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Abstract. An approach to recognizing hand gestures from a monocular
temporal sequence of images is presented. Of particular concern is the
representation and recognition of hand movements that are used in single
handed American Sign Language (ASL). The approach exploits previous
linguistic analysis of manual languages that decompose dynamic gestures
into their static and dynamic components. The first level of decompo-
sition is in terms of three sets of primitives, hand shape, location and
movement. Further levels of decomposition involve the lexical and sen-
tence levels and are part of our plan for future work. We propose and
demonstrate that given a monocular gesture sequence, kinematic fea-
tures can be recovered from the apparent motion that provide distinctive
signatures for 14 primitive movements of ASL. The approach has been
implemented in software and evaluated on a database of 592 gesture se-
quences with an overall recognition rate of 86.00% for fully automated
processing and 97.13% for manually initialized processing.

1 Introduction

Interest in automated gesture recognition has the potential to create powerful
human computer interfaces. Computer vision provides methods to acquire and
interpret gesture information while being minimally obtrusive to the participant.
To be useful, methods must be accurate in recognition with rapid execution to
support natural interaction. Further, scalability to encompass the large range
of human gestures is important. The current paper presents an approach to
recognizing human gestures that leverages both linguistic theory and computer
vision methods. Following a path taken in the speech recognition community for
the interpretation of speech [22], we appeal to linguistics to define a finite set
of contrastive primitives, termed phonemes, that can be combined to represent
an arbitrary number of gestures. This ensures that the developed approach is
scalable. Currently, we are focused on the representation and recovery of the
movement primitives derived from American Sign Language (ASL). This same
linguistics analysis has also been applied to other hand gesture languages (e.g.
French Sign Language). To affect the recovery of these primitives, we make use

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3021, pp. 282–296, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



Hand Gesture Recognition within a Linguistics-Based Framework 283

of robust, parametric motion estimation techniques to extract signatures that
uniquely identify each movement from a monocular input video sequence. Here,
it is interesting to note that human observers are capable of recovering the
primitive movements of ASL based on motion information alone [21]. For our
case, empirical evaluation suggests that algorithmic instantiation of these ideas
has sufficient accuracy to distinguish the target set of ASL movement primitives,
with modest processing power.

1.1 Related Research

Significant effort in computer vision has been marshalled in the investigation
of human gesture recognition (see [1,20] for general reviews); some examples
follow. State-space models have been used to capture the sequential nature of
gestures by requiring that a series of states estimated from visual data must
match in sequence, to a learned model of ordered states [7]. This general approach
also has been used in conjunction with parametric curvilinear models of motion
trajectories [6]. An alternative approach has used statistical factored sampling
in conjunction with a model of parameterized gestures for recognition [5]; this
approach can be seen as an application and extension of the CONDENSATION
approach to visual tracking [14]. Further, several approaches have used Hidden
Markov Models (HMMs) [17,24,26], neural networks [10] or time-delay neural
networks [31] to learn from training examples (e.g., based on 2D or 3D features
extracted from raw data) and subsequently recognize gestures in novel input.

A number of the cited approaches have achieved interesting recognition rates,
albeit often with limited vocabularies. Interestingly, many of these approaches
analyze gestures without breaking them into their constituent primitives, which
could be used as in our approach, to represent a large vocabulary from a small
set of generative elements. Instead, gestures are dealt with as wholes, with pa-
rameters learned from training sets. This tack may limit the ability of such
approaches to generalize to large vocabularies as the training task becomes inor-
dinately difficult. Additionally, several of these approaches make use of special
purpose devices (e.g., coloured markers, data gloves) to assist in data acquisition.

In [2,28], two of the earliest efforts of using linguistic concepts for the descrip-
tion and recognition of both general and domain specific motion are presented.
Recently, at least two lines of investigations have appealed to linguistic theory
as an attack on issues in scaling gesture recognition to sizable vocabularies [18,
30]. In [18] the authors use data glove output as the input to their system. Each
phoneme, from the parameters shape, location, orientation and movement, is
modelled by an HMM based on features extracted from the input stream, with
an 80.4% sentence accuracy rate. In [30] to affect recovery, 3D motion is ex-
tracted from the scene by fitting a 3D model of an arm with the aid of three
cameras in an orthogonal configuration (or a magnetic tracking system). The
motion is then fed into parallel HMMs representing the individual phonemes.
The authors report that by modelling gestures by phonemes, the word recog-
nition rate was not severely diminished, 91.19% word accuracy with phonemes
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versus 91.82% word accuracy using word-level modelling. The results thus lend
credence to modelling words by phonemes in vision-based gesture recognition.

1.2 Contributions

The main contributions of the present research are as follows. First, our approach
models gestures in terms of their phonemic elements to yield an algorithm that
recognizes gesture movement primitives given data captured with a single video
camera. Second, our approach uses the apparent motion of an unmarked hand
as input as opposed to fitting a model of a hand (arm) or using a mechanical
device (e.g. data glove, magnetic tracker). Third, our recognition scheme is based
on a nearest neighbour match to prototype signatures, where each of 14 move-
ment primitives of ASL is found to have a distinctive prototype signature in a
kinematic feature space. We have evaluated our approach empirically with 592
video sequences and find an 86.00% phoneme accuracy rate for fully automated
processing and 97.13% for manually initialized processing even as other aspects
of the gesture (hand shape and location) vary.

1.3 Outline of Paper

This paper is subdivided into four main sections. This first section has provided
motivation for modelling gestures at the phoneme level. Section 2 describes the
linguistic-basis of our representation as well as the algorithmic aspects of the ap-
proach. Section 3 documents empirical evaluation of our algorithm instantiation.
Finally, Section 4 provides a summary.

2 Technical Approach

Our approach to gesture recognition centres around two main ideas. First, lin-
guistic theory can be used to define a representational substrate that system-
atically decomposes complex gestures into primitive components. Second, it is
desirable to recover the primitives from data that is acquired with a standard
video camera and minimal constraints on the user. Currently, we are focused on
the recovery of the linguistically defined rigid single handed movement primi-
tives of American Sign Language (ASL). The input is a temporal sequence of
images that depicts a single movement phoneme. The output of our system is a
classification of the depicted gesture as arising from one of the primitive move-
ments, irrespective of other considerations (e.g., irrespective of hand location
and shape). The location of the hand in the initial frame is obtained through
an automated localization process utilizing the conjunction of temporal change
and skin colour. We assume that the hand is the dominant moving object in the
imaged scene as an aid to localization. To affect the recognition, a robust, affine
motion estimator is applied to regions of interest defined by skin colour and
temporal change on a frame-to-frame basis. The resulting time series of affine
parameters are individually accumulated across the sequence to yield a signature
that is used for classification of the depicted gesture. Details of the movement
gesture vocabulary and the processing stages are presented next.
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(A)

(B)

(C)

Fig. 1. Stokoe’s phonemic analysis of ASL. The left panel (A) depicts the signing space
where the locations reside. Shaded regions indicate locations used in our experiments.
The upper right panel (B) depicts possible hand shapes. Circled shapes indicate shapes
used in our experiments. The lower right panel (C) depicts possible single handed
movements (a) upward (b) downward (c) rightward (d) leftward (e) toward signer (f)
away signer (g) nod (h) supinate (i) pronate (j) up and down (k) side to side (l) twist
wrist (m) circular (n) to and fro. The solid ellipse, dashed ellipse and dashed arrow
represent the initial hand location, the final location and the path taken respectively.
We investigate the recognition of movement independent of location and shape.

2.1 Linguistics Basis

Prior to William Stokoe’s seminal work in ASL [27], it was assumed by linguists
that the sign was the basic unit of ASL. Stokoe redefined the basic unit of a
sign to units analogous to speech phonemes: minimally contrastive patterns that
distinguish the symbolic vocabulary of a language. Stokoe’s system consists of
three parameters that are executed simultaneously to define a gesture, see Fig.
1. The three parameters capture location, hand shape and movement. There are
12 elemental locations defined by Stokoe residing in a volume in front of the
signer termed the “signing space”. The signing space is defined as extending
from just above the head to the hip area in the vertical axis and extending close
to the extents of the signer’s body in the horizontal axis (see Fig. 1A). There are
19 possible hand shapes (see Fig. 1B). While Stokoe’s complete vocabulary of
movements consists of 24 primitives (i.e. single and two-handed movements), as a
starting point, we restrict consideration to the 14 rigid single handed movements,
shown in Fig. 1C. Current ASL theories still recognize the Stokoe system’s ba-
sic parameters but differ in their definition of the constituent elements of the
parameters [29]. We use Stokoe’s definition of the parameters since they are gen-
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erally agreed to represent an important approximation to the somewhat wider
and finer grained space that might be required to capture all the subtleties of
hand gesture languages.

2.2 Motion Estimation

Let I(x, t) represent the image brightness at position x = (x, y)� and time t.
Using the brightness constancy constraint [12], we define the inter-frame motion,
u(x) = (u(x), v(x))�, as,

I(x, t + 1) = I(x − u(x), t) (1)

We employ an affine model to describe the motion,

u(x, y) = a0 + a1x + a2y, v(x, y) = a3 + a4x + a5y (2)

We make use of the affine model for two main reasons. First, through an ana-
lytic derivation we found that there exists a unique mapping between Stokoe’s
qualitative description of the movement of the hand in the world and the first-
order kinematic decomposition of the corresponding visual motion fields. The
first-order kinematic description includes the following measures, (differential)
translation, rotation, isotropic expansion/contraction and shear: Cases (shown
in Fig. 1C) a-d, j, k and m are characterized by translation, for m horizontal and
vertical translation oscillate out of phase (see Fig. 2); cases h, i and l involve rota-
tion; cases e, f and n are characterized by expansion/contraction; case g involves
shear and contraction. Due to space considerations the derivation has been omit-
ted, for details see [8]. Second, over the small angular extent that encompasses
the hand at comfortable signing distances from a camera, small movements can
be approximated with an affine model. To affect the recovery of the affine param-
eters we make use of a robust, hierarchical, gradient-based motion estimator [4]
operating over a Gaussian pyramid [15]. The hierarchical nature of the estimator
allows us to handle significant magnitude image displacements with computa-
tional efficiency even while avoiding local minima. This estimator is applied to
skin colour defined regions of interest in a pair of images under consideration.
We use skin colour to restrict consideration to image data that arises from the
hand; such regions are extracted using a Bayesian maximum-likelihood classifier
[32]. As a further level of robustness we restrict consideration to points that
experience a significant change in intensity (i.e. dI/dt). For robustness in mo-
tion estimation, we make use of an M-estimator [13] (e.g., as opposed to a more
standard least-squares approach, c.f., [3]) to allow for operation in the presence
of outlying data in the form of non-hand pixels due to skin-colour oversegmen-
tation, pixels that grossly violate the affine approximation as well as points that
violate brightness constancy. The particular error norm we choose is the Geman-
McClure [13].

The motion estimator is applied to adjacent frames across an image sequence.
As an initial seed, the hand region in the first frame of the sequence is outlined
by an automated process that consists of: utilizing the conjunction of skin colour
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detection and change detection (i.e. dI/dt) to define a map of likely regions where
the hand may reside, followed by a morphologically-based shape analysis [15] for
the hand itself that seeks the region within the skin/change map containing the
maximum circular area. No manual intervention is present. Upon recovering the
motion between the first pair of frames, the analysis window is moved based on
the affine parameters found (initialized identically to zero at the first frame), the
affine parameters are used as the initial parameters for the motion estimation
of the next pair of images and the motion estimation process is repeated. When
the motion estimator reaches the end of the image sequence, six time series, each
representing an affine parameter over the length of the sequence, are realized.

2.3 Kinematic Features

Owing to their descriptive power in the current context, it is advantageous to
rewrite the affine parameters in terms of kinematic quantities corresponding to
horizontal and vertical translation, divergence, curl and deformation (see, e.g.,
[16]). In particular, from the coefficients in the affine transformation (2) we
calculate the following time series,

hor(t) = a0(t)
ver(t) = a3(t)
div(t) = a1(t) + a5(t)
curl(t) = −a2(t) + a4(t)
def(t) =

√
(a1(t) − a5(t))2 + (a2(t) + a4(t))2

(3)

Each of the kinematic time series (3) has an associated unit of measurement
(e.g. horizontal/vertical motion are in pixel units) that may differ amongst each
other. To facilitate comparisons across the time series for the purposes of recog-
nition, a rescaling of responses is appropriate. We make use of min-max rescaling
[11], defined as,

ẑ =
(

z − min1

max1 − min1

)
× (max2 − min2) + min2 (4)

with min1 and max1 the minimum and maximum values (resp.) in the input
data z, while min2 and max2 specifying the range of the rescaled data taken over
the entire population sample. For scaling ranges, we select [−1, 1] for elements
of (3) that range symmetrically about the origin and [0, 1] for those with one
sided responses, i.e., def .

To complete the definition of our kinematic feature set, we accumulate pa-
rameter values across each of the five rescaled kinematic time series, ˆhor(t),
ˆver(t), ˆdiv(t), ˆcurl(t), ˆdef(t) and express each resulting value as a proportion.

The accumulation procedure is motivated by the observation that there are two
fundamentally different kinds of movements in the vocabulary defined in Fig. 1:
those that entail constant sign movements, i.e., movements (a-i), which are uni-
directional; those that entail periodic motions, i.e., movements (j-n), which move
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“back and forth”. To distinguish these differences, we accumulate our parameter
values in two fashions.

First, to distinguish constant sign movements, we compute a summed re-
sponse, SRi,

SRi =
T∑

t=1

pi,t

where i ∈ { ˆhor, ˆver, ˆdiv, ˆcurl, ˆdef} indexes a time series, T represents the num-
ber of frames a gesture spans and pi,t represents the value of (rescaled) time
series i at time t. Constant sign movements should yield non-zero magnitude
SRi, for some i; whereas, periodic movements will not as their changing sign
responses will tend to cancel across time.

Second, to distinguish periodic movements, we compute a summed absolute
response, SARi,

SARi =
T∑

t=1

|pi,t|; where pi,t = pi,t − meani

where meani represents the mean value of (rescaled) time series i. Now, constant
sign movements will have relatively small SARi, for all i (given removal of the
mean, assuming a relatively constant velocity); whereas, periodic movements
will have significantly non-zero responses as the subtracted mean should be near
zero (assuming approximate symmetry in the underlying periodic pattern) and
the absolute responses now sum to a positive quantity.

Due to the min-max rescaling (4), the SRi and SARi calculated for any
given gesture sequence are expressed in comparable ranges on an absolute scale
established from consideration of all available data (i.e., min1 and max1 are set
based on scanning across the entire sample set). For the evaluation of any given
gesture sequence, we need to represent the amount of each kinematic quantity
observed relative to the others in that particular sequence. For example, a (e.g.,
very slow) vertical motion in the absence of any other motion should be taken
as significant irrespective of the speed. To capture this notion, we convert the
accumulated SRi and SARi values to proportions by dividing each computed
value by the sum of its consort, formally,

SRPi = SRi/(
∑

k

|SRk|), SARPi = SARi/(
∑

k

SARk) (5)

with k ranging over ˆhor, ˆver, ˆdiv, ˆcurl, ˆdef . Here, SRPi represents the summed
response proportion of SR parameter i and SARPi represents the summed abso-
lute response proportion of SAR parameter i. Notice that the min-max rescaling
accomplished through (4) and the conversion to proportions via (5) accomplish
different goals, both of which are necessary: the former brings all the kinematic
variables into generally comparable units; the latter adapts the quantities to a
given gesture sequence. In the end, we have a 10 component feature set SRPi

and SARPi, i ∈ { ˆhor, ˆver, ˆdiv, ˆcurl, ˆdef} that encapsulates the kinematics of
the imaged gesture.
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Table 1. Gesture signatures. Each movement phoneme has a distinctive prototype
signature defined in terms of our kinematic feature set. Kinematic features and move-
ment phonemes are plotted along vertical and horizontal axes, resp. The SRP and
SARP values are defined with respect to formula (5).
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hor 0 0 +1 -1 0 0 0 0 0 0 1 0 0 .5

ver -1 +1 0 0 0 0 0 0 0 1 0 0 0 .5

div 0 0 0 0 +1 -1 0 0 -.5 0 0 1 0 0

curl 0 0 0 0 0 0 +1 -1 0 0 0 0 1 0

def 0 0 0 0 0 0 0 0 +.5 0 0 0 0 0

2.4 Prototype Gesture Signatures

Given our kinematic feature set, each of the primitive movements for ASL, shown
in Fig. 1C has a distinctive idealized signature based on (separate) consideration
of the SRPi and SARPi values (see Table 1). Analytical relationships between
the 2D kinematic signatures and the 3D hand movements are presented in [8].

Distinctive signatures for the constant sign movements (i.e., movements a-i
in Fig. 1C) are defined with reference to the SRPi values. Upward/downward
movements result in responses to ver(t) alone; hence, of all the SRi, only SR ˆver

should have a nonzero value in (5), leading to a signature of |SRP ˆver| = 1 while
|SRPi| = 0, i �= ˆver. In order to disambiguate between upward and downward
movements, the sign of SRP ˆver is taken into account, positive sign for downward
and negative for upward. Similarly, rightward/leftward movements result in sig-
nificant response to hor(t) alone, with the resulting signature of |SRP ˆhor| = 1
while |SRPi| = 0, i �= ˆhor and positive and negative signed SRP ˆhor correspond-
ing to rightward and leftward movements, resp. The toward/away signer move-
ments are manifest as significant responses in div(t) alone. Correspondingly,
|SRP ˆdiv| = 1 while other values are zero. For this case, positive sign on SRP ˆdiv
is indicative of toward, while negative sign indicates away. The supinate/pronate
gestures map to significant responses in curl(t) alone. Here, |SRP ˆcurl| = 1 while
other values are zero with positively and negatively signed SRP ˆcurl indicating
supinate and pronate, resp. Unlike the other movements described so far, nod
has two significant kinematic quantities which have constant signed responses
throughout the gesture, namely def(t) and div(t). The sign of def(t) should be
positive, while the sign of div(t) should be negative, i.e., contraction. Further,
the magnitudes of these two nonzero quantities should be equal. Therefore, we
have |SRP ˆdiv| = |SRP ˆdef | = 0.5 with all other responses zero.

For periodic movements (i.e., movements j-n in Fig. 1C) distinctive signa-
tures are defined with reference to the SARPi values. The definitions unfold
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analogously to those for the constant sign movements, albeit sign now plays no
role as the SARPi are all positive by construction. An up and down movement
maps directly to ver(t), resulting in a value of SARP ˆver equal to 1 with other
summed absolute response proportions zero. The side to side movement directly
maps to hor(t), resulting in a value of SARP ˆhor equal to 1 while other values are
zero. The to and fro movement maps directly to div(t), resulting in a value of
SARP ˆdiv equal to 1 with other summed absolute response proportions zero. The
twist wrist movement directly maps to curl(t), resulting in a value of SARP ˆcurl
equal to 1 with other values zero. The circular movement has two prominent
kinematic quantities, hor(t) and ver(t). As the hand traces a circular trajec-
tory, these two quantities will oscillate out of phase with each other (see Fig. 2).
Across a complete gesture the two summed absolute responses are equal. The
overall signature is thus SARP ˆhor = SARP ˆver = 0.5, with all other values zero.

For classification, we first calculate the Euclidean distance between our in-
put signatures (i.e. SRPi and SARPi) and their respective stored prototypical
signatures. The result is a set of distances dj (14 in total). Taking the smallest
distance as the classified gestures is not sufficient, since it presupposes that we
know whether the classification is to be done with respect to the SRPi (con-
stant sign cases) or the SARPi (periodic cases). This ambiguity can be resolved
through re-weighting the distances by the reciprocal norm of their respective
feature vectors, formally,

d̃j = (1/|SR|) × dj ; where j ∈ {constant sign distance}
d̃j = (1/|SAR|) × dj ; where j ∈ {periodic distances}

with
SR = (SR ˆhor, SR ˆver, SR ˆdiv, SR ˆcurl, SR ˆdef )

SAR = (SAR ˆhor, SAR ˆver, SAR ˆdiv, SAR ˆcurl, SAR ˆdef )

Intuitively, if the norm of SR is greater than that of SAR, then the movement
is more likely to be a constant sign; if the relative magnitudes are reversed then
the movement is more likely to be a periodic. Following the re-weighting, the
movement with the smallest d̃j value is returned as the classification. Finally,
for movements classified by distance as nod, we explicitly check to make sure
|SRP ˆdiv| ≈ |SRP ˆdef |, if not we take the next closest movement. Similarly, for
circular we enforce that SARP ˆhor ≈ SARP ˆver. These explicit checks serve to
reject misclassifications when noise happens to artificially push estimated feature
value patterns toward the nod and circular signatures.

3 Empirical Evaluation

To test the viability of our approach, we have tested a software realization of our
algorithm on a set of video sequences each of which depicts a human volunteer
executing a single movement phoneme. Here, our goal was to test the ability
of our algorithm to correctly recognize movement, irrespective of the volunteer,
hand location and shape of the complete gesture. Owing to the descriptive power
of the phonemic decomposition of gestures into movement, location and shape
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primitives, consideration of all possible combinations would lead to an experi-
ment that is not feasible.1 Instead, we have chosen to subsample the hand shape
and location dimensions by exploiting similarities in their respective configura-
tions. For location we have selected whole head, torso and upper arm, see Fig.
1A. These choices allow a range of locations to be considered and also introduce
interesting constraints on how movements are executed. For instance, when the
hand begins at the upper arm location, the natural tendency is to have the wrist
rotated such that the hand is at a slight angle away from the body; as the hand
moves towards the opposite side of the body, a slight rotation is introduced to
bring the hand roughly parallel with the camera. For hand shape, we have se-
lected A, B5, K and C, see Fig. 1B. The rationale for selecting hand shapes A,
B5 and K is as follows: A (i.e. fist) and B5 (i.e. open flat hand) represent the two
extremes of the hand shape space, whereas K (i.e. victory sign) represents an
approximate midpoint of the space. Hand shape C has been included since it is
a clear example of a hand shape being non-planar. This sampling leaves us with
a total possible number of test cases equal to 14 (movements) × 3 (locations) ×
4 (shapes) = 168. However, several of these possibilities are difficult to realize
(e.g., pronating movement at the upper arm location); so, dropping these leaves
us with a total of 148 cases. Three volunteers each executed all 148 movements
while their actions were recorded with a video camera to yield an experimental
test set of 3 × 148 = 444. In addition, 12 volunteers executed an approximate
equal subset of the gesture space (approximately 14 gestures each). In total our
experimental test set consisted of 592 gestures. It should be noted that the vol-
unteers were fully aware of the camera and their expected position with respect
to it, this allowed precise control of the experimental variables for a systematic
empirical test. With an eye toward applications such control is not unrealistic: A
natural signing conversation consists of directing one’s signing towards the other
signer (in this case a camera). During acquisition, standard indoor, overhead flu-
orescent lighting, was used and the normal (somewhat cluttered) background in
our lab was present as volunteers signed in the foreground. Each gesture se-
quence was captured at a resolution of 640×480 pixels at 30 frames per second;
for processing, the gesture sequences were subsampled temporally by a factor of
two resulting in a frame rate of 15 frames per second. Typically, the hand region
encompasses a region in a frame with dimensions approximately 100 pixels in
both width and height. On average the gesture sequences spanned 40 frames for
constant sign movements and 80 for periodic movements. Prior to conducting
the gesture each volunteer was verbally described the gesture. This was done
in order to ensure the capture of naturally occurring extraneous motions which
can appear when an unbiased person performs the movements. See Fig. 2 for an
example sequence.

1 Using Stokoe’s parameter definitions there would be 14 (movements) × 19 (shapes)
× 12 (locations) = 3192 combinations for each volunteer.
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Fig. 2. Circular movement example. A circular movement image sequence with its
accompanying kinematic time series plotted. The frame numbers marked on the graphs
correspond to the frame numbers of the image sequence.

3.1 Results

To assess the joint performance of the tracker and classification stages, we con-
ducted two trials. The first trial consisted of the hand region being manually
outlined in the initial frame and the second trial consisted of the automated ini-
tial localization scheme outlined in this paper. In the manually segmented trials
97.13% of the 592 test cases were correctly identified, when considering the top
two candidate movements classification performance improved to 99.49%. While
for the automated localization trial an accuracy rate of 86.00% was achieved
and 91.00% when considering the top two candidates. Further inspection of the
results found that approximately 14% of the test cases in the automated local-
ization trial failed to isolate a sufficient region of the hand (i.e. approximately
50% of the hand). The majority of these cases consisted of the automated lo-
calization process homing in on the volunteer’s head since the head was the
dominant moving structure. This is contrary to our assumption that the hand
is the dominant moving structure in the scene. Treating these cases as failure
to acquire and omitting them from further analysis resulted in an accuracy rate
of 91.55% and an accuracy of 95.09% when considering the top two candidates,
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Table 2. Gesture movement recognition results. The axes of the table represent the
actual input gesture (vertical) versus the classification result (horizontal). Each cell (i,j)
in the table holds the percentage of test cases that were actually i but classified as j for
both manually initialized localized trials (left) and automated initialized localized trials
(right) (i.e. manual/automated). The diagonal (i,j) (highlighted in bold) represents the
percentage of the correctly classified gestures.
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up 100 / 92 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 3 0 / 0 0 / 0 0 / 5 0 / 0 0 / 0

down 0 / 0 100 / 91 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 7 0 / 2 0 / 0 0 / 0 0 / 0 0 / 0

up and down 0 / 0 0 / 0 100 / 95 0 / 0 0 / 0 0 / 3 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 3 0 / 0 0 / 0

rightward 0 / 0 0 / 0 0 / 0 100 / 92 0 / 0 0 / 4 0 / 0 0 / 0 0 / 4 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

leftward 0 / 0 0 / 0 0 / 0 0 / 0 97 / 85 0 / 0 0 / 0 0 / 0 0 / 10 0 / 0 0 / 0 0 / 0 3 / 3 0 / 3

side to side 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 100 / 86 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 11 0 / 3 0 / 0

toward signer 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 96 / 93 0 / 0 0 / 0 0 / 3 0 / 0 0 / 3 4 / 0 0 / 0

away signer 0 / 0 2 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 98 / 97 0 / 3 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

to and fro 0 / 0 0 / 3 0 / 0 0 / 0 0 / 0 0 / 0 0 / 3 0 / 0 92 / 84 0 / 0 0 / 0 0 / 6 0 / 3 8 / 0

supinate 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 97 / 95 0 / 0 0 / 3 3 / 3 0 / 0

pronate 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 100 / 98 0 / 0 0 / 2 0 / 0

twist wrist 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 2 0 / 2 0 / 0 100 / 90 0 / 5 0 / 0

nod 0 / 0 6 / 0 0 / 0 0 / 0 0 / 0 0 / 0 3 / 0 0 / 0 6 / 3 0 / 0 0 / 0 0 / 3 84 / 93 0 / 0

circular 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 2 0 / 0 0 / 0 0 / 7 100 / 91

see Table 2. In terms of execution speed, the tracking speed using a Pentium
4 2.1 GHz processor and unoptimized C code was 8 frames/second; the time
consumed by all other components was negligible.

3.2 Discussion

A current limitation is the automated initial localization process. The majority
of the failed localization cases were attributed to gross head movements, the
remaining localization problems occurred with users gesturing with bare arms
(although most bare arm cases were localized properly) and users wearing skin
toned clothing. A review of the literature finds that most other related work has
simplified the initial localization problem through manual segmentation [19,25,
30], restricting the colours in the scene [17,24,26], restricting the type of cloth-
ing worn (i.e. long sleeved shirts) [17,24,26], having users hold markers [5], using
a priori knowledge of initial gesture pose [9,14], and using multiple, specially
configured cameras [30] or magnetic trackers [6,10,18,30]. In our study, we make
no assumptions along these lines; nevertheless, our results are competitive with
those reported elsewhere. Beyond initialization, four failed tracking cases oc-
curred related to frame-to-frame displacement beyond the capture range of our
motion estimator. Drift has not been a significant factor in tracking during our
experiments. This is due to the use of skin colour and change detection masks
to define the region of support as well as a robust motion estimator to reject
outliers. Possible solutions to tracking failure include: the use of a higher frame
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rate camera to decrease interframe motion and/or the use of a motion estimator
with a larger capture range (e.g., correlation-based, rather than gradient-based
method).

Given acceptable tracking, problems in the classification per se arose from
non-intentional but significant movements accompanying the intended move-
ment. For instance, when conducting the “away signer” movement, some of the
subjects, would rotate the palm of their hand about the camera axis as they
were moving their hand forward. Systematic analysis of such cases may make it
possible to improve our feature signatures to encompass such variations.

It should be noted that to realize the above results we assumed that the
gestures were temporally segmented. To relax these assumptions future work
may appeal to detecting discontinuities in the kinematic feature time series to
temporally segment the gestures (e.g. [23]).

4 Summary

We have presented a novel approach to vision-based gesture recognition, based
on two key concepts. First, we appeal to linguistic theory to represent complex
gestures in terms of their primitive components. By working with a finite set
of primitives, which can be combined in a wide variety of ways, our approach
has the potential to deal with a large vocabulary of gestures. Second, we define
distinctive signatures for the primitive components that can be recovered from
monocular image sequences. By working with signatures that can be recovered
without special purpose equipment, our approach has the potential for use in a
wide range of human computer interfaces. Using American Sign Language (ASL)
as a test bed application, we have developed an algorithm for the recognition
of the primitive contrastive movements (movement phonemes) from which ASL
symbols are built. The algorithm recovers kinematic features from an input video
sequence, based on an affine decomposition of the apparent motion(s) across the
sequence. The recovered feature values affect movement signatures that are used
in a nearest neighbour recognition system. Empirical evaluation of the algorithm
suggests its applicability to the analysis of complex gesture videos.
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