
Hand Motion from 3D Point Trajectories and a
Smooth Surface Model

Guillaume Dewaele, Frédéric Devernay, and Radu Horaud

INRIA Rhône-Alpes, 38334 Saint Ismier Cedex, France,
http://www.inrialpes.fr/movi

Abstract. A method is proposed to track the full hand motion from 3D
points reconstructed using a stereoscopic set of cameras. This approach
combines the advantages of methods that use 2D motion (e.g. optical
flow), and those that use a 3D reconstruction at each time frame to cap-
ture the hand motion. Matching either contours or a 3D reconstruction
against a 3D hand model is usually very difficult due to self-occlusions
and the locally-cylindrical structure of each phalanx in the model, but
our use of 3D point trajectories constrains the motion and overcomes
these problems.
Our tracking procedure uses both the 3D point matches between two
time frames and a smooth surface model of the hand, build with implicit
surface. We used animation techniques to represent faithfully the skin
motion, especially near joints. Robustness is obtained by using an EM
version of the ICP algorithm for matching points between consecutive
frames, and the tracked points are then registered to the surface of the
hand model. Results are presented on a stereoscopic sequence of a moving
hand, and are evaluated using a side view of the sequence.

1 Introduction

Vision-based human motion capture consists in recovering the motion parame-
ters of a human body, such as limb position and joint angles, using camera im-
ages. It has a wide range of applications, and has gained much interest lately [12].
Recovering an unconstrained hand motion is particularly challenging, mainly
because of the high number of degrees of freedom (DOF), the small size of the
phalanges, and the multiple self-occlusions that may occur in images of the hand.

One way to obtain hand pose is to compute some appearance descriptors of
the hand to extract the corresponding pose from a large database of images [1,18]
(appearance-based methods), but most approaches work by extracting cues from
the images, such as optical flow, contours, or depth, to track the parameters of a
3D hand model (tracking methods). Our method belongs to the latter class, and
uses data extracted from stereoscopic image sequences, namely trajectories of
3D points, to extract the parameters of a 27 DOF hand model. Other tracking
methods may use template images of each phalanx [16], or a combination of
optical flow [11,13], contours or silhouette [11,13,20,6,21,9,19], and depth [6]. A
few methods are first trying to reduce the number of DOF of the hand model

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3021, pp. 495–507, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 150 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.0 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

496 G. Dewaele, F. Devernay, and R. Horaud

by analyzing a database of digitized motions [21,9,19], with the risk of losing
generality in the set of possible hand poses. In this context multiple cameras were
previously used either to recover depth and use it in the tracking process [6], or
to recognize the pose in the best view, and then use other images to get a better
estimation of the 3D pose [20].

The problem with most previous tracking methods is that using static cues
(contours or 3D reconstruction), extracted at each time frame, generate a lot
of ambiguities in the tracking process, mainly due to the similarity of these
cues between fingers, and to the locally-cylindrical structure of fingers which
leaves the motion of each individual phalanx unconstrained (although the global
hand structure brings the missing constraints). The solution comes from using
motion cues to bring more constraints. In monocular sequences, the use of optical
flow [11] proved to give more stability and robustness to the tracking process,
but previous methods using multiple cameras have not yet used 3D motion cues,
such as 3D point trajectories, which should improve further the stability of the
tracking process. There are three main difficulties in using 3D point trajectories
to track the hand pose:

– Since 3D point tracking is a low-level vision process, it generates a number
of outliers which the algorithm must be able to detect and discard.

– A 3D point trajectory gives a displacement between two consecutive time
frames, but the tracking process may drift with time so that the whole tra-
jectory may not represent the motion of a single physical point.

– Since the skin is a deformable tissue, and we rely on the motion of points
that are on the skin, we must model the deformation of the hand skin when
the hand moves, especially in areas close to joints.

The solution we propose solves for these three difficulties. To pass the first
difficulty, the registration step is done using a robust version of the well-known
Iterative Closest Point algorithm, EM-ICP [8], adapted to articulated and de-
formable object, followed by another adaptation of this method, EM-ICPS,
where point-to-point and point-to-surface distances are taken into account. The
second and third difficulties are solved by using an appropriate model: The hand
is represented as a 27 DOF articulated model, with a Soft Objects model [14] to
define the skin surface position, and Computer Animation skinning techniques
to compute motion of points on the skin.

The rest of the paper is organized as follows:

– Section 2 presents the framework of tracking a rigid body of known shape (an
ellipsoid in this case) from noisy 3D points trajectories using the EM-ICP
and EM-ICPS algorithms.

– Section 3 presents the hand model we use, which is composed of an articu-
lated model, a skin motion model, and a skin surface model. It also extends
the tracking framework presented in Section 2 from rigid shapes to full ar-
ticulated and deformable objects.

– Section 4 presents results of running the algorithm on a stereoscopic sequence
of a moving hand, where a side view is used to evaluate the accuracy of this
tracking method.

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 497

2 Tracking a Rigid Ellipsoid

The input data to our rigid body tracking method is composed of 3D points
obtained from a stereoscopic image sequence, by running a points-of-interest
detector in the left image, matching the detected points with the right image
using a correlation criterion, and then either tracking those matched points over
time [17], or repeating this process on each stereo pair. The classical image-based
tracking procedure can be adapted to make use of the epipolar geometry as a
constraint.

The object tracking problem can be expressed as follows: knowing the 3D
object position at time t and optionally its kinematic screw (i.e. rotational and
translational velocities), and having 3D points tracked between t and t + 1, find
the object position at t + 1. If the point tracks are noise-free and do not contain
outliers, there exists a direct solution to this problem, and in the presence of
outliers and noisy data the ICP algorithm [23] and its derivatives [8,15] may
solve this problem. In our case, we also have a surface model which can be
used to get a better estimation of the motion. We call the resulting algorithm
EM-ICPS (Expectation-Maximization Iterative Closest Point and Surface).

2.1 Description of the Ellipsoid

We first present this tracking framework on a rigid ellipsoid. We will later use
ellipsoids as basic construction elements to build our hand model. We made this
choice because we can easily derive a closed-form pseudo-distance from any point
in space to the surface of this object. An ellipsoid with its axes aligned with the
standard frame axes, and with axis lengths of respectively a, b, and c, can be
described, using the 4 × 4 diagonal quadratic form Q = diag

(1
a2 , 1

b2 , 1
c2 , −1

)
, by

the implicit equation of its surface XT QX = 0, where X = (x, y, z, 1) is a point
in space represented by its homogeneous coordinates. Similarly, it can be easily
shown that the transform of this ellipsoid by a rotation R and a translation t
can be described by the implicit equation:

q(X) = XT QT X = 0, where T =
(

R t
0 1

)
and QT = T −T QT −1. (1)

If two axes of the ellipsoid have equal length (by convention, a = b), it
degenerates to a spheroid. Let C be its center, let w be a unit vector on its
symmetry axis, and let u and v be two vectors forming an orthonormal frame
(u,v,w), the implicit surface equation becomes:

q(X) =
1
a2

(
|CX|2 − (w · CX)2

(
1 − a2

c2

))
− 1, (2)

Computing the Euclidean distance from a point in space to the ellipsoid
requires solving a sixth degree polynomial (fourth degree for a spheroid), thus
we prefer using an approximation of the Euclidean distance which is the distance
from the 3D point X to the intersection R of the line segment CX and the

498 G. Dewaele, F. Devernay, and R. Horaud

Pseudo-distance

Euclidian
distance

C

R

X

c

a

Fig. 1. Left: The pseudo-distance d′(X) between a point X and an ellipsoid is the
distance |XR| to the intersection R of the line segment CX and the ellipsoid. Right:
3D points whose distance to the ellipsoid is below ε are used for tracking.

ellipsoid (Fig. 1). This pseudo distance is reasonably close to the Euclidean
distance , except if the ratio between the smallest and the biggest axis length is
very small. Since |CX| = |CR|

√
q(X) + 1, the pseudo-distance d′(X) = |CX|−

|CR| becomes, in the case of a spheroid:

d′(X) = |CX| − c

(√

1 +
(w · CX)2

|CX|2
(

c2

a2 − 1
))−1

. (3)

2.2 Point-to-Point Tracking

The first method used to estimate the solid displacement over time consists in
using only the motion of the 3D points. Let {Xi}i∈[1,Nt] and {Yj}j∈[1,Nt+1] be
the set of 3D points, respectively at times t and t + 1. This method must be
able to take into account the fact that some points might be tracked incorrectly,
either because of the image-based tracking process or because the tracked points
do not belong to the same object. This means that some Xi may not have a
match among the Yj , and vice-versa.

The classical Iterative Closest Point algorithm [23] solves the problem of esti-
mating the displacement Tt,t+1 by iterating over the following 3-step procedure,
starting with an estimate of Tt,t+1 (which can be the identity if no prediction on
the position is available):

1. For each Xi, find its correspondent as the closest point to Tt,t+1Xi in {Yj}.
2. Given the correspondences (i, c(i)), compute Tt,t+1 which minimizes the ob-

jective function E =
∑

i∈[1,Nt]

∣
∣Tt,t+1Xi − Yc(i)

∣
∣2 (there exists a closed-form

solution in the case of a rigid displacement).
3. If increments in displacement parameters exceed a threshold, go to step 1.

The ICP algorithm may take into account points which have no correspon-
dent among the {Yj} by simply using a maximum distance between points above
which they are rejected, but this may result in instabilities in the convergence
process. A better formulation was proposed both by Granger and Pennec as

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 499

EM-ICP [8], and by Rangarajan et al. as SoftAssign [15]. It consists in taking
into account the probability αij of each match in the objective function:

Ep =
∑

(i,j)∈[1,Nt]×[1,Nt+1]

αijd
2
ij , with dij = |Tt,t+1Xi − Yj | . (4)

The probability αij is either 0 or 1 for ICP, and is between 0 and 1 for EM-
ICP and SoftAssign (we detail the computation of αij later on). EM-ICP and
SoftAssign1 replace steps 1 and 2 of the above procedure by:

1. For (i, j) ∈ [1, Nt] × [1, Nt+1], compute the probability αij that Xi matches
Yj , using the distance dij = |Tt,t+1Xi − Yj |.

2. Compute Tt,t+1 which minimizes the objective function of equation (4).

We now detail our implementation of EM-ICP, by answering the following
questions: Which points should be taken into account? How do we compute the
αij? Once we have the αij , how do we re-estimate Tt,t+1?

Which points should be taken into account? Since there may be multiple objects
to track in the scene, we only take into account points at time t that are within
some distance of the previous object position (Figure 1). This distance should be
more than the modelling error, i.e. the maximum distance between the real object
and the object model. Let σmodel be the standard deviation of this modelling
error, we select points that are within a distance of 2σmodel to the model (a few
millimeters in the case of the hand model). For simplicity’s sake, we use the
pseudo-distance d′(X) instead of the Euclidean distance.

How do we compute the αij? Under a Gaussian noise hypothesis on the 3D points
position, Granger and Pennec [8] showed that the probability of a match between
two points has a the form: αij = 1

Ci
exp

(
−d2

ij/σ2
p

)
, where σp is a characteristic

distance which decreases over ICP iterations (p stands for “points”), and Ci is
computed so that the sum of each row of the correspondence matrix [αij] is 1. In
our case, we add to the set of points at t+1 a virtual point, which is at distance
d0 of all points. This virtual point2 is here to allow the outliers in {Xi} to be
matched to no point within {Yj}. This leads to the following expression for αij :

αij =
1
Ci

e
−

d2
ij

σ2
p , with Ci = e

−
d2
0

σ2
p +

Nt+1∑

k=1

e
−

d2
i,k

σ2
p . (5)

1 In fact, EM-ICP and SoftAssign are very close in their formulation, and the main
difference is that SoftAssign tries to enforce a one-to-one correspondence between
both sets by normalizing both rows and columns of the correspondence matrix [αij],
whereas in EM-ICP the {Yj} can be more dense than the {Xi}, and only the rows
of [αij] are normalized using the constraint

∑
i∈[1,Nt]

αij = 1. Both methods can
take into account outliers, but our experiments showed that SoftAssign can easily
converge to the trivial solution where all point are outliers, so that the we chose a
solution closer to EM-ICP.

2 Granger and Pennec did not need this virtual point in their case because the {Yj}
was an oversampled and augmented version of the {Xi}, but Rangarajan et al. used
a similar concept.

500 G. Dewaele, F. Devernay, and R. Horaud

d0 is the distance after complete registration between Tt,t+1Xi and the {Yj}
above which this point is considered to have no match. Typically, it should be 2
to 3 times the standard deviation σrecons of the noise on 3D point reconstruction
(a few millimeters in our case). For the first iteration σp should be close to the
typical 3D motion estimation error σ0

p = σmotion (1-2cm in our case), then should
decrease in a few iterations to a value σ∞

p close to σrecons, and should never go
below this. We chose a geometric decrease for σp to get to σ∞

p = σrecons within
5 ICP iterations.

How do we re-estimate Tt,t+1? Equation (4) can be rewritten as:

Ep =
Nt∑

i=1

λ2
i |Tt,t+1Xi − Zi|2 , with λi =

Nt+1∑

j=1

√
αij and Zi =

1
λi

Nt+1∑

j=1

√
αij Yj .

(6)
With this reformulation, our objective function looks the same as in traditional
ICP, and there exists a well-known closed-form solution for Tt,t+1: the translation
part is first computed as the barycenter of the {Zi} with weights λi, and the
remaining rotation part is solved using quaternions [23]. If an Xi is an outlier,
the corresponding λi will progressively tend to zero over iterations, and its effect
will become negligible in Ep.

Caveats of point-to-point tracking: The main problem with points-based tracking
is that either the image-based tracking or the ICP algorithm may drift over time
because of accumulated errors, and nothing ensures that the points remain on
the surface of the tracked object. For this reason, we had to incorporate the
knowledge of the object surface into the ICP-based registration process.

2.3 Model-Based Tracking

In order to get a more accurate motion estimation, we introduce a tracking
method where the points {Yj} reconstructed at t + 1 are registered with the
object model transformed by the estimated displacement Tt,t+1. Previous ap-
proaches, when applied to model-based ICP registration, usually do this by using
lots of sample points on the model surface, generating a huge computation over-
head, especially in the search for nearest neighbors. We can use instead directly
a distance function between any point in space and a single model. We choosed
the pseudo-distance d′(Yj) between points and the ellipsoid model.

In order to eliminate outliers (points that were tracked incorrectly or do not
belong to the model), we use the same scheme as for point-to-point registra-
tion: the weight given to each point in the objective function Es depends on a
characteristic distance σs (where s stands for “surface”) which decreases over
iterations from the motion estimation error σ0

s = σmotion to a lower limit σ∞
s :

Es =
∑

j

βjd′(Yj)2, with βj = e
− d′(Yj)2

σ2
s . (7)

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 501

Points at t

Points at t+1

First, EM-ICP Then, EM-ICPS

Fig. 2. The hybrid tracking method: A first registration is done using only point-
to-point distances, and it is refined using both point-to-point and point-to-surface
distances.

The lower limit of σs should take into account both the modeling error σmodel,
i.e. the standard deviation of the distance between the model and the real object
after registration, and the 3D points reconstruction error σrecons. Since these are
independent variables, it should be σ∞

s =
√

σ2
model + σ2

recons.

The iterative procedure for model-based tracking is:

1. Compute the weights βj as in equation (7).
2. Compute Tt,t+1 which minimizes the objective function Es.
3. If increments in displacement parameters exceed a threshold, go to step 1.

In general, there exists no closed-form solution to solve for step 2, so that a
nonlinear least-squares method such as Levenberg-Marquardt has to be used.
Of course, one could argue that the closed-form solution for step 2 of ICP will
be much faster, but since step 2 uses the distance to the surface (and not a
point-to-point distance), only 2 or 3 iterations of the whole procedure will be
necessary. Comparatively, using standard ICP with a sampled model will require
much more iterations.

Caveats of model-based tracking: The main problem with model-based tracking
is that the model may “slide” over the points set, especially if the model has
some kind of symmetry or local symmetry. This is the case with the spheroid,
where the model can rotate freely around its symmetry axis.

2.4 Mixing Point-to-Point and Model-Based Tracking

In order to take advantage of both the EM-ICP and the model-based tracking,
we propose to mix both methods (Figure 2). Since model-based tracking is com-
putationally expensive, we first compute an estimation of Tt,t+1 using EM-ICP.
Then, we apply an hybrid procedure, which we call EM-ICPS (EM-Iterative
Closest Point and Surface) to register the tracked points with the model:

1. For (i, j) ∈ [1, Nt]×[1, Nt+1], compute the probabilities αij as in equation (5),
using σp = σ∞

p , and compute the weights βj as in equation (7), using σs =
σ∞

s .

502 G. Dewaele, F. Devernay, and R. Horaud

2. Compute Tt,t+1 which minimizes the objective function Eps = ωpEp +ωsEs.
3. If increments in displacement parameters exceed a threshold, go to step 1.

The weights in Eps are computed at first step to balance the contribution of
each term: ωp = 1/E0

p and ωs = 1/E0
s .

Bootstrapping the tracking method is always a difficult problem: How do
we initialize the model parameters at time t = 0? In our case, we only need
approximate model parameters, and we can simply adjust the model to the data
at time 0 using our model-based registration procedure (section (2.3)).

3 Hand Model: Structure, Surface, Skin, and Tracking

This tracking procedure can be adapted to any rigid or deformable model. We
need to be able to evaluate, for any position of the object, the distance between
its surface and any point in 3D space (for the model-based tracking part) and a
way to compute the movement of points on the surface of the object from the
variation of the parameters of the model.

For this purpose, we developed an articulated hand model, where the skin
surface is described as an implicit surface, based on Soft Objects [22] (Fig. 3),
and the skin motion is described using skinning techniques as used in computer
animation. We limited our work to the hand itself, but any part of the body
could be modeled this way, and the model could be used using the same tracking
technique, since no hand-specific assumption is done.

3.1 Structure

The basic structure of the hand is an articulated model with 27 degrees of free-
dom (Fig. 3), which is widely used in vision-based hand motion captures [19,5].
The joints in this model are either pivot or Cardan joints. Using the correspond-
ing kinematic chain, one can compute the position in space T k of each phalanx,
i.e. its rotation Rk and its translation tk from the position T 0 of the palm and
the various rotation angles (21 in total).

1 2
3

4 5
6

7 8 9

10 11
12

13 14 15

0

Cardan
joint

Pivot
joint

Fig. 3. Left: The 27 DOF model used for the hand structure: 16 parts are articulated
using 6 Cardan joints and 9 pivot joints. Right: The final hand model.

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 503

ellipsoids soft objects fusion by finger
fusion with
neighbors

Fig. 4. Different ways to model the surface: using spheroids only, fusing all the
spheroids using soft objects, fusing spheroids belonging to the same finger, and fusing
each spheroid with its neighbors in the structure.

3.2 Surface Model Using Soft Objects

The surface model is used in the model-based registration part of our method.
To model the hand, we choosed an implicit surface model, rather than mesh-
based ou parametric models, since it’s possible, when the implicit function is
carefully chosen, to easily compute the distance of any point in space to the
implicit surface by taking the implicit function at this point.

Implicit functions can be described by models initially developed for Com-
puter Graphics applications such as Meta-balls, Blinn Blobs [2], or Soft Ob-
jects [22]. These modeling tools were used recently for vision-based human mo-
tion tracking [14]. Very complex shapes can be created with few descriptors (as
little as 230 meta-balls to obtain a realistic human body model [14]). We used
one spheroid-based meta-ball per part (palm or phalanx), which makes a total
of 16 meta-balls for the hand. Modeling an object using meta-balls is as easy
as drawing ellipses on images, and that is how our hand model was constructed
from a sample pair of images.

In these models, each object part is described by a carefully-chosen implicit
function fk(X) = 1, and the whole object surface is obtained by fusing those
parts together, considering the global implicit equation f(X) =

∑
fk(X) = 1.

Most meta-balls models use the quadratic equation of the ellipsoid as the im-
plicit function: fk(X) = e−qk(X)/σ2

. However, we found this function highly
anisotropic, and the big ellipsoids get a larger influence (in terms of distance),
which results in smaller ones being “eaten”. We preferred using our pseudo-
distance as our base function:

f(X) =
15∑

k=0

fk(X) = 1, with fk(X) = e
−

d′
k
(X)

νk , (8)

where νk is the distance of influence3 of each ellipsoid. Using the full sum can
cause the fingers to stuck together when they are close (Fig. 4), so we reduced
3 νk is expressed in real world units, whereas σ in the classical meta-balls function is

unit-less, resulting in the aforementioned unexpected behaviors.

504 G. Dewaele, F. Devernay, and R. Horaud

the sum in eq. (8) to the closest ellipsoid and its neighbors in the hand structure
described in Fig. 3. The resulting discontinuities of f(X) are unnoticeable in the
final model.

A pseudo-distance function can also be derived from the implicit function.
In this case, a near-Euclidean distance is d′′(X) = ln (f(X)), which is valid even
for points that are far away from the implicit surface, but a good approximation
for points that are near the surface is simply4 d′′(X) = f(X) − 1.

3.3 Skin Model

In order to use EM-ICP, we need to be able to deduct from the changes of the
parameters describing our model the movement of any point at the surface of
the object. This problem is adressed by skinning techniques used in computer
animation [3]. Simply assessing that each point moves rigidly with the closest
part of the hand structure would be unsufficient nears joints where skin expands,
retracts, or folds when the parameters change. So to compute the movement of
a point on the surface, we used a classical linear combination of the motion of
the closest part p, and this of the second closest part p′:

T (X) =
fp(X)α T pX + fp′(X)α T p′

X
fp(X)α + fp′(X)α

. (9)

The parameter α controls the behaviour of points that are near the joints of the
model (Fig. 5): α = 2 seemed to give the most realistic behaviour, both on the
exterior (the skin is expanded) and on the interior (the skin folds) of a joint5.

initial position α = 1 α = 2 α = 10

Fig. 5. The motion of points on the surface of the object depends on the choice of α,
and does not exactly follow the implicit surface (in grey).

3.4 Tracking the Full Hand Model

There exist non-rigid variations of the ICP algorithm and its derivatives [7,4], but
none exists for articulated objects, whereas our method works for an articulated
4 Simply because f(X) is close to 1 near the surface, and ln(x + 1) = x + O(x2).
5 The fact that the skin motion does not exactly follow the implicit surface is not an

issue, since both models are involved in different terms of the objective function Eps.

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 505

left view right view validation view rendered view

Fig. 6. Tracking results at frame 10, 30 and 50: left and right view with 3D points
superimposed (views used in the tracking process), side view with each phalanx super-
imposed as an ellipse, and tracked model rendered using the camera parameters of the
side view with marching cubes

and deformable object. The objective function to be optimized for the full hand
model is (equations (4), (6) and (7)):

Eps = Ep + Es, with Es =
∑

j

βj (f(Yj) − 1)2, and βj = e
− (f(Yj)−1)2

σ2
s . (10)

We look for the 27 parameters of the hand that minimize Eps. Ep takes into
account the skin model though the displacement field Tt,t+1, while Es uses the
the pseudo-distance to the implicit surface d′′(X) = f(X) − 1. The optimization
is done iteratively, using the procedure previously described in section 2.4, opti-
mizing point-to-point distance first, and then point-to-point and point-to-surface
distances.

4 Results and Conclusion

For our experiments, a stereoscopic sequence of 120 images was taken, where
the palm is facing the cameras. About 500 points of interest were extracted and
matched between the left and the right view, and the resulting 3D points served
as input for our hand tracking. The hand structure was modeled interactively,
by drawing the spheroids and the position of joints on the first image pair. A
third view (side view) was used for the validation of tracking results. Figure 6
shows three time frames of the sequence, with the results superimposed on the

506 G. Dewaele, F. Devernay, and R. Horaud

side view and the full model rendered with marching cubes in the same camera
as the side view. All the fingers are tracked correctly, even those that are folded
during the sequence, but we can see in the rendered view that the palm seems
much thicker than it really is. This comes from the fact that we attached a single
spheroid to each part, and the curvature of the palm cannot be modeled properly
that way. In future versions, we will be able to attach several spheroids to each
part of the model to fix this problem.

4.1 Conclusion

We presented a method for hand tracking from 3D point trajectories, which
uses a full hand model, containing an articulated structure, a smooth surface
model, and a realistic skin motion model. This method uses both the motion of
points and the surface model in the registration process, and generalizes previous
extensions of the Iterative Closest Point algorithm to articulated and deformable
objects. It was applied to hand tracking, but should be general enough to be
applied to other articulated and deformable objects (such as the whole human
body). The results are quite satisfactory, and the method is being improved to
handle more general hand motion (e.g. where the hand is flipped or the fist is
clenched during the sequence). The tracking method in itself will probably be
kept as-is, but improvements are being made on the input data (tracked points),
and we will consider non-isotropic error for 3D reconstruction in the computation
of the distance between two points. We are also working on automatic modeling,
in order to get rid of the interactive initialization.

References

1. V. Athitsos and S. Sclaroff. Estimating 3D hand pose from a cluttered image. In
Proc. CVPR [10].

2. J. Blinn. A generalization of algebraic surface drawing. ACM Trans. on Graphics,
1(3), 1982.

3. J. Bloomenthal. Medial based vertex deformation. In Symposium on Computer
Animation, ACM SIGGRAPH, 2000.

4. H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid regis-
tration. CVIU, 89(2-3):114–141, Feb. 2003.

5. Q. Delamarre and O. Faugeras. Finding pose of hand in video images: a stereo-
based approach. In Third International Conference on Automatic Face and Gesture
Recognition, pages 585–590, Apr. 1998.

6. Q. Delamarre and O. Faugeras. 3D articulated models and multiview tracking with
physical forces. CVIU, 81(3):328–357, Mar. 2001.

7. J. Feldmar and N. Ayache. Rigid, affine and locally addinne registration of free-
form surfaces. IJCV, 18(2):99–119, May 1996.

8. S. Granger and X. Pennec. Multi-scale EM-ICP: A fast and robust approach for
surface registration. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, edi-
tors, ECCV, volume 2353 of LNCS, pages 418–432, Copenhagen, Denmark, 2002.
Springer-Verlag.

Hand Motion from 3D Point Trajectories and a Smooth Surface Model 507

9. T. Heap and D. Hogg. Towards 3D hand tracking using a deformable model. In
Proc. Conf. on Automatic Face and Gesture Recognition, pages 140–145, 1995.

10. IEEE Comp.Soc. Madison, Wisconsin, June 2003.
11. S. Lu, D. Metaxas, D. Samaras, and J. Oliensis. Using multiple cues for hand

tracking and model refinement. In Proc. CVPR [10], pages 443–450.
12. T. Moeslund and E. Granum. A survey of computer vision-based human motion

capture. CVIU, 81(3):231–268, 2001.
13. K. Nirei, H. Saito, M. Mochimaru, and S. Ozawa. Human hand tracking from

binocular image sequences. In 22th Int’l Conf. on Industrial Electronics, Control,
and Instrumentation, pages 297–302, Taipei, Aug. 1996.

14. R. Plänkers and P. Fua. Articulated soft objects for multi-view shape and motion
capture. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(10), 2003.

15. A. Rangarajan, H. Chui, and F. L. Bookstein. The softassign procrustes matching
algorithm. In IPMI, pages 29–42, 1997.

16. J. M. Rehg and T. Kanade. Model-based tracking of self-occluding articulated
objects. In Proc. 5th International Conference on Computer Vision, pages 612–
617, Boston, MA, June 1995. IEEE Comp.Soc. Press.

17. J. Shi and C. Tomasi. Good features to track. In Proc. CVPR, pages 593–600,
Seattle, WA, June 1994. IEEE.

18. N. Shimada, K. Kimura, and Y. Shirai. Real-time 3-D hand posture estimation
based on 2-D appearance retrieval using monocular camera. In Proc. 2nd Int’l
Workshop Recognition, Analysis, and Tracking of Faces and Gestures in Realtime
Systems (RATFFG-RTS), pages 23–30, Vancouver, Canada, July 2001.

19. B. Stenger, P. R. S. Mendonça, and R. Cipolla. Model based 3D tracking of an
articulated hand. In Proc. CVPR, pages 310–315. IEEE Comp.Soc., 2001.

20. A. Utsumi and J. Ohya. Multiple-hand-gesture tracking using multiple cameras. In
Proc. CVPR, pages 1473–1478, Fort Collins, Colorado, June 1999. IEEE Comp.Soc.

21. Y. Wu, J. Y. Lin, and T. S. Huang. Capturing natural hand articulation. In
Proc. 8th International Conference on Computer Vision, pages 426–432, Vancou-
ver, Canada, 2001. IEEE Comp.Soc., IEEE Comp.Soc. Press.

22. B. Wyvill, C. McPheeters, and G. Wyvill. Data structure for soft objects. The
Visual Computer, 2(4):227–234, 1986.

23. Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.
IJCV, 13(2):119–152, 1994.

	Introduction
	Tracking a Rigid Ellipsoid
	Description of the Ellipsoid
	Point-to-Point Tracking
	Model-Based Tracking
	Mixing Point-to-Point and Model-Based Tracking

	Hand Model: Structure, Surface, Skin, and Tracking
	Structure
	Surface Model Using Soft Objects
	Skin Model
	Tracking the Full Hand Model

	Results and Conclusion
	Conclusion

