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Abstract

In this paper we focus on the concept of low-dimensional posture sub-

spaces for artificial hands. We begin by discussing the applicability

of a hand configuration subspace to the problem of automated grasp

synthesis� our results show that low-dimensional optimization can be

instrumental in deriving effective pre-grasp shapes for a number of

complex robotic hands. We then show that the computational advan-

tages of using a reduced dimensionality framework enable it to serve

as an interface between the human and automated components of an

interactive grasping system. We present an on-line grasp planner that

allows a human operator to perform dexterous grasping tasks using

an artificial hand. In order to achieve the computational rates re-

quired for effective user interaction, grasp planning is performed in a

hand posture subspace of highly reduced dimensionality. The system

also uses real-time input provided by the operator, further simplify-

ing the search for stable grasps to the point where solutions can be

found at interactive rates. We demonstrate our approach on a number

of different hand models and target objects, in both real and virtual

environments.

KEY WORDS—interactive grasping, dexterous robotic hands,

hand prosthetics.

1. Introduction

The vision of ubiquitous robotic assistants, whether in the

home, the factory or in space, will not be realized without the

ability to grasp typical objects in human environments. The

human hand, the most versatile end-effector known, is capa-

ble of a wide range of configurations and subtle adjustments.
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In an attempt to match its abilities, a number of anthropo-

morphic robotic designs have been proposed in the literature,

e.g. by Vande Weghe et al. (2004)� such models often include

human-like kinematics and simplified tendon networks. How-

ever, the increase in versatility has come at the cost of simi-

larly increased complexity. As the number of degrees of free-

dom (DOFs) of robotic hands starts to approach the case of the

human hand, effective autonomous algorithms that can handle

high-dimensional configuration spaces are required in order to

take advantage of the new designs.

If we wish to reproduce human-like grasping it would seem

natural to draw inspiration not only from the hardware of the

human hand, but also from the software� that is, the way the

hand is controlled by the brain. This may initially sound like

an overly lofty goal: a large part of the human cortex is dedi-

cated to grasping and manipulation, and it would seem reason-

able to assume that all of this cognitive machinery is dedicated

to finely controlling individual joints and generating highly

flexible hand postures. However, results in both robotics and

neuroscience research that we review in this paper point to the

contrary, suggesting that a majority of the human hand control

during common grasping tasks lacks individuation in finger

movements.

1.1. Low-dimensional Posture Subspaces

In this paper, we use low-dimensional hand posture subspaces

to express coordination patterns between multiple DOFs for

robotic hands. In particular, we consider linear subspaces

defined by a number of basis vectors that we refer to as eigen-

grasps. Each eigengrasp is a vector in the high-dimensional

hand posture space� we use linear combinations of a relatively

small number of these vectors to obtain a wide range of hand

postures for grasping tasks.

A key aspect when using this approach is the trade-off be-

tween its computational advantages and the implied reduction

in the range of directly accessible hand postures. An eigen-

grasp subspace is only useful in as much as it contains enough
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variance in hand posture to allow for successful completion

of the grasping task. In this paper we start from the results of

Santello et al. (1998), who applied dimensionality reduction

methods on a large set of human grasping postures obtained

from user studies. Their results show that a two-dimensional

subspace contains more than 80% of the variance in hand pos-

ture. The analysis of human digit coordination patterns during

grasping is in general a very active area of research� in Sec-

tion 2 we provide an overview of current results and discuss

their implications for our approach to robotic grasping.

Our main interest in this study is the application of low-

dimensional posture subspaces for robot hands, taking a con-

structive, rather than exploratory approach. Instead of attempt-

ing to derive optimal posture subspaces (either analytically or

through user studies), we focus on the applicability of this

concept: given a particular set of eigengrasps, we aim to con-

struct algorithms that take advantage of operating in a low-

dimensional domain. In Section 3 we present an eigengrasp

planning algorithm that can be used to obtain form-closure

grasps using dexterous hands that have traditionally been very

difficult to plan for. The core of this algorithm is an opti-

mization procedure that operates along two eigengrasp direc-

tions� even when using such a reduced dimensionality space,

we show that the planner is successful in deriving stable multi-

fingered grasps for a large variety of target objects.

1.2. Interactive Grasp Planning

One of the key features of the low-dimensional grasp planning

algorithm we introduce is the ability to simplify the search for

a form-closure grasp posture when using a dexterous hand.

However, a grasp is completely defined only by a combina-

tion of intrinsic DOFs (finger joint angles) and extrinsic DOFs

(wrist position and orientation relative to target object). The

application of eigengrasp subspaces only addresses the finger

posture component� a significant amount of computational ef-

fort still has to be spent in order to determine the position and

orientation of the wrist. In order to take full advantage of the

eigengrasp dimensionality reduction, we need to also reduce

the complexity of the extrinsic components of a grasp.

In Section 4 we show how the eigengrasp planning frame-

work can be applied in the case where the approach direction

for a grasping task is partially provided by a human operator in

real time. This application stems from the area of hand neuro-

prosthetics, where a human user must interact with an artificial

limb using limited communication channels. In particular, we

assume that the operator has no direct control over finger pos-

ture, which has to be set by the automated grasp planner. Com-

putational efficiency thus becomes a critical requirement, as

the system’s response should be fast enough to allow for inter-

active operation.

We define an interactive grasp planner as a system that can

accept input from a human operator during the execution of

the grasp and adapt to on-line input changes. We show that by

combining reduced dimensionality grasp planning with wrist

position input provided by a human operator, we can meet

these constraints: the system that we present generally requires

approximately 2 seconds to find a form-closure grasp for a

user-specified wrist position, and between 10 and 15 seconds

for the complete execution of a grasping task. This framework

allows the human user to not only set initial guidelines for the

grasp planner, but also to react to its behavior and successfully

complete the grasping task even if they have no direct control

over finger posture.

1.3. Related Work

Attempts to formalize the human tendency to simplify the

space of possible grasps can be traced back to Napier’s

pioneering grasp taxonomy (Napier 1956), updated later

by Cutkosky (1989). Iberall (1997) later reviewed a large field

of work on grasp taxonomies, from areas such as anthropol-

ogy, biomechanics, rehabilitation and robotics. These studies

suggest that, while the configuration space of dexterous hands

is high-dimensional and very difficult to search directly, most

useful grasps can be found in the vicinity of a small number of

discrete points. This approach has generated significant inter-

est in both human and robotic grasping research� in this section

we review a number of results on autonomous grasp planning

for robotic hands. In the following section we also discuss in

more detail the kinesiologic aspects that are closely related to

the approach presented in this paper.

Miller et al. (2003) used Cutkosky’s grasp taxonomy con-

cept to define a number of starting positions, or pre-grasps,

when searching for good grasps of a given object using a ro-

botic hand. Cipriani et al. (2006) applied this concept for pros-

thetic hands, assuming that the human operator can only select

from a small set of pre-grasp shapes, relying on the passive

mechanical adaptability of the CyberHand design (Carrozza et

al. 2006) to complete the grasp. Aleotti and Caselli (2006) used

a Cyberglove to record human grasp trajectories and postures

and replicated them on the same target objects using NURBS.

Li et al. (2007) used a shape-matching approach, sampling

an object into a dense cloud of oriented points and matching

against a small database of known human hand poses.

We note that choosing a good grasp can also be formulated

as a problem in the contact space of the object to be grasped

rather than the configuration space of the hand, as shown for

example by Roa and Suarez (2007). However, such approaches

usually require inverse kinematics in order to guarantee that

the contacts are physically satisfiable by a real robotic hand.

An alternative to the use of inverse kinematics is presented

by Platt et al. (2002, 2004), starting with the hand in contact

with an object and combining multiple control laws for per-

forming incremental contact adjustments.
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When a robot is operating in an unknown environment, the

amount of sensory information can be insufficient for con-

structing a complete three-dimensional model of the target ob-

ject. Saxena et al. (2008) present a learning approach where

logistic regression is used to infer good grasping points for

a simple gripper based directly on two-dimensional images,

without building an explicit object model. Their method fo-

cuses on the ability to learn the appearance subspace of gras-

pable objects or features� in the eigengrasp framework pre-

sented here we explore the use of subspaces for hand postures.

These approaches can thus be considered as complementary.

Other methods for operating in unstructured environments in-

clude explicitly modeling the uncertainty associated with in-

accurate range sensors, as shown by Hsiao et al. (2007), and

using tactile sensing to compensate for other sensing errors, as

demonstrated by Edsinger and Kemp (2006). Finally, for com-

prehensive overviews regarding fully autonomous grasp syn-

thesis for robotic hands we also refer the reader to the reviews

of Shimoga (1996) and Bicchi and Kumar (2000).

2. Eigengrasps

An important difficulty in understanding and reproducing hu-

man grasping ability is the large number of DOFs involved,

which gives rise to an enormous set of possible configurations.

One possible explanation for human efficiency in selecting ap-

propriate grasps assumes that humans unconsciously simplify

the large search space through learning and experience. San-

tello et al. (1998) investigated this hypotheses by collecting a

large set of data containing grasping poses from subjects that

were asked to shape their hands in order to mime grasps for

a large set (n � 57) of familiar objects. Principal component

analysis of this data revealed that the first two principal com-

ponents account for more than 80% of the variance, suggesting

that a very good characterization of the recorded data can be

obtained using a much lower-dimensionality approximation of

the DOF space. In our work, we refer to the principal compo-

nents of the dataset of hand configurations described above as

eigengrasps.

While numerical analysis of human hand postures can re-

veal the “synergies” in the data, it tells us very little about

the causes of this intrinsic low-dimensional nature. Two ex-

planations seem natural: the first assumes that inter-digit coor-

dination is caused by mechanical constraints in the anatomy of

the hand. This direction suggests building robotic hands with

highly interconnected finger actuation mechanisms. An exam-

ple is the prototype developed by Brown and Asada (2007),

using a low-dimensional control system along directions sim-

ilar to those presented by Santello et al. (1998). The second

explanation assumes that motor control synergies take place

at a higher level in the central nervous system, as discussed

for example by Mason et al. (2001) and Cheung et al. (2005).

This approach implies the use of low-dimensional control al-

gorithms for dexterous robotic hands, such as that presented

in this paper. However, the nature of human control synergies

is still an open question and an active area of research, and

combinations of the two approaches discussed above also seem

very likely.

Another important aspect concerns the relationship be-

tween eigengrasps and the task being performed. Todorov and

Ghahramani (2004) have shown that the execution of differ-

ent manipulation tasks (such as flipping pages or crumpling

paper) is characterized by different sets of principal compo-

nents. Interestingly, Thakur et al. (2008) have identified a pos-

ture subspace even in the less-constrained setting of haptic ex-

ploration tasks. Mason et al. (2001) and Santello et al. (2002)

have also shown that hand posture during the reach phase of

a complete reach-to-grasp action is described by a different

(and lower-dimensional) principal component spectrum than

the grasp phase. These results show that, when using a low-

dimensional control space for robotic hands, the choice of the

subspace has to be correlated with the proposed task.

Finally, all of the studies discussed so far have used prin-

cipal component analysis, and thus have addressed only lin-

ear subspaces that can be extracted from hand posture data.

Linear decomposition has been successfully used in the past

on different types of biometric data, ranging from face ap-

pearance (Turk and Pentland 1991) to the dynamics of arm

motion (Fod et al. 2002). However, non-linear dimensional-

ity reduction methods can potentially reveal different mani-

fold structures of the same data. Tsoli and Jenkins (2007) com-

pared a number of such methods, including isomap and locally

linear embedding, for extracting two-dimensional non-linear

manifolds from human hand motion data. Their results show

that, while low-dimensional manifolds can be obtained using

a number of different methods, non-linear approaches can pro-

vide better separation between the low-dimensional projec-

tions of different task domains and thus simplify the task of

low-dimensional teleoperation.

2.1. Application for Robotic Hand Models

One common thread that can be observed in the body of work

discussed above is that the usefulness of a hand posture sub-

space has traditionally been quantified by how well it approx-

imates a given set of input data. This exploratory approach is

natural in the context of studying the human hand. In this paper

we propose a modified approach oriented towards application

for artificial hands: given a hand posture subspace, we use it to

synthesize new hand postures to accomplish a particular task.

We see this effort as complementary to current attempts of

understanding and extracting relevant low-dimensional data:

if eigengrasp-based algorithms can be proven effective, they

would only benefit from further optimization of the operation

subspace.
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The task that we focus on throughout this paper is achiev-

ing stable grasps of a target object. We are thus interested in

dexterous grasps that can resist a wide range of disturbances,

rather than object-specific manipulation scenarios. To achieve

this goal, we propose an algorithm that actively searches a low-

dimensional subspace for appropriate hand postures. We base

our approach on published results obtained from human grasp-

ing data, which can also be applied to robotic models using an

empirical mapping as described below. While we have found

our choices to produce good results for achieving stable grasps

of a large variety of objects common in human environments,

the optimal choice of eigengrasps for non-human hands, as

well as the choice of which eigengrasps to use for different

or more specialized tasks, are open questions and interesting

directions for future research.

In this study, we apply the eigengrasp concept to a total of

four dexterous hand models: the Barrett hand (Barrett Tech-

nologies, Cambridge, MA), the DLR hand (Butterfass et al.

1998), the Robonaut hand (Lovchik and Diftler 1998) and

finally a 20-DOF model of a human hand. For the human

hand we have directly used the eigengrasp subspace obtained

by Santello et al. (1998), taking advantage of the fact that it

has been derived through rigorous study over a large number

of recorded samples. Since such data is not available for ro-

botic hand models, we have derived eigengrasp directions at-

tempting to define grasp subspaces similar to those obtained

using human hand eigengrasps. In most cases, such decisions

could be based directly on the similarities with the human

hand: for example, the human metacarpophalangeal (MCP)

and interphalangeal (IP) joints can be mapped to the proximal

and distal joints of robotic fingers. In the case of the Barrett

hand, changes in the spread angle DOF were mapped to hu-

man finger abduction. All of our hand models, as well as the

two dominant eigengrasps used in each case, are presented in

Table 1.

The eigengrasp concept allows us to design flexible control

algorithms that operate identically across all of the presented

hand models. The key to this approach is that the eigengrasps

encapsulate the kinematic characteristics of each hand design.

Control algorithms that operate on eigengrasp directions do

not need to be customized for low-level operations, such as

setting individual DOFs, and can concentrate on the high-level

task. All of the results presented in this paper were obtained by

treating all hand models identically, without the need for any

hand-specific tuning or change in parameters.

2.2. Effective DOFs

In the applied example of grasp planning, we need to con-

sider whether the eigengrasp subspace contains the hand pos-

tures needed for stable grasps of the target objects. A corol-

lary question is whether results obtained using a small set of

eigengrasps would imply that the other DOFs of the hand are

useless. As mentioned above, in the case of the human hand,

the two dominant eigengrasps have been shown to encapsu-

late most of the variance in posture over a large set of grasps.

However, eigengrasps 3 through 6 (in decreasing order of im-

portance), while accounting for less than 15% of the posture

variance, do not represent noise and have been shown by San-

tello et al. (1998) to be related to the object to be grasped.

Furthermore, the study was performed in the absence of the

real object, as subjects were asked to reproduce grasps from

memory. This suggests that, even if we choose to perform the

grasp planning stage in a low-dimensional space, during the

final stages of the grasp the shape of the object will force the

hand to deviate from eigengrasp space in order to conform ex-

actly to its surface.

We therefore use a two-stage approach to the task of au-

tomated grasp synthesis: first, hand posture is optimized in

a low-dimensional eigengrasp space. The dimensionality re-

duction makes this process computationally tractable even for

complex dexterous hand models. In the second stage, starting

from the best hand posture found in eigengrasp space, the hand

is closed by flexing all of the finger joints at equal rates until

contact with the target object stops all motion. This step does

not require the control algorithm to perform any more pose

refinement at a computational level, but only to issue a binary

“close all fingers” command after which the final pose is deter-

mined implicitly through contact with the object. However, it

takes advantage of the versatility of complex kinematic chains,

where multiple DOFs allow the hand to better match the sur-

face of the object.

3. Grasp Synthesis through Low-dimensional

Posture Optimization

In general, automatic grasp synthesis can be approached as

an optimization problem, seeking to maximize the value of a

high-dimensional quality function Q that characterizes a given

combination of hand posture and position:

Q � f �p�w�� p � �d� w � �6� (1)

where d is the number of intrinsic hand DOFs, p represents the

hand posture and w contains the position and orientation of the

wrist.

We first present our implementation of the quality function,

then discuss the optimization algorithm that is applied to max-

imize it over a space of possible hand postures. In general,

most quality function formulations are highly non-linear, with

complex constraints as well as gradients that are difficult, or

even impossible, to compute analytically. These problems are

compounded by the high dimensionality of the optimization

domain. Consider, for example, the case of the human hand

model, where d � 20: this results in a 26-dimensional opti-

mization domain, rendering most optimization algorithms in-

tractable. However, we can choose a basis comprising b eigen-

grasps, with b� d, and a hand posture placed in the subspace
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Table 1. Eigengrasps defined for the robotic hand models used in this paper.

defined by this basis can be expressed as a function of the am-

plitudes ai along each eigengrasp direction:

p � pm �

b�

i�1

ai ei � (2)

where pm is a “mean” posture that describes the origin of the

eigengrasp subspace. Each eigengrasp ei is a d-dimensional

vector and can also be thought of as a direction of motion in

joint configuration space. Motion along one eigengrasp direc-

tion will usually imply motion along all (or most) degrees of

freedom of the hand:

ei � [ei�1 ei�2 � � � ei�d]� (3)

Once this subspace is defined, a hand posture can

be completely determined by the amplitude vector a �

[a1 � � � ab] � �b. Therefore, when hand posture optimiza-

tion is performed in eigengrasp space, the grasp quality func-

tion over this subspace takes the form

Q � f �a�w�� a � �b� w � �6� (4)

where a is the vector of eigengrasp amplitudes. When operat-

ing in a two-dimensional subspace, we therefore have a total

of eight variables to optimize, including two eigengrasp ampli-

tudes and six variables for the wrist position and orientation,

independent of the particular hand model that is being used for

the grasping task.

3.1. Quality Function Formulation

Most grasp quality metrics that have been proposed in the lit-

erature are based on the locations of the contacts between the

hand and the target object. Our context is somewhat different:

we need a quality metric that can also assess the quality of a

pre-grasp, where the hand is very close, but not in contact with

the target. For each hand model, we pre-define a number of ex-

pected contact locations by sampling each link of the fingers

as well as the palm, as shown in Figure 1(a). The value of

the quality function is maximized for those hand postures that

bring each expected contact location as close as possible to the

target object. We are therefore searching for postures where

the hand is wrapped around the object, generating a large con-

tact area using all of the fingers as well as the palm. As shown

in Figure 1(b), for each desired contact location on the hand,

identified by the index i , we define the local surface normal

�ni as well as the distance oi between the desired contact loca-

tion and the target object. We then compute a measure �i of the

distance (both linear and angular) between the desired contact

and the surface of the object:

�i �
�oi�

�
�

�
1	
�ni 
 oi

�oi�

�
� (5)

where � is a scaling parameter required to bring the range of

useful linear distances (measured in millimeters) in the same

range as the normalized dot product between �ni and oi (in our

study we use a value of � � 50). For a given hand posture, the

total value of the quality function is then computed as:
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Fig. 1. Examples of desired contact locations for posture op-

timization. (a) Complete set of pre-defined desired contact lo-

cations for the DLR, Robonaut and human hands. (b) For a

desired contact with index i , we define the surface normal �ni

and the current distance to the target object oi .

Q �
�

all desired
contacts

�1	 �i �� (6)

In most cases, the hand postures that maximize the value

of Q create an enveloping grasp of the object, especially for

complex models grasping objects similar in size to the hand.

The optimized value of this function can be seen as a mea-

sure of how well the hand shape can be set in order to match a

given object while operating in a low-dimensional subspace. In

Section 4, we also present an alternative quality function for-

mulation that includes a built-in notion of grasp wrench space

analysis.

3.2. Optimization Algorithm

After choosing the formulation of the quality function Q, the

optimization is performed using the simulated annealing algo-

rithm with the fast cooling schedule and neighbor-generation

function presented by Ingber (1989). The stochastic nature of

this algorithm makes it a particularly good choice for our task:

since new states are generated as random neighbors of the cur-

rent state, computation of the quality function gradient is not

necessary, and the algorithm works well on non-linear func-

tions. Furthermore, the possibility of a “downhill move” to a

state of lower quality allows it to escape local optima which

can trap greedier methods such as gradient ascent.

Algorithm 1 Simulated annealing over grasp quality function.

for all variables of CurrentState do

CurrentState.variable = RandomValue()

end for

QCurrent = Quality(CurrentState)

Iterations = 0

QSaved = 0

while Iterations ��MaxIterations do

{Generate a new state as a neighbor of current state}

repeat

for all variables of NewState do

{Sim. Annealing neighbor generation function}

NewState.variable = Ngbr(CurrentState.variable)

end for

Apply ForwardKinematics(NewState)

if collisions detected or joint limits exceeded

legalState = false

else legalState = true

until legalState == true

QNew = Quality(NewState)

if QNew � QSaved then

Insert NewState in SavedStatesList

QSaved = lowest quality value in SavedStateList

end if

{Sim. Annealing probability of "jumping" to new state.}

PJump = Probability(QCurrent, QNew)

if PJump � 0.5 then

CurrentState = NewState

QCurrent = QNew

end if

Iterations = Iterations + 1

end while

The complete optimization procedure is presented in Al-

gorithm 1, which uses the following conventions. The vari-

ables that make up a given state (such as CurrentState or New-

State) are the entries of the eigengrasp amplitude vector a

and the wrist position and orientation vector w. These vari-

ables are the target of the optimization. The Quality func-

tion for a given hand state is computed as in (6). We have im-

plemented this algorithm using our publicly available GraspIt!

simulation engine (Miller and Allen 2004), which performs the

ForwardKinematics computation and contact and colli-

sion detection. Finally, the functions Nbr, for computing a

“neighbor” of a variable, and Probability, for deciding

whether a “jump” to a new state is performed, are implemented
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Fig. 2. Simulated annealing example over 70,000 iterations.

Each image shows the best state found until iteration k.

as described by Ingber (1989). Briefly, the simulated anneal-

ing algorithm implements the following guidelines: (a) during

early iterations, it allows large changes in the search variables

and often jumps to worse states in order to sample the entire

domain of the optimized function� (b) as the algorithm pro-

gresses, it predominantly samples increasingly smaller neigh-

borhoods of the current solution and only allows jumps that

improve its quality measure.

A detailed example of the execution of this algorithm, in-

volving the Robonaut hand grasping a glass, is presented in

Figure 2. The figure shows the temporary solution (best state

found so far) at various points during the optimization. Fig-

ure 3 also shows how the current search state evolves over the

full iteration range. We can observe what is considered typical

behavior for a simulated annealing implementation. First, the

search goes through random states, accepting bad positions as

well as good positions. As the annealing schedule progresses,

the search space is sampled more often in the vicinity of the

good states, while bad states are no longer accepted.

Owing to the stochastic nature of simulated annealing, dif-

ferent executions of the optimization algorithm can result in

slightly different hand postures. However, the same stochastic

nature enables it to “jump out” of unpredictable local optima

(such as the intermediate “peaks” in Figure 3) and, with a high

probability, converge to the same regions of the optimization

space, leading to consistency between different executions. Fi-

nally, in the later stages, the search is confined in a small neigh-

borhood around the best state, which is progressively refined.

The total time required for the optimization presented here was

143 seconds, or 2.0 ms per iteration, using a commodity desk-

top computer. The most significant amount of computation

was spent checking the feasibility of each generated state (i.e.

checking for collisions and inter-penetrations). We also note

that increasing the number of iterations beyond 70,000 yields

Fig. 3. Evolution of quality function (top) and eigengrasp am-

plitudes (bottom) of the current search state during simulated

annealing

highly diminished returns� all of the optimizations reported in

the rest of this section where performed over an identical range

of 70,000 iterations, or approximately 150 seconds of compu-

tation.

3.3. Optimization Results and Discussion

In this section we present quantitative testing results of the op-

timization method presented above. We discuss the best di-

mensionality of the optimization subspace, the nature of the

hand postures that can be found through our optimization al-

gorithm in this subspace, and its overall applicability for the

task of dexterous grasp planning.

In order to study the impact of the dimensionality of the

search space on the results of the optimization, we compared

the results obtained using the human hand in an eigengrasp

subspace of dimensionality ranging from one to six. All of the

tests were performed on a set of seven objects with diverse

geometry, such as a flask, shoe, hammer, etc. To reduce the

influence of the stochastic component of simulated annealing,

the optimization for each combination of object and number

of eigengrasps was repeated five times and the results were

averaged. The complete results, showing how the value of the

quality function varies with the dimensionality of the space at

various points in the optimization, are presented in Figure 4.

The results show that, in our optimization range, a two-

dimensional subspace provides the best results. A more de-

tailed analysis also reveals that, in the early stages of the op-

timization, a one-dimensional space is qualitatively similar,
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Fig. 4. The best value of the quality function at different mo-

ments during the optimization algorithm, depending on the

dimensionality of the optimization subspace. All of the tests

were performed using the human hand and averaged over a set

of five executions for each of seven test objects.

while in the latter stages a higher-dimensional space can pro-

vide a viable alternative. This is an expected trend, as an in-

crease in the dimensionality of the search space intuitively

requires additional computational power to provide benefits.

However, we must note that these results could also be indica-

tive of our specific optimization algorithm, or of the set of cho-

sen objects, rather than the intrinsic nature of the eigengrasp

subspace. In particular, it is difficult to explain exceptions to

the overall trend, such as the relative benefit yielded by a five-

dimensional space compared with either four or six dimen-

sions. This is compounded by the fact that it is very difficult to

find intuitive explanations for human eigengrasps ranked be-

low the first two. Furthermore, to the best of our knowledge,

no set of objects has been accepted as a definitive benchmark

of robotic grasping performance. Based on our current results,

we have chosen a two-dimensional subspace as offering the

best compromise between computational effort and optimiza-

tion results� all of the experiments presented in the rest of this

paper, including the interactive grasp planning application that

is the focus of Section 4, were performed using two eigen-

grasps.

In order to test the effectiveness of our framework for the

task of dexterous robotic grasp planning, we have applied the

two-dimensional eigengrasp optimization using all four pre-

viously discussed robotic hand models on a set of six ob-

jects. Figure 5 shows the result of the annealing search for

each hand–object combination. Our focus in this section is to

evaluate the best hand postures that can be found in eigen-

grasp space. Therefore, Figure 5 presents the best hand posture

found by the optimization algorithm without any additional

refinements, allowing a direct assessment of the optimization

method through visual inspection of its output.

These results show that, when the search is confined to a

low-dimensional eigengrasp space, it does not reach a global

optimum of the quality function where all of the desired con-

tact locations touch the target object. However, the local op-

timum found in eigengrasp space can be used as a pre-grasp

by performing the additional adjustment where the hand leaves

the planning subspace in order to conform to the surface of the

object: execution of the binary “close all fingers” command,

allowing all fingers to close until motion is stopped by contact

with the object (Figure 6). We use form-closure as the analysis

criterion for the resulting grasps, as our goal is the synthesis of

stable grasps with no weak points.

In order to perform a quantitative analysis of the pre-grasps

obtained through posture optimization, we can apply this ad-

justment to the 20 distinct solutions with the highest quality

values found by one execution of the optimization algorithm.

We consider two solutions as being distinct if either the dis-

tance between the hand positions they define exceeds 20% of

the object size, or the difference between wrist orientations

exceeds 20�. After closing the fingers, we count the number

of distinct optimized pre-grasps that result in form-closure. In

order to account for the stochastic element, we repeated the

test for each hand–object combination five times. The average

number of form-closed grasps (as well as the standard devia-

tion) for all cases are presented in Table 2. Each optimization

was performed over 70,000 iterations, with an average running

time of 158 seconds. In the case of the human hand, Figure 6

also shows all of the final grasps obtained when using as pre-

grasps the corresponding postures from Figure 5.

These findings confirm our expectations of eigengrasp

space as a pre-grasp or grasp planning space: in general, clos-

ing the fingers of a dexterous hand starting from a random

configuration is not enough to obtain a stable grasp. Our results

show that if the starting position is the result of the eigengrasp

optimization algorithm we can obtain multiple solutions: on

average, 20 optimized pre-grasps result in seven form-closed

grasps for a given hand and object. Interestingly, our algorithm

performs at its best for the more dexterous designs, with kine-

matic structures approaching that of the human hand. This re-

sult can be explained by the fact that all of the eigengrasps

subspaces that we use originate from a study of human grasp-

ing� as the mapping to robotic hands becomes less intuitive,

the effectiveness of the planning method is also decreased. Fu-

ture methods for subspace mapping between hands should also

take into account their relative size (for example, the palm and

finger span of the DLR hand are approximately twice as large

as those of its human counterpart). Overall, the results confirm

our starting hypothesis: a low-dimensional algorithm can take

advantage of highly dexterous hand designs for synthesizing

stable grasps in a computationally efficient way.

4. On-line Interactive Dexterous Grasping

In the previous section we have presented an optimization al-

gorithm that uses a low-dimensional subspace when searching
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Fig. 5. Best hand postures found in a two-dimensional eigengrasp space using simulated annealing optimization.

Fig. 6. Examples of final grasps obtained from optimized postures by closing each finger until motion is stopped by contact with

the object.

for hand postures that match the shape of a grasped object.

However, a significant amount of computational effort was

dedicated to optimizing extrinsic DOFs (wrist position and ori-

entation, six variables) versus intrinsic DOFs (eigengrasp am-

plitudes, two variables). As the focus has been on dimension-

ality reduction for the intrinsic DOF domain, no attempt has

been made to simplify the extrinsic DOF search domain. For

fully autonomous grasp synthesis this is a necessary compo-

nent: a correct finger posture is only relevant when combined

with an appropriate wrist position relative to the target object.

An important category of grasp planning applications that

does not require complete autonomy stems from the field of

neural hand prosthetics. Such devices combine a degree of hu-

man control with artificial hardware and algorithms. Formal-

izing this concept using our framework means that an external

operator can specify desired values for some, but not all, of
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Table 2. Number of form-closed grasps obtained from 20 pre-grasps found in a two-dimensional eigengrasp space (average

and standard deviation over five executions for each hand and object).

Ashtray Shoe Glass Flask Phone Plane

Average SD Average SD Average SD Average SD Average SD Average SD

Barrett 2.8 2.2 1.0 1.0 5.8 5.3 3.4 1.7 1.4 2.1 4.0 3.1

DLR 11.0 3.6 6.0 3.4 0.8 0.8 3.2 2.7 2.8 3.6 1.8 0.8

Robonaut 7.0 2.3 9.0 1.7 14.4 3.7 14.4 3.7 10.0 2.8 3.6 2.3

Human 14.6 2.3 11.0 2.5 11.2 1.6 13.4 3.5 8.4 2.3 1.8 1.3

the variables that define a grasp. For example, Taylor et al.

(2002) have enabled a primate to directly control the linear ve-

locity of the endpoint of a robot arm through three DOFs in

real time. This control was achieved by measuring the activ-

ity of individual cortical neurons that correspond to individual

preferred directions of each neuron in space. The vector sum of

preferred directions of a population of neurons, each scaled by

their individual unit activity, provided the velocity of robotic

end-effector movement.

In contrast, controlling finger posture has proven to be sig-

nificantly more difficult. A number of possible approaches are

described in the literature, including electromyography (Zecca

et al. 2002) and cortical implants (Taylor et al. 2003). These

studies have shown success in decoding a limited number of

information channels, therefore controlling a highly dexter-

ous hand for interactive grasping remains an open and chal-

lenging problem. In this study we propose a grasp planning

method that combines the eigengrasp framework for reducing

the dimensionality of the hand configuration space with real-

time operator input simplifying the spatial components of the

search. Our goal is to enable an operator to complete dexterous

grasping tasks with limited direct control over finger posture.

4.1. System Overview

In our current implementation, the user provides on-line in-

formation on the position and orientation of the wrist. This

data is currently provided using a six-DOF magnetic tracker.

While we have not yet integrated this component in a real pros-

thetic system, it is our directional goal� we envision that hand

position information will by extracted from cortical activity

in a similar fashion to the primate study described above. In

contrast, finger posture is entirely controlled by the automatic

component, which selects an appropriate hand shape by com-

bining information about the geometry and pose of the target

object with the position input provided by the operator. The

only additional information needed from the user is a binary

“click” command for completing a grasp, which we describe

below.

It is important to note that our approach must compensate

for the lack of complete user grasp data by using knowledge

of the target object geometry, as well as its initial position rel-

ative to the hand. In previous work (Kragic et al. 2001), we

have shown that it is possible to perform grasp planning us-

ing a vision-based system for object recognition and localiza-

tion. Compared with the optimization method presented in the

previous section, this system also has to satisfy two impor-

tant criteria: first, the output has to be in the form of explicit

form-closure grasps rather than optimized pre-grasps� second,

solution grasps must be found at a fast enough rate to enable

on-line interaction with the operator and usage of real-time in-

put. The execution of a grasping task must therefore be per-

formed at a speed that approaches natural human behavior, of

the order of seconds as opposed to minutes.

A high-level overview of the complete system and the in-

teraction with the operator is provided in Figure 7. The plan-

ning algorithm runs on the GraspIt! simulator platform. Even

though the grasp planner runs in a simulated environment, the

results can be applied to a real robotic hand, allowing the user

to interact with the hand directly and use it to pick up sur-

rounding objects. The simulator receives user input and sends

it to the grasp planner which processes it and outputs poten-

tial grasps, which are in turn used to generate commands for

the robotic hand. The operator can hold the hand and approach

the target object� the position of the hand relative to the tar-

get is tracked using a Flock of Birds (Ascension Corp., VA)

magnetic tracker. We have also applied our method on a range

of more complex hand designs (including the DLR hand, the

Robonaut hand as well as the human hand model) using the

virtual environment in GraspIt!� the operator can change the

position of the virtual wrist by directly manipulating the mag-

netic tracker. In both cases, wrist position is supplied as the

input to the grasp planner, but the operator has no direct con-

trol over finger posture.

4.2. User Interaction with Grasp Planner

In general, in order to uniquely identify a grasp, three variables

are needed to specify the position of the wrist and three more

for its orientation. In the context of our application, we expect

the user to specify a desired approach direction to the target�

however, the presence of such external input does not fully
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Fig. 7. Interactive grasp planning using wrist position input

from a human operator. Top: system overview� Bottom: ap-

plied examples using a real Barrett hand (left) and a dexterous

hand in a simulated environment (right).

eliminate the spatial component of the grasp planning search.

First, it is not practical to wait until the user has brought the

wrist into a final grasping position before starting the search

for an appropriate finger posture, as this behavior would de-

crease the interactivity of the system. Rather, it is preferable

to start the search early, and attempt to predict where the user

intends to place the wrist. Second, this prediction allows the

system to offer feedback to the user: as soon as an anticipated

grasp is found, the grasp planner can shape the fingers accord-

ingly. The user can then decide whether the grasp is satisfac-

tory and either continue towards the target or choose another

approach direction if the system is unable to find an acceptable

solution.

This behavior can be implemented efficiently by re-

parameterizing the spatial component of the grasp planner as

shown in Figure 8. For each hand model, we define a preferred

search direction d based on the kinematics of the hand, usu-

ally normal to the palm. Then, starting from a hand position

specified by the operator, we search for good grasps in a con-

ical region around the search direction using three variables:

the distance �d� along the approach direction, as well as two

angular variables, 	 and 
. The operator is instructed to ap-

Fig. 8. Search directions defined for the Barrett and human

hand models. The direction of the vector d is pre-defined rel-

ative to the palm. Its magnitude, as well as the values of the

angles 	 and 
 are variables defining a conical search area.

proach the object along a direction that is generally similar to

the search cone� however, the search directions are defined in

order to make this a natural choice. In the examples in Fig-

ure 8 this means that the user is asked to keep the palm ap-

proximately facing the target, as opposed to other possibilities

such as a sideways or backwards approach.

The role of this parameterization is to reduce the number of

extrinsic DOFs that are used for grasp planning, focusing on

areas where good grasps are most likely to be found. Using this

heuristic, the search will automatically ignore states where, for

example, the hand is facing away from the target object. How-

ever, the user is not expected to specify an exact wrist position

for a good grasp� by searching along the approach direction d

the planner attempts to anticipate the intended final grasp. The

angular variables 	 and 
 allow the planner to compensate for

noisy measurements in the intended wrist position, and allow

for more flexibility in the search for solution grasps. By adding

these three variables to the eigengrasp amplitudes describing

hand posture, we obtain a low-dimensional domain that can be

searched fast enough to respond to on-line changes in the wrist

position input provided by the human operator.

4.3. Quality Function Formulation using Scaled Contact

Wrench Spaces

When the posture optimization algorithm is used for on-line

grasping tasks, we use a formulation of the quality function Q

that is better adapted for interactive operation. Recall that, in

the form presented in Section 3, our formulation rewards hand

postures that bring all of the fingers, as well as the palm, as

close to the surface of the object as possible. For the applica-

tion presented here, it is necessary to also reward hand postures

that create stable, but not necessarily enveloping grasps (con-

sider as an example the case of a fingertip pinch grasp applied

on a thin object). We therefore propose an alternative quality
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Fig. 9. Contact wrench space example using a Coulomb fric-

tion cone.

function which is fast to compute and can assess the potential

quality of a pre-grasp posture using a modified version of the

grasp wrench space (GWS) � metric introduced by Ferrari and

Canny (1992). A detailed description of this metric in its orig-

inal form is beyond the scope of this paper� we provide a brief

overview below, and for further details we also refer the reader

to the study by Miller and Allen (1999).

For each contact i , we assume that the space of forces

and torques that can be transmitted is bounded by the con-

vex hull of a finite set of six-dimensional wrenches wi� j where

1  j  k. The convex hull of these wrenches forms the con-

tact wrench space. We note that this approach imposes a linear

form for what are normally quadratic friction constraints� for

example, in the case of Coulomb friction, the force compo-

nents of wi� j sample the contact friction cone (Figure 9), and

the respective torque components are null. In order to define

the GWS, the contact wrenches from all contacts are first ex-

pressed relative to a common coordinate system. This coordi-

nate system is usually anchored at the center of mass of the

object and the choice of axes directions is arbitrary. We denote

the matrix that transforms a wrench from the local coordinate

system of contact i to the global object coordinate system by

Ri � �
6�6.

In our implementation, we are usually assessing the qual-

ity of a pre-grasp shape where the fingers are not in contact

with the target. Therefore, we assume that the hand can apply

potential contact wrenches using the desired contact locations

shown in Figure 4. When computing the GWS, we scale the

potential wrenches at each desired contact proportional to the

inverse of the distance metric �i computed as in (5):

GWS � ConvexHull

�
���

���

	

all desired
contacts

�1	 �i �Ri

k	

j�1

wi� j



���

���
� (7)

Thus, if the value of �i is small, the contact will have a sig-

nificant contribution to the GWS, and states that bring it closer

to the object surface will be rewarded with a higher quality

value. If, in contrast, the desired contact is far from the object,

it will not significantly affect the grasp quality measurement. If

the contact is far enough from the object so that its correspond-

Fig. 10. Multiple contact wrench spaces, each scaled based on

the contact distance metric �i .

ing weight of 1	�i is negative, it is completely excluded from

the computation.

After building the GWS, we compute the � quality mea-

sure as described by Ferrari and Canny (1992) and Miller and

Allen (1999). The quality of the grasp is considered equal to

the radius � of the largest six-dimensional ball, centered at the

wrench space origin, that can be enclosed within the GWS. If

� � 0, then the origin itself is not contained in the hull, and

the grasp does not have form-closure. For � � 0, the grasp

can resist any disturbance, and the maximum magnitude of the

contact forces needed to resist a disturbance is inversely pro-

portional to �.

The process is illustrated in Figure 10 for the DLR hand

grasping a disk. In this example, each contact is modeled by

a friction cone, approximating Coulomb friction for rigid bod-

ies, but other local contact models can also be used. For exam-

ple, the ability to create stable, encompassing grasps with sub-

sets of fingers is increased by using soft fingertips that deform

during contact. In addition to tangential friction, such contacts

can also apply frictional torque. The friction cone is thus re-

placed by a four-dimensional “friction ellipsoid” which con-

strains the relationship between tangential force and frictional

torque (Howe and Cutkosky 1996). This effect can be captured

by linearizing the friction ellipsoid and using the appropriate

contact wrenches wi� j , as shown by Ciocarlie et al. (2007).

This method enables the use of rubber-coated fingertips for

our robotic hands, without compromising the accuracy of the

grasp quality computations.

4.4. Computation of Form-closure Grasps

The automated grasp planner searches for solution grasps in

two stages. The first stage is the posture optimization algo-

rithm presented in Section 3, using the quality function for-

mulation described above. For interactive tasks, each run of

the simulated annealing algorithm is performed over 2,000
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Fig. 11. Example of a complete grasping task: initial approach, finger pre-shaping using grasp planning result, continued approach

and final grasp execution.

iterations, taking advantage of the fact that the search do-

main is five-dimensional (two eigengrasp amplitudes and three

wrist position/orientation variables), as opposed to the eight-

dimensional domain used for fully autonomous searches. Af-

ter reaching this number of iterations, the search is restarted

by resetting the annealing temperature. As a result, the plan-

ner does not get stuck if one particular search fails� rather, the

search is restarted and takes advantage of any changes in the

approach direction provided by the operator.

The user-specified reference wrist position is updated con-

tinuously during the search. The results of the optimization are

therefore always relative to the current position of the wrist.

However, we recall that the low-dimensional optimization pro-

cedure can still only produce pre-grasp shapes� in order for the

system to allow successful completion of the task, final grasp-

ing postures satisfying the form-closure requirement are neces-

sary. In order to achieve interactive rates, this expensive com-

putation is only performed using the best pre-grasps found dur-

ing each run of the annealing optimization, which are queued

and sent to the second stage of the planning process.

For each candidate pre-grasp resulting from the first stage,

we use the contact detection engine within GraspIt! to com-

pute the final grasp that results by closing the fingers on the

object. Once the contacts between the hand and the object have

been determined, we compute the exact quality value of the

final grasp using the GWS � quality in its original form pre-

sented by Ferrari and Canny (1992). If the grasp is found to

have form-closure, it is saved, along with its associated quality

value, as a potential solution, and used by the next component

of the system, which is responsible for interaction with the hu-

man user.

When computing the final grasping posture resulting from a

candidate pre-grasp, we take into account specific mechanical

properties of the hand, such as passive mechanical adaptation

to the shape of the target. A number of robotic hands, such as

the Barrett hand, the SDM hand (Dollar and Howe 2007) and

the CyberHand (Carrozza et al. 2006) rely on passive mechani-

cal adaptation, as it significantly increases grasp stability with-

out increasing the complexity of the control mechanisms. All

of the results involving the Barrett hand presented in this paper

take into account its adaptive actuation mechanism which al-

lows distal joints to close even when proximal joints controlled

by the same motor have been stopped due to contact.

In our implementation, the two planning phases described

in this section (simulated annealing search for pre-grasps and

final grasp testing for form-closure) run in separate threads. As

soon as a candidate pre-grasp is found, it is queued for testing,

but the search for new candidates continues independently of

the testing phase. Also, candidate pre-grasps are independent

of each other, and can be tested simultaneously. This paral-

lelism allows us to take advantage of the current evolution in

multi-core architectures, largely available on standard desktop

computers.

We can now provide a complete step-by-step walkthrough

of a grasping task that combines user input and automated

grasp planning. Figure 11 shows the execution of a grasp pro-

ceeding through the following stages.

� As the user approaches the target object, the grasp plan-

ner searches for a good grasp in a cone-shaped area

around the given approach direction. When a solution

is found, it is used to set the hand posture, allowing the

user to react. If multiple solutions are found, that which

is closest to the current user approach direction is chosen

for presentation (i.e. the solution with the lowest values

for the angular variables 	 and 
).

� The planner continuously attempts to improve the cur-

rent result, by finding new grasps that are closer to the

current position established by the user.

� If the planner is unable to find a grasp in the current

search area, or if the user is not satisfied with the result-

ing hand posture, the user can reposition the hand and

attempt to grasp a different part of the target object.

� If the user is satisfied with the hand posture, they con-

tinue along the current approach direction. As the real

hand position approaches the target grasp, the fingers are
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Fig. 12. Examples of interactive grasping tasks� each image shows the grasp found for a different approach direction or target

object. In all cases the object was successfully grasped and lifted off the table.

Fig. 13. Examples of interactive grasping tasks executed in simulated environments. Bottom row images also show the user

providing the approach direction via a magnetic tracker. All of the presented grasps have form-closure.

gradually closed around the object. The user can there-

fore predict where the object will be touched and finally

issue a “close all fingers” command which completes

the grasping task.

4.5. Results

Figure 12 presents the application of our method using the Bar-

rett hand in a real environment, while Figure 13 shows inter-

active grasps performed in a simulated environment using the

DLR hand, the Robonaut hand and the human hand model. In

most cases, the images show only the final grasp applied by the

user� owing to space constraints we are unable to include im-

ages showing the evolution of the grasping task from approach

direction, pre-grasp and final grasp. In order to better evaluate

the interactive nature of our application, a video clip showing

a number of complete examples is provided in Extension 1.

For any given grasping task, the exact computational effort

required to find a stable grasp depends on the complexity of

the hand and target object, as well as the approach direction
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chosen by the user. On average, the first stage of the grasp

planning algorithm processes approximately 1,000 hand pos-

tures per second, while the second testing phase, running in

parallel, can evaluate approximately 20 candidate pre-grasps

per second. In most cases, solution grasps are found at inter-

active rates: in the example presented in Figure 11, the grasp

planner found eight stable grasps in 13.6 seconds of compu-

tation. These are representative numbers for the behavior of

the system, which generally requires less than 2 seconds to

find a solution grasp for a new approach direction. All of our

tests were performed using a commodity desktop computer

equipped with a 2.13 GHz Intel Core2 CPU.

The ability of the system to allow for successful task com-

pletion in a short time is more difficult to quantify, as it also

depends on how well the user reacts to the behavior of the au-

tomated components. All of the results presented in Figures 12

and 13, as well as in the video presented in Extension 1, were

obtained at interactive rates, usually requiring between 5 and

15 seconds from first approach to final grasp execution. For

the more difficult tasks, taking up to 30 seconds to complete,

we found two main reasons that led to the increased execu-

tion time: either the planner repeatedly failed to find form-

closure grasps for selected approach directions, or the human

user could not interpret some of the finger postures selected

by the planner and had to attempt different grasps. These cases

represent a small minority of our tests and examples� however,

the tests were performed by well-trained users familiar with

the inner workings of the planning algorithm.

As a next development step, we intend to test our system in

user studies with untrained subjects. This study will allow us

to quantify more precisely how the interaction paradigm that

we have chosen affects user experience. Informal responses

from our current experiments showed that the attempts of the

planner to anticipate where the operator intended to place the

hand, and thus shape the fingers accordingly, were occasion-

ally unsuccessful. In such cases, even if the planner succeeded

in finding a stable grasp, the user did not execute it and rather

attempted a different approach direction. This communica-

tion channel can potentially be improved in both directions,

by providing the operator with more clues about the results

of the planner as well as more means to influence its behav-

ior. We believe that such features must complement improve-

ments to the core planning algorithm itself, as we progress

towards a prosthetic system that can be deployed in the real

world.

5. Conclusions

In this paper we have proposed the use of a low-dimensional

subspace of the hand DOF space for finding hand postures

appropriate for a given task. Using quantitative data derived

from human studies we have defined such a control subspace

for grasping common objects. We have introduced the concept

of eigengrasps as the defining dimensions of this subspace and

have extended this framework for a number of robotic hand de-

signs, with the complete set of hand models used in this study

ranging from 4 to 20 intrinsic DOFs. As long as the eigen-

grasp space provides a good approximation of the hand mo-

tion required for a given task, algorithms can be designed to

operate in this space and take advantage of the dimensionality

reduction. We have presented a low-dimensional hand posture

optimization method applied for stable grasp synthesis� the re-

sults show that, while not containing exact grasping postures,

a two-dimensional eigengrasp space can serve as an effective

pre-grasp or planning space even for highly dexterous hand

models.

The eigengrasp space also acts as an interface between the

kinematic structure of the hand and higher-level task planning.

Therefore, for a given task, it is possible to use a unified treat-

ment for a number of robotic hand models, even though the

kinematic specifications may be significantly different. Ow-

ing to the dimensionality reduction of the configuration space,

it allows also algorithms for complex dexterous hands to be

used in applications that require fast computational rates. One

such example, arising in the field of hand neuroprosthetics, is

an interactive grasping task where a human operator controls

the position and orientation of the wrist, but has no direct con-

trol over finger posture. We have presented a grasp planner

that interfaces between the operator and the artificial hand by

selecting appropriate finger postures fast enough for on-line

interaction.

In order to achieve interactive rates, this search is separated

into two processes: the first finds a small number of optimized

pre-grasps in a low-dimensional eigengrasp subspace, while

the second one processes these results and computes the qual-

ity of the final grasping positions. Our interaction method al-

lows the user to provide wrist position and orientation input to

the grasp planner, effectively guiding the search in a small re-

gion around a desired approach direction. We have tested this

system in both real and simulated environments and have pre-

sented results involving a number of different hand models and

objects.

In the work presented here we have used control subspaces

derived from user studies on human grasping, mapped em-

pirically to robot hand kinematics. Instead, we would like to

be able to compute the optimal eigengrasp subspace for a

given robotic hand model and task. One possible approach

is to perform a dense sampling of the high-dimensional con-

trol space of the robotic hand, then find the low-dimensional

decomposition that contains most of the desirable hand pos-

tures. The sampling process for the hand configuration space

can be performed off-line, therefore computational restrictions

can be somewhat relaxed. However, in the case of very com-

plex hands with 20 or more intrinsic DOFs, this task is in-

tractable even with an off-line assumption. Such cases will

require a novel approach and will be the subject of future

research.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Examples of grasping tasks executed

using our interactive planner
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