD is more simple and efficient
as it completely eliminates proposal generation subsequent
pixel and feature resampling stages, and it also encapsulates all
computation in a single network which makes SSD easily
trainable and straightforward to integrate into systems [5,
25–28].
-is paper discusses hand gesture recognition in com-

plex environments based on the Single-Shot Multibox
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Detector. -e approach is different from the work [28]. -e
image pyramid method is adapted to gesture recognition.
More accurately, the system crops the image into blocks to
detect far and small hand gestures. -e experiment results
show the SSD overcomes the interference signals in complex
backgrounds and improves the accuracy and processing
speed of gesture recognition.

2. Related Work

Generally, the process of vision-based hand gesture recog-
nition system includes three steps which are hand seg-
mentation, gesture model building, and hand gesture
classification. To increase the efficiency, we simplify the
process into two steps by using the SSD network. More
precisely, we just need a convolutional neural network such
as VGG16 [29] as a model system to identify the gesture
features and then proceed with hand segmentation and
gesture classification simultaneously by the SSD network.
-is makes our architecture much simpler and much faster
than other methods based on the Faster R-CNN model.
-e main purpose of gesture model building is to obtain

useful semantic features, separate them from the complex
backgrounds, and provide effective input information source
for the following stage. In the stage of hand segmentation
and hand gesture classification, hand postures with different
sizes will be located with different bounding boxes. For these
bounding boxes, simultaneously, we acquire the confidence
for all gesture categories. Training is used for this unified
framework to acquire an effective recognition model; rec-
ognition output is based on the model that has been trained
to identify the gesture categories of input data. In other
words, given an input image, we can acquire the location and
classification score of hand gesture in this image end-to-end.
-e standard hand gesture database is important for the

hand gesture recognition system. Figure 1(a) shows the 36
hand gestures from the Massey University’s 2D Static hand
gesture image dataset which is about standard numbers and
letters [30]. Note that some gestures are rather difficult to
distinguish from each other. For example, “a” and “e,” “d”
and “l,” “m” and “n,” or “i” and “j.” In this paper, we have
chosen the characters of “w,” “o,” “r,” and “k” as the study
objects which are shown in Figure 1(b). -e Canon EOS 6D
camera was employed to capture the gesture with an EF
24–105mm/4L IS USM lens and a shutter time of 1/100 S.
And the maximum distance is about five meters. Each hand
gesture sample was obtained under three different complex
backgrounds, aiming to prove the applicability and reli-
ability of the hand gesture recognition system.
-e hand gesture model building plays a vital role in a

gesture recognition system that is regarded as the first step
for processing the original input gestures. -e inputs of this
stage are images. When seeing an image, from the per-
spective of human beings, we can catch the sight of the scene
described in the picture. However, the computer cannot
capture these scenes from an original picture. -e computer
thinks an image is just a matrix with a variety of values in
different spatial locations and channels. In other words, the
computer can only obtain pixel-level information of an

image. Obviously, it is difficult to distinguish different ob-
jects using low-level information such as pixel values.
-erefore, if we want to recognize hand gestures, one of the
most efficient methods is extracting and summarizing high-
level information such as their features and structures from
the original image. -is is exactly what gesture modeling
does in our framework. We use the VGG16 convolutional
neural network, which uses 13 convolutional layers and is
deep enough to obtain high-level information of hand
gestures. Given the original image as the input, the VGG16-
Net will output feature maps of different resolutions which
contain high-level information of the image. -e reason for
choosing 19 layers is that it is enough to extract high-level
semantic information for classification and regression. And
limited by the size of our dataset, using high-level layers can
easily lead to overfitting.
-e VGG-Nets are a series of convolutional neural

networks with different depths which all use very smaller
(3 × 3) convolution filters. -e VGG16-Net (16 weight
layers) is one of them which has 13 convolutional layers and
3 fully connected layers. -e structure of VGG16 is shown in
Figure 2. In this figure, the convolutional layer parameters
are denoted as “conv< receptive field size> − <number of
channels>.” -e ReLU activation function is not shown for
brevity. -e original image is passed through a stack of
convolutional layers, which use filters with a small receptive
field: 3 × 3 (which is the smallest size for capturing the
notion of the left, right, up, down, and center). -e con-
volution stride is fixed to 1 pixel; the spatial padding of a
convolutional layer is such that the spatial resolution is
preserved after convolution, i.e., the padding is 1 for 3 × 3
convolution filters. Spatial pooling is carried out by five
maxpooling layers, which follow some of the convolutional
layers (not all the convolutional layers are followed by
maxpooling layers). Maxpooling is performed over a 2 × 2
pixel window, with stride 2.
All convolutional layers are equipped with the rectification

nonlinearity (ReLU) [31]. After a stack of convolutional,
maxpooling, and ReLU layers, we get feature maps with lower
resolution and stronger semantic information. -ere are also
fully connected layers and a soft max layer which are used for
image classification in the original VGG16-Net. We replace
these layers with SSD layers to implement hand segmentation
and hand gesture classification.
-e second stage, i.e., using the SSD network to perform

hand segmentation and hand gesture classification, is the
most important part in our framework. We have chosen the
SSD model because it is both accurate and fast. -e core of
SSD is predicting category scores and bounding box offsets
for a fixed set of default bounding boxes using very small
(3 × 3) convolutional filters applied to feature maps. Beyond
that SSD produces predictions of different scales from
feature maps of different scales and separates predictions by
aspect ratio. -is architecture leads to simple end-to-end
training and high accuracy, further improving the speed
versus accuracy trade-off [5].
SSD is based on a feed-forward convolutional neural

network (VGG16) that produces a fixed-size collection of
bounding boxes and scores for the presence of object class
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instance in those boxes. -is approach will produce a large
number of bounding boxes, and most of them are covered
by each other. -erefore, a nonmaximum suppression step

is executed to discard repetitive bounding boxes and pro-
duce the final detections. -e structure of SSD is shown in
Figure 3. -e input image is an image with 300 × 300 pixels
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Figure 1:-e graphs of hand gesture information: (a) standard library of hand gestures and (b) four hand gestures graphs in different backgrounds.
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Figure 2: VGG16 Conv-Net structure.
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and RGB channels. -e part in the dotted box is the truncated
VGG16 network.-e SSDmodel adds several feature layers of
different scales to the truncated VGG16 network. -ese layers
decrease in size as depth increases and allow predictions of
detections at multiple scales. -en, small convolutional filters
apply to every position in selected feature maps. More pre-
cisely, these filters apply to a set of default boxes of different
aspect ratios at each location in several selected featuremaps to
predict the shape offsets and the confident scores for all object
categories. In our work, object categories include four hand
gestures and the background.
Noting that we have the SSD framework, the next thing

we need is an objective function to train the model end-to-
end. -e overall objective function is a weighted sum of the
localization loss (loc) and the confidence loss (conf):

L(x, c, l, g) �
1

N
Lconf(x, c) + αLloc(x, l, g)( , (1)

where N is the number of default boxes that match to ground
truth boxes. -e localization loss is a smooth L1 loss between
the ground truth box (g) and the predicted box (l) parameters.
-ese parameters are offsets for the center coordinate (cx, cy)
of the default bounding box (d) and for its width (w) and
height (h), which is similar to Faster R-CNN [22]:
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-e confidence loss is the soft max loss over multiple
class confidences (c), as is usually used in multiple classi-
fication tasks:
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During training, we match the default boxes to the
ground truth boxes to calculate and reduce the loss of ob-
jective function. We do this recursively to optimize the
parameters of the SSD model and finally get an ideal model.
By using k-means clustering to guide the aspect ratio of
anchor boxes, we get three different ratios. After that the
ratios are 1.9, 1.6, and 1.1 with slight adjustment, respec-
tively. Furthermore, the used optimizer is Adam with an
initial learning rate of 0.0001.

3. Results and Discussion

-e hand gesture recognition system was built by the SSD
algorithm and training each character gesture with 1070
images with three different complex backgrounds. -en, we
used 268 images which were not in the training set to test the
building recognition model. -e testing results of the rec-
ognition model on characters “w,” “o,” “r,” and “k” show
good performance. In all 268 images, 261 of them are
recognized correctly, with an accuracy of more than 93.8%
and the highest recognition accuracy of 99.2%. -e average
prediction confidence for the 261 images recognized suc-
cessfully is up to 0.96, which is very close to 1. Examples of
visualization results are shown in Figures 4–7 with the
character “w,” “o,” “r,” and “k,” respectively.
To evaluate the comprehensive performance of the

gesture recognition system, the recognition accuracy for
each hand gesture and response time was tested.-e average
accuracy of the gesture recognition system and response
time are shown in Table 1. All the accuracies are more than
93.8%, and the character “o” owns higher accuracy. All
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Figure 3: Structure of the SSD network.
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(a) (b) (c)

Figure 4: -e automatic recognition result of character “w.”

(a) (b) (c)

Figure 5: -e automatic recognition result of character “o.”

(a) (b) (c)

Figure 6: -e automatic recognition result of character “r.”

(a) (b) (c)

Figure 7: -e automatic recognition result of character “k.”
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response times are less than 20ms which shows that the
system exhibits high real-time performance.
-e proposed work contributes to promote the accuracy of

the hand gestures recognition as alphabets (“w,” “o,” “r,” and
“k”) with the employment of SSD and image cropping. -e
results show that the adopted classification approach exhibits
superior performance, which clearly indicates that the pro-
posed system is an effective method for the hand gestures
recognition. It is found, by comparing with other works, that
the accuracy of the proposed method adopted in our work is
higher than that of others which are listed in Table 2.

4. Conclusion

-e Single-Shot Multibox Detector (SSD) deep algorithm is
proposed to apply to the hand gesture recognition. We chose
four character’s hand gestures under three different complex
backgrounds as the investigated objects. -e 19-layer con-
volutional neural network is used as a recognition model
with learning and training the selected characters end-to-
end. -e system test results show that the hand gesture
recognition system based on the SSD model performs ef-
ficiently, reliably, quickly, and accurately. -e response time
of the system is less than 20ms revealing high real-time
performance. -e minimum accuracy is more than 93.8%,
and the maximum is 99.2%. -e research results show that
the SSD algorithm can be used in the hand gesture recog-
nition system for the human-computer interaction
application.
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