
Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

Hand Mouse: Real Time Hand Motion Detection System Based on

Analysis of Finger Blobs

Ibrahim Furkan Ince
 *1

, Manuel Socarras-Garzon
*2

, Tae-Cheon Yang
*3

*1

 Graduate School of Digital Design, Kyungsung University, Busan, South Korea
*2, Corresponding author

 Busan, South Korea
*3

 Department of Computer and Information Science, Kyungsung University, Busan, South Korea

furkan@ks.ac.kr, sly.nomad@googlemail.com, tcyang@ks.ac.kr
doi: 10.4156/jdcta.vol4.issue2.5

Abstract

 Hand detection is a fundamental step in many

practical applications as gesture recognition, video

surveillance, and multimodal machine interface and so

on. The aim of this paper is to present the methodology

for hand detection and propose the hand motion

detection method. Skin color is used to segment the

hand region from background and hand blob is

extracted from the segmented finger blobs. Analysis of

finger blobs gives us the location of hand even when

hand and head blobs are visible in the same image. In

this paper, we propose a fast, computationally

inexpensive solution which uses any type of computer

video camera to control a cursor through hand

movements and gesticulations. The design and

evaluation phases are presented in detail. We have

performed extensive experiments and achieve very

encouraging results. Finally, we discuss the

effectiveness of the proposed method through several

experimental results.

Keywords

Hand tracking, Hand motion detection, Hand

mouse, Haar-like features, AdaBoost classifier, Lucas-

Kanade optical flow tracker, Blob extraction.

1. Introduction

The aim of this paper stems from the fact that as

computer systems continues to become ever more

ubiquitous, the more the need arises for a

complimentary input interface. With hardware

manufacturers on the cusp of releasing the next

generation of graphical display systems using the latest

in 3D imagery [7], software developers will naturally

follow suit with 3D operating systems, games and so

forth. From this it is fair to assume that anyone with a

3D solution for user input would benefit greatly if a

product is ready to go into the market in time. Just as

the mouse was developed as a more intuitive means of

controlling a cursor in a 2D graphical interface, the

next logical progression would be to have an interface

which uses the full range of movement of the hand.

Contending technologies include the various types of

gloves and wands used in virtual reality. Though a

simple solution their cost is far too high to soften the

consumer market. This is based on the belief that

people are less likely to buy a new input peripheral

when a mouse can do the job. Computer science

however offers an elegant solution requiring little in

manufacturing costs which lies in the field of computer

vision. Current strands of research into object and

motion detection is more than advanced enough to

tackle the problem of finding a hand in a scene and

deriving position and purpose accurately. HandMouse

contains elements of the Open Computer Vision

Library (OpenCV) to process incoming frames from a

standard USB camera. Hand Detection is achieved

through the use of a detection method which utilizes an

extended set of Haar-like features with a cascaded

AdaBoost classifier as proposed in [9]. Motion

tracking is achieved through a modified Lucas-Kanade

optical flow tracker as outlined in [2]. The aim of this

paper is to demonstrate the feasibility that with existing

computer vision technologies a fast and

computationally inexpensive solution for human

computer interaction is possible. We also outline the

problems with the current implementation and suggest

possible answers to resolving them.

2. Background

The camera has been used in the project was

Logitech 2 megapixel web camera without infra-red

filter. We did not apply zoom feature to focus on the

image and get more precise image data features. In

order to understand what has been done in the project,

first of all, basic terms have to be explained in detail.

40

mailto:tcyang@ks.ac.kr

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

2.1 Object Detection

Recognition of an object in a scene is a key field of

study in computer vision. It is also central to our

proposal of controlling a computer through the

detection of hand gestures to match pre-determined

commands. Though there are varieties of methods by

which this can be achieved, we will only outline that

which is necessary for understanding our

implementation. Our chosen detection method is the

machine learning technique of boosting to efficiently

classify haar-like features within a video frame from a

pre-trained classifier cascade as proposed in [13] and

expanded upon in [9]. The advantages of this method

are that when implemented correctly it is fast, efficient

and accurate. It is also effective in detecting objects

which are either partially occluded or if the video

frame is noisy.

2.1.1 Haar-like Features

These are rectangular areas within a detection

window which are used to determine either a line, edge,

or point based on the weighted sum of the pixels within

each feature area. Figure 2.1 shows both the original

feature set as outlined in [13] along with the extended

set of 45˚ rotated rectangles as proposed in [Lienhar02].
The black rectangles are negatively weighted while the

white rectangles are given positive weightings.

Rectangles are used due to their extreme computational

efficiency. As Figure 2.1 illustrates it is very easy to

calculate the dimensions of a rectangle within a

window by specifying it in the tuple r=(x, y, w, h, α)
with 0≤x,x+w≤W, 0≤y,y+h≤H, x,y,w,h≥0 and α ε
{0˚,45˚}.

Using a detection window of 24x24 pixels, with all

possible combinations of horizontal and vertical

locations and scales (restricted to within a scaling

factor of X=W/w and Y=H/h) gives a set of 117,941

features. From this useful information can be derived

about the window which would otherwise be difficult

to learn from the raw set of pixel values.

Figure 2.1 Haar-like feature prototypes

Figure 2.2 Example of an upright and 45˚rotated

angle

},...,1{

)(
NIi

iiI rPixelSumfeature

Equation 2.1 Equation for an arbitrary haar-like

feature where

ω ε {-1,1}, r is a given rectangular area, and N is the

number of such areas in the given feature.

2.1.2 Feature Calculation

 The computation of all the features within a window

can be performed very quickly and in constant time for

any size by using two value tables known as the

summed area table (SAT) for upright rectangles and

the rotated area summed table (RSAT) for rotated

rectangles. Both of these are the sums of pixel values

within an rectangular area where

YyXx

yxIYXSAT
,

),(),(

Equation 2.2 Summed Table Area

41

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

yYXxXx

yxIYXRSAT
,

),(),(

Equation 2.3 Rotated Summed Table Area

By using these, the sum of pixel intensity values can be

achieved in just four table lookups with

)1,1()1,1(

)1,1()1,1(

)(

ywxSAThyxSAT

hywxSATyxSAT

rPixelSum

Equation 2.4 For upright rectangle areas and

),(),(

),(),(

)(

hwyhwxRSATyxRSAT

hyhxRSATwywxRSAT

rPixelSum

Equation 2.5 For rotated rectangle areas. A more

detailed description can be found in [9].

2.1.3 Classification

 With a method of distinguishing image samples

available it is then possible to apply machine learning

techniques to classify whether or not an input image

contains a hand object. In this case adaptive boosting is

used as it is a powerful and fast learning method. It

comprises of a combination of weak classifiers with a

very high positive hit rate and a false-positive rate

which is barely better than chance. This combination

forms a strong classifier. The specific boosting variant

used is known as Gentle AdaBoost. The algorithm is

shown on the next page. It is also discussed in greater

detail in [6]. Learning is based on N number of training

samples from (x1 ,y1),…,(xN ,yN) where x being an

training image and y ε {-1,1} with a negative sample

being -1 and a positive 1.

1. Given N image examples from

(x1 ,y1),…,(xN ,yN) with

}1,1{, yx k

2. Start with weights

Ni
N

wi ,...,1,
1

3. For each feature m, m=1,…,M

 Fit the regression function)(xfm by

weight least-squares of yi to xi with

weights wi .

 Set

Nieww
xfy

ii
m ,...,1,

)(
and

renormalize weights so that
i

iw 1.

4. Output the classifier

M

m

m xfsign
1

)(

Figure 2.3 Gentle AdaBoost training algorithm

 At each stage of this cascade of weak classifiers, a

stump classifier as shown in point 4 above is used to

determine whether or not the input image contains the

object based on the calculated weightings in the above

algorithm. If a stage determines that it is above a

threshold value, in our case greater than 0, it will pass

on the input to the next stage. This process filters off

negative training examples until the possibility of a

false negative is negligible. Figure 2.4 illustrates this

cascade process.

Figure 2.4 Cascade of classifiers with N stages.

At each stage a classifier is trained to achieve

a hit rate of h and a false alarm rate of f.

Using say 20 stages with a minimum hit rate of

99.5% and a maximum false alarm rate of 50% per

feature layer will give an overall hit rate of about 90%

and a false alarm rate of about
5105.9 %.

2.1.4 Detection

During the actual detection process a sliding window

is passed through an input video frame and passed

through the detection cascade which either confirms

the detection of a hand or rejects the input. To take into

account scaling, the window input is recalled and

similarly passed through the cascade until either a hand

has been detected or the input window exceeds the

dimensions of the video frame.

2.2 Motion Detection

The other key area of research which is pertinent to

our work is that of detecting motion in a scene based

on video input. Though there are a number of methods

to achieve this, we have opted optical flow estimation.

42

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

2.2.1 Optical Flow

 Optical flow is the approximated motion between

two video frames based on the difference in intensity

values over time. To identify optical flow between two

consecutive video frames I and J, we start with an

initial point in I Tyx uuu , and try to match it with

its corresponding point v in J,

 Tyyxx dududuv , . The vector d is

being the optical flow at that specific point.

Unfortunately the process of finding this vector is not

altogether that easy given a number of issues including

one known as the aperture problem. This is an

ambiguity of the optical flow within areas where there

is an insufficient amount of spatial gradient variation.

Figure 2.5 The aperture problem

 As can be seen in figure 2.5 when a rectangle is

moving up left diagonally, the apparent motion from

within apertures 1 and 3 would not take into account of

horizontal and vertical motion respectively. The

perceived motion within aperture 2 is correct given that

it has sufficient edge gradient variation. It is therefore

important to observe variation over an area large

enough to distinguish motion correctly. This can be

done by the defining optical flow value which

minimizes the function ε within a window w of size

),(yx ww respectively as

yy

yy

xx

xx

wu

wu

wu

wu

yx

yx

dydxJyxI

ddd

2)),(),((

),()(

Equation 2.6

The matching equation above is central to the Lucas-

Kanade feature tracking algorithm outlined in the

following section.

2.2.2 Lucas-Kanade Feature Tracking Algorithm

 As previously mentioned, the aim of a feature

tracker is to find the displacement vector d that

minimizes the matching function in equation 2.6. This

means that the first derivative of respect to d is 0.

Substituting),(yx dydxJ by its first order

Taylor expansion about the point

 Td 00 therefore gives the approximation.

 yy

yy

xx

xx

wu

wu

wu

wu
y

J

x

J
d

y

J

x

J

yxJyxI

d

d

)

),(),((

2
)(

Equation 2.7

The matrix

y

J

x

J
being the image gradient

vector for J. The expression),(),(yxJyxI can

also be considered to be the derivative over time of a

scene S. It can then redefine it as in equation 2.8.

),(),(),(yxJyxIyxS

Equation 2.8

T

y

x

y

J

x

J

S

S
S

 Equation 2.9

Image derivatives Sx and Sy can also be computed

independently in the first image so long as a central

difference operator is used, which in this case it is, as

so.

2

),1(),1(

),(

yxIyxI

x

yxI
S x

 Equation 2.10

2

)1,()1,(

),(

yxIyxI

y

yxI
S y

 Equation 2.11

43

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

Updating equation 2.7 with this new notation now

gives.

yy

yy

xx

xx

wu

wu

wu

wu

TT
SSdS

d

d

)(

)(

2

1

Equation 2.12

y

x

wu

wu

wu

wu yx

x

T

SS

SS

SS

S

d

d yy

yy

xx

xx

2
)(

2

1

Equation 2.13

 This equation is now separated into two components,

the spatial gradient matrix G and the image mismatch

matrix b. This is needed for efficient computation and

will be discussed further on in this section.

yy

yy

xx

xx

wu

wu

wu

wu yyx

yxx

SSS

SSS
G

2

2

 Equation 2.14

yy

yy

xx

xx

wu

wu

wu

wu y

x

SS

SS
b Equation 2.15

Finally from equation 2.13 the optimum flow vector is

bGdopt

1 Equation 2.16

This equation is known as the standard Lucas-

Kanade optical flow equation which holds so long as

motion between frames is small. This is because the

higher order terms in equation 2.7 have been ignored

as there are of negligible value if motion is small. This

makes computation quicker at the expense of accuracy.

This can however be minimized if an iterative

approach to solving the above equations is performed.

Iteratively refining the image mismatch matrix is

achieved by recalculating vopt until the updated optical

flow value is either less than a pre-defined threshold or

having completed a maximum number of iterations.

This method is expanded further in [10].

2.2.3 Pyramidal Tracking Algorithm

 A major drawback with the Lucas-Kanade algorithm

is that it assumes optical flow between frames will be

small. Given the frame rates of a typical USB camera

is on average about 15fps, optical flow with respect to

hand movements is too large to be detected accurately.

A simple solution to this problem has been suggested

in [2] wherein a pyramidal approach is defined. In this

method optical flow is estimated in a series of

increasing image resolutions producing a further

iteratively refined value as in the previous section. The

advantage of this approach is that it is therefore

possible to calculate large optical flow estimates in the

actual image resolution from small optical flow

estimates in lower-resolution images. Figures 2.6 and

2.7 illustrate this.

Figure 2.6 – Pyramidal optical flow estimation.

Notice how a small disparity found at the top of the

pyramid equates a large disparity at the bottom.

1. Create multi-resolution pyramid for images

I and J. m

LL
LLJI ,..,0},,{

2. Initialize pyramidal optical flow estimate

 TTL

y

L

x

L mmm ggg 00

3. For mLL down to 0

 Define tracked point in
LI ,

L

L u
u

2

 Calculate image derivatives S with

respect to x and y. (equations 2.10 and

2.11)

 Calculate spatial gradient matrix G.

(equation 2.14)

 Initialize iterative LK optical flow

estimate Td 000

 For k=1 to K (or until

thresholdd
k)

 Calculate image difference
L

kS (equation 2.8)

 Calculate image mismatch matrix

kb (equation 2.15)

44

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

 Calculate iterative LK optical

flow estimate
kd (equation

2.16)
1 kk dd

 Calculate pyramidal optical flow

estimate for next level

)(2111 KLTL

y

L

x

L
dgggg

4. Final optical flow vector
kdgd 0

5. Point tracked on J to point du

Figure 2.8 Pyramidal feature tracking algorithm

2.2.4 Blob Detection and Extraction

Blob detection is a fast and sub pixel precise

detection of small, compact image primitives called as

“blobs”. The algorithm is based on differential
geometry and incorporates a complete scale-space

description. Hence, blobs of arbitrary size can be

extracted by just adjusting the scale parameter. In

addition to center point and boundary of a blob, also a

number of attributes are extracted. Blob extraction is

an image segmentation technique that categorizes the

pixels in an image as belonging to one of many

discrete regions. Blob extraction is generally

performed on the resulting binary image from a

thresholding step. Blobs may be counted, filtered, and

tracked [16].

Fig 1. Numerous blobs were extracted from the source

image by using OpenCV Blob Extraction library.

 OpenCV blob extraction library finds many blobs

[17]; however, purpose of the system and proposed

algorithm is to get only hand blob among all the blobs.

3. Technical Basis

In this section, we will be stating the different

stages of development which we had to go through to

produce the current version of HandMouse. Besides it

being our first experience at developing a computer

vision application, this project was also our first

attempt at developing a whole application using the

components of the Microsoft Windows API. Given our

chosen task was to develop a computer vision based

cursor input alternative that is both responsive and at

the same time uses little resources we had a lot of

interesting technical challenges ahead of us. Amongst

these included how to take in video input from an

arbitrary video source, how to process individual

frames and detect both a hand gesticulation and its

motion over time, and how best to process this

information so as to make it useful for cursor input.

3.1 GUI Design

The first step was to have a user interface to work

from. As indicated earlier our knowledge of GUI

design was limited and the only experience we had was

working with Java Swing. Therefore we needed to

learn how to develop one in Visual C++ so as to take

advantage of certain features of windows programming

such as timers and access to the mouse at the operating

system level. We therefore began researching windows

GUI programming by reading a number of tutorials

online, most notably [15], [11]. At this time we began

to experiment with code examples from this site to get

an idea of what needed to be done. Our attempts were

at creating a GUI from scratch with the help of the

code examples offered in these sites. What we learnt

was that an MFC application window consists of three

distinct layers of objects which perform different tasks

namely the frame, the view and the document. These

are illustrated in figure 3.1.

Figure 3.1 Window Design Framework

The frame object is the basis of the window itself.

It provides a visible frame surrounding the contents,

wherein a status-bar, toolbar, and menu bar could be

placed as well as control how the window looks and

acts. Within the frame is the view object which

manages the contents within the frame. It acts as a

holder for any object, which in this case is the video

output from the camera and provides functions to

45

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

control the look. The document object holds all the

code to display the video frames we be manipulating.

This is covered in the next section. The main

advantage of this approach was that with Visual Studio

it is incredibly simple to add controls such as sliders,

buttons etc. The process is to create a control visually

in resource manager, provide it an integer ID in the

resource header file and establish a link to a variable

via dynamic data exchange (DDE). This is a protocol

for exchanging data between and within applications

using Windows messages. It is simpler than COM

though more than sufficient a means for letting objects

know that the user has clicked on something. This

allowed us to avoid a monolithic WinProc() function

and better modularize program functionality. Later on

we decided that we wanted the program to minimize to

the system tray in the same manner as volume control

dialog. This was so as to make the program as

inconspicuous as possible and was rather simple to

code. Using an article we had found on the MSDN site

[5] we learnt how to we add a function in the frame

object class to create a control message which

configures the icon appearance and then send it to the

taskbar using Shell_NotifyIcon(). With a GUI ready to

go, we were could now begin work on capturing video

input.

3.2 Video Capturing

 The next step in development was to have a means

of capturing video input from an arbitrary video

capture device. This ruled out the idea of

communicating directly with the device as it would

have been dependent on hardware such as interface

type with little benefit. At this time we had began to

look into off the shelf computer vision libraries and

had found an ideal candidate in the open computer

vision library [12]. In addition to providing all the

functions we required to carry out the image

processing, it also had functions for handling video I/O.

These used the older Video for Windows interface

from Windows 3.1 which was sufficient for the

moment. This library also had the added advantage of

having all the code ready for easily porting the app

Linux through the Video for Linux interface. We

however needed to consider future development and

opted to use as little OpenCV code as possible so that

we could later write our own implementation and

eventually seek to patent our work. Portability to Linux

was also not a priority for this project. In addition to

this the VFW interface is obsolete thereby making any

future development using it pointless. The best solution

was therefore to use DirectShow which works by way

of combining components known as „filters‟ used to
process incoming video data to form a „filter graph‟.

Figure 3.2 Example of a Simple DirectShow Graph

Using the GraphEdit application, we were able to

quickly make prototype graphs like the one seen in

figure 3.2. This shows the simplest possible graph with

just the filter relating to the desired capture device

streaming video to the video renderer. We began by

looking at the sample code provided in the DirectX

SDK, most notably the app AMCap which showed how

to preview and capture video from any recognized

video input. SampleGrabCB was also useful in

showing us how to intercept frames so that they may

be processed using the ISampleGrab filter. We

stumbled upon a video capturing appwizard for Visual

C++ 6 developed by [4] which contained the start of a

graph similar to that above. Its video capturing code

was a separate to the GUI unlike the SDK examples.

We therefore used this as the basis of our DxCapture

class which was then used to create a document object

which inherits its capture functions to take in video

input. With video input available the next challenge

was how to get individual frames so that they can be

processed for hand detection. The method to achieve

this is to add a filter in between the capture device and

the video renderer which then processes the frame

through a callback function. Our original attempt was

to add the ISampleGrab filter which passes a pointer to

the frame in memory to the callback function process().

To test it we began to work on stub class which just

thresholds the incoming frame using OpenCV

functions. This is the basis for our HandMouseDetect

class. Unfortunately this never worked properly and

caused the program to crash rather spectacularly.

Further reading of the OpenCV message board made

us realize that this would not work as the filter is not

OpenCV friendly. Luckily an alternative frame grabber

filter specifically for OpenCV came as part of the SDK

called IProxyTrans.

3.3 Frame Processing

 The IProxyTrans filter works by intercepting frames

from an incoming video stream and places them in a

46

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

buffer. It then passes a pointer to the current frame

through a callback function called process() which

we‟ve place in the source file DxVideoCap.cpp. The

next challenge was how to use this pointer to a location

in memory into something which could be interpreted

as an image file. OpenCV‟s image format is the
IplImage structure which is defined in the OpenCV

documentation. Standard pointer conversion by doing

something like:

void *frame;

IplImage *image = (IplImage*)frame;

did not work. Debugging the program proved little help

as it was not doing anything particularly incorrect. We

therefore went back online to figure this out and found

an answer at [8]. This page explained that the reason

for the problem is in the way C converts pointers. As

all pointers are addresses and all addresses generally

have the same number of bytes, conversion does not

convert any bits. Therefore if the meaning of these bits

is different between types, the new pointer would be

garbage. C++ fortunately has a call which solves this

problem known as reinterpret_cast. When this is called,

the runtime system cunningly looks at both pointer

types and rearranges the bit order according to the

conventions of the destination pointer type. We were

therefore now ready to start processing frames. A

review of the OpenCV message board showed that

there are many approaches available for detecting an

object within a scene. Its preferred approach was in the

use of a sliding window through a frame to find

positively classified haar-like components within the

window. The thinking behind this is explained in

section 2.1. We were convinced this was a good

approach having looked at the results of the face

detection example that came with the SDK. This code

is able to identify faces in all manners of lighting,

occlusions and distances from the camera. To get a

system like this working we would need to train a

cascade classifier useable by the pattern recognition

code in OpenCV.

3.3.1 Cascade Training

Training a classifier required us to feed a large set

of images through the haartraining application which

comes with the OpenCV SDK. The training process

was also well documented in the OpenCV message

board. The first step was to prepare a set of hand

images with different reflections, illuminations,

backgrounds, scales and rotations. About 10000 such

images would be required to build a classifier which is

both accurate and robust enough for this purpose. This

collection was obtained through a number of means.

Primarily we captured webcam footage of our own

hand in various positions and in different settings such

as in front a solid color (our bed sheets) and more

complex backgrounds (by our desk). The next step was

to decompile the captured video footage into individual

frames. In addition to this we also used image grabbing

software to scour the internet for any image matching

the keywords relating to hands and gestures. The

haartraining application takes in images through a text

file listing which in addition to the file path also

requires a bounding box for where in hand appears in

the image to be defined. Finding the pixel coordinates

for this box is a long drawn out affair and so a means

of expediting this process was required. After

reviewing the documentation on the OpenCV message

board we managed to find a small application written

by [1] called objectmarker which uses OpenCV‟s
image processing code to mark rectangles within an

input image and output the rectangles coordinates in a

format compatible with the classifier training program.

At this time we were also collecting a large set of

negative image examples from different sources such

as clipart libraries and webcam footage. These images

then needed to be resized and convert to the same

format as the positive samples. To achieve this quickly

we wrote a batch script using Excel to run

ImageMagick’s application for command-line image

manipulation. With a large number of bitmap images

on our hard disk we needed to figure a means to put

them in order of negative and positive set and then as

to what to of gesture the positive file contained. We

therefore altered the source for objectmarker for this

purpose by pressing adding different key combinations

which would then write an entry for this file in the

relevant file listing text file. Figure 3.3 shows a screen

shot of this process.

Figure 3.3 The image classification process

From these image files we could then use

createsamples to grab the hand images and then reduce

each sample to a uniform size of 24 by 24 pixels. This

program would then place all the samples into a single

vec file which could then be passed to haartraining.

The overall training process is illustrated in figure 3.4.

47

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

Figure 3.4 The classifier training process

Training could now begin by calling haartraining

with the new file listing as input. It takes a very long

time to train a classifier and during training it is

possible to get an estimate of how good the classifier

will probably be as it prints out information on the hit

and false alarm rates at each stage. It is also possible to

cancel the process and return to it from the last

complete stage, something which has been useful given

repeated crashes of our system. The only cascade we

successfully created was 14 stages long and provided

far too many false alarms to be useful. For safe

measure we therefore added more positive training

images, this time by taking high resolution pictures

with a digital camera which where then resized and

used to generate more images by feeding random

convert settings to ImageMagick’s convert program.

This was done by means of a batch script which was

produced again with Excel.

3.3.2 Object Detection

While classifier training was going on, we decided

to press on with coding and wrote the object detection

class. This contains all the code needed to read the

classifier file, initialize the variables used in detection,

call OpenCV‟s cvHaarDetectObjects() function, and

handling of its results. This was fairly painless as there

was plenty of documentation on how to do this in the

OpenCV API. We however needed to take into

consideration how our detection class was going to

deal with multiple classifiers as well as how to make

the detection process as efficient as possible. For a

program with the ability of detecting four gestures it

would not be wise to call cvHaarDetectObject() four

times every frame as it slows down program the

program as well as uses more resources. We therefore

decided to write a scheduler algorithm which would

call this function for each cascade in a round-robin

fashion. A further performance improvement was also

done by calling this function only once per an interval

of frames.

This algorithm is outlined in figure 3.5.

// Initialisation

unsigned char tick = 0;

unsigned char pollrate = 16;

int POLL_INTERVAL =

256/NUMBER_OF_GESTURES;

1. When process() is called

 if tick%POLL_INTERVAL = 0

a. run detection code
b. if tick = 0
c. draw a rectangle around

any detected object
2. tick = tick - pollrate

Figure 3.5 Detection Scheduling Algorithm

The advantage of this algorithm was mainly in its

scalability. The rate at which the detection code is

called as well as the number of gestures can be altered

by changing just two variables. The output from

cvHaarDetectObject() is a vector of rectangles which

state where in the frame a detected object is, if any. We

therefore now had a means of identifying an object in a

frame, as well as its location, size and gesture type. We

chose to prioritize gestures in case more than one is

detected per frame. Two gestures were chosen, each

one signifying a different action to be taken and are

prioritized in the following order. An open palm

signifies right-click event. A fist gesture signifies left-

click event.

Figure 3.6 Palm Gesture for right-click action and Fist

Gesture for left-click action

3.3.3 Motion Detection

While still waiting for a classifier to finish training,

we used the cascades which detect faces which came

with the OpenCV SDK as a means of testing the

detection code. We also used it to see how well it

worked at sending movement code to the cursor. This

48

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

will be covered in the next section. Unfortunately

feeding mouse updated positions from the object

detection output caused the cursor to move erratically

around the screen. That in addition to the possibility of

not having a classifier reading in time for the project

presentation meant that a major rethink was in order.

We went back online to look for an answer and funnily

enough found one in a recently published paper co-

written by our former tutor [3]. In it they used a similar

approach to detect lions‟ faces and used a Lucas-

Kanade feature tracker to detect movement. Besides an

implementation of the iterative Lucas-Kanade tracker

covered in section 2.2.2 the API also referred to an

implemented which uses multiple image resolutions to

enhance accuracy and allow for detection of larger

inter-frame motion. Using example code from the API

as a basis, we wrote the LKDetect() function to detect

optical flow within an input frame. This function

would take in a frame, convert it to a grayscale image

and either generates a series of trackable points for

detection or to calculate optical flow of these points in

subsequent frames. These feature points are determined

in the example code using the function

cvGoodFeaturesToTrack() by finding pixel areas

within an input image which have strong corners. This

is determined by the eigenvalue of the area around

each pixel and selects a point according to whether this

value is above an input threshold. Given that we had a

rectangular area where the detect object lies, we

decided to pass this information to LKDetect() and

restrict point generation to within this rectangle. This

meant that only points within a detect object would be

used to determine optical flow between frames. The

code for this was simply calling the

cvCalcOpticalFlowPyrLK() function which took the

array of feature points and returned their updated

location in the subsequent frame. From these two

arrays we could then determine optical flow over the

area of the detected object by calculating the average

displacement vector of all the points. Feeding the

mouse this average displacement seemed to work well

only for short intervals as the points would eventually

no longer represent a feature on the detected object. To

resolve this we altered the calling of LKDetect() so that

it would reinitialize the points array at a given interval

in line with our scheduling code. This was a significant

improvement as feature points were kept within the

object bounding rectangle thereby ensuring that only

movement form that object would contribute to the

point displacement vector value.

3.3.4 Motion Feature Segmentation

With the possibility that we may not have a

working hand classifier ready we needed to figure out a

means of using only the motion detection code to move

the cursor. We also did not want to give up on weeks

of work and come up with something that could easily

be reconfigured should the classifier ready in time. The

answer came in isolating pixel values representing skin

within a frame and setting other pixels to zero. Small

pixel areas not corresponding to skin would then be

cleaned out by applying a median filter over the frame.

Only pixels not set to zero could then be used as a

feature point. This left me with the problem of what to

do with the area representing the head. As it also had

skin pixel values it could also be used to move the

mouse. This was not desirable. We therefore rewrote

the code to generate feature points solely from pixels

not within the bounding rectangle of the face.

Therefore this object detection code was used to

identifying only the intensity values that represent skin

and also identifies the face so that it could be

disregarded as a source of features. This roundabout

way of doing things is not desirable as it would later

need to be rewritten to accommodate hand gestures. To

make life a lot easier we therefore simplified the code

by using the face detection classifier for acquisition of

skin pixel areas and restricted feature selection to that

bottom half of the frame. This is based on the thinking

that if a webcam is placed on top of the monitor with

the user sitting in front, hands would generally be in

the bottom half of the frame whilst the head would

mostly be in the top half. Reducing the rate at which

the feature points are reset would then allow for hand

movements in the top half of the frame so long as they

are only temporary. Though not an ideal solution, in

practice it has worked quite well.

3.3.5 Blob Extraction

As we understood the fact that it is impossible to

distinguish face and hands separately by previous

methods, we decided to think in different manner.

When we were playing with the blobs of moving hand,

we noticed that moving hand has the largest blob

among all the other blobs being extracted by OpenCV

blob extraction function. Then, we analyzed all the

blobs and developed and algorithm for detecting

overall hand blob.

49

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

Figure 3.7 HandMouse screen shot with all the

blobs: Hand blob is the largest blob.

 Figure 3.7 shows how hand blob is the largest blob

among all the other blobs. In our algorithm, we first

find the largest blob in all the other blobs, and then as a

final whole hand blob we assign the minimum x-

position and y-position values (up-left corner of the

blob) to hand blob with its width and height values.

Finally, we had the following results:

Because skin color segmented image had some

noise, we applied high pass filter and extracted hand

blobs more clearly.

Figure 3.8 HandMouse screen shots with hand blobs

only

3.3.6 Blob Motion Detection

After hand blob was detected, then we had to detect

the blob motion precisely. However, the deal was

cursor control and graffiti input by mouse cursor. For

this reason, boundary motion detection had to be

developed. We didn‟t use the simple motion detection

algorithm, but rather we developed our new motion

detection algorithm which detects the boundary region

motion as follows

This algorithm evaluates all the possible neighbour

pixels has changed or not with respect to a given

threshold value rather than evaluating all the pixels.

Therefore, especially for index finger detection, this

algorithm really works well.

After detecting motion in hand blob, pixels changed

above the threshold has been transferred to the empty

PImage so that it will be able to be processed by Lucas

Kanade Pyramidal Optical Flow Tracker. Then, we

noticed that we had so good results showing that we

can use our hands to point the cursor as well as writing

texts by means of graffiti gestures and we can use these

gestures to manipulate the computer actions like

keyboard inputs.

50

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

Start

Old, grab

image from

camera

Current,

grab a new

image from

camera

Calculate

Difference=Current-Old

For each pixel

Difference>threshold

Yes

Check the

surrounding pixels for

Difference>threshold

Yes

No

lineCounter>8 and

holeCount<4
No

holeCounter++

motionCheck=true

Yes

holeCount>=4 Yes

Push the pixel to

the pixel vector

lineCounter++

lineCounter++

Old=Current

Frame

lineCounter=0

holeCount=0

Mark Pixels in the

frame

Figure 3.9 This is our implementation of motion detection Algorithm for moving object tracking.

51

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

Figure 3.10 Lucas Kanade Optical Flowing

Algorithm is tracking the feature points in hand blob.

Pink circles are the feature points in motion

detection and white one shows the average x-

position and y-position of the feature points.

By this method, we get finger mouse that

manipulates the position of Windows cursor as shown

above.

3.4 Cursor Control

Our initial approach at sending control commands

for the mouse was by sending out the windows

messages WM_MOUSEMOVE and

WM_LBUTTONDBLKCLK and broadcasting it using

the PostMessage() function available in the GUI view

object. By encoding a message with updating cursor

point information and button status the plan was to

send out the message and that the operating system

would pick it up. Cursor positions were available

through the GetMousePos() function in the Windows

API. However this thinking was flawed as certain

applications did not react to these messages. There was

also a problem with the mouse not responding should

the HandMouse application crash. We therefore

abandoned this method and went back to the drawing

board. The next approach was to use directinput to

control the mouse. This was however a non-starter as

directinput does not have any means of sending

coordinate information to the mouse except for code

which is intended for force-feedback joysticks.

Additional navigation around the MSDN site showed

that there was functionality for this in code originally

intended for the remote desktop feature in Windows

XP. The SendInput() function allows us to generate

both mouse and keyboard movements and button

presses at the OS level. With this we were now able to

feed the average displacement value from the detection

code to SendInput() which meant that the cursor could

be controlled by hand movements. With no clicking

gesture available we then had to figure how best to

create a clicking function as the program would be

useless without it. The solution is to send a clicking

command if the mouse has not moved for a certain

period of time. This meant that the mouse controlling

code in process() needed to remember both mouse

positions as well as have a means of timing how long a

cursor has been at that point on the screen.

Remembering mouse positions was simply a matter of

an addition point variable. The click determining code

just required a DFA approach with different values of

ClickStatus being set according to at point the program

was in setting up a timer to measure the time no change

in cursor position has occurred.

1. Get current cursor position

2. Detect motion and object presence in incoming

frame

3. Set cursor position from detected motion

displacement x axis sensitivity

If mouse clicking enabled (ClickStatus>0)

a. ClickStatus == 1 (clicking on and in initial

state)

 Remember current
position

b. ClickStatus = 2

c. ClickStatus == 2 (set timer to begin

counting interval)

d. ClickStatus == 3 (timer has been set and

is counting away)

e. If cursor position has changed

 ClickStatus =
1

f. ClickStatus == 4 (timer has reached

interval)

 Send double click
event using SendInput()

g. ClickStatus = 1

Figure 3.11 Mouse control algorithm

The timer is initiated at startup with a WM_TIMER

message being sent whenever the program has

completed a desired time interval from when it first

started. This continues to run throughout the program‟s
run-time and can be changed by destroying and

52

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

recreating the timer in the GUI‟s view object. Figure

3.11 outlines the final mouse control algorithm.

4. Design and Implementation

This section outlines our reasons for the choice of

tools and design methods that went into this project.

This work is very much a „proof-of concept‟ to
demonstrate the effectiveness of computer vision

techniques as a new form of HCI.

4.1 Languages

C++ was chosen for many reasons. It is fast, intuitive

and the compiler and debugging tools very good. We

also wanted to take advantage of object orientated

design as we believe it necessary to have a

modularized design framework for later development.

Eventually we would like to port to Linux and also get

rid of OpenCV altogether. This would mean that the

code relating to Windows API calls would be best

compartmentalized from the detection code and vice

versa. Given OpenCV is written in C, were were

therefore able to use the code without any fuss. We

also were able to resolve our problems with casting as

mentioned in section 3.3 thanks to the reinterpret_cast

call.

4.2 Development Tools

We‟ve used a range of different tools throughout this
project. Below are some of the most relevant to the

development process.

4.2.1 Visual Studio .NET 2005

The Microsoft Development environment is always a

must when taking into account large scale development

as this project required. Firstly there‟s its ability to
manage multiple projects at one go. This meant that all

of the code used in this project, including the OpenCV

library source and other assorted tools could be viewed

in one single window. There multiple build option

allowed us to have two different branches of code, one

with all the debugging options on for debugging

purposes and another release build which has been

optimized for top performance. The C++ compiler that

comes with the package is optimized for use in

Windows which was a definite bonus. It also retained

pre-linked object code between compilations which

speeded up the development process. The inbuilt

debugger which has all the same features as GNU‟s
Insight proved invaluable when the program was not

working and we had no idea why. Through the

resource manager we were able to quickly prototype

the GUI look and feel without getting too bogged

down on GUI coding. Our only criticism of this

package is its tendency to add a lot of unnecessary

libraries as default, some of which oddly conflicted

with one another through redefined functions. This was

a bit of a headache in the earlier stages of development

but problems were ironed out through subsequent

changes in build configuration as the program got

bigger.

4.2.2 CVS

Our chosen version control system was CVSNT,

which is windows port GNU‟s cvs program though

built with a GUI to control the settings from within

Windows control panel. This server was set up on the

local computer on a mirrored partition. Though it

would have been preferable to have kept the repository

on a different machine, computing power was not a

luxury we had readily available and so opted for a non-

networked option which had worked well. To

communicate with the server we used a plug-in for

Visual Studio called CVS SCC Proxy by PushOK. This

came about from the fact that WinCVS keep crashing

on start up and we decided not to spend too much time

figuring out why. This paid off really well as all

checking in happened seamlessly within the

development environment allowing more frequent

changes between versions which proved very useful.

4.2.3 Spy++

This tool is used to monitor messages being

broadcast by all the processes currently active. As we

were having issues with our original mouse control

implementation, we needed to know what messages

were being sent out and see why mouse control was

behaving so erratically. Another really useful feature

was its detailed memory usage information. This

helped us to keep resource quantify how much in the

way of resources the application was using up and

eventually led to the fast and low computation expense

of the current implementation.

4.2.4 Picture Collection

As we needed to modify a large number of images

for classification we used a number of tools to help us

obtain and manipulate them in many ways. Firstly

there‟s Picture Ace which allows us to scour a web site

for images recursively based on given criteria. This

was useful in finding negative samples for

classification and was used by simply entering random

search phrases into Google and saving all found

53

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

images that were of sufficient resolution to be useful.

For capturing video footage we used VirtualDub by

Avery Lee. This program allowed us to capture

multiple video input and at the same time compress the

footage into divx codec format so as to save on disk

space usage. We also used Bulletproofsoft‟s BPS Video

Converter and Decompiler program to extract frames

from within the recently captured footage. This

program allowed us to sage frames as individual

bitmap files and was the main means of generating

positive training samples. More importantly was the

use of the ImageMagick image manipulation suite.

Using its command-line tools we were quickly able to

generate batch scripts which created new samples by

applying random resizing, rotating and colorizing

features. Finally, for any image requiring more

complex manipulation, we used GNU‟s Gimp.

4.3 Hardware

A main reason for why we were unable to better

develop the classifier was because of our choice of

hardware. We carried out all our work on a single

Athlon XP 32bit 1.6GHz system, with 1028MB

DDR3200 ram, 270Gb hard disk, and Windows XP

SP2. Given this specification we had originally

assumed it more than enough for the training process.

Subsequent experience has unfortunately shown that

the classifier training process requires a much higher

spec system so as to complete training quicker and

hence allow for more experimentation with training

configuration to be carried out. At present a stage takes

about 17 hours to complete. The ideal system as

recommended by [1] is a dual 64-bit Intel P4 system

with hyper-threading, 1.5 Gb RAM and running a 64-

bit capable OS with robust memory management

capabilities. Haar training could be recompiled to take

advantage of multiple processors and would make for a

much faster classification process. Testing was carried

out using three different models of Logitech USB

camera of increasing image quality. All three were

used to test how well the program worked with

standard web cameras. We also played with different

resolutions and frame rates and found optimal

detection at 160x120 with a frame rate of 30fps.

4.4 Libraries

 As we all had limited development time it was

necessary to look into the use of off the shelf libraries

to expedite the development process. The two main

libraries which are used are OpenCV and DirectX.

OpenCV has a large collection of image processing

and computer vision features as well as excellent

matrix manipulation functionality. It is also well

documented and widely used which meant it was easy

to find an answer to problems arising from developing

with it. Use of this library is subject to a BSD licensing

agreement. This means that it is perfectly okay to use

the library for commercial purposes so long as we

make add a specific acknowledgement within the

program to Intel. This is owing to them being the

founders of the library. The main drawbacks however

to using OpenCV is that it is still beta stage and there

are still a few bugs with it. A key example was that

haartraining was unable to convert a trained cascade

from a directory structure from an older version to the

current xml file cascade format. This was resolved by

downloading the latest haardetection source from the

library‟s CVS server and then to recompile the whole
library. As previously mentioned it also still uses video

for windows which is an obsolete technology with

limited functionality. The use of the DirectX library for

video capturing is essential for ensuring future

development of the application. In addition to this it is

also remarkably versatile as can be seen in the filter

structure. It is also faster than VFW and helped to

significantly improve detection performance in

comparison to OpenCV‟s face detection example.

5. Current Status and Future Plans

By the time of writing this paper, the current status

of this project is that it is capable of detecting motion

from skin pixels and that from this it can efficiently

control the mouse. As mentioned we have been unable

to present a classifier at this time despite a lot of effort

in trying to do so. The detection is nonetheless fully

working and requires little modification to work with

hand gestures once suitable classifiers become

available. In the meantime clicking is possible by

means of keeping the cursor at a required point for a

specified time. This could be altered in the detection

settings dialog window. Easy access to all the camera

settings has been provided making it fairly configuring.

The code also suffers from problems detecting skin

correctly. If we wear a reddish shirt, some of the pixels

representing the shirt would be wrongly interpreted as

skin which makes the cursor harder to operate. Optimal

performance at present involves wearing contrasting

clothes to skin color, using a web camera with a high

frame rate. The tested has been at 30fps as mentioned

in section 4.3 though we would like to see how well it

works at higher resolutions using a firewire camera.

Functionality for this is possible thanks to the use of

DirectX for video capture. Another issue is that the

program requires exclusive access to the video camera

which makes it incompatible in combination with web-

conference software or anything that needs the camera.

54

International Journal of Digital Content Technology and its Applications

Volume 4, Number 2, April 2010

We have not had the chance to look into this in any

detail but would assume it can be resolved through

altering filter graph by adding a multiplexing filter.

This would need to be look into.

5.1 Cascade Development

 With an image library of tens of thousands of images

collected a future plan would be to train more

classifiers and add more functionality. To make the

program customizable a library of gesture cascades

would need to be available and could eventually sold

according to function. For example a cascade library

for different sign languages could be developed and

imported into the program.

Another thing to consider is to separate cascades

according to left and right hand orientations. This

would allow for a much richer gesture vocabulary

though it would also mean doubling the amount of

gestures needed to be detected. The OpenCV object

detection code would need to be worked on so as to

improve performance by calling a single instance of

the detector which looks at multiple cascades rather

than the other way round. Alternatively the trainer

could be rewritten to create a tree like structure, each

branch being a cascade for a specific gesture.

5.2 Multiple Cursors

One of our preferred additions to the current

implementation would be the ability to arbitrarily add

more cursors according to the number of hands

detected. This would mean a person could use both

hands to control the computer. It would also allow for

more than one person to control the computer opening

up new possibilities with respect to the games market.

Windows however current only supports a single

cursor. This is expected to be resolved in the next

version of the OS. A solution in the meantime would

be to add a component at the device driver level which

would act as an alternative input device. A framework

for this and even code to add to the system is referred

to in [14].

5.3 Voice Recognition

A hand gesture HCI in addition to voice recognition

technology would be an ideal combination as it would

provided a complete alternative to both the keyboard

and the mouse. This would be possible by adding an

off the shelve voice recognition library, of which there

are many to choose from, and insert detection code to

be called in around the same location as the existing

hand detection code. More research would be needed

into seeing how this would affect program performance.

5.4 3D Hand Detection

With the existing single camera implementation,

functions such as scaling of windows are possible and

would be using the difference in detected object size to

achieve this. For more complex hand functions such as

pointing to a wall as a command to project a desktop,

some form of 3D hand detection be needed. Solutions

such as stereoscopic systems would be the obvious

answer. OpenCV provides sufficient functionality to

develop this idea further. Looking at this would

however mean the beginning of looking into specific

hardware for the program. This is something which we

would not be tempted to do as our business plan is

based on the idea that HandMouse is a solely software

solution.

5.5 Business Potential

Our business proposal is to aim to have a future

version of the current code that could be downloaded

by anyone with a web cam and used with little

configuration. We would be taking a shareware

approach by distributing a cut down version that can be

downloaded for free. The more complete version with

suggestion functionality as mentioned in previous

sections would be sold through the company home

page, which avoids retailing issues. Once a brand has

been established, the next phase would be to arrange

OEM licensing agreements with camera manufacturers

who would then bundle HandMouse with their product.

If this goes well, such licensing agreements could be

extended to other consumer electronics such as

televisions.

6. Conclusion

In this paper, we proposed a motion detection

algorithm based on blob analysis of finger blobs

through the skin color extracted image. Experimental

results show that human hand can be detected by using

OpenCV Blob Extraction algorithm after performing

some analysis on finger blobs even if hands and human

head are available in the same frame. This paper also

proposes a hand mouse system based on Lucas-Kanade

Pyramidal Optical Flow algorithm applied on the hand

motion pixels. We have introduced two human hand

gestures by training OpenCV Haar cascade AdaBoost

Classifiers as palm and fist gestures for right and left

click of the mouse action. Experimental results indicate

that mouse usability is almost done with proposed

55

Hand Mouse: Real Time Hand Motion Detection System Based on Analysis of Finger Blobs

Ibrahim Furkan Ince, Manuel Socarras-Garzon, Tae-Cheon Yang

gestures but not so robust. Further studies can be done

and proposed algorithms can be developed in the future.

7. References

[1] Florian Adolf, “OpenCV object detection framework

HOWTO”, http://robotik.inflomatik.info/

[2] J. Bouguet, “Pyramidal Implementation of the Lucas-

Kanade Feature Tracker, Description of the Algorithm”,
In OpenCV Documentation, Intel Corporation,

Microprocessor Labs, (2000).

[3] T. Burghardt, J. Ćalić, and B. Thomas, “Tracking
animals in wildlife videos using face detection”, In
European Workshop on the Integration of Knowledge,

Semantics and Digital Media Technology, October

2004.

[4] Yunqiang Chen homepage,

http://www.ifp.uiuc.edu/~chenyq/

[5] Paul DiLascia, “System Tray Balloon Tips and Freeing

Resources Quickly in .NET”,
http://msdn.microsoft.com/msdnmag/issues/02/11/CQ

A/default.aspx

[6] Y. Freund and R. E. Schapire. “Experiments with a
new boosting algorithm”, In Machine Learning:
Proceedings of the Thirteenth International Conference,

Morgan Kaufman, San Francisco, pp. 148-156, (1996).

[7] C. Evans-Pughe. “Triple Vision Vision Vision”, In The
IEE Review Volume 50, Number 4, IEE Publishing, pp.

40-43, (2004).

[8] Robert Laganière, “A step-by-step guide to the use of

the Intel OpenCV library and the Microsoft

DirectShow technology”

http://www.site.uottawa.ca/~laganier/tutorial/opencv+d

irectshow/cvision.htm

[9] R. Lienhart and J. Maydt. “An extended set of Haar-
like Features for Rapid Object Detection”, In Proc. of

the IEEE Conference on Image Processing (ICIP‟02),
Vol.1, pp. I.900- I.903, (2002).

[10] B. Lucas and T. Kanade. “An Iterative Image

Registration Technique with an Application to Stereo

Vision”, In Proc. of 7th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 674-679, (1981).

[11] Microsoft Developer Network MFC Library Reference,

http://msdn.microsoft.com/library/default.asp?url=/libr

ary/enus/vclib/html/_mfc_Class_Library_Reference_In

troduction.asp

[12] Open Computer Vision Library,

http://sourceforge.net/projects/opencvlibrary/

[13] P. Viola and M. Jones. “Robust Real-time Object

Detection“, In Second International Workshop on

Statistical and Computational Theories of Vision,

Vancouver, USA, (2001).

[14] M. Westergaard, “Supporting Multiple Pointing
Devices in Microsoft Windows”, In Proceedings of
Microsoft Summer Workshop for Faculty and PhDs,

Cambridge, England, (2002)

[15] EFNet #Winprog help site, http://www.winprog.org/

[16] Horn, B. K. P Robot Vision. MIT Press. pp. 69–71.

ISBN 0-262-08159-8. (1986)

[17] Ince, I.F and Yang, T.C: “A New Low-Cost Eye

Tracking and Blink Detection Approach: Extracting

Eye Features with Blob Extraction”, LNCS, Lecture
Notes in Computer Science, Volume: 5754, pp. 526-

533 (2009).

56

http://robotik.inflomatik.info/
http://www.ifp.uiuc.edu/~chenyq/
http://msdn.microsoft.com/msdnmag/issues/02/11/CQA/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/11/CQA/default.aspx
http://www.site.uottawa.ca/~laganier/tutorial/opencv+directshow/cvision.htm
http://www.site.uottawa.ca/~laganier/tutorial/opencv+directshow/cvision.htm
http://msdn.microsoft.com/library/default.asp?url=/library/enus/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp?url=/library/enus/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://msdn.microsoft.com/library/default.asp?url=/library/enus/vclib/html/_mfc_Class_Library_Reference_Introduction.asp
http://sourceforge.net/projects/opencvlibrary/
http://www.winprog.org/

