
Hand PointNet: 3D Hand Pose Estimation using Point Sets

Liuhao Ge1, Yujun Cai1, Junwu Weng2, Junsong Yuan3

1Institute for Media Innovation, Interdisciplinary Graduate School, Nanyang Technological University
2School of Electrical and Electronic Engineering, Nanyang Technological University

3Department of Computer Science and Engineering, State University of New York at Buffalo

{ge0001ao, yujun001, we0001wu}@e.ntu.edu.sg, jsyuan@buffalo.edu

Abstract

Convolutional Neural Network (CNN) has shown

promising results for 3D hand pose estimation in depth im-

ages. Different from existing CNN-based hand pose esti-

mation methods that take either 2D images or 3D volumes

as the input, our proposed Hand PointNet directly process-

es the 3D point cloud that models the visible surface of the

hand for pose regression. Taking the normalized point cloud

as the input, our proposed hand pose regression network

is able to capture complex hand structures and accurate-

ly regress a low dimensional representation of the 3D hand

pose. In order to further improve the accuracy of finger-

tips, we design a fingertip refinement network that directly

takes the neighboring points of the estimated fingertip lo-

cation as input to refine the fingertip location. Experiments

on three challenging hand pose datasets show that our pro-

posed method outperforms state-of-the-art methods.

1. Introduction

Recent years have witnessed a steady growth of the re-

search in real-time 3D hand pose estimation with depth

cameras [12, 45, 38, 18, 36, 31, 8, 3, 48], since this technol-

ogy can improve user experience and play an important role

in various human-computer interaction applications, espe-

cially in virtual reality and augmented reality applications.

However, due to the high dimensionality of 3D hand pose,

large variations in hand orientations, high self-similarity of

fingers and severe self-occlusion, 3D hand pose estimation

still suffers from the issues of accuracy and robustness.

With the success of deep neural networks in various

computer vision tasks and the emergence of large hand pose

datasets [38, 34, 33, 49, 48], many of the recent 3D hand

pose estimation methods are based on CNNs [38, 21, 7, 8,

9, 3, 19, 51]. Considering 2D CNNs that take 2D images

as input cannot fully utilize 3D spatial information in the

depth image, Ge et al. [8] encodes the hand depth images as

3D volumes and applies a 3D CNN for inferring 3D hand

pose. However, the time and space complexities of the 3D

CNN grow cubically with the resolution of the input 3D

volume [27]. Consequently, the 3D volume adopted in [8]

is limited to a low resolution (e.g., 323), which may lose

useful details of the hand. Furthermore, due to the spar-

sity of 3D point cloud, most of the voxels in the 3D vol-

ume are usually not occupied by any points, which not only

wastes computations of 3D convolutions, but also distracts

the neural networks from learning effective kernels to cap-

ture meaningful features of hand shapes. The approach in

[8] transforms the sparse point cloud to a dense volumetric

representation to enable effective 3D convolution. But this

transformation changes the nature of the data and makes the

data unnecessarily voluminous.

To tackle these problems, motivated by the recent works

of PointNet [23, 25] that perform 3D object classification

and segmentation on point sets directly, we aim at learning

3D hand articulations directly from the 3D point cloud in-

stead of rasterizing the 3D points into 3D voxels. It is worth

noting that the depth image in essence is represented by a set

of unordered 3D points on the visible surface of the hand,

which is essentially 2.5D data and is not directly suitable

to be processed by 2D or 3D convolutions. Compared with

previous multi-view CNNs-based method [7] and 3D CNN-

based method [8], our approach does not need to project the

point cloud into multiple 2D images or transform the sparse

point cloud into dense 3D volumes, thus can better utilize

the original point cloud in an effective and efficient way.

In this work, we propose a point cloud based hand joints

regression method for 3D hand pose estimation in single

depth images, as illustrated in Figure 1. Specifically, the

segmented hand depth image is first converted to a set of

3D points; the 3D point cloud of the hand is downsam-

pled and normalized in an oriented bounding box to make

our method robust to various hand orientations. The hier-

archical PointNet [25] takes the 3D coordinates of normal-

ized points attached with the estimated surface normals as

the input, and outputs a low dimensional representation of

the 3D hand joint locations which are then recovered in the

8417



Figure 1: Overview of our proposed Hand PointNet-based method for 3D hand pose estimation in single depth images. We

normalize the 3D point cloud in an oriented bounding box (OBB) to make the network input robust to global hand rotation.

The 3D coordinates of sampled and normalized points attached with estimated surface normals are fed into a hierarchical

PointNet [25], which is trained in an end-to-end manner, to extract hand features and regress 3D joint locations. The fingertip

refinement PointNet can further improve the estimation accuracy of fingertip locations.

camera coordinate system. The fingertip locations are fur-

ther refined by a basic PointNet which takes the neighbor-

ing points of the estimated fingertip location as input. To

our knowledge, this is the first work that regresses 3D hand

joint locations directly from the 3D point cloud using a deep

neural network, which is able to capture 3D structures of

the hand and estimate 3D hand pose accurately in real-time.

Our main contributions are summarized as follows:

• We propose to estimate 3D hand joint locations directly

from 3D point cloud based on the network architecture

of PointNet [23, 25]. Compared with 2D CNN-based

and multi-view CNNs-based methods [38, 7, 9, 3, 19],

our method can better exploit the 3D spatial informa-

tion in the depth image; compared with 3D CNN-based

method [8], our method can effectively leverage more in-

formation in the depth image to capture more details of

the hand with fewer number of network parameters.

• In order to make our method robust to variations in hand

global orientations, we propose to normalize the sampled

3D points in an oriented bounding box without applying

any additional network to transform the hand point cloud.

The normalized point clouds with more consistent global

orientations make the PointNet easier to learn 3D hand

articulations.

• We propose to refine the fingertip locations with a basic

PointNet that takes the neighboring points of the estimat-

ed fingertip location as input to regress the refined finger-

tip location. The refinement network can further exploit

finer details in the original point cloud and regress more

accurate fingertip locations.

We conduct comprehensive experiments on three chal-

lenging hand pose datasets [33, 34, 38] to evaluate our

methods. Experimental results show that our proposed

Hand PointNet-based method for 3D hand pose estima-

tion is superior to state-of-the-art methods on all the three

datasets, with runtime speed of over 48fps.

2. Related Work

Hand Pose Estimation: Hand pose estimation methods

can be divided into discriminative approaches [12, 45, 16,

38], generative approaches [22, 1, 39, 13, 26] and hybrid

approaches [28, 36, 35]. In this section, we focus on deep

neural networks-based discriminative approaches.

Some sophisticated neural networks have been explored

for 3D hand pose estimation, such as the feedback loop

model [21], spatial attention network [47], region ensemble

network [9], deep generative models [41], etc. Hand joint

constraints are integrated into deep learning approaches to

avoid implausible hand poses. Oberweger et al. [20, 19]

exploit a hand prior to constrain the hand pose. Zhou et

al. [50] train a CNN to regress hand model parameters and

infer hand pose via forward kinematics. Some other meth-

ods focus on different input representations. Ge et al. [7, 8]

apply multi-view CNNs and 3D CNN for 3D hand pose es-

timation which take projected images on multiple views and

3D volumes as input, respectively, in order to better utilize

the depth information. Choi et al. [3] adopt geometric fea-

tures as additional input modality to estimate hand poses

through multi-task learning. However, none of these meth-

ods directly take the point cloud as the neural network input.

3D Deep Learning: Multi-view CNNs-based approach-

es [32, 24, 7, 2] project 3D points into 2D images and use

2D CNNs to process them. 3D CNN-based methods [44,

17, 24, 30, 8] rasterize 3D points into 3D voxels for 3D con-

volution. 3D CNNs based on octrees [27, 43] are proposed

for efficient computation on high resolution volumes.

PointNet [23, 25] is a recently proposed method that di-

rectly takes point cloud as network input. Similar to Point-

Net, deep Kd-networks [15] is a recently proposed network

architecture that directly consumes point cloud by adopting

a Kd-tree structure. These methods have shown promising

performance on 3D classification and segmentation tasks,

but have not been applied to articulated pose regression.

8418



3. Methodology

Our proposed 3D hand pose estimation method takes a

depth image containing a hand as the input and outputs a

set of 3D hand joint locations Φ = {φm}
M

m=1
∈ Λ in the

camera coordinate system (C.S.), where M is the number of

hand joints, Λ is the 3×M dimensional hand joint space.

The hand depth image is converted to a set of 3D points.

The 3D point set is downsampled to N points pi ∈ R
3

(i = 1, · · · , N), and normalized in an oriented bounding

box (OBB). A hierarchical PointNet [25] takes N points

as the input to extract hierarchical hand features and regress

the 3D hand pose. The dimension of each input point is

D = d+ C0, which is composed of d-dim coordinate and

C0-dim input feature. In this work, d = 3, and C0 = 3 since

we adopt the estimated 3D surface normal as the input fea-

ture. To further improve the estimation accuracy of fingertip

locations, a fingertip refinement network is designed. In the

following sections, we first briefly review the mechanism of

PointNet, then present our proposed 3D hand pose estima-

tion method.

3.1. PointNet Revisited

Basic PointNet: PointNet [23] is a type of neural

network that directly takes a set of points as the input

and is able to extract discriminative features of the point

cloud. As shown in Figure 2, each input point xi ∈ R
D

(i = 1, · · · , N) is mapped into a C-dim feature vector

through multi-layer perceptron (MLP) networks, of which

the weights across different points are shared. A vector max

operator is applied to aggregate N point feature vectors in-

to a global feature vector that is invariant to permutations

of input points. Finally, the C-dim global feature vector is

mapped into an F -dim output vector using MLP networks.

It has been proved in [23] that PointNet has the ability to ap-

proximate arbitrary continuous set functions, given enough

neurons in the network.

Hierarchical PointNet: The main limitation of the ba-

sic PointNet is that it cannot capture local structures of the

point cloud in a hierarchical way. To address this problem,

Qi et al. [25] proposed a hierarchical PointNet which has

better generalization ability due to its hierarchical feature

extraction architecture. In this paper, we exploit the hier-

archical PointNet for 3D hand pose estimation. As shown

in Figure 1, the hierarchical PointNet consists of L point

set abstraction levels. At the l-th level (l = 1, · · · , L− 1),
Nl points are selected as centroids of local regions; the k-

nearest neighbors of the centroid point are grouped as a

local region; a basic PointNet with shared weights across

different local regions is applied to extract a Cl-dim feature

of each local region; Nl centroid points with d-dim coordi-

nates and Cl-dim features are fed into the next level. At the

last level, a global point cloud feature is abstracted from the

whole input points of this level by using a basic PointNet.

Figure 2: Basic architecture of PointNet. The network di-

rectly takes N points as the input. Each D-dim input point

is mapped into a C-dim feature through MLP. Per-point fea-

tures are aggregated into a global feature by max-pooling.

The global feature is mapped into an F -dim output vector.

Figure 3: Examples of OBB-based point cloud normaliza-

tion. The 1st and 3rd columns present the original point

clouds in the camera C.S. with various hand orientations.

The 2nd and 4th columns present the sampled and rotated

point clouds in the OBB C.S., of which the hand orienta-

tions are more consistent. We color-code all point clouds to

show the relative z coordinate value.

3.2. OBB-based Point Cloud Normalization

One challenge of 3D hand pose estimation is the large

variation in global orientation of the hand. The objective

for hand point cloud normalization is to transform the orig-

inal hand point cloud into a canonical coordinate system in

which the global orientations of the transformed hand point

clouds are as consistent as possible. This normalization step

ensures that our method is robust to variations in hand glob-

al orientations.

If the output is invariant to the rotation of input point

cloud, such as the outputs in semantic labeling tasks [23],

we can add a spatial transformation network [11, 23] into

the PointNet to predict the transformation matrix, as pro-

posed in [23]. However, in our problem, the output 3D

hand pose depends on the orientation of the input hand point

cloud, which makes the network difficult to be trained in an

8419



Figure 4: Visualization of the point sensitivity in different regions to different filters at three set abstraction levels. At each

of the first two levels, each column corresponds to the same local region, and each row corresponds to the same filter. For

illustration purpose, we only show the sensitivity of points in three local regions to two filters at each of the first two levels;

At the third level, we show the sensitivity of points to six filters. Points with high sensitivity are shown in red color, and

points with low sensitivity are shown in blue color. Points that do not belong to the local region are shown in gray color.

end-to-end manner. Some solutions could be designing t-

wo parallel networks to estimate the canonical hand pose

and the hand orientation at the same time [51] or adding a

spatial de-transformation network before the output layer to

remap the estimated pose to the original C.S. [5]. But these

solutions will increase the complexity of the network and

make the training more difficult.

In this work, we propose a simple yet effective method to

normalize the 3D hand point cloud in OBB, instead of ap-

plying any additional networks to estimate the hand global

orientation or transform the hand point cloud. OBB is a

tightly fitting bounding box of the input point cloud [40].

The orientation of OBB is determined by performing prin-

cipal component analysis (PCA) on the 3D coordinates of

input points. The x, y, z axes of the OBB C.S. are aligned

with the eigenvectors of input points’ covariance matrix,

which correspond to eigenvalues from largest to smallest,

respectively. The original points in camera C.S. are first

transformed into OBB C.S., then these points are shifted to

have zero mean and scaled to a unit size:

pobb = (Rcam

obb
)
T
· pcam,

pnor =
(

pobb − p̄obb
)/

Lobb,
(1)

where Rcam

obb
is the rotation matrix of the OBB in camera

C.S.; pcam and pobb are 3D coordinates of point p in camera

C.S. and OBB C.S., respectively; p̄obb is the centroid of

point cloud
{

pobb

i

}N

i=1
; Lobb is the maximum edge length

of OBB; pnor is the normalized 3D coordinate of point p in

the normalized OBB C.S.

During training, the ground truth 3D joint locations in

camera C.S. also apply the transformation in Equation 1 to

obtain the 3D joint locations in the normalized OBB C.S.

During testing, the estimated 3D joint locations in the nor-

malized OBB C.S. φ̂nor
m

are transformed back to those in

camera C.S. φ̂cam
m

(m = 1, · · · ,M):

φ̂cam

m
= Rcam

obb
·
(

Lobb · φ̂
nor

m
+ p̄obb

)

. (2)

Figure 3 presents some examples of the original hand

point clouds and the corresponding normalized hand point

clouds. As can be seen, although the orientations of original

hand point clouds in camera C.S. have large variations, the

orientations of normalized hand point cloud in OBB C.S.

are more consistent. Experiments are conducted in Sec-

tion 4.1 to show that our proposed OBB-based point cloud

normalization method can improve the performance of both

the basic PointNet and the hierarchical PointNet.

3.3. Hand Pose Regression Network

We design a 3D hand pose regression network which

can be trained in an end-to-end manner. The input of the

hand pose regression network is a set of normalized points

Xnor = {xnor

i
}
N

i=1
= {(pnor

i
,nnor

i
)}

N

i=1
, where pnor

i
is

the 3D coordinate of the normalized point and nnor

i
is

the corresponding 3D surface normal. These N points

are then fed into a hierarchical PointNet [25], as shown

in Figure 1, which has three point set abstraction levels.

The first two levels group input points into N1 = 512 and

N2 = 128 local regions, respectively. Each local region

contains k = 64 points. These two levels extract C1 = 128
and C2 = 256 dimensional features for each local region,

respectively. The last level extracts a 1024-dim global fea-

ture vector which is mapped to an F -dim output vector by

three fully-connected layers. We present the detailed hierar-

chical PointNet architecture in the supplementary material.

Since the degree of freedom of human hand is usual-

ly lower than the dimension of 3D hand joint locations

8420



(3×M), the PointNet is designed to output an F -dim

(F < 3×M) representation of hand pose to enforce

hand pose constraint and alleviate infeasible hand pose

estimations, which is similar to [20]. In the training

phase, given T training samples with the normalized point

cloud and the corresponding ground truth 3D joint locations

{(Xnor
t

,Φnor
t

)}
T

t=1
, we minimize the following objective

function:

w∗ = argmin
w

T
∑

t=1

‖αt −F (Xnor

t
,w)‖

2
+ λ‖w‖

2
(3)

where w denotes network parameters; F represents the

hand pose regression PointNet; λ is the regularization

strength; αt is an F -dim projection of Φnor
t

. By perform-

ing PCA on the ground truth 3D joint locations in the train-

ing dataset, we can obtain αt = ET · (Φnor
t

− u), where

E denotes the principal components, and u is the empirical

mean. During testing, the estimated 3D joint locations are

reconstructed from the network outputs:

Φ̂
nor = E · F (Xnor,w∗) + u. (4)

In Figure 4, we visualize the sensitivity of points in

different regions to different filters at three set abstraction

levels in a well trained three-level hierarchical PointNet.

The corresponding input is the example shown in Figure 1.

We normalize per-point features in the same region extract-

ed by the same filter between 0 and 1. Large normalized

feature value means that the corresponding point is sensi-

tive to the filter. As can be seen in Figure 4, from low level

to high level, the size of receptive field in Euclidean space

becomes larger and larger. At the first two levels, filters

extract features from local regions, and different filters ex-

aggerate different local structures in the local region. At the

highest level, filters extract features from the whole input

points of this level, and different filters exaggerate differ-

ent parts of the hand, such as different fingers, hand palm,

etc. With such a hierarchical architecture, the network can

capture structures of the hand from local to global.

3.4. Fingertip Refinement Network

To further improve the estimation accuracy of fingertip

locations, we design a fingertip refinement network which

takes K nearest neighboring points of the estimated finger-

tip location as input and outputs the refined 3D location of

the fingertip, as shown in Figure 5. We refine fingertip loca-

tions for two reasons: first, the estimation error of fingertip

locations is usually relatively large compared to other joints,

as shown in experimental results in Section 4.1; second, the

fingertip location of straightened finger is usually easy to

be refined, since the K nearest neighboring points of the

fingertip will not change a lot even if the estimated location

deviates from the ground truth location to some extent when

K is relatively large.

Figure 5: Illustration of fingertip refinement. K nearest

neighboring points of the estimated fingertip location are

found in the original hand point cloud with upper limit of

point number. These points are normalized and fed into a

basic PointNet that outputs the refined fingertip 3D location.

Numbers in parentheses of MLP networks are layer sizes.

Since we only refine fingertips for straightened fingers,

we first check each finger is bent or straightened by cal-

culating joint angles using the joint locations. For the

straightened finger, we find the K nearest neighboring

points of the fingertip location in the original point cloud

with upper limit of point number to ensure real-time per-

formance. The K nearest neighboring points are then nor-

malized in OBB, which is similar to the method in Sec-

tion 3.2. A basic PointNet takes these normalized points as

input and outputs the refined fingertip 3D location. During

the training stage, we use the ground truth joint locations to

calculate joint angles; for the fingertip location used in the

nearest neighbor search, we add a 3D random offset within

a radius of r = 15mm to the ground truth fingertip location

in order to make the fingertip refinement network more ro-

bust to inaccurate fingertip estimations. During the testing

stage, we use joint locations estimated by the hand pose re-

gression network for calculating joint angles and searching

nearest neighboring points.

3.5. Implementation Details

The 3D surface normal is approximated by performing

PCA on the nearest neighboring points of the query point in

the sampled point cloud to fit a local plane [10]. The num-

ber of nearest neighboring points is set as 30. For the hi-

erarchical PointNet, followed by [25], we use farthest point

sampling method to sample centroids of local regions and

ball query to group points. The radius for ball query is set

as 0.1 at the first level and 0.2 at the second level. The out-

put dimension of the hand pose regression network F is set

as 2×M , which is 2/3 of the dimension of the hand joint

locations.

For training PointNets, we use Adam [14] optimizer with

initial learning rate 0.001, batch size 32 and regularization

strength 0.0005. The learning rate is divided by 10 after 50

8421



0

5

10

15

20

25

30

M
e
a
n
 e

rr
o
r 

d
is

ta
n
c
e
 (

m
m

)

P
a
lm

T
h
u
m

b
 R

T
h
u
m

b
 T

In
d
e
x
 R

In
d
e
x
 T

M
id

d
le

 R

M
id

d
le

 T

R
in

g
 R

R
in

g
 T

L
it
tl
e
 R

L
it
tl
e
 T

M
e
a
n

 

 

Basic PointNet, w/o OBB (15.5mm)

Basic PointNet, OBB (12.2mm)

Hierarchical PointNet, w/o OBB (13.6mm)

Hierarchical PointNet, OBB (10.8mm)

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

D: error threshold (mm)

P
ro

p
o
rt

io
n
 o

f 
fr

a
m

e
s
 w

it
h
 w

o
rs

t 
e
rr

o
r 

<
 D

 

 

N = 512 (13.1mm)

N = 1024 (12.2mm)

N = 2048 (12.0mm)

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

D: error threshold (mm)

P
ro

p
o
rt

io
n
 o

f 
fr

a
m

e
s
 w

it
h
 w

o
rs

t 
e
rr

o
r 

<
 D

 

 

Basic PointNet, w/o OBB (15.5mm)

Basic PointNet, OBB (12.2mm)

Hierarchical PointNet, w/o OBB (13.6mm)

Hierarchical PointNet, OBB (10.8mm)

Figure 6: Self-comparison of different methods on NYU dataset [38]. Left: the impact of different numbers of sampled

points on the proportion of good frames. Middle & Right: the impact of different PointNet architectures and normalization

methods on the proportion of good frames as well as on the per-joint mean error distance (R: root, T: tip). The overall mean

error distances are shown in parentheses.

epochs. The training process is stopped after 60 epochs.

For fingertip refinement, we set the number of nearest

neighboring points K as 256. Considering the real-time

performance, we downsample the original point cloud to

N ′ = 6000 points with random sampling when the number

of points in the original point cloud exceeds the upper lim-

it N ′, and we apply Kd-tree algorithm [6] in the efficient

nearest neighbor search.

4. Experiments

We evaluate our proposed method on three public hand

pose datasets: NYU [38], MSRA [33] and ICVL [34].

The NYU dataset [38] contains more than 72K training

frames and 8K testing frames. Each frame contains 36 an-

notated joints. Following previous works [38, 21, 8], we

estimate a subset of M = 14 joints. We segment the hand

from the depth image using random decision forest (RDF)

similar to [34]. Since the segmented hands may contain

arms with various lengths, we augment the training data

with random arm lengths.

The MSRA dataset [33] contains more than 76K frames

from 9 subjects. Each subject contains 17 gestures. In each

frame, the hand has been segmented from the depth image

and the ground truth contains M = 21 joints. The neural

networks are trained on 8 subjects and tested on the remain-

ing subject. We repeat this experiment 9 times for all sub-

jects and report the average metrics. We do not perform any

data augmentation on this dataset.

The ICVL dataset [34] contains 22K training frames and

1.6K testing frames. The ground truth of each frame con-

tains M = 16 joints. We apply RDF for hand segmentation

and augment the training data with random arm lengths as

well as random stretch factors.

We evaluate the hand pose estimation performance with

6

7

8

9

10

11

12

13

14

15

16

M
e
a
n
 e

rr
o
r 

d
is

ta
n
c
e
 (

m
m

)

T
h
u
m

b
 T

In
d
e
x
 T

M
id

d
le

 T

R
in

g
 T

L
it
tl
e
 T

M
e
a
n

T
h
u
m

b
 T

In
d
e
x
 T

M
id

d
le

 T

R
in

g
 T

L
it
tl
e
 T

M
e
a
n

T
h
u
m

b
 T

In
d
e
x
 T

M
id

d
le

 T

R
in

g
 T

L
it
tl
e
 T

M
e
a
n

NYU Dataset MSRA Dataset ICVL Dataset

 

 

w/o Fingertip Refinement

with Fingertip Refinement

Figure 7: The impact of fingertip refinement on fingertips’

mean error distances and the overall mean error distance on

NYU [38], MSRA [33] and ICVL [34] datasets (T: tip).

two metrics: the first metric is the per-joint mean error dis-

tance over all test frames; the second metric is the propor-

tion of good frames in which the worst joint error is below

a threshold, which is proposed in [37] and is more strict.

All experiments are conducted on a workstation with

two Intel Core i7 5930K, 64GB of RAM and an Nvidia

GTX1080 GPU. The deep neural networks are implemented

within the PyTorch framework.

4.1. Self-comparisons

We first evaluate the influence of the number of sam-

pled points N . As shown in Figure 6 (left), we experiment

with three different numbers of sampled points by using a

basic PointNet for hand pose regression on NYU dataset.

When N = 512, the estimation accuracy is slightly lower

than the other two results with larger number of sampled

8422



0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

D: error threshold (mm)

P
ro

p
o

rt
io

n
 o

f 
fr

a
m

e
s
 w

it
h

 w
o

rs
t 

e
rr

o
r 

<
 D

NYU Dataset

 

 

Heat−map [38] (20.8mm)

DeepPrior [20] (19.8mm)

Feedback [21] (16.2mm)

DeepModel [49] (16.9mm)

DeepHand [29]

Crossing Nets [41] (15.5mm)

Lie−X [46] (14.5mm)

3D CNN [8] (14.1mm)

Hallucination Heat [3]

REN [9] (13.4mm)

DeepPrior++ [19] (12.3mm)

Ours (10.5mm)

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

D: error threshold (mm)

P
ro

p
o

rt
io

n
 o

f 
fr

a
m

e
s
 w

it
h

 w
o

rs
t 

e
rr

o
r 

<
 D

MSRA Dataset

 

 

Hierarchical [33] (15.2mm)

Collaborative Filtering [4]

Multi−view CNNs [7] (13.1mm)

LSN, Finger Jointly Regression [42]

LSN, Pose Classification [42]

Crossing Nets [41] (12.2mm)

3D CNN [8] (9.6mm)

DeepPrior++ [19] (9.5mm)

Ours (8.5mm)

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

D: error threshold (mm)

P
ro

p
o

rt
io

n
 o

f 
fr

a
m

e
s
 w

it
h

 w
o

rs
t 

e
rr

o
r 

<
 D

ICVL Dataset

 

 

LRF [34] (12.6mm)

Hierarchical [33] (9.9mm)

DeepPrior [20] (10.4mm)

DeepModel [49] (11.6mm)

LSN [42] (8.2mm)

Crossing Nets [41] (10.2mm)

REN [9] (7.6mm)

DeepPrior++ [19] (8.1mm)

Ours (6.9mm)

Figure 8: Comparison with state-of-the-art methods on NYU [38] (left), MSRA [33] (middle) and ICVL [34] (right) datasets.

The proportions of good frames and the overall mean error distances (in parentheses) are presented in this figure.

0

5

10

15

20

25

30

M
e

a
n

 e
rr

o
r 

d
is

ta
n

c
e

 (
m

m
)

P
a

lm

T
h

u
m

b
 R

T
h

u
m

b
 T

In
d

e
x
 R

In
d

e
x
 T

M
id

d
le

 R

M
id

d
le

 T

R
in

g
 R

R
in

g
 T

L
it
tl
e

 R

L
it
tl
e

 T

M
e

a
n

NYU Dataset

 

 

Lie−X [46] (14.5mm)

3D CNN [8] (14.1mm)

REN [9] (13.4mm)

DeepPrior++ [19] (12.3mm)

Ours (10.5mm)

0

2

4

6

8

10

12

14

16

18

20

M
e

a
n

 e
rr

o
r 

d
is

ta
n

c
e

 (
m

m
)

W
ri
s
t

T
h

u
m

b
 R

T
h

u
m

b
 T

In
d

e
x
 R

In
d

e
x
 T

M
id

d
le

 R

M
id

d
le

 T

R
in

g
 R

R
in

g
 T

L
it
tl
e

 R

L
it
tl
e

 T

M
e

a
n

MSRA Dataset

 

 
Multi−view CNNs [7] (13.1mm)

3D CNN [8] (9.6mm)

Ours (8.5mm)

0

2

4

6

8

10

12

14

16

18

20

M
e

a
n

 e
rr

o
r 

d
is

ta
n

c
e

 (
m

m
)

P
a

lm

T
h

u
m

b
 R

T
h

u
m

b
 T

In
d

e
x
 R

In
d

e
x
 T

M
id

d
le

 R

M
id

d
le

 T

R
in

g
 R

R
in

g
 T

L
it
tl
e

 R

L
it
tl
e

 T

M
e

a
n

ICVL Dataset

 

 

Hierarchical [33] (9.9mm)

DeepModel [49] (11.6mm)

LSN [42] (8.2mm)

REN [9] (7.6mm)

Ours (6.9mm)

Figure 9: Comparison with state-of-the-art methods on NYU [38] (left), MSRA [33] (middle) and ICVL [34] (right) datasets.

The per-joint mean error distances and the overall mean error distances are presented in this figure (R: root, T: tip).

points. But when N = 1024 and N = 2048, the estimation

accuracy is almost the same. Balancing between estimation

accuracy and real-time performance, we choose N = 1024
and apply this number of sampled points in the following

experiments. This experiment also shows that our method

is robust to a small amount of sampled points, since the per-

formance does not drop a lot when N = 512.

We evaluate the impact of different PointNet architec-

tures and normalization methods on NYU dataset with-

out fingertip refinement. Note that, for the normalization

method without using OBB, we shift the point cloud cen-

ter to zero and scale the points into a unit sphere without

rotating the point cloud. As presented in Figure 6 (mid-

dle and right), with the same PointNet architecture, the es-

timation accuracy of OBB-based point cloud normalization

method is superior to that of the normalization method with-

out using OBB by a large margin, which indicates that our

proposed OBB-based point cloud normalization method is

quite effective since it can normalize point cloud with more

consistent orientations and make the network easier to learn

the hand articulations. In addition, when adopting the same

normalization method, the hierarchical PointNet performs

better than the basic PointNet on the estimation accuracy,

which shows that the hierarchical network architecture [25]

is also effective in our hand joints regression task.

In addition, we study the influence of fingertip refine-

ment. As can be seen in Figure 7, after fingertip refinement,

the average estimation errors of most fingertips as well as

the overall mean error decrease on all the three datasets,

which indicates that our proposed fingertip refinement

method can further improve the estimation accuracy of fin-

gertip locations.

4.2. Comparisons with State-of-the-arts

We compare our point cloud based hand joints regression

method with 16 state-of-the-art methods: latent random for-

est (LRF) [34], hierarchical regression with random forest

(Hierarchical) [33], collaborative filtering [4], 2D CNN for

heat-map regression (Heat-map) [38], 2D CNN with pri-

or and refinement (DeepPrior) [20], 2D CNN with feed-

8423



Figure 10: Qualitative results for NYU [38] (left), MSRA [33] (middle) and ICVL [34] (right) datasets. We compare our

method (in the second row) with the 3D CNN-based method in [8] (in the first row). The ground truth hand joint locations

are presented in the last row. We show hand joint locations on depth images. Different hand joints and bones are visualized

with different colors. This figure is best viewed in color.

back loop (Feedback) [21], 2D CNN for hand model re-

gression (DeepModel) [50], matrix completion with deep

feature (DeepHand) [29], local surface normal based ran-

dom forest (LSN) [42], multi-view CNNs [7], 2D CNN

using Lie group theory (Lie-X) [46], Crossing Nets [41],

3D CNN [8], region ensemble network (REN) [9], im-

proved DeepPrior (DeepPrior++) [19] and 2D CNN with

hallucinating heat distribution (Hallucination) [3]. The pro-

portion of good frames over different error thresholds and

the per-joint mean error distances of different methods on

NYU [38], MSRA [33] and ICVL [34] datasets are present-

ed in Figure 8 and Figure 9, respectively.

As can be seen in Figure 8, our method outperforms

these state-of-the-art methods over most of the error thresh-

olds. On NYU dataset [38], when the error threshold is

between 15mm and 20mm, the proportions of good frames

of our method is about 15% better than REN [9] and Deep-

Prior++ [19] methods. On MSRA dataset [33], when the

error threshold is between 15mm and 20mm, the propor-

tions of good frames of our method is about 10% better

than 3D CNN [8] and DeepPrior++ [19] methods. On ICVL

dataset [34], when the error threshold is 15mm, the propor-

tions of good frames of our method is about 15% better than

REN [9] method and 10% better than DeepPrior++ [19]

method. For the mean error distances shown in Figure 9, our

method also outperforms state-of-the-art methods on most

of the hand joints and achieves the smallest overall mean

error distances on all the three datasets.

Some qualitative results for NYU [38], MSRA [33] and

ICVL [34] datasets are shown in Figure 10. As can be

seen, compared with the 3D CNN-based method in [8], our

method can capture complex hand structures and estimate

more accurate 3D hand joint locations.

4.3. Runtime and Model Size

The runtime of our method is 20.5ms in average, includ-

ing 8.2ms for point sampling and surface normal calcula-

tion, 9.2ms for the hand pose regression network forward

propagation, 2.8ms for fingertip neighboring points search

and 0.3ms for fingertip refinement network forward propa-

gation. Thus, our method runs in real-time at over 48fps.

In addition, our network model size is 10.3MB, includ-

ing 9.2MB for the hand pose regression network and 1.1MB

for the fingertip refinement network, while the model size of

the 3D CNN in [8] is about 420MB.

5. Conclusion

In this paper, we present a novel approach that directly

takes point cloud as network input to regress 3D hand joint

locations. To handle variations of hand global orientations,

we normalize the hand point clouds in OBB with more

consistent global orientations. The normalized point cloud

is then fed into a hierarchical PointNet for hand pose re-

gression. Fingertip locations are further refined by a ba-

sic PointNet. Experimental results on three public hand

pose datasets show that our method achieves superior per-

formance for 3D hand pose estimation in real-time.

Acknowledgment: This research is supported by the

BeingTogether Centre, a collaboration between NTU Sin-

gapore and UNC at Chapel Hill. The BeingTogether Centre

is supported by the National Research Foundation, Prime

Minister’s Office, Singapore under its International Re-

search Centres in Singapore Funding Initiative. This work

is also supported in part by a grant from Microsoft Research

Asia, and start-up grants from University at Buffalo.

8424



References

[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Polle-

feys. Motion capture of hands in action using discriminative

salient points. In ECCV, 2012.

[2] Z. Cao, Q. Huang, and K. Ramani. 3d object classification

via spherical projections. In 3DV, 2017.

[3] C. Choi, S. Kim, and K. Ramani. Learning hand articulations

by hallucinating heat distribution. In ICCV, 2017.

[4] C. Choi, A. Sinha, J. Hee Choi, S. Jang, and K. Ramani. A

collaborative filtering approach to real-time hand pose esti-

mation. In ICCV, 2015.

[5] H. Fang, S. Xie, Y.-W. Tai, and C. Lu. RMPE: Regional

multi-person pose estimation. In ICCV, 2017.

[6] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algo-

rithm for finding best matches in logarithmic expected time.

ACM Transactions on Mathematical Software, 3(3):209–

226, 1977.

[7] L. Ge, H. Liang, J. Yuan, and D. Thalmann. Robust 3D

hand pose estimation in single depth images: from single-

view CNN to multi-view CNNs. In CVPR, 2016.

[8] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3D convolution-

al neural networks for efficient and robust hand pose estima-

tion from single depth images. In CVPR, 2017.

[9] H. Guo, G. Wang, X. Chen, C. Zhang, F. Qiao, and H. Yang.

Region ensemble network: Improving convolutional net-

work for hand pose estimation. In ICIP, 2017.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. Mcdonald, and

W. Stuetzle. Surface reconstruction from unorganized points.

Computer graphics, 26(2):71–78, 1992.

[11] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015.

[12] C. Keskin, F. Kra, Y. Kara, and L. Akarun. Hand pose es-

timation and hand shape classification using multi-layered

randomized decision forests. In ECCV, 2012.

[13] S. Khamis, J. Taylor, J. Shotton, C. Keskin, S. Izadi, and

A. Fitzgibbon. Learning an efficient model of hand shape

variation from depth images. In CVPR, 2015.

[14] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015.

[15] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models. In

ICCV, 2017.

[16] H. Liang, J. Yuan, and D. Thalmann. Resolving ambiguous

hand pose predictions by exploiting part correlations. IEEE

Transactions on Circuits and Systems for Video Technology,

25(7):1125–1139, 2015.

[17] D. Maturana and S. Scherer. Voxnet: A 3D convolutional

neural network for real-time object recognition. In IROS,

2015.

[18] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and

J. Kautz. Online detection and classification of dynamic hand

gestures with recurrent 3D convolutional neural network. In

CVPR, 2016.

[19] M. Oberweger and V. Lepetit. Deepprior++: Improving fast

and accurate 3d hand pose estimation. In ICCV Workshop,

2017.

[20] M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in

deep learning for hand pose estimation. In CVWW, 2015.

[21] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feed-

back loop for hand pose estimation. In ICCV, 2015.

[22] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient

model-based 3D tracking of hand articulations using Kinect.

In BMVC, 2011.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep

learning on point sets for 3D classification and segmentation.

In CVPR, 2017.

[24] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J.

Guibas. Volumetric and multi-view cnns for object classi-

fication on 3d data. In CVPR, 2016.

[25] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep

hierarchical feature learning on point sets in a metric space.

In NIPS, 2017.

[26] E. Remelli, A. Tkach, A. Tagliasacchi, and M. Pauly. Low-

dimensionality calibration through local anisotropic scaling

for robust hand model personalization. In ICCV, 2017.

[27] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning

deep 3d representations at high resolutions. In CVPR, 2017.

[28] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton,

D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei,

D. Freedman, P. Kohli, E. Krupka, A. Fitzgibbon, and S. Iza-

di. Accurate, robust, and flexible real-time hand tracking. In

CHI, 2015.

[29] A. Sinha, C. Choi, and K. Ramani. Deephand: Robust hand

pose estimation by completing a matrix with deep features.

In CVPR, 2016.

[30] S. Song and J. Xiao. Deep Sliding Shapes for amodal 3D

object detection in RGB-D images. In CVPR, 2016.

[31] S. Sridhar, F. Mueller, M. Zollhoefer, D. Casas, A. Oulasvir-

ta, and C. Theobalt. Real-time joint tracking of a hand ma-

nipulating an object from rgb-d input. In ECCV, 2016.

[32] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3D shape recogni-

tion. In ICCV, 2015.

[33] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded

hand pose regression. In CVPR, 2015.

[34] D. Tang, H. J. Chang, A. Tejani, and T. K. Kim. Latent re-

gression forest: Structured estimation of 3D articulated hand

posture. In CVPR, 2014.

[35] D. Tang, J. Taylor, P. Kohli, C. Keskin, T.-K. Kim, and

J. Shotton. Opening the black box: Hierarchical sampling

optimization for estimating human hand pose. In ICCV,

2015.

[36] J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Ke-

skin, T. Sharp, E. Soto, D. Sweeney, J. Valentin, B. Luff,

A. Topalian, E. Wood, S. Khamis, P. Kohli, S. Izadi,

R. Banks, A. Fitzgibbon, and J. Shotton. Efficient and pre-

cise interactive hand tracking through joint, continuous op-

timization of pose and correspondences. ACM Transactions

on Graphics, 35(4):143, 2016.

[37] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-

vian manifold: Inferring dense correspondences for one-shot

human pose estimation. In CVPR, 2012.

8425



[38] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time

continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics, 33(5):169,

2014.

[39] D. Tzionas, L. Ballan, A. Srikantha, P. Aponte, M. Pollefeys,

and J. Gall. Capturing hands in action using discriminative

salient points and physics simulation. International Journal

of Computer Vision, 118(2):172–193, 2016.

[40] J. M. Van Verth and L. M. Bishop. Essential mathematics for

games and interactive applications. CRC Press, 2015.

[41] C. Wan, T. Probst, L. Van Gool, and A. Yao. Crossing nets:

Dual generative models with a shared latent space for hand

pose estimation. In CVPR, 2017.

[42] C. Wan, A. Yao, and L. Van Gool. Direction matters: hand

pose estimation from local surface normals. In ECCV, 2016.

[43] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.

O-cnn: Octree-based convolutional neural networks for 3d

shape analysis. ACM Transactions on Graphics (TOG),

36(4):72, 2017.

[44] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D shapenets: A deep representation for volumetric

shapes. In CVPR, 2015.

[45] C. Xu and L. Cheng. Efficient hand pose estimation from a

single depth image. In ICCV, 2013.

[46] C. Xu, L. N. Govindarajan, Y. Zhang, and L. Cheng. Lie-X:

Depth image based articulated object pose estimation, track-

ing, and action recognition on lie groups. International Jour-

nal of Computer Vision, 123(3):454–478, 2017.

[47] Q. Ye, S. Yuan, and T.-K. Kim. Spatial attention deep net

with partial pso for hierarchical hybrid hand pose estimation.

In ECCV, 2016.

[48] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Y.

Chang, K. M. Lee, P. Molchanov, J. Kautz, S. Honari, L. Ge,

J. Yuan, X. Chen, G. Wang, F. Yang, K. Akiyama, Y. Wu,

Q. Wan, M. Madadi, S. Escalera, S. Li, D. Lee, I. Oikono-

midis, A. Argyros, and T.-K. Kim. Depth-based 3D hand

pose estimation: From current achievements to future goals.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[49] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim. Big-

hand2.2m benchmark: Hand pose dataset and state of the art

analysis. In CVPR, 2017.

[50] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei. Model-

based deep hand pose estimation. In IJCAI, 2016.

[51] C. Zimmermann and T. Brox. Learning to estimate 3D hand

pose from single RGB images. In ICCV, 2017.

8426


