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Abstract We propose a method to acquire 3D light fields
using a hand-held camera, and describe several computa-
tional photography applications facilitated by our approach.
As our input we take an image sequence from a camera trans-
lating along an approximately linear path with limited cam-
era rotations. Users can acquire such data easily in a few
seconds by moving a hand-held camera. We include a novel
approach to resample the input into regularly sampled 3D
light fields by aligning them in the spatio-temporal domain,
and a technique for high-quality disparity estimation from
light fields. We show applications including digital refocus-
ing and synthetic aperture blur, foreground removal, selective
colorization, and others.

Keywords 3D light fields · Computational photography ·
Disparity estimation · Digital refocusing

1 Introduction

Modern smartphones and tablet computers with their ever-
increasing computational power provide fascinating opportu-
nities to implement computational photography applications
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without resorting to off-line computation. In this paper, we
describe a method for hand-held 3D light field photography.
As input we take image sequences captured with a hand-held
camera along approximately linear trajectories. Capturing
such data is a matter of a few seconds and does not require
any extra equipment. At the core of our approach then is an
efficient method to resample the input image sequence into
a regularly sampled 3D light field, that is, the light field cor-
responds to a linear camera motion with equidistant views.
This light field then opens up the possibility for a variety
of further processing. First, we present a high-quality algo-
rithm for disparity estimation. Based on the disparity map,
we then propose applications for digital refocusing, fore-
ground removal, segmentation, object insertion, and multi-
view autostereo output.

Our approach shares similarities with recent techniques
that attempt to perform multiview 3D reconstruction [1]
and 4D light field acquisition [2] on mobile devices. The
main goal of multiview reconstruction techniques is to pro-
duce full 3D models, which can then be used, for exam-
ple, for 3D printing. While these techniques produce impres-
sive results, they require several minutes of user interaction
to obtain high-quality reconstructions. Similarly, unstruc-
tured 4D light fields require the acquisition of many images
from viewpoints distributed over a 2D domain, for example
roughly on a hemisphere around an object of interest. In con-
trast, data capturing for our approach takes just a few seconds.
The focus of our approach is not on full 3D reconstruction or
image based rendering, but on providing advanced computa-
tional photography tools. In summary, we make the following
contributions:

• An efficient technique for resampling sequences of images
along an approximately linear camera trajectory into 3D
light fields.
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Fig. 1 Overview of our processing pipeline

• A high-quality disparity estimation technique based on 3D
light fields.

• A technique to generate out-of-focus blur leveraging 3D
light field data.

• A proof-of-concept implementation demonstrating feasi-
bility of our approach on a mobile device.

Figure 1 shows an overview of our pipeline. Given an input
image sequence from a hand-held camera under a roughly
linear trajectory, we first resample the data into a regularly
sampled 3D light field (Sect. 3) and then perform disparity
estimation (Sect. 4). Finally, we leverage this data for several
computational photography applications (Sect. 5), includ-
ing digital refocusing, foreground removal, segmentation,
object insertion, and multiview autostereo output. Finally,
we present results from a proof-of-concept application for
mobile devices in Sect. 6.

2 Related work

Resampling image sequences from approximately linear
camera motions into 3D light fields is similar to video stabi-
lization. Our approach is most related to the work by Feng
et al. [3]. They proposed to use a linear analysis of fea-
ture tracks in the input video to recover a lower dimen-
sional subspace, where the projection into the subspace is
related to the camera motion. By smoothing the projection
matrix they then obtain smoothed feature tracks. In contrast to
their approach, we solve an optimization problem to obtain
a linear camera trajectory that best approximates the input
camera motion. We also resample the input images tempo-
rally to obtain a camera motion with constant speed. Sim-
ilarly to their technique, we render the output views using
content-preserving image warps [4]. Video stabilization can
also be solved by reconstructing the 3D camera path [4], or
by smoothing 2D feature trajectories under additional con-
straints [5]. Subspace analysis is attractive for us because
it avoids the complexities and robustness issues with recon-
structing the full 3D camera motion, but it provides enough
information to achieve a linear camera motion at constant
speed.

Our disparity estimation algorithm is inspired by the
recent work of Rhemann et al. [6] and Kim et al. [7], whereas
the latter represents the state-of-the-art for disparity estima-
tion from light fields. Kim et al. showed that very high-quality
disparity estimation is possible from light fields with high

spatio-angular resolution by estimating disparity scores for
single pixels. We use a similar approach to obtain initial esti-
mates for disparity scores. Then we use an efficient edge-
aware filter to remove noise in our initial score volume of
disparity hypotheses as proposed by Rhemann et al. While
they apply the guided image filter [8] for this purpose, we
are building on domain transform filtering [9], which allows
us to easily include additional confidence values for the dis-
parity hypotheses in the filtering process. We present a com-
parison of our approach and these techniques using standard
datasets in Sect. 4, demonstrating the improved quality of
our method.

Digital refocusing is one of the main applications of our
framework. Ng [10] and Isaksen et al. [11] showed in their
seminal work how 4D light fields can be used to refocus dig-
ital images after the fact. Unfortunately, applying the same
techniques directly to 3D light fields would lead to unnat-
ural one-dimensional out-of-focus blur. In our approach,
we leverage our disparity maps to combine 3D light field
refocusing with an image-based blur to achieve convinc-
ing results. An even simpler approach to achieve digital
refocusing would be to use a focus stack, which has been
implemented in commercial mobile applications [12]. These
techniques, however, cannot increase the defocus beyond
the limits imposed by the aperture of the camera. Our
approach allows for a very large synthetic aperture, and we
provide additional functionality such as completely remov-
ing thin foreground objects, inspired by the work by Joshi
et al. [13]. Defocus blur can also be manipulated using image
processing techniques [14], but the quality of this approach
is limited since it is purely image based, and it produces
artifacts in particular when foreground objects are out of
focus.

Beyond refocusing, our technique enables other light field
processing techniques such as alpha matting [15]. We found,
however, that in practice a simpler approach using edge-
aware filtering is more robust. Finally, the 3D light fields
produced by our technique can also be used for multiview
autostereo displays [16].

3 Spatio-temporal 3D light field resampling

The input to our method is an image sequence from a camera
sweep, similar to a sweep panorama. The sweep should be
a left-to-right (or right-to-left), approximately linear cam-
era motion without significant camera rotation. The user
then picks one view as a reference image, which we will
use to resample the 3D light field as described below, com-
pute a disparity map (Sect. 4), and perform our applications
(Sect. 5). A camera sweep acquired using a hand-held device
is unlikely to be perfectly linear, and the images usually are
non-equidistant samples along the camera path. Hence, we
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Fig. 2 Overview of our resampling. From the input sequence (top), we
first search for a horizontal camera path (middle). Then, we resample
this path regularly and compute equidistant views (bottom)

perform a linearization of the camera path in a first step
(Fig. 2, Sects. 3.1, 3.2, 3.3). In a second step, we produce
new views from equidistant camera positions along this lin-
ear path (Sect. 3.4).

3.1 Feature trajectory matrix

Our stabilization and resampling process is based on Liu
et al.’s [3] subspace video stabilization. We begin with feature
tracking and feature matching, and obtain a collection of
feature trajectories {(x i

t , yi
t )}, where i is the feature index,

and (x i
t , yi

t ) are the coordinates of the feature on frame t . We
collect the trajectories in a trajectory matrix,

M =
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, (1)

where F is the number of frames of the input sequence and
N the number of trajectories we found. Not all features can
be tracked over the full duration of the video in general, and
for missing features we set their corresponding entries in M

to zero.

3.2 Factorization

The seminal work by Irani [17] showed that the trajectory
matrix M can be approximated by a matrix with rank 9. Irani
factorizes M into two matrices C and E . The feature coef-
ficient matrix C ∈ R

2N×9 describes the 3D structure of the
N feature points, and the camera matrix E ∈ R

9×F rep-
resents the F camera positions and the projections of the
features onto the frames. We will exploit this in Sect. 3.3
where we search for a new camera matrix which describes a
linear camera motion. Since C E is a full matrix, we multiply
it element-wise with a binary matrix W consisting of ones
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Fig. 3 We show a part of the feature trajectory matrix. Trajectories
(white) are ordered according to their first appearance. The initial fac-
torization window is red, and a second window is green. With the C0

matrix entries from the first window (green dotted lines) and the addi-
tional frames of these trajectories (solid part of green lines) in the next
window we compute E1. Next we compute coefficients for trajecto-
ries that span the second window, but did not span the previous one
completely (dashed green lines)

where M has a non-zero entry, and zeros elsewhere. Hence,
the matrix factorization we look for becomes

M ≈ W ⊙ C E, (2)

where ⊙ denotes element-wise multiplication.
We incrementally factorize M with the moving factoriza-

tion method described by Liu et al. in [3]. In our approach,
we select our initial window such that the reference frame Fm

is in its center. The initial window is depicted in red in Fig. 3.
We then collect all trajectories that span the whole window
in a trajectory matrix M0, which we decompose using SVD.
By truncating the resulting matrices to 9 rows resp. columns
and distributing the square roots of the 9 largest eigenval-
ues to the left and right matrices we get a camera matrix
E0 and a coefficient matrix C0. Next, we move the window
forward as depicted in green in Fig. 3, and we search again
for the trajectories that span the whole window. Since now
we have some trajectories that spanned the previous window,
too, we already have coefficients in C0 for them. These cases
are depicted with green dotted lines in Fig. 3. With these
coefficients we can compute the missing entries for the cam-
era matrix E1, which corresponds to the frames that are not
covered by the previous factorization windows. The camera
matrix is then complete for the current window, and we can
compute the feature coefficients C1 for the new trajectories
that completely cover the current factorization window (and
have not been computed before). We mark these trajecto-
ries with green dashed lines in Fig. 3. Finally, we repeat this
process forward and backward in time until all frames are
processed. For a more formal description we refer to [3].

In the process above, we compute the coefficients in C

for each feature with the knowledge of only one factoriza-
tion window, although most feature tracks extend beyond a
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single window. The restriction to single windows may fail
if, for example, the camera moves only very little during
this window and does not constrain C enough. Therefore,
we verify the validity of the coefficients of each feature by
checking if the difference between the approximation using
the factorization and the input feature location ever exceeds 3
pixels. If this test fails, we recompute the feature coefficients
by taking into account the whole feature trajectory and test
the factorization error again. In the end, we keep only trajec-
tories for which the approximation never differs more than 3
pixels.

3.3 Linear camera motion

To construct a 3D light field, we require a linear camera path
and completely horizontal feature trajectories. In addition,
the camera and the features should stay as close as possi-
ble to the input. Hence, we seek trajectories with constant
y-coordinates, and the x-coordinates along the linearized
camera path should stay as close as possible to the input.
Remember that we factorized the trajectory matrix into a
feature coefficient matrix C and a camera matrix E . Further,
we can split the coefficient matrix into submatrices Cx and
Cy , which give rise to the x- and y-coordinates of the feature
trajectories, respectively. With that in mind, we now search
for a new matrix Ê , such that Cy Ê is row-wise constant.
Since our desired camera motion is linear, the columns of Ê

representing the cameras in each frame must follow a linear
model. This is, Ê = E s T + Eb, where E s and Eb are both
column vectors of height 9, and T is a row vector of length F .
Intuitively, the vector T marks the points in time each frame
was captured. Our goal is now to determine the unknowns
E s , Eb, and T .

We further reduce the degrees of freedom of the system
by holding the reference frame Fm fixed. As a consequence,
the y-coordinate for all trajectories is given by that frame.
We then create a matrix δM containing the differences of the
feature coordinates in the trajectory matrix M to the location
in the reference frame Fm . Note that the column m of δM

is all zero. We conclude that Tm = 0 and Mm = Wm ⊙
C Eb. The subscript m denotes the m-th column of M and
W , respectively, and the m-th entry of T . It follows that Eb

is equal to the m-th column of E . Hence, our problem reduces
to the minimization

arg min
T,Es

||Cy(E s T )|| + α||δMx − Wx ⊙ Cx (E s T )||. (3)

The first term pushes the y-coordinates towards the ones in
Fm . The second term keeps the x-coordinates where they
were on the input frames and prevents the system from return-
ing the trivial solution, and α is a factor to balance the two
terms. We usually obtained best results with α = 1.

Fig. 4 We show the EPI of the input sequence on top. Lines may
become thinner or wider (green box) or may disappear (red box). In
the middle is the EPI after the linearization of the camera path. The
structure of the light field is now clearly visible. Still, the lines are
curved as the comparison to the blue line shows. In the bottom EPI the
lines became straight after temporal resampling

3.4 Rendering of output views

We finally compute the output feature locations and render
the views of the regularly sampled 3D light field. With T and
E s given, and {(x i

m, yi
m)} the feature locations on the refer-

ence frame, the feature locations on frame j on a perfectly
linearly moving camera are

{(x i
m, yi

m) + (C i
x E s T j , C i

y E s T j )}, (4)

where T j denotes the j-th entry of T . Still, it is possible that
the camera changes speed along its linear trajectory. This
leads to curved lines in the EPI as we show in Fig. 4. To
avoid this, we manipulate T . We set

�t = min(| min(T )|, | max(T )|)/n (5)

where n is an arbitrary number of views we want to cre-
ate on each side of the reference frame. For the l-th out-
put image, with l ∈ {−n, . . . , n}, we compute its time
t = l�t , and we use t to compute the new x-coordinates.
For the y-coordinates, we use the location on the reference
frame Fm directly. This leads to the output feature locations
{(x i

m, yi
m) + (C i

x E s t, 0)}.
We render the output view by searching for t’s next smaller

and larger entry in T . We warp the corresponding two input
frames with the content-preserving warp from Liu et al. [4],
and linearly blend the two warped frames to produce the
output image. After rendering all 2n images our 3D light
field is complete and the EPIs show straight lines as we show
in Fig. 4.
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4 Disparity map

For most of our applications we need a disparity map for our
reference image. We compute this disparity map using the
3D light fields that we obtain as described in the previous
section. We first construct a score volume that holds a score
for a set of disparity hypotheses at each pixel, where larger
scores indicate higher quality matches (Sect. 4.1). We then
filter each disparity slice of the score volume using a structure
preserving filter to increase the robustness of our initial score
estimates (Sect. 4.2). We assign a disparity to each pixel
with a winner-takes-all strategy over the filtered disparity
hypotheses at each pixel. Finally, we apply a bilateral median
filter to get our output disparity map.

4.1 Score volume computation

We construct our score volume using the stabilized images I j

from the previous section as input. For each disparity hypoth-
esis from a predetermined set of hypotheses, we shift all the
images horizontally with respect to the hypothesized dispar-
ity. We then compare the pixels in the shifted images with
the reference image Im and compute a score for each pixel.
We adopt the similarity measurement from Kim et al. [7]
using an Epanechnikov kernel. In addition, we also take into
account the horizontal image gradients.

More precisely, we define the initial score for pixel (x, y)

and disparity hypothesis d as

S(x, y, d) =
∑

j �=m

K (I j (xs, y) − Im(x, y))

·K (∇x I j (xs, y) − ∇x Im(x, y)), (6)

where j is the index of the input image, xs = x + ( j − m)d

is the shifted pixel position under disparity d, and ∇x is the
horizontal image gradient. The similarity kernel K is the
Epanechnikov kernel K (z) = 1 − ‖z/h‖2 if ‖z/h‖ < 1 and
0 otherwise. We set the threshold h to h = 9, where pixel
values are in the range [0, 255].

We observe, however, that in regions containing occlu-
sions as in Fig. 5 the raw score from Eq. (6) is biased towards
the foreground disparity. For the pixel marked in yellow the

Fig. 5 The accumulated score of the red disparity hypothesis is larger
than the one of the green one because we find more pixels with non-zero
scores along the red line. On the other hand, the green hypothesis has
fewer but higher non-zero scores. Our normalization gives preference
to the correct hypothesis in green

correct disparity corresponds to the green ray, which belongs
to the background. Along this ray, however, we have fewer
non-zero scores in the sum of Eq. (6) because of the occlusion
by the foreground in some of the views. Hence, the sum of
the scores of the disparity of the foreground, drawn in red, is
higher, although the value of the individual scores in Eq. (6)
is smaller. To avoid this effect, we include a normalization
step in our approach.

We first define a confidence measure C(x, y), which cap-
tures at each pixel (x, y) the ratio by which the highest score
outperforms the average score, that is,

C(x, y) = maxd(S(x, y, d))

1
D

∑

d S(x, y, d)
. (7)

This ratio indicates how unique the maximum score is with
respect to the average score. In an ideal case, the score is non-
zero only for a single disparity hypothesis and the confidence
takes on the value D, the number of disparity hypotheses. The
confidence goes to 1 as the maximum score gets closer to the
average.

Situations as in Fig. 5 lead to low confidence values,
because the scores of the disparity hypotheses of the yellow
pixel exhibit several peaks instead of a single one. There-
fore, if the confidence is low we divide each score by its
corresponding number of non-zero values in the sum in
Eq. (6). This favors disparity hypotheses with fewer, but
higher scores, and allows us to more robustly detect the back-
ground disparity. If confidence is high there is likely a single
peak in the scores and the normalization is not necessary. It
may even be counterproductive, since it reduces the promi-
nence of the peak. Hence, in this case, we normalize all scores
for a pixel by the same factor, which is the number of non-
zero values in the highest score in Eq. (6). We obtained all
our results with a threshold of D/4 on the confidence.

4.2 Score volume filtering

The purpose of the score volume filtering step is to reduce
the noise in our initial per pixel score estimate described
above. We apply an edge preserving filter to the (x, y)-slice
of each disparity hypothesis similar as proposed by Rhemann
et al. [6]. Instead of the guided image filter, however, we use
the domain transform filter (DTF) introduced by Gastal and
Oliveira [18], whose computational complexity is linear in
the number of pixels to be filtered and independent of the
filter support size, similar as for the guided filter. The most
attractive property of the DTF for our problem is that its sup-
port adaptively shrinks or expands according to the image
structure. In particular, in highly uniform areas where dis-
parity estimation is notoriously difficult, the filter takes on a
large support. In regions with rich structure, in contrast, the
filter support shrinks. Intuitively, the DTF weights pairs of
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pixels by their distance (according to some metric) along a
path connecting them in the image. This is similar to geodesic
filtering, and indeed the domain transform approach can be
interpreted as an iterative approximation of geodesic filter-
ing. Here, we focus on our extensions of DTF for filtering
our score volumes. Please see the original publication [18]
for more details.

We first give a simplified explanation of the basic DTF
in 1D. Assume the input is a 1D function I (x) : R → R.
The DTF weight for two neighboring pixels at locations x

and x + h is defined as g(|ct (x) − ct (x + h)|), where g is
a filter kernel, and ct : R → R is the domain transform

function, which is at the core of the approach. The main
idea is to define ct in a way such that the absolute value
|ct (x) − ct (x + h)| is related to a l1 distance in 2D between
the two 2D points given by the pixels and their function val-
ues. This l1 distance is defined as σsh+|σr (I (x)− I (x+h))|,
where σs and σr are filter parameters similar to the spatial
and range parameters of the bilateral filter. The key observa-
tion is that if these 2D distances are large, ct “scales up” the
argument |ct (x) − ct (x + h)| to the filter, leading to a quick
fall-off of filter weights, and preserving the structure in the
input. The opposite happens for small distances. Generaliz-
ing to color images with three r, g, b channels, one can show
that the above constraints on ct lead to the definition

ct (u) =
u

∫

0

1 + σs

σr

∑

k∈r,g,b

|I ′
k(x)|dx, (8)

where I ′
k is the derivative of the k-th color channel. In addi-

tion, 2D images can be filtered by iterating over several 1D

passes.
In our application, we filter the disparity hypotheses scores

obtained in the previous section using the color image of
the reference view as a “guide” to define the domain trans-
form function, which is similar to cross-bilateral filtering. We
observed, however, that we can improve the quality of our
filtered output by including the confidence C , Eq. (7), from
the previous Section. The intuition for including the confi-
dence in the DTF is that if we found a clear winner among
the disparity hypotheses at a pixel, meaning we get a high
confidence value, the filter does not need to extend further.
On the other hand, if we have low confidence in the win-
ning disparity hypothesis, the filter should expand until we
accumulated enough evidence.

We include the confidence into the DTF as an additional
channel in the guide, forcing the filter support to stop where
we have enough confidence. We achieve this by plugging the
logarithm of Eq. (7) into Eq. (8),

ct (u) =
u

∫

0

1 + σs

σr

∑

k∈{r,g,b}
|I ′

k(x)| + σs

σc

log(C(x)) dx . (9)

Due to the non-linearity of our confidence estimate, we use
log(C) as an upper bound on the confidence of the filtered
score volume that will be accumulated by the filter. We can
easily show that using the logarithm guarantees that the fil-
ter support never accumulates more than the user specified
confidence σc. We use σr = 178.5, set σs to one fifth of the
image width, and σc = log(D) to produce all our results.

After cost volume filtering, we select the disparity with the
highest score in a winner-takes-all manner. We finally apply a
bilateral median filter to remove remaining spike noise within
a 9 × 9 block. To compute this weighted median, we calcu-
late its bilateral weights [19] according to the corresponding
colors in the reference image. Then a histogram is created
using the computed weights as accumulation factor of the
neighboring disparities. The median value of this histogram
is assigned to the pixel’s disparity. We compare our approach
to two other recent methods [7,20] in Fig. 6.

5 Applications

In this section we present several applications of our recon-
structed 3D light fields, most of them relying on disparity
maps constructed as described above.

5.1 Refocusing using synthetic apertures

Shallow depth of field effects, as often used in professional
portrait photography for example, are beyond the reach of
devices like smart phones because of size restrictions on the
optical design. Light fields acquired by translating a camera,
however, make it possible to simulate synthetic apertures
whose size is only limited by the range of camera transla-
tions. Light fields also facilitate digital refocusing after the
fact, that is, changing the focal depth after image acquisi-
tion. We exploit our 3D light fields to achieve refocusing
using potentially large synthetic apertures.

Given a 4D light field, it is straightforward to simulate
a synthetic aperture by simply filtering over its two angular
dimensions, where the filter represents the shape and extent
of the desired aperture. The main challenge we need to over-
come is that in our 3D light fields we only have one angular
dimension, restricting synthetic apertures to horizontal 1D

slits. We solve this problem by observing that we can model
any separable 2D aperture as a superposition of vertical 1D

apertures over the 1D angular domain of our 3D light fields.
Hence, we use a two step procedure to obtain synthetic 2D

apertures. First, for each view in our 3D light field we approx-
imate the effect of the vertical 1D aperture. In the second step,
we filter these processed views over the angular domain of
the light field.

We leverage our disparity maps to compute the vertical
1D synthetic apertures using a depth-aware blur. We assume

123



Hand-held 3D light field photography and applications 903

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Visualization of the disparity map creation: a the reference view,
b parts of four slices of the score volume S for disparity hypothesis −1.5,
0, 1.5 and 3 (from left-to-right), c the disparity with maximum score

in S, dthe disparity with the normalized scores, e the confidence map,
f final result of [20], g final result of [7], h our final disparity map

a two-layer model consisting of a foreground and a back-
ground layer at each pixel, where the foreground contains all
neighboring pixels closer to the camera, and the background
all other pixels. We compute the colors for both layers sep-
arately, and blend them using alpha compositing. We obtain
the depth-aware blur by splatting each foreground pixel to its
vertical neighbors, where the splat size is given by the differ-
ence of the pixel’s disparity to the disparity corresponding to
the desired focal distance, and we use a 1D Gaussian splat
kernel. More precisely, we splat the color of pixel q to a
vertical neighbor p using the Gaussian weight

G(p, q, σ ) = 1√
2πσ 2

e
− ‖p−q‖2

2σ2 , (10)

where the variance

σq = a|d(q) − d f | + 1
√

2 log(255)
(11)

is defined by the difference of the disparity d(q) of pixel q

to the disparity d f of the object in focus and the user given
aperture size a.

We compute the foreground color F(p) of a pixel p by
accumulating the splat contributions of all foreground pixels
q, that is, pixels with larger disparities than p,

F(p) =
∑

{q|d(q)>d(p)} G(p, q, σq)I (q)

W (p)
, (12)

where we normalize by the sum of the weights

W (p) =
∑

{q|d(q)>d(p)}
G(p, q, σq). (13)

Note that the normalization weight W (p) can be consid-
ered as an opacity value. We similarly compute the back-
ground color using all background pixels, that is, pixels with
the same or smaller disparities than p. Note that here we cal-
culate the filter size according to the disparity of p for all
background pixels. We do this because p itself belongs to the
background, and it should not be splatted with colors from
pixels which are behind it when p itself is in focus. Then,

B(p) =
∑

{q|d(q)≤d(p)} G(q, p, σp)I (q)
∑

{q|d(q)≤d(p)} G(q, p, σp)
. (14)

Finally, we composite the foreground and background using
alpha blending with α = min(1, W (p)),

V (p) = αF(p) + (1 − α)B(p), (15)

where we clamp foreground coverage to one. We show an
example in Fig. 7b.

Note that to apply the depth-aware blur to each light field
view, we need a disparity map for each one. Instead of recom-
puting disparity maps for each view, we simply propagate the
disparities from the reference image by following them to
the other views. Hence, we propagate the disparity d of pixel
(x, y) on the reference view m to pixel (x + d(i − m), y)
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(a) (b) (c) (d)

Fig. 7 We create our synthetic aperture in two steps. First we enlarge the aperture vertically only (b). This we do for several views along the
horizontal camera path. Summing them up extends the aperture horizontally (c). To get d we apply the same procedure by focusing on the background

(a) (b) (c)

Fig. 8 We show the user selected reference image in a. In b and c we applied our synthetic aperture focusing on the background with aperture size
5 and 10, respectively. In d we show the result of our “infinite aperture” by removing the fence

on the i-th disparity map. For pixels that receive several dis-
parity values we keep the largest one, since this is the one
belonging to the frontmost object. On the other hand, gaps
will appear in background regions that were occluded in the
reference view. We fill these holes with the lower disparity
of its left, respectively, right border.

Once we computed all the vertically blurred views Vi , we
shift them according to the in-focus disparity d f and compute
a weighted sum

Isynth App(p) =
∑

i

G(i, m, σ )Vi (ps) (16)

as the output image, where ps = (xs, y) with xs = x +
(i − m)d f . We use again the Gaussian weights G(i, m, σ ),
where i is the index of the view, m is the index of the reference
image and σ = (a + 1)/

√

2 log(255).

5.2 Further applications

In this section, we illustrate the usefulness of our processing
pipeline by discussing further computational photography
applications.

Foreground removal We can automatically remove thin fore-
ground obstacles by exploiting our light field data and dis-
parity map. This is useful to remove unwanted objects that
may spoil a shot, as illustrated in Fig. 8. Our approach is
inspired by previous work that exploits light fields to “see
through” foreground objects that partially occlude the scene
behind [13]. The main idea is that digitally refocusing on a
background layer using a very large synthetic aperture will
make the foreground almost transparent. Since we have a dis-

parity map at our disposal in addition to the light field, we are
even able to completely disregard foreground objects based
on their disparity when digitally refocusing on the scene
behind. We simply mask out the disparity map using a thresh-
old given by the disparity of the obstacle. Then we refocus
the light field on the background and integrate only where the
mask is non-zero. We apply the same disparity propagation
to the non-central light field views as in Sect. 5.1.

Segmentation and alpha matting We can use our disparity
map to segment foreground objects by thresholding the dis-
parities (Fig. 9). The user sets the threshold simply by select-
ing the desired object. In addition, we obtain an alpha matte
by filtering the resulting binary segmentation mask with the
guided image filter as proposed by He et al. [8]. The filtering
step produces a “guided feathering” effect where alpha values
preserve detailed image structures while smoothly blending
between foreground and background. Although algorithms
for alpha matting using light fields have been proposed [15],
we found that these approaches are less robust and more sen-
sitive to parameter settings and scene characteristics.

We can also use the resulting segmentation and alpha
matte to generate a selective gray scale effect where the
selected region stays colorful while we convert the rest of
the scene to a gray scale image, as shown in Fig. 10. Lever-
aging the disparity map, we can further provide functionality
to insert new objects in the scene while respecting occlusions
and performing alpha compositing with the foreground and
background.

Multiview autostereo output With the method from Sect. 3.4
we are able to render views from any point on the camera
baseline. Hence, it is straightforward to produce the appro-
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Fig. 9 An application of our computed alpha matte: for the reference
image (top left) an alpha matte is generated for the foreground (top

right). The object is inserted into the scene and blended with the fore-
ground (bottom)

priate views for autostereoscopic displays or lenticular prints.
We adjust the zero-disparity plane to focus on desired scene
elements by horizontally shifting the created views, where
we read the required shift directly from the disparity map.

6 Mobile application

To demonstrate the feasibility of a mobile app targeting
advanced computational photography we implemented dig-
ital refocusing with synthetic apertures on iOS. The app lets
the user record short movies and then processes the video
frames as explained in Sect. 3. The user can then refocus the
image as described in Sect. 5.1 using a touch gesture.

The iOS implementation shares most of the underlying
source code with its desktop sibling, which keeps the porting
effort at a minimum.

To improve performance on the mobile device we vector-
ized the math-libraries using ARM NEON, perform more
complex operations asynchronously to avoid freezing the
user interface, and use an OpenGL ES 2 based off-screen ren-
derer to increase the performance of our image-based warper
(Sect. 3.4).

Last but not least, we tuned all quality settings for speed
to minimize the runtime complexity when computing syn-
thetic apertures aimed at mobile device screen resolutions.
This includes the number of tracked features,1 the number of
rendered views (10), and the input frame resolution (720p).

We benchmarked our prototype on two devices, an iPhone
5 powered by Apple’s ARM-v7s A6, and an iPad Air pow-

1 Using cv::goodFeaturesToTrack().

(a) (b)

Fig. 10 An application of image segmentation: pixels with a disparity
value below a threshold are converted to gray scale

Table 1 Results for the 2D synthetic aperture as explained in Sect. 5.1

Movie Preprocess Disparity Warp Refocus

iPhone 5
Fence 17.9 s 44.7 s 4.3 s 8.8 s

Rava 30.0 s 41.4 s 3.6 s 5.7 s

Yasmin 11.4 s 41.4 4.1 s 12.6 s

iPad Air

Fence 8.8 s 18.3 2.2 s 3.8 s

Rava 14.1 s 16.1 1.6 s 2.5 s

Yasmin 5.9 s 16.5 1.8 s 6.1 s

ered by Apple’s ARM-v8 64bit A7. The results are shown
in Table 1. Apparently, preprocessing the input material is
the most time-consuming part, notably feature detection,
whereas refocusing is relatively quick. It is thus advisable
to use as few frames as possible, and then to store the pre-
processed data for later reuse. This enables us to provide
a similar experience as with the Lytro light field picture
files.

7 Conclusions and future work

We presented a method for hand-held 3D light field pho-
tography and described several computational photography
applications enabled by our framework. The main advantage
of our approach over previous techniques for capturing light
fields using hand-held devices is that it requires only a simple
and short user interaction, making it practical for casual users.
Our work hinges on a novel technique for spatio-temporal
resampling of image sequences from approximately linear
camera paths into regularly sampled 3D light fields. We also
developed a novel disparity estimation technique leading to
state-of-the-art results on standard datasets. Finally, we intro-
duced a digital refocusing approach using synthetic apertures
that leverages our light field data and disparity maps, and sev-
eral other applications. We believe our approach opens excit-
ing avenues for further computational photography applica-
tions on mobile devices. However, more low-level perfor-
mance optimization is needed to provide a desirable level of
interactivity on current devices.
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