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Abstract 
 

  Hand detection is a fundamental step in many 

practical applications as gesture recognition, video 

surveillance, and multimodal machine interface and so 

on. The aim of this paper is to present the methodology 

for hand detection and propose the hand motion 

detection method. Skin color is used to segment the 

hand region from background and hand blob is 

extracted from the segmented finger blobs. Analysis of 

finger blobs gives us the location of hand even when 

hand and head blobs are visible in the same image. In 

this paper, we propose a fast, computationally 

inexpensive solution which uses any type of computer 

video camera to control a cursor through hand 

movements and gesticulations. The design and 

evaluation phases are presented in detail. We have 

performed extensive experiments and achieve very 

encouraging results. Finally, we discuss the 

effectiveness of the proposed method through several 

experimental results.  
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1. Introduction 
 

The aim of this paper stems from the fact that as 

computer systems continues to become ever more 

ubiquitous, the more the need arises for a 

complimentary input interface. With hardware 

manufacturers on the cusp of releasing the next 

generation of graphical display systems using the latest 

in 3D imagery [7], software developers will naturally 

follow suit with 3D operating systems, games and so 

forth. From this it is fair to assume that anyone with a 

3D solution for user input would benefit greatly if a 

product is ready to go into the market in time. Just as 

the mouse was developed as a more intuitive means of 

controlling a cursor in a 2D graphical interface, the 

next logical progression would be to have an interface 

which uses the full range of movement of the hand. 

Contending technologies include the various types of 

gloves and wands used in virtual reality. Though a 

simple solution their cost is far too high to soften the 

consumer market. This is based on the belief that 

people are less likely to buy a new input peripheral 

when a mouse can do the job. Computer science 

however offers an elegant solution requiring little in 

manufacturing costs which lies in the field of computer 

vision. Current strands of research into object and 

motion detection is more than advanced enough to 

tackle the problem of finding a hand in a scene and 

deriving position and purpose accurately. HandMouse 

contains elements of the Open Computer Vision 

Library (OpenCV) to process incoming frames from a 

standard USB camera. Hand Detection is achieved 

through the use of a detection method which utilizes an 

extended set of Haar-like features with a cascaded 

AdaBoost classifier as proposed in [9]. Motion 

tracking is achieved through a modified Lucas-Kanade 

optical flow tracker as outlined in [2]. The aim of this 

paper is to demonstrate the feasibility that with existing 

computer vision technologies a fast and 

computationally inexpensive solution for human 

computer interaction is possible. We also outline the 

problems with the current implementation and suggest 

possible answers to resolving them.  
 

2. Background 
 

The camera has been used in the project was 

Logitech 2 megapixel web camera without infra-red 

filter. We did not apply zoom feature to focus on the 

image and get more precise image data features. In 

order to understand what has been done in the project, 

first of all, basic terms have to be explained in detail. 
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2.1 Object Detection 

 

Recognition of an object in a scene is a key field of 

study in computer vision. It is also central to our 

proposal of controlling a computer through the 

detection of hand gestures to match pre-determined 

commands. Though there are varieties of methods by 

which this can be achieved, we will only outline that 

which is necessary for understanding our 

implementation. Our chosen detection method is the 

machine learning technique of boosting to efficiently 

classify haar-like features within a video frame from a 

pre-trained classifier cascade as proposed in [13] and 

expanded upon in [9]. The advantages of this method 

are that when implemented correctly it is fast, efficient 

and accurate. It is also effective in detecting objects 

which are either partially occluded or if the video 

frame is noisy. 

 

2.1.1 Haar-like Features 

 

These are rectangular areas within a detection 

window which are used to determine either a line, edge, 

or point based on the weighted sum of the pixels within 

each feature area. Figure 2.1 shows both the original 

feature set as outlined in [13] along with the extended 

set of 45˚ rotated rectangles as proposed in [Lienhar02]. 
The black rectangles are negatively weighted while the 

white rectangles are given positive weightings. 

Rectangles are used due to their extreme computational 

efficiency. As Figure 2.1 illustrates it is very easy to 

calculate the dimensions of a rectangle within a 

window by specifying it in the tuple r=(x, y, w, h, α) 
with 0≤x,x+w≤W, 0≤y,y+h≤H, x,y,w,h≥0 and α ε 
{0˚,45˚}. 

 

Using a detection window of 24x24 pixels, with all 

possible combinations of horizontal and vertical 

locations and scales (restricted to within a scaling 

factor of X=W/w and Y=H/h) gives a set of 117,941 

features. From this useful information can be derived 

about the window which would otherwise be difficult 

to learn from the raw set of pixel values. 

 
Figure 2.1 Haar-like feature prototypes 

 

 
Figure 2.2 Example of an upright and 45˚rotated 

angle 
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Equation 2.1 Equation for an arbitrary haar-like 

feature where 

 

ω ε {-1,1}, r is a given rectangular area, and N is the 

number of such areas in the given feature. 

 
2.1.2 Feature Calculation 

   

  The computation of all the features within a window 

can be performed very quickly and in constant time for 

any size by using two value tables known as the 

summed area table (SAT) for upright rectangles and 

the rotated area summed table (RSAT) for rotated 

rectangles. Both of these are the sums of pixel values 

within an rectangular area where 
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Equation 2.2 Summed Table Area 
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Equation 2.3 Rotated Summed Table Area 

 

By using these, the sum of pixel intensity values can be 

achieved in just four table lookups with 
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Equation 2.4 For upright rectangle areas and 
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Equation 2.5 For rotated rectangle areas. A more 

detailed description can be found in [9]. 

 

2.1.3 Classification 

 

  With a method of distinguishing image samples 

available it is then possible to apply machine learning 

techniques to classify whether or not an input image 

contains a hand object. In this case adaptive boosting is 

used as it is a powerful and fast learning method. It 

comprises of a combination of weak classifiers with a 

very high positive hit rate and a false-positive rate 

which is barely better than chance. This combination 

forms a strong classifier. The specific boosting variant 

used is known as Gentle AdaBoost. The algorithm is 

shown on the next page. It is also discussed in greater 

detail in [6]. Learning is based on N number of training 

samples from (x1 ,y1),…,(xN ,yN) where x being an 

training image and y ε {-1,1} with a negative sample 

being -1 and a positive 1. 

 

1. Given N image examples from 

(x1 ,y1),…,(xN ,yN) with 

}1,1{,  yx k
 

2. Start with weights 

Ni
N

wi ,...,1,
1

  

3. For each feature m, m=1,…,M  

 Fit the regression function )(xfm by 

weight least-squares of yi to xi with 

weights wi . 

 Set 

Nieww
xfy

ii
m ,...,1,

)(  
and 

renormalize weights so that 
i

iw 1. 

4. Output the classifier 
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Figure 2.3 Gentle AdaBoost training algorithm 

 

  At each stage of this cascade of weak classifiers, a 

stump classifier as shown in point 4 above is used to 

determine whether or not the input image contains the 

object based on the calculated weightings in the above 

algorithm. If a stage determines that it is above a 

threshold value, in our case greater than 0, it will pass 

on the input to the next stage. This process filters off 

negative training examples until the possibility of a 

false negative is negligible. Figure 2.4 illustrates this 

cascade process. 

 

 
Figure 2.4 Cascade of classifiers with N stages.  

 

At each stage a classifier is trained to achieve  

a hit rate of h and a false alarm rate of f. 

 

Using say 20 stages with a minimum hit rate of 

99.5% and a maximum false alarm rate of 50% per 

feature layer will give an overall hit rate of about 90% 

and a false alarm rate of about 
5105.9  %. 

 

2.1.4 Detection 

 

During the actual detection process a sliding window 

is passed through an input video frame and passed 

through the detection cascade which either confirms 

the detection of a hand or rejects the input. To take into 

account scaling, the window input is recalled and 

similarly passed through the cascade until either a hand 

has been detected or the input window exceeds the 

dimensions of the video frame. 

 

2.2 Motion Detection 
 

The other key area of research which is pertinent to 

our work is that of detecting motion in a scene based 

on video input. Though there are a number of methods 

to achieve this, we have opted optical flow estimation. 

42



International Journal of Digital Content Technology and its Applications 

Volume 4, Number 2, April 2010 

 

2.2.1 Optical Flow 
 

  Optical flow is the approximated motion between 

two video frames based on the difference in intensity 

values over time. To identify optical flow between two 

consecutive video frames I and J, we start with an 

initial point in I  Tyx uuu , and try to match it with 

its corresponding point v in J, 

 Tyyxx dududuv  , . The vector d is 

being the optical flow at that specific point. 

 

Unfortunately the process of finding this vector is not 

altogether that easy given a number of issues including 

one known as the aperture problem. This is an 

ambiguity of the optical flow within areas where there 

is an insufficient amount of spatial gradient variation. 

 

 
Figure 2.5 The aperture problem 

 

  As can be seen in figure 2.5 when a rectangle is 

moving up left diagonally, the apparent motion from 

within apertures 1 and 3 would not take into account of 

horizontal and vertical motion respectively. The 

perceived motion within aperture 2 is correct given that 

it has sufficient edge gradient variation. It is therefore 

important to observe variation over an area large 

enough to distinguish motion correctly. This can be 

done by the defining optical flow value which 

minimizes the function ε within a window w of size 

),( yx ww  respectively as 
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Equation 2.6 

 

The matching equation above is central to the Lucas-

Kanade feature tracking algorithm outlined in the 

following section. 

 

2.2.2 Lucas-Kanade Feature Tracking Algorithm 

 

  As previously mentioned, the aim of a feature 

tracker is to find the displacement vector d that 

minimizes the matching function in equation 2.6. This 

means that the first derivative of  respect to d is 0. 

Substituting ),( yx dydxJ   by its first order 

Taylor expansion about the point 

 Td 00 therefore gives the approximation. 
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Equation 2.7 

 

The matrix 













y

J

x

J
being the image gradient 

vector for J. The expression ),(),( yxJyxI   can 

also be considered to be the derivative over time of a 

scene S. It can then redefine it as in equation 2.8. 
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Equation 2.8 
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  Equation 2.9 

 

Image derivatives Sx and Sy can also be computed 

independently in the first image so long as a central 

difference operator is used, which in this case it is, as 

so. 
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 Equation 2.10 
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Updating equation 2.7 with this new notation now 

gives. 
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Equation 2.12 
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Equation 2.13 

 

  This equation is now separated into two components, 

the spatial gradient matrix G and the image mismatch 

matrix b. This is needed for efficient computation and 

will be discussed further on in this section. 
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Finally from equation 2.13 the optimum flow vector is 

 

bGdopt

1                    Equation 2.16 

 

This equation is known as the standard Lucas-

Kanade optical flow equation which holds so long as 

motion between frames is small. This is because the 

higher order terms in equation 2.7 have been ignored 

as there are of negligible value if motion is small. This 

makes computation quicker at the expense of accuracy. 

This can however be minimized if an iterative 

approach to solving the above equations is performed. 

Iteratively refining the image mismatch matrix is 

achieved by recalculating vopt until the updated optical 

flow value is either less than a pre-defined threshold or 

having completed a maximum number of iterations. 

This method is expanded further in [10]. 

 

2.2.3 Pyramidal Tracking Algorithm 

 

  A major drawback with the Lucas-Kanade algorithm 

is that it assumes optical flow between frames will be 

small. Given the frame rates of a typical USB camera 

is on average about 15fps, optical flow with respect to 

hand movements is too large to be detected accurately. 

A simple solution to this problem has been suggested 

in [2] wherein a pyramidal approach is defined. In this 

method optical flow is estimated in a series of 

increasing image resolutions producing a further 

iteratively refined value as in the previous section. The 

advantage of this approach is that it is therefore 

possible to calculate large optical flow estimates in the 

actual image resolution from small optical flow 

estimates in lower-resolution images. Figures 2.6 and 

2.7 illustrate this. 

 

 
Figure 2.6 – Pyramidal optical flow estimation. 

 

Notice how a small disparity found at the top of the 

pyramid equates a large disparity at the bottom.  

 

1. Create multi-resolution pyramid for images 

I and J. m

LL
LLJI ,..,0},,{   

2. Initialize pyramidal optical flow estimate 

   TTL

y

L

x

L mmm ggg 00  

3. For mLL  down to 0 

 Define tracked point in 
LI , 

L

L u
u

2
  

 Calculate image derivatives S with 

respect to x and y. (equations 2.10 and 

2.11) 

 Calculate spatial gradient matrix G. 

(equation 2.14) 

 Initialize iterative LK optical flow 

estimate  Td 000   

 For k=1 to K (or until 

thresholdd
k  ) 

 Calculate image difference  
L

kS  (equation 2.8) 

 Calculate image mismatch matrix  

kb  (equation 2.15) 
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 Calculate iterative LK optical  

flow estimate 
kd  (equation 

2.16) 
1 kk dd  

 Calculate pyramidal optical flow 

estimate for next level 

  )(2111 KLTL

y

L

x

L
dgggg  

 

4. Final optical flow vector 
kdgd  0

 

5. Point tracked on J to point du   

 

Figure 2.8 Pyramidal feature tracking algorithm 

2.2.4 Blob Detection and Extraction 

 

Blob detection is a fast and sub pixel precise 

detection of small, compact image primitives called as 

“blobs”. The algorithm is based on differential 
geometry and incorporates a complete scale-space 

description. Hence, blobs of arbitrary size can be 

extracted by just adjusting the scale parameter. In 

addition to center point and boundary of a blob, also a 

number of attributes are extracted. Blob extraction is 

an image segmentation technique that categorizes the 

pixels in an image as belonging to one of many 

discrete regions. Blob extraction is generally 

performed on the resulting binary image from a 

thresholding step. Blobs may be counted, filtered, and 

tracked [16]. 

     

 

Fig 1. Numerous blobs were extracted from the source 

image by using OpenCV Blob Extraction library. 

  OpenCV blob extraction library finds many blobs 

[17]; however, purpose of the system and proposed 

algorithm is to get only hand blob among all the blobs.  

 

3. Technical Basis 
 

In this section, we will be stating the different 

stages of development which we had to go through to 

produce the current version of HandMouse. Besides it 

being our first experience at developing a computer 

vision application, this project was also our first 

attempt at developing a whole application using the 

components of the Microsoft Windows API. Given our 

chosen task was to develop a computer vision based 

cursor input alternative that is both responsive and at 

the same time uses little resources we had a lot of 

interesting technical challenges ahead of us. Amongst 

these included how to take in video input from an 

arbitrary video source, how to process individual 

frames and detect both a hand gesticulation and its 

motion over time, and how best to process this 

information so as to make it useful for cursor input. 

 

3.1 GUI Design 
 

The first step was to have a user interface to work 

from. As indicated earlier our knowledge of GUI 

design was limited and the only experience we had was 

working with Java Swing. Therefore we needed to 

learn how to develop one in Visual C++ so as to take 

advantage of certain features of windows programming 

such as timers and access to the mouse at the operating 

system level. We therefore began researching windows 

GUI programming by reading a number of tutorials 

online, most notably [15], [11]. At this time we began 

to experiment with code examples from this site to get 

an idea of what needed to be done. Our attempts were 

at creating a GUI from scratch with the help of the 

code examples offered in these sites. What we learnt 

was that an MFC application window consists of three 

distinct layers of objects which perform different tasks 

namely the frame, the view and the document. These 

are illustrated in figure 3.1. 

 

 
Figure 3.1 Window Design Framework 

 
The frame object is the basis of the window itself. 

It provides a visible frame surrounding the contents, 

wherein a status-bar, toolbar, and menu bar could be 

placed as well as control how the window looks and 

acts. Within the frame is the view object which 

manages the contents within the frame. It acts as a 

holder for any object, which in this case is the video 

output from the camera and provides functions to 

45



Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs 

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang 

control the look. The document object holds all the 

code to display the video frames we be manipulating. 

This is covered in the next section. The main 

advantage of this approach was that with Visual Studio 

it is incredibly simple to add controls such as sliders, 

buttons etc. The process is to create a control visually 

in resource manager, provide it an integer ID in the 

resource header file and establish a link to a variable 

via dynamic data exchange (DDE). This is a protocol 

for exchanging data between and within applications 

using Windows messages. It is simpler than COM 

though more than sufficient a means for letting objects 

know that the user has clicked on something. This 

allowed us to avoid a monolithic WinProc() function 

and better modularize program functionality. Later on 

we decided that we wanted the program to minimize to 

the system tray in the same manner as volume control 

dialog. This was so as to make the program as 

inconspicuous as possible and was rather simple to 

code. Using an article we had found on the MSDN site 

[5] we learnt how to we add a function in the frame 

object class to create a control message which 

configures the icon appearance and then send it to the 

taskbar using Shell_NotifyIcon(). With a GUI ready to 

go, we were could now begin work on capturing video 

input. 

 

3.2 Video Capturing 
 

  The next step in development was to have a means 

of capturing video input from an arbitrary video 

capture device. This ruled out the idea of 

communicating directly with the device as it would 

have been dependent on hardware such as interface 

type with little benefit. At this time we had began to 

look into off the shelf computer vision libraries and 

had found an ideal candidate in the open computer 

vision library [12]. In addition to providing all the 

functions we required to carry out the image 

processing, it also had functions for handling video I/O. 

These used the older Video for Windows interface 

from Windows 3.1 which was sufficient for the 

moment. This library also had the added advantage of 

having all the code ready for easily porting the app 

Linux through the Video for Linux interface. We 

however needed to consider future development and 

opted to use as little OpenCV code as possible so that 

we could later write our own implementation and 

eventually seek to patent our work. Portability to Linux 

was also not a priority for this project. In addition to 

this the VFW interface is obsolete thereby making any 

future development using it pointless. The best solution 

was therefore to use DirectShow which works by way 

of combining components known as „filters‟ used to 
process incoming video data to form a „filter graph‟. 

 

 
Figure 3.2 Example of a Simple DirectShow Graph 

 

Using the GraphEdit application, we were able to 

quickly make prototype graphs like the one seen in 

figure 3.2. This shows the simplest possible graph with 

just the filter relating to the desired capture device 

streaming video to the video renderer. We began by 

looking at the sample code provided in the DirectX 

SDK, most notably the app AMCap which showed how 

to preview and capture video from any recognized 

video input. SampleGrabCB was also useful in 

showing us how to intercept frames so that they may 

be processed using the ISampleGrab filter. We 

stumbled upon a video capturing appwizard for Visual 

C++ 6 developed by [4] which contained the start of a 

graph similar to that above. Its video capturing code 

was a separate to the GUI unlike the SDK examples. 

We therefore used this as the basis of our DxCapture 

class which was then used to create a document object 

which inherits its capture functions to take in video 

input. With video input available the next challenge 

was how to get individual frames so that they can be 

processed for hand detection. The method to achieve 

this is to add a filter in between the capture device and 

the video renderer which then processes the frame 

through a callback function. Our original attempt was 

to add the ISampleGrab filter which passes a pointer to 

the frame in memory to the callback function process(). 

To test it we began to work on stub class which just 

thresholds the incoming frame using OpenCV 

functions. This is the basis for our HandMouseDetect 

class. Unfortunately this never worked properly and 

caused the program to crash rather spectacularly. 

Further reading of the OpenCV message board made 

us realize that this would not work as the filter is not 

OpenCV friendly. Luckily an alternative frame grabber 

filter specifically for OpenCV came as part of the SDK 

called IProxyTrans. 

 

3.3 Frame Processing 
 

  The IProxyTrans filter works by intercepting frames 

from an incoming video stream and places them in a 
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buffer. It then passes a pointer to the current frame 

through a callback function called process() which 

we‟ve place in the source file DxVideoCap.cpp. The 

next challenge was how to use this pointer to a location 

in memory into something which could be interpreted 

as an image file. OpenCV‟s image format is the 
IplImage structure which is defined in the OpenCV 

documentation. Standard pointer conversion by doing 

something  like: 

 
void *frame; 

IplImage *image = (IplImage*)frame; 

 

did not work. Debugging the program proved little help 

as it was not doing anything particularly incorrect. We 

therefore went back online to figure this out and found 

an answer at [8]. This page explained that the reason 

for the problem is in the way C converts pointers. As 

all pointers are addresses and all addresses generally 

have the same number of bytes, conversion does not 

convert any bits. Therefore if the meaning of these bits 

is different between types, the new pointer would be 

garbage. C++ fortunately has a call which solves this 

problem known as reinterpret_cast. When this is called, 

the runtime system cunningly looks at both pointer 

types and rearranges the bit order according to the 

conventions of the destination pointer type. We were 

therefore now ready to start processing frames. A 

review of the OpenCV message board showed that 

there are many approaches available for detecting an 

object within a scene. Its preferred approach was in the 

use of a sliding window through a frame to find 

positively classified haar-like components within the 

window. The thinking behind this is explained in 

section 2.1. We were convinced this was a good 

approach having looked at the results of the face 

detection example that came with the SDK. This code 

is able to identify faces in all manners of lighting, 

occlusions and distances from the camera. To get a 

system like this working we would need to train a 

cascade classifier useable by the pattern recognition 

code in OpenCV.  

 

3.3.1 Cascade Training 

 

Training a classifier required us to feed a large set 

of images through the haartraining application which 

comes with the OpenCV SDK. The training process 

was also well documented in the OpenCV message 

board. The first step was to prepare a set of hand 

images with different reflections, illuminations, 

backgrounds, scales and rotations. About 10000 such 

images would be required to build a classifier which is 

both accurate and robust enough for this purpose. This 

collection was obtained through a number of means. 

Primarily we captured webcam footage of our own 

hand in various positions and in different settings such 

as in front a solid color (our bed sheets) and more 

complex backgrounds (by our desk). The next step was 

to decompile the captured video footage into individual 

frames. In addition to this we also used image grabbing 

software to scour the internet for any image matching 

the keywords relating to hands and gestures. The 

haartraining application takes in images through a text 

file listing which in addition to the file path also 

requires a bounding box for where in hand appears in 

the image to be defined. Finding the pixel coordinates 

for this box is a long drawn out affair and so a means 

of expediting this process was required. After 

reviewing the documentation on the OpenCV message 

board we managed to find a small application written 

by [1] called objectmarker which uses OpenCV‟s 
image processing code to mark rectangles within an 

input image and output the rectangles coordinates in a 

format compatible with the classifier training program. 

At this time we were also collecting a large set of 

negative image examples from different sources such 

as clipart libraries and webcam footage. These images 

then needed to be resized and convert to the same 

format as the positive samples. To achieve this quickly 

we wrote a batch script using Excel to run 

ImageMagick’s application for command-line image 

manipulation. With a large number of bitmap images 

on our hard disk we needed to figure a means to put 

them in order of negative and positive set and then as 

to what to of gesture the positive file contained. We 

therefore altered the source for objectmarker for this 

purpose by pressing adding different key combinations 

which would then write an entry for this file in the 

relevant file listing text file. Figure 3.3 shows a screen 

shot of this process. 

 

 
Figure 3.3 The image classification process 

 

From these image files we could then use 

createsamples to grab the hand images and then reduce 

each sample to a uniform size of 24 by 24 pixels. This 

program would then place all the samples into a single 

vec file which could then be passed to haartraining. 

The overall training process is illustrated in figure 3.4. 
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Figure 3.4 The classifier training process 

 
Training could now begin by calling haartraining 

with the new file listing as input. It takes a very long 

time to train a classifier and during training it is 

possible to get an estimate of how good the classifier 

will probably be as it prints out information on the hit 

and false alarm rates at each stage. It is also possible to 

cancel the process and return to it from the last 

complete stage, something which has been useful given 

repeated crashes of our system. The only cascade we 

successfully created was 14 stages long and provided 

far too many false alarms to be useful. For safe 

measure we therefore added more positive training 

images, this time by taking high resolution pictures 

with a digital camera which where then resized and 

used to generate more images by feeding random 

convert settings to ImageMagick’s convert program. 

This was done by means of a batch script which was 

produced again with Excel. 

 

3.3.2 Object Detection 

 

While classifier training was going on, we decided 

to press on with coding and wrote the object detection 

class. This contains all the code needed to read the 

classifier file, initialize the variables used in detection, 

call OpenCV‟s cvHaarDetectObjects() function, and 

handling of its results. This was fairly painless as there 

was plenty of documentation on how to do this in the 

OpenCV API. We however needed to take into 

consideration how our detection class was going to 

deal with multiple classifiers as well as how to make 

the detection process as efficient as possible. For a 

program with the ability of detecting four gestures it 

would not be wise to call cvHaarDetectObject() four 

times every frame as it slows down program the 

program as well as uses more resources. We therefore 

decided to write a scheduler algorithm which would 

call this function for each cascade in a round-robin 

fashion. A further performance improvement was also 

done by calling this function only once per an interval 

of frames. 

 

 

This algorithm is outlined in figure 3.5. 

 

// Initialisation 

unsigned char tick = 0; 

unsigned char pollrate = 16; 

int POLL_INTERVAL = 

256/NUMBER_OF_GESTURES; 

 

1. When process() is called 

     if  tick%POLL_INTERVAL = 0 

a. run detection code 
b. if tick = 0 
c. draw a rectangle around 

any detected   object 
2. tick = tick - pollrate 

Figure 3.5 Detection Scheduling Algorithm 

 

The advantage of this algorithm was mainly in its 

scalability. The rate at which the detection code is 

called as well as the number of gestures can be altered 

by changing just two variables. The output from 

cvHaarDetectObject() is a vector of rectangles which 

state where in the frame a detected object is, if any. We 

therefore now had a means of identifying an object in a 

frame, as well as its location, size and gesture type. We 

chose to prioritize gestures in case more than one is 

detected per frame. Two gestures were chosen, each 

one signifying a different action to be taken and are 

prioritized in the following order. An open palm 

signifies right-click event. A fist gesture signifies left-

click event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Palm Gesture for right-click action and Fist 

Gesture for left-click action 

 

3.3.3 Motion Detection 

 

While still waiting for a classifier to finish training, 

we used the cascades which detect faces which came 

with the OpenCV SDK as a means of testing the 

detection code. We also used it to see how well it 

worked at sending movement code to the cursor. This 
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will be covered in the next section. Unfortunately 

feeding mouse updated positions from the object 

detection output caused the cursor to move erratically 

around the screen. That in addition to the possibility of 

not having a classifier reading in time for the project 

presentation meant that a major rethink was in order. 

We went back online to look for an answer and funnily 

enough found one in a recently published paper co-

written by our former tutor [3]. In it they used a similar 

approach to detect lions‟ faces and used a Lucas-

Kanade feature tracker to detect movement. Besides an 

implementation of the iterative Lucas-Kanade tracker 

covered in section 2.2.2 the API also referred to an 

implemented which uses multiple image resolutions to 

enhance accuracy and allow for detection of larger 

inter-frame motion. Using example code from the API 

as a basis, we wrote the LKDetect() function to detect 

optical flow within an input frame. This function 

would take in a frame, convert it to a grayscale image 

and either generates a series of trackable points for 

detection or to calculate optical flow of these points in 

subsequent frames. These feature points are determined 

in the example code using the function 

cvGoodFeaturesToTrack() by finding pixel areas 

within an input image which have strong corners. This 

is determined by the eigenvalue of the area around 

each pixel and selects a point according to whether this 

value is above an input threshold. Given that we had a 

rectangular area where the detect object lies, we 

decided to pass this information to LKDetect() and 

restrict point generation to within this rectangle. This 

meant that only points within a detect object would be 

used to determine optical flow between frames. The 

code for this was simply calling the 

cvCalcOpticalFlowPyrLK() function which took the 

array of feature points and returned their updated 

location in the subsequent frame. From these two 

arrays we could then determine optical flow over the 

area of the detected object by calculating the average 

displacement vector of all the points. Feeding the 

mouse this average displacement seemed to work well 

only for short intervals as the points would eventually 

no longer represent a feature on the detected object. To 

resolve this we altered the calling of LKDetect() so that 

it would reinitialize the points array at a given interval 

in line with our scheduling code. This was a significant 

improvement as feature points were kept within the 

object bounding rectangle thereby ensuring that only 

movement form that object would contribute to the 

point displacement vector value. 

3.3.4 Motion Feature Segmentation 

 

With the possibility that we may not have a 

working hand classifier ready we needed to figure out a 

means of using only the motion detection code to move 

the cursor. We also did not want to give up on weeks 

of work and come up with something that could easily 

be reconfigured should the classifier ready in time. The 

answer came in isolating pixel values representing skin 

within a frame and setting other pixels to zero. Small 

pixel areas not corresponding to skin would then be 

cleaned out by applying a median filter over the frame. 

Only pixels not set to zero could then be used as a 

feature point. This left me with the problem of what to 

do with the area representing the head. As it also had 

skin pixel values it could also be used to move the 

mouse. This was not desirable. We therefore rewrote 

the code to generate feature points solely from pixels 

not within the bounding rectangle of the face. 

Therefore this object detection code was used to 

identifying only the intensity values that represent skin 

and also identifies the face so that it could be 

disregarded as a source of features. This roundabout 

way of doing things is not desirable as it would later 

need to be rewritten to accommodate hand gestures. To 

make life a lot easier we therefore simplified the code 

by using the face detection classifier for acquisition of 

skin pixel areas and restricted feature selection to that 

bottom half of the frame. This is based on the thinking 

that if a webcam is placed on top of the monitor with 

the user sitting in front, hands would generally be in 

the bottom half of the frame whilst the head would 

mostly be in the top half. Reducing the rate at which 

the feature points are reset would then allow for hand 

movements in the top half of the frame so long as they 

are only temporary. Though not an ideal solution, in 

practice it has worked quite well. 

 

3.3.5 Blob Extraction 

 

As we understood the fact that it is impossible to 

distinguish face and hands separately by previous 

methods, we decided to think in different manner. 

When we were playing with the blobs of moving hand, 

we noticed that moving hand has the largest blob 

among all the other blobs being extracted by OpenCV 

blob extraction function. Then, we analyzed all the 

blobs and developed and algorithm for detecting 

overall hand blob. 
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Figure 3.7 HandMouse screen shot with all the 

blobs: Hand blob is the largest blob. 

 

  Figure 3.7 shows how hand blob is the largest blob 

among all the other blobs. In our algorithm, we first 

find the largest blob in all the other blobs, and then as a 

final whole hand blob we assign the minimum x-

position and y-position values (up-left corner of the 

blob) to hand blob with its width and height values. 

Finally, we had the following results: 

 

Because skin color segmented image had some 

noise, we applied high pass filter and extracted hand 

blobs more clearly. 

 

 
 

 
Figure 3.8 HandMouse screen shots with hand blobs 

only 

 
 

3.3.6 Blob Motion Detection 

 

 

After hand blob was detected, then we had to detect 

the blob motion precisely. However, the deal was 

cursor control and graffiti input by mouse cursor. For 

this reason, boundary motion detection had to be 

developed. We didn‟t use the simple motion detection 

algorithm, but rather we developed our new motion 

detection algorithm which detects the boundary region 

motion as follows 

 

 

This algorithm evaluates all the possible neighbour 

pixels has changed or not with respect to a given 

threshold value rather than evaluating all the pixels. 

Therefore, especially for index finger detection, this 

algorithm really works well. 

 

 

After detecting motion in hand blob, pixels changed 

above the threshold has been transferred to the empty 

PImage so that it will be able to be processed by Lucas 

Kanade Pyramidal Optical Flow Tracker. Then, we 

noticed that we had so good results showing that we 

can use our hands to point the cursor as well as writing 

texts by means of graffiti gestures and we can use these 

gestures to manipulate the computer actions like 

keyboard inputs.  
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Figure 3.9 This is our implementation of motion detection Algorithm for moving object tracking. 
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Figure 3.10 Lucas Kanade Optical Flowing 

Algorithm is tracking the feature points in hand blob. 

Pink circles are the feature points in motion 

detection and white one shows the average x-

position and y-position of the feature points. 

 

By this method, we get finger mouse that 

manipulates the position of Windows cursor as shown 

above. 

 

3.4 Cursor Control 
 

Our initial approach at sending control commands 

for the mouse was by sending out the windows 

messages WM_MOUSEMOVE and 

WM_LBUTTONDBLKCLK and broadcasting it using 

the PostMessage() function available in the GUI view 

object. By encoding a message with updating cursor 

point information and button status the plan was to 

send out the message and that the operating system 

would pick it up. Cursor positions were available 

through the GetMousePos() function in the Windows 

API. However this thinking was flawed as certain 

applications did not react to these messages. There was 

also a problem with the mouse not responding should 

the HandMouse application crash. We therefore 

abandoned this method and went back to the drawing 

board. The next approach was to use directinput to 

control the mouse. This was however a non-starter as 

directinput does not have any means of sending 

coordinate information to the mouse except for code 

which is intended for force-feedback joysticks. 

Additional navigation around the MSDN site showed 

that there was functionality for this in code originally 

intended for the remote desktop feature in Windows 

XP. The SendInput() function allows us to generate 

both mouse and keyboard movements and button 

presses at the OS level. With this we were now able to 

feed the average displacement value from the detection 

code to SendInput() which meant that the cursor could 

be controlled by hand movements. With no clicking 

gesture available we then had to figure how best to 

create a clicking function as the program would be 

useless without it. The solution is to send a clicking 

command if the mouse has not moved for a certain 

period of time. This meant that the mouse controlling 

code in process() needed to remember both mouse 

positions as well as have a means of timing how long a 

cursor has been at that point on the screen. 

Remembering mouse positions was simply a matter of 

an addition point variable. The click determining code 

just required a DFA approach with different values of 

ClickStatus being set according to at point the program 

was in setting up a timer to measure the time no change 

in cursor position has occurred. 

 

1. Get current cursor position 

2. Detect motion and object presence in incoming 

frame 

3. Set cursor position from detected motion 

displacement x axis sensitivity 

 

If mouse clicking enabled (ClickStatus>0) 

a. ClickStatus == 1 (clicking on and in initial 

state) 

 Remember current 
position 

b. ClickStatus = 2 

c. ClickStatus == 2 (set timer to begin 

counting interval) 

d. ClickStatus == 3 (timer has been set and 

is counting away) 

e. If cursor position has changed 

 ClickStatus = 
1 

f. ClickStatus == 4 (timer has reached 

interval) 

 Send double click 
event using SendInput() 

g. ClickStatus = 1 

Figure 3.11 Mouse control algorithm 

 

The timer is initiated at startup with a WM_TIMER 

message being sent whenever the program has 

completed a desired time interval from when it first 

started. This continues to run throughout the program‟s 
run-time and can be changed by destroying and 
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recreating the timer in the GUI‟s view object. Figure 

3.11 outlines the final mouse control algorithm. 
 

4. Design and Implementation 
 

This section outlines our reasons for the choice of 

tools and design methods that went into this project. 

This work is very much a „proof-of concept‟ to 
demonstrate the effectiveness of computer vision 

techniques as a new form of HCI. 

 

4.1 Languages 
 

C++ was chosen for many reasons. It is fast, intuitive 

and the compiler and debugging tools very good. We 

also wanted to take advantage of object orientated 

design as we believe it necessary to have a 

modularized design framework for later development. 

Eventually we would like to port to Linux and also get 

rid of OpenCV altogether. This would mean that the 

code relating to Windows API calls would be best 

compartmentalized from the detection code and vice 

versa. Given OpenCV is written in C, were were 

therefore able to use the code without any fuss. We 

also were able to resolve our problems with casting as 

mentioned in section 3.3 thanks to the reinterpret_cast 

call. 

 

4.2 Development Tools 
 

We‟ve used a range of different tools throughout this 
project. Below are some of the most relevant to the 

development process. 

 

4.2.1 Visual Studio .NET 2005 
 

The Microsoft Development environment is always a 

must when taking into account large scale development 

as this project required. Firstly there‟s its ability to 
manage multiple projects at one go. This meant that all 

of the code used in this project, including the OpenCV 

library source and other assorted tools could be viewed 

in one single window. There multiple build option 

allowed us to have two different branches of code, one 

with all the debugging options on for debugging 

purposes and another release build which has been 

optimized for top performance. The C++ compiler that 

comes with the package is optimized for use in 

Windows which was a definite bonus. It also retained 

pre-linked object code between compilations which 

speeded up the development process. The inbuilt 

debugger which has all the same features as GNU‟s 
Insight proved invaluable when the program was not 

working and we had no idea why. Through the 

resource manager we were able to quickly prototype 

the GUI look and feel without getting too bogged 

down on GUI coding. Our only criticism of this 

package is its tendency to add a lot of unnecessary 

libraries as default, some of which oddly conflicted 

with one another through redefined functions. This was 

a bit of a headache in the earlier stages of development 

but problems were ironed out through subsequent 

changes in build configuration as the program got 

bigger. 

 

4.2.2 CVS 

 

Our chosen version control system was CVSNT, 

which is windows port GNU‟s cvs program though 

built with a GUI to control the settings from within 

Windows control panel. This server was set up on the 

local computer on a mirrored partition. Though it 

would have been preferable to have kept the repository 

on a different machine, computing power was not a 

luxury we had readily available and so opted for a non-

networked option which had worked well. To 

communicate with the server we used a plug-in for 

Visual Studio called CVS SCC Proxy by PushOK. This 

came about from the fact that WinCVS keep crashing 

on start up and we decided not to spend too much time 

figuring out why. This paid off really well as all 

checking in happened seamlessly within the 

development environment allowing more frequent 

changes between versions which proved very useful. 

 

4.2.3 Spy++ 

 

This tool is used to monitor messages being 

broadcast by all the processes currently active. As we 

were having issues with our original mouse control 

implementation, we needed to know what messages 

were being sent out and see why mouse control was 

behaving so erratically. Another really useful feature 

was its detailed memory usage information. This 

helped us to keep resource quantify how much in the 

way of resources the application was using up and 

eventually led to the fast and low computation expense 

of the current implementation. 

 

4.2.4 Picture Collection 

 

As we needed to modify a large number of images 

for classification we used a number of tools to help us 

obtain and manipulate them in many ways. Firstly 

there‟s Picture Ace which allows us to scour a web site 

for images recursively based on given criteria. This 

was useful in finding negative samples for 

classification and was used by simply entering random 

search phrases into Google and saving all found 
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images that were of sufficient resolution to be useful. 

For capturing video footage we used VirtualDub by 

Avery Lee. This program allowed us to capture 

multiple video input and at the same time compress the 

footage into divx codec format so as to save on disk 

space usage. We also used Bulletproofsoft‟s BPS Video 

Converter and Decompiler program to extract frames 

from within the recently captured footage. This 

program allowed us to sage frames as individual 

bitmap files and was the main means of generating 

positive training samples. More importantly was the 

use of the ImageMagick image manipulation suite. 

Using its command-line tools we were quickly able to 

generate batch scripts which created new samples by 

applying random resizing, rotating and colorizing 

features. Finally, for any image requiring more 

complex manipulation, we used GNU‟s Gimp. 

 

4.3 Hardware 
 

A main reason for why we were unable to better 

develop the classifier was because of our choice of 

hardware. We carried out all our work on a single 

Athlon XP 32bit 1.6GHz system, with 1028MB 

DDR3200 ram, 270Gb hard disk, and Windows XP 

SP2. Given this specification we had originally 

assumed it more than enough for the training process. 

Subsequent experience has unfortunately shown that 

the classifier training process requires a much higher 

spec system so as to complete training quicker and 

hence allow for more experimentation with training 

configuration to be carried out. At present a stage takes 

about 17 hours to complete. The ideal system as 

recommended by [1] is a dual 64-bit Intel P4 system 

with hyper-threading, 1.5 Gb RAM and running a 64-

bit capable OS with robust memory management 

capabilities. Haar training could be recompiled to take 

advantage of multiple processors and would make for a 

much faster classification process. Testing was carried 

out using three different models of Logitech USB 

camera of increasing image quality. All three were 

used to test how well the program worked with 

standard web cameras. We also played with different 

resolutions and frame rates and found optimal 

detection at 160x120 with a frame rate of 30fps. 

 

4.4 Libraries 
 

  As we all had limited development time it was 

necessary to look into the use of off the shelf libraries 

to expedite the development process. The two main 

libraries which are used are OpenCV and DirectX. 

OpenCV has a large collection of image processing 

and computer vision features as well as excellent 

matrix manipulation functionality. It is also well 

documented and widely used which meant it was easy 

to find an answer to problems arising from developing 

with it. Use of this library is subject to a BSD licensing 

agreement. This means that it is perfectly okay to use 

the library for commercial purposes so long as we 

make add a specific acknowledgement within the 

program to Intel. This is owing to them being the 

founders of the library. The main drawbacks however 

to using OpenCV is that it is still beta stage and there 

are still a few bugs with it. A key example was that 

haartraining was unable to convert a trained cascade 

from a directory structure from an older version to the 

current xml file cascade format. This was resolved by 

downloading the latest haardetection source from the 

library‟s CVS server and then to recompile the whole 
library. As previously mentioned it also still uses video 

for windows which is an obsolete technology with 

limited functionality. The use of the DirectX library for 

video capturing is essential for ensuring future 

development of the application. In addition to this it is 

also remarkably versatile as can be seen in the filter 

structure. It is also faster than VFW and helped to 

significantly improve detection performance in 

comparison to OpenCV‟s face detection example. 

 

5. Current Status and Future Plans 
 

By the time of writing this paper, the current status 

of this project is that it is capable of detecting motion 

from skin pixels and that from this it can efficiently 

control the mouse. As mentioned we have been unable 

to present a classifier at this time despite a lot of effort 

in trying to do so. The detection is nonetheless fully 

working and requires little modification to work with 

hand gestures once suitable classifiers become 

available. In the meantime clicking is possible by 

means of keeping the cursor at a required point for a 

specified time. This could be altered in the detection 

settings dialog window. Easy access to all the camera 

settings has been provided making it fairly configuring. 

The code also suffers from problems detecting skin 

correctly. If we wear a reddish shirt, some of the pixels 

representing the shirt would be wrongly interpreted as 

skin which makes the cursor harder to operate. Optimal 

performance at present involves wearing contrasting 

clothes to skin color, using a web camera with a high 

frame rate. The tested has been at 30fps as mentioned 

in section 4.3 though we would like to see how well it 

works at higher resolutions using a firewire camera. 

Functionality for this is possible thanks to the use of 

DirectX for video capture. Another issue is that the 

program requires exclusive access to the video camera 

which makes it incompatible in combination with web-

conference software or anything that needs the camera. 
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We have not had the chance to look into this in any 

detail but would assume it can be resolved through 

altering filter graph by adding a multiplexing filter. 

This would need to be look into. 

 

5.1 Cascade Development 
 

  With an image library of tens of thousands of images 

collected a future plan would be to train more 

classifiers and add more functionality. To make the 

program customizable a library of gesture cascades 

would need to be available and could eventually sold 

according to function. For example a cascade library 

for different sign languages could be developed and 

imported into the program. 

 

Another thing to consider is to separate cascades 

according to left and right hand orientations. This 

would allow for a much richer gesture vocabulary 

though it would also mean doubling the amount of 

gestures needed to be detected. The OpenCV object 

detection code would need to be worked on so as to 

improve performance by calling a single instance of 

the detector which looks at multiple cascades rather 

than the other way round. Alternatively the trainer 

could be rewritten to create a tree like structure, each 

branch being a cascade for a specific gesture. 

 

5.2 Multiple Cursors 
 

One of our preferred additions to the current 

implementation would be the ability to arbitrarily add 

more cursors according to the number of hands 

detected. This would mean a person could use both 

hands to control the computer. It would also allow for 

more than one person to control the computer opening 

up new possibilities with respect to the games market. 

Windows however current only supports a single 

cursor. This is expected to be resolved in the next 

version of the OS. A solution in the meantime would 

be to add a component at the device driver level which 

would act as an alternative input device. A framework 

for this and even code to add to the system is referred 

to in [14]. 

 

5.3 Voice Recognition 
 

A hand gesture HCI in addition to voice recognition 

technology would be an ideal combination as it would 

provided a complete alternative to both the keyboard 

and the mouse. This would be possible by adding an 

off the shelve voice recognition library, of which there 

are many to choose from, and insert detection code to 

be called in around the same location as the existing 

hand detection code. More research would be needed 

into seeing how this would affect program performance. 

 

5.4 3D Hand Detection 
 

With the existing single camera implementation, 

functions such as scaling of windows are possible and 

would be using the difference in detected object size to 

achieve this. For more complex hand functions such as 

pointing to a wall as a command to project a desktop, 

some form of 3D hand detection be needed. Solutions 

such as stereoscopic systems would be the obvious 

answer. OpenCV provides sufficient functionality to 

develop this idea further. Looking at this would 

however mean the beginning of looking into specific 

hardware for the program. This is something which we 

would not be tempted to do as our business plan is 

based on the idea that HandMouse is a solely software 

solution. 

 

5.5 Business Potential  
 

Our business proposal is to aim to have a future 

version of the current code that could be downloaded 

by anyone with a web cam and used with little 

configuration. We would be taking a shareware 

approach by distributing a cut down version that can be 

downloaded for free. The more complete version with 

suggestion functionality as mentioned in previous 

sections would be sold through the company home 

page, which avoids retailing issues. Once a brand has 

been established, the next phase would be to arrange 

OEM licensing agreements with camera manufacturers 

who would then bundle HandMouse with their product. 

If this goes well, such licensing agreements could be 

extended to other consumer electronics such as 

televisions. 

 

6. Conclusion 
 

In this paper, we proposed a motion detection 

algorithm based on blob analysis of finger blobs 

through the skin color extracted image. Experimental 

results show that human hand can be detected by using 

OpenCV Blob Extraction algorithm after performing 

some analysis on finger blobs even if hands and human 

head are available in the same frame. This paper also 

proposes a hand mouse system based on Lucas-Kanade 

Pyramidal Optical Flow algorithm applied on the hand 

motion pixels. We have introduced two human hand 

gestures by training OpenCV Haar cascade AdaBoost 

Classifiers as palm and fist gestures for right and left 

click of the mouse action. Experimental results indicate 

that mouse usability is almost done with proposed 
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gestures but not so robust. Further studies can be done 

and proposed algorithms can be developed in the future. 
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