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Hand gesture recognition plays an important role in human-

robot interaction (HRI). The accuracy and reliability of hand

gesture recognition are the keys to gesture-based HRI tasks.

To solve this problem, amethod based onmulti-modal data

fusion andmulti-scale parallel convolutional neural network

(CNN) is proposed in this paper to improve the accuracy and

reliability of hand gesture recognition. First of all, data fu-

sion is conducted on the sEMG signal, the RGB image, and

the depth image of hand gestures. Then, the fused images

are generated to two different scale images by downsam-

pling, which are respectively input into two sub-networks

of the parallel CNN to obtain two hand gesture recognition

results. After that, hand gesture recognition results of the

parallel CNN are combined to obtain the final hand gesture

recognition result. Finally, experiments are carried out on a

self-made database containing 10 common hand gestures,

which verify the effectiveness and superiority of the pro-

posedmethod for hand gesture recognition. In addition, the

proposedmethod is applied to a 7-degree-of-freedombionic

manipulator to achieve robotic manipulation with hand ges-

tures.
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1 | INTRODUCTION

In gesture-based space HRI:Malima et al. (2006); Raheja et al. (2010), reliability and security are the key to ensuring

the normal operation of HRI: Liu et al. (2016b). The traditional methods of acquiring hand gesture informationmainly

include collecting RGB images of hand gestures with a color camera, collecting depth information of hand gestures

with a depth sensor, and collecting electromyography information of hand gestures with a sEMG device. Each of these

methods has its advantages and disadvantages. For example, the RGB image of the hand gesture has rich performance

features, but it cannot show the 3D information of the hand gesture. The depth image of the hand gesture contains

3D features, but it lacks sufficient performance features. Moreover, the RGB image and the depth image cannot be

recognized at themost of time in the case where the hand is severely blocked. While the use of SEMGdevice does not

need to consider the occlusion problem of gestures, but the noise and interference of the device are large, and it is

often impossible to obtain a high hand gesture recognition accuracy. Various information about the hand gesture can be

utilized and the recognition accuracy of the hand gesture can be improved by fusingmulti-modal gesture information.

For example, the reference: Chen et al. (2015) combines depth camera data and inertial sensor data for the recognition

of 27 human bodymovements, which improves the recognition accuracy. Reference: Miao et al. (2017) combines RGB,

depth and optical flow information to identify dynamic gestures of the human upper bodies. The reference: Kopuklu

et al. (2018) combines the color map and the optical flow graph of dynamic hand gestures, and achieves good results on

the Jester, ChaLearn LAP IsoGD andNVIDIADynamic HandGesture Datasets. For the way of multimodal data fusion,

according to the stage of fusion, it is mainly divided into data level fusion: Kopuklu et al. (2018), feature level fusion:

Miao et al. (2017), decision level fusion: Simonyan and Zisserman (2014). Among them, data level fusion can achieve the

highest fusion efficiency. It has two advantages: (1) training only requires a single channel network; (2) automatically

establish pixel-wise correspondence between different modalities. Built on the above analysis, the data level fusion of

RGB information, depth information and sEMG information is proposed to improve the recognition accuracy of hand

gestures in this paper.

At present, twork has achieved great achievement in the field of image recognition: Gao et al. (2017a). In addition,

the use of multi-scale input in parallel networks can also improve the recognition accuracy of images effectively. For

example, the reference: Karpathy et al. (2014) proves that better experimental results can be obtained by a dual-stream

CNNwith raw and spatially clipped video streams. In reference: Molchanov et al. (2015), a parallel 3DCNN is designed,

and the original data and the data after down-sampling are input into two parallel sub-networks respectively, which

realizes the improvement of the dynamic hand gesture recognition accuracy. Take into account these, a parallel CNN

structure is proposed. And the fused data and the downsampled data are taken as input to the two parallel sub-networks.

Finally, the output results are brought together to obtain the final hand gesture recognition accuracy.

The contributions of this paper are concluded as follows.

a The RGB image, the depth image and the SEMG signal of hand gesture are combined to deal with hand gesture

recognition in the case of hand occlusion and to improve the reliability and safety of gesture-based HRI.

b A data-level fusion method is designed to convert the SEMG signal into an image and then fuse it with the RGB

image and the depth image.

c A multi-scale parallel convolutional neural network (MPN) framework is designed to improve the recognition

accuracy of hand gestures.

d A set of hand gesture database containing 10 commonHRI hand gestures is made. This database contains RGB

images, depth images and sEMG information, which can be used for verification of the proposedmethod.

e Theproposedmethod is applied to the control of a7-degree-of-freedombionicmanipulator to realize gesture-based
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F IGURE 1 AAR paltform

space HRI.

The rest of this paper is structured as follows. Chapter 2 introduces the gesture-based space HRI system. Chapter

3 presents the data fusionmethod. Chapter 4 introduces theMPN framework. Chapter 5 is the experimental results

and discussion, and the conclusion remark and future work are adopted in Chapter 6.

2 | GESTURE-BASED SPACE HRI SYSTEM

Security and reliability play important roles in space HRI tasks. This chapter is aimed at a bionic manipulator on an

astronaut assistant robot (AAR): Gao et al. (2017b); Liu et al. (2016a), using hand gestures to control and operate it.

2.1 | Space robot

In the space station, due to the heavy workload and the limited number of astronauts, the astronaut assistant robot

has an obligation to assist the astronauts in completing some spacemissions. For example, it can assist astronauts in

conducting space experiments, helping astronauts take some tools, andmanage the safety of astronauts. Therefore,

we design an AAR for using in the space station cabin. As shown in FIGURE 1, its platform consists of an AAR, a bionic

manipulator and a simulated air bearing table.

AAR This space robot is capable of free flight in the cabin and is equipped with 12 ducted fans as its drives for six-

degree-of-freedommotion inmicrogravity environments.

Air bearing table In the ground experiment, the simulated air bearing table can help the AAR to realize simulated

micro-gravity movement in the horizontal direction.

Bionic manipulator ABionic manipulator is mounted on the AAR and it can be utilized to grab some tools or objects.

Its structure consists of fingers, palm and wrist with seven degrees of freedom (5 degrees of freedom in fingers
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F IGURE 2 The pipeline of HRI method

and 2 degrees of freedom in thewrist). It is extremely important to control themotion of the bionic manipulator.

Traditional control methods, such as handles, joysticks, and consoles, are complicated and inconvenient to operate.

Since the structure of themanipulator is similar to a human hand, it is very convenient to directly control it with

hand gestures.

2.2 | Gesture-basedHRI

Hand gesture recognition technology is very important in gesture-basedHRI: Gao et al. (2019). Current hand gesture

recognitionmethods aremainly based onwearable devices and vision: Rautaray and Agrawal (2015); Smith et al. (2000).

Bothmethods have their pros and cons. For example, wearable-based hand gesture recognition is limited by the device,

and the interference is large. While vision-based hand gesture recognition is susceptible to occlusion. Security and

reliability are the priority in spacemissions. Therefore, in this paper, these twomethods are combined to improve the

recognition accuracy of hand gestures and to copewith various interference, such as occlusion and signal interference.

For the acquisition of hand gesture signals, we use theMYO armband to collect the sEMG signals of hand gestures:

Benalcázar et al. (2017). The sensors on theMYOband capture the bioelectrical changes that occur when the user’s

armmusclesmove, thus can judge thewearer’s hand gestures, and then send the recognition results to the robot via

Bluetooth. And use the Kinect to collect the RGB andDepth images of hand gestures: Ren et al. (2013). Kinect is a 3D

sensor that includes a color camera and a TOF depth camera. It can capture hand gesturemovements in 3D space in real

time. Then, combine the three kinds of information and transmit them to the hand gesture recognitionmodel based on

deep neural network to identify the corresponding hand gestures. After that, the recognized result is transmitted to

the AAR. Thereby enabling the human hand to control the bionic manipulator so that it can simulate the human hand

gestures. The specificmethod flow chart is shown in FIGURE. 2.

2.3 | HRI hand gesture dataset

Since the bionic manipulator has 7 degrees of freedom, it can simulate themovement of human fingers andwrist, 10

common static hand gestures are designed, including the gesture of the fingers or the gesture of fingers andwrist. These

hand gestures and their semantics are shown in TABLE 1. Among these hand gestures, hand gesture 1 and hand gesture

2 can control the initial action and stop action of themanipulator. Hand gestures 3-6 can control themovement direction

of the manipulator, that is, left, right, upward and downward. The manipulator can learn different ways of grasping

from hand gesture 7-10, which help to grasp different objects.By simulating these hand gestures, themanipulator can
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TABLE 1 HRI hand gesture dataset

Hand gesture number Hand gesture semantic Hand gesture diagram

Hand gesture 1 Relax

Hand gesture 2 Fist

Hand gesture 3 Left

Hand gesture 4 Right

Hand gesture 5 Downward

Hand gesture 6 Upward

Hand gesture 7 Grab a cylinder

Hand gesture 8 Grab a ball

Hand gesture 9 Pinch

Hand gesture 10 Buckle

perform some conventional directional motion operations and grab operations.

2.4 | Stability analysis of HRI

For a complete gesture-based HRI system, the stability of the system should be also considered. When astronaut hand

gestures incorrect or at the transition process between different hand gestures, or when the system just starts and the

hand gesture changes suddenly, the HRI systemmaybe unstable. Therefore, it is necessary in order to design amethod

tomap astronaut’s hand gestures to the bionic manipulator, to filter out unstable hand gesture information, and to use

stable hand gesture output for controlling themanipulator.

Finite StateMachine (FSMis a mathematical model employed to represent finite states and transitions and actions

between these states. It is primarily used for the parsing of programming languages. The gesture-based HRI can also be

taken into account as a language form that expresses semantic commands through hand gestures. Therefore, it is very

suitable to use FSM tomodel the semantics of different hand gestures.

For each predefined hand gesture, a FSMmodel needs to be created. As shown in FIGURE 3, in the process of

interaction between the astronaut and the bionic manipulator, firstly, each frame data containing a hand gesture is

collected by Kinect andMYO. Secondly, the hand gesture recognition algorithm is utilized to recognize the type of the

hand gesture, and then the processed hand gesture information is input to the corresponding FSMmodel. This can

output the predefined hand gesture.

Taking hand gesture 1 as an example, the state transition relationship of the hand gesturemodel is established by
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F IGURE 3 Hand gesture interaction flow chart

F IGURE 4 FSMmodel diagram of “Hand gesture 1”

using the FSMmethod, and it is illustrated in FIGURE 4. The implementation principle of hand gesture 1 FSMmodel is

shown as follows: the initial time of the system is in state 1. At this time the bionic manipulator is not controlled. When

the astronaut enters a hand gesture and the system recognizes that the hand gesture is “Hand gesture 1", it transitions

to transition state 2 and clears counter 1 and counter 2. At this time, the bionic manipulator has not yet been controlled.

If a hand gesture other than “Hand gesture 1" is recognized in this state, it returns to the initial state 1. Keep the “Hand

gesture 1” for more than 5 consecutive frames, then enter the working state 3. If the “Hand gesture 1” is recognized in

this state, the hand gesture is output to control the bionic manipulator.

3 | DATA FUSION METHOD

Data fusionmethod plays an important role in multi-modal hand gesture recognition tasks: EL-SAYED (2015); Liu et al.

(2014). According to the order of data fusion, its methods can be subdivided into data level fusion, feature level fusion

and decision level fusionKopuklu et al. (2018). In this paper, data level fusion is utilized to fuse the RGB, depth and sEMG

signals of hand gestures. Comparedwith feature level fusion and decision level fusion, data level fusion has the following

advantages: (a) The fused data can be extracted by a single-channel deep neural network, which can effectively reduce

the number of parameters and improve the speed of the algorithm. (b) Achieve pixel-wise correspondence between

multi-modal data to improve data fusion efficiency. This chapter introduces the data fusionmethod of RGB, depth and

sEMG signals of thementioned 10 hand gestures.
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3.1 | Data correspondence

Fusion of multimodal data needs tomaintain the correspondence of the fused data structure and sampling time. The

RGB and depth images acquired by Kinect is 30 fps with a resolution of 640480. The sEMG signal collected byMYO

armband is 16 channels and the frequency is 1000Hz: Boyali et al. (2015). The data of the images and the sEMG

signal are different in both spatial structure and sampling frequency, so, they cannot be directly fused. Therefore, it is

necessary to convert these three kinds of data into a consistent structure and then fuse them. The process of conversion

is shown as follows:

3.1.1 | Convert sEMG signals into images

Data collected by theMYO armband in each second is filtered to obtain amatrixMwhich indicates the strength of the

myoelectric signal. The size ofM is 161000. Convert it to a grayscale imagewith a pixel size of 161000 using equation

(1).

sx ,y = 255 ×
m(x , y )

mmax (x , y ) −mmin (x , y )
(1)

where s(x , y ) is the pixel value of the coordinate (x , y ) in the image S . s(x , y ) ∈ [0, 255], x ∈ [1, 1000], y ∈ [1, 16].

m(x , y ) is the value of the sEMG signal with the coordinate (x , y ) in thematrixM . m(x , y ) ∈ [mmin(x , y ),mmax (x , y )],

mmin(x , y ) andmmax (x , y ) are theminimum value andmaximum value in thematrixM .

3.1.2 | Cut the image S

The image S is cut into several of small images with a pixel size of 16 × 16. Then, 10 images are uniformly extracted from

them, and they are converted into images with a size of 160 × 160 by upsampling. That is, 10 frames of grayscale images

with a pixel size of 160 × 160 are obtained from theMYO armband per second.

3.1.3 | Sampling and cutting hand gesture images in RGB and depth images

Taking the RGB images as an example, 10 frames of images are uniformly sampled in 30 frames of images acquired by

the Kinect per second. These 10 images are cut into images containing hand gestures with a pixel size of 160 × 160. That

is, 10 RGB images with a pixel size of 160 × 160 can be obtained every second fromKinect’s color camera. The process of

depth images is the same as that of RGB images, 10 depth images with a pixel size of 160 × 160 can be obtained every

second fromKinect’s depth camera.

3.1.4 | Guarantee the time consistency of the acquired signals

After the signals are handled asmentioned above, these three types of data are collected every 100ms. As shown in

FIGURE 5, the hand gesture sEMG image, RGB image, and depth image acquired at the same time t are St , R t , andDt ,

respectively. Where
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F IGURE 5 Data fusion process





St ∈ Rw×h×cs

R t ∈ R
w×h×cr gb

Dt ∈ Rw×h×cd

(2)

where cs = 1 is the channel number of the sEMG image, cr gb = 3 is the channel number of the RGB image and

cd = 1 is the channel number of the depth image.

3.2 | Data Fusion

Theway of data fusion is indicated in Fig. 3. The depth imageDt and the sEMG image St are sequentially attached to

the RGB image R t as additional channels. The equation is as as follows:

Λ : (Rw×h×cr gb
, Rw×h×cd

, Rw×h×cs ) → Rw×h×cf (3)

wher eFt = Λ(R t ,Dt , St ) (4)

cf = cr gb + cd + cs (5)

where Ft is themerged image, cf = 5 is the number of channels. The three types of data collected at the same time

can be converted into fused data byM . The fused hand gesture image Ft contains (a) performance features contained

in RGB channels; (b) 3D space features contained in a depth channel, and (c) myoelectric features contained in sEMG
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channel. Finally, Ft is input as the fused data into the deep neural network.

4 | MULTI-SCALE PARALLEL CONVOLUTIONAL NEURAL NETWORK (MPN)

Aiming at feature extraction and recognition of the hand gesture fusion data, we propose a MPN framework. This

chapter mainly introduces hand gesture database, network framework and trainingmethod.

4.1 | Hand gesture database

Since there is currently no public hand gesture database containing RGB images, depth images, and sEMG signals, we

have to create a set of such database containing the above 10 hand gestures. The Kinect sensor is used to capture the

RGB and depth images of the hand gestures, theMYO armband is used to capture the sEMG signal of the hand gestures,

and the above data processingmethod is utilized to convert all these three data into images with size 160 × 160. Hand

gesture data of 6 subjects are collected, and each subject is collected 625 images for each hand gesture. In addition, one

of these subjects is collectedwith object occlusion. Therefore, our hand gesture database contains a total of 112,500

images, of which the number of RGB, depth and sEMG images are all 37,500. Then, by combining these three kinds of

images collected at the same time using the above data fusion method, 37500 images with a size of 160 × 160 and a

channel number of 5 can be obtained.

4.2 | Network framework

The proposed MPN framework is based on the following ideas: (1) in the current CNN models for image feature

extraction, the Residual connection structure: He et al. (2016) can train deeper networks. It is implemented by using

shortcut connections. Its building block is shown in Figure 4 and the residual mapping formula is

F (x ) = H (x ) + x (6)

Where x is the unit map, H(x) is the optimal solution near the unit map, and F(x) is the residual map between the unit

map and the optimal solution.

The Inception structure Szegedy et al. (2016) can avoid computational explosion and extract features frommultiple

scales. So, we add these two structures to the MPN. (2) The traditional Inception v4 or Inception-ResNet: Szegedy

et al. (2016) models are mainly for large-size (299 × 299) images. Because of our small data size (160 × 160), the network

structure of the Inception v4 network is redesigned for using in the feature extraction of our hand gesture recognition

database. (3) Inspired by the reference: Karpathy et al. (2014), the fusion of image information at different spatial scales

can increase the recognition rate of images. Therefore, a parallel deep neural network structure is designed to fuse two

kinds of image data with spatial scales of 160 × 160 and 80 × 80. The specific network framework is shown in FIGURE 6.

And its functionmodules are presented in FIGURE 7.

As shown in FIGURE 4, theMPN framework is mainly divided into two channels: a high-resolution network (HRN)

and a low-resolution network (LRN). The input to the network is the fused data and downsampled data from the fused

data, and the output is a probability vector of the 10HRI hand gestures. The fused data is downsampled to obtain data

with size 80 × 80 × 5, and the two channels process image data of these two spatial scales in parallel. Among them, HRN
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F IGURE 6 MPN framework

mainly extracts and classifies hand gesture datawith a spatial size of 160×160, and the LRNmainly extracts and classifies

hand gesture datawith a spatial size of 80×80. The structures of Stemmodule, Inceptionmodule, and Reductionmodule

in the MPN are the same as the structures of the corresponding modules in the Inception-v4. PH (C | x ,WH ) is the

classification result of HRN, and PL (C | x ,WL ) is the classification result of LRN. Then, the two results are fused to

obtain the final hand gesture classification result PF (C | x ). The fusion process uses the element-wise method. Its

equation is:

PF (C | x ) = PH (C | x ,WH ) ∗ PL (C | x ,WL ) (7)

where PF (C | x ), PH (C | x ,WH ), PL (C | x ,WL ) ∈ R 10×1. The predicted lable ch∗ choses themaximum value of the

vector PF (C | x ), its equation is:

ch∗ = ar gmaxPF (C | x ) (8)



11

F IGURE 7 Functionmodules. (1) Reduction-A (2) Reduction-B (3) Inception-A (4) Inception-B (5) Inception-C

4.3 | Train

Select negative log-likelihood: Norouzi et al. (2016) as the loss function. Its equation is:

L(W ,DH ) = −
1

DH

|DH |∑

i=0

log(PF (C
(i ) | x (i ),W )) (9)

whereDH is the hand gesture database, andW is the weight function.

The training process uses the steep gradient descent (SGD), and its iterative function is shown as follows:

Vt+1 = µVt − α ▽ L(Wt ) (10)

Wt+1 =Wt +Vt+1 (11)

where t is the current number of iterations. Theweight valueWt+1 of the t + 1 time depends on theweightWt of

the t time and the weight incrementVt+1 of the t+1 time. The value ofVt+1 is updated by a linear comparison of the last

valueVt and negative gradient. α is the learning rate of the gradient, µ is themomentum of the last gradient value. We

are required to adjust the values of α and µ to get the best training results.

Adjust the value of the learning rate α by the stepmethod: LeCun et al. (2015). Its equation is:

α = α0 × γ(t/s) (12)
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TABLE 2 Accuracy and speed

Input data Accuracy(%) Speed(ms) GPU

RGB 55.07 19 GTX1060

Depth 47.26 18 GTX1060

sEMG 75.52 18 GTX1060

RGB+Depth+sEMG 88.89 21 GTX1060

Among them α0 is the initial learning rate, γ is the adjustment parameter, s represents the iteration length of the

adjustment learning rate. That is to say, when the current number of iterations reaches an integral multiple of s , the

learning rate is adjusted.

5 | EXPERIMENTAL RESULTS AND DISCUSSION

The proposed data fusionmethod andMPNmethod are verified under the above hand gesture database, which proves

the feasibility and superiority of the proposedmethods.

5.1 | Verification of data fusionmethod

The data collected by a subject with occlusion in the hand gesture database is used as the verification data, and the data

collected by the other five subjects is used as the training data to verify the data fusionmethod. The RGB images, the

depth images, the EMG signal images, and the fused images of the hand gestures are separately trained and verified

using the HRN, and the experimental results are compared.

Set the parameters during the training process. The values of the parameters µ and α0 are mainly based on

experience. We set the value of µ to 0.9 and the value of α0 to 0.001. The value of γ is set to 0.1, the value of the learning

rate iteration length s is set to 20000, and the total number of training steps is 60000. That is to say, when the number

of training steps is 20,000 and 40,000, the learning rate becomes 0.0001 and 0.00001, respectively.

All experiments are performed in GTX1060, 6GBmemory, and the deep learning framework selects Tensorflow.

Through experiments, the average accuracies and time spent of hand gesture recognition using RGB, depth, sEMG

data alone and using fused data can be obtained as shown in Tab. 2. The recognition accuracy is calculated based on the

ratio of the correct hand gesture images to the total hand gesture images, and the average accuracy is the average of the

10 hand gesture accuracies. The accuracy comparison of the 10 hand gestures corresponding to these four methods is

shown in FIGURE 8.

It can be viewed in Tab. 2 that among the experimental results of the four different data, the accuracies of using

only RGB and depth data are very low (RGB: 55.07%, Depth: 47.26%). This is because all the hand gesture images in

the training process are unoccluded, but some of the hand gesture images in the verified data are partially occluded or

totally occluded. Therefore, it can be observed that in the case of occlusion, the effect of using vision for hand gesture

recognition is not ideal. Recognition accuracy of using sEMG data alone is 75.52%, which indicates that the sEMG signal

is less affected by hand gesture occlusion. However, as can be seen from FIGURE 5, the recognition accuracy of the hand

gesture 8 is only 6%, whichmay be because the sEMG signals of the hand gesture 8 (grip a ball) and the hand gesture

7 (grip a cylinder) are very close, resulting inmost of the sEMG images of the hand gesture 8 are recognized as hand

gesture 7. While these two hand gestures differ greatly in RGB images and depth images and can be easily distinguished.
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F IGURE 8 The comparison of 10 hand gesture recognition accuracy with four different input data. The blue bar

indicates the accuracy of hand gesture recognition obtained by inputting RGB images separately. The cyan bar indicates

the accuracy of hand gesture recognition obtained by inputting depth images separately. The yellow bar indicates the

accuracy of hand gesture recognition obtained by inputting sEMG images separately. And the red bar indicates the

accuracy of hand gesture recognition obtained by inputting fusion images.

TABLE 3 Accuracy and speed

Network Accuracy(%) Speed(ms) GPU

High-resolution network (HRN) 88.89 21 GTX1060

Low-resolution network (LRN) 87.32 16 GTX1060

Multi-scale parallel CNN (MPN) 92.45 32 GTX1060

Recognition accuracy using the fusion data is the highest, reaching 88.89%. Andwe can see from Fig. 5 that the fusion

data has a high recognition accuracy for each hand gesture, wherein the recognition accuracy of hand gesture 7 is the

lowest, reaching 69.38%, and the recognition accuracy of hand gesture 6 is the highest, reaching 100%. Therefore, it

can be proved that the use of fused data can effectively improve the recognition accuracy of hand gestures. In addition,

as can be observed in Tab. 1, the speed of using the fused data is the slowest in the four methods, reaching 21ms, but it

can also achieve high real-time performance.

5.2 | Verification ofMPNmethod

In order to verify the superiority of the proposedMPNmethod, we use the HRN, LRN andMPN to train and verify the

fused hand gesture data. And the results are compared. In order tomaintain the fairness of themethod comparison,

each training parameter is set to be consistent with the above, and the average accuracy and speed of the hand gesture

recognition obtained are shown in Tab. 3. The accuracy comparison of the 10 hand gestures corresponding to these

threemethods is shown in FIGURE 9.

As can be seen from Tab. 3, theMPN has the highest hand gesture recognition accuracy of 92.45%. Andwe can see

from Fig. 6 that the recognition accuracies of all 10 hand gestures obtained by using theMPN are high, where the lowest

hand gesture recognition accuracy is 80.85% for the hand gesture 7, and the highest hand gesture recognition accuracy

for the hand gesture 4 and the hand gesture 6 are both 100%. It’s proposed that the MPN method can effectively

improve the hand gesture recognition accuracy. In addition, it can be seen fromTab. 3 that the LRNmethod is the fastest,

reaching 16ms, this is because the parameters of the LRN network are relatively few. TheMPNmethod is the slowest,
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F IGURE 9 The comparison of 10 hand gesture recognition accuracy with three different network frameworks. The

gray bar indicates the accuracy of hand gesture recognition using only the HRN. The green bar indicates the accuracy of

hand gesture recognition using only the LRN. And the purple bar indicates the accuracy of hand gesture recognition

using theMPN.

TABLE 4 Accuracies of themanipulator corresponding to the 10 hand gestures

Hand gesture number 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 96 82 97 98 89 97 78 85 90 91

reaching 32ms, but at this speed, the system can still achieve real-time performance. In a word, it is proved that the

MPNmethod proposed in this paper cannot only effectively improve the recognition accuracy of hand gestures. But

also can be applied to the real-time control system of the above-mentioned bionic manipulator.

5.3 | Verification ofMPNmethod

Applying the aboveMPNmethod to the recognition of the 10HRI hand gestures can realize online recognition of these

hand gestures. Convert the recognized hand gesture into an action instruction, and then transmit the action instruction

to the 7-degree-of-freedombionicmanipulator according to the FSMmodel proposed above, this can realize the control

of the bionic manipulator by the hand gesture operation.

The hand gesture input and the correspondingmotion state corresponding to the bionic manipulator are shown in

FIGURE 10.

In the real-time system, the movement of the bionic manipulator is controlled by hand gestures, and the above

10 kinds of hand gestures are collected 100 times by Kinect andMYO band, and themanipulator response action is

recorded in each time, then the response accuracies of the manipulator corresponding to the 10 hand gestures are

obtained andwhich are shown in Tab.4.

It can be seen from Table 2 that the accuracies of themanipulator operation corresponding to the above 10HRI

hand gestures aremore than or equal to 78%. Among them, the accuracy of hand gesture 7 is the lowest (78%) which

corresponds to the lowest recognition accuracy of hand gesture 7 in Figure 6. Hand gesture 4 has the highest accuracy

of 98%, which corresponds to the highest recognition accuracy of hand gesture 6 in FIG.6. The average accuracy of the

manipulator operation is 90.3%, which is 2.15% lower than the hand gesture recognition accuracy of 92.45% by using

MPN. This explain that therewill be an error of about 2.15% fromhand gesture recognition to themanipulator response,

which is acceptable in practice. In addition, through experimental records, it is found that almost all erroneous response
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F IGURE 10 Hand gesture input andmanipulator motion state diagram. (1) Hand gesture 1 (2) Hand gesture 2 (3)

Hand gesture 3 (4) Hand gesture 4 (5) Hand gesture 5 (6) Hand gesture 6 (7) Hand gesture 7 (8) Hand gesture 8 (9)

Hand gesture 9 (10) Hand gesture 10.

operations keep the last action, indicating that the proposed FSMmethod is helpful for stability in the manipulator

interaction control. In this case, even if the hand gesture recognition is wrong, as long as the manipulator keeps the

motion unchanged, it will not be affected by the operation error. Therefore, this paper proves that the proposed hand

gesture recognitionmethod and the HRImethod are effective and superior to gesture-based robot control.

6 | CONCLUSION REMARK AND FUTURE WORK

In this paper, focus on the gesture-based HRI for a bionic manipulator on the astronaut assistant robot, a method

using data fusion andmulti-scale parallel neural network is proposed to improve the recognition accuracy of 10HRI

hand gestures. The contributions and innovations of this paper are summarized as follows: (a) for the control of the

seven-degree-of-freedom bionic manipulator, 10 commonly used HRI hand gestures are designed, and a corresponding

hand gesture database is made for these 10 hand gestures. The database contains RGB, depth and sEMGdata. (b) A

data fusionmethod is proposed to fuse RGB, depth and sEMG signals with different scales to achieve consistency of

these three data sizes and sampling time. (c) Amulti-scale parallel convolutional neural network framework is proposed

to improve the recognition accuracy of hand gestures.

In the next step, our research will be performed on dynamic hand gestures. Since the recognition of dynamic hand

gestures ismore practical, the data fusionmethod and recognition aremore difficult. In the future, themethod proposed

in this paper needs to be improved tomake it applicable to the recognition task of dynamic hand gestures.
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