
Hand Tracking For Low Powered Mobile AR User Interfaces

Ross Smith1, Wayne Piekarski1, and Grant Wigley2
Wearable Computer Lab1 / Reconfigurable Computing Laboratory2

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA, 5095, Australia
ross@cs.unisa.edu.au, wayne@cs.unisa.edu.au, wigley@cs.unisa.edu.au

Abstract
Mobile augmented reality systems use general purpose
computing hardware to perform tasks such as rendering
computer graphics, providing video overlay, and perform-
ing vision tracking. Our current Tinmith-Metro modelling
system implements a user interface which is based on
tracking the motions of gloves worn by the user, but is
implemented inefficiently in a mobile laptop carried on a
backpack by the user. This paper describes how we have
developed a tracking algorithm which is suitable for im-
plementation in a field programmable gate array. This
implementation uses minimal power and will allow future
miniaturisation of our mobile backpack equipment. We
present the results of studies conducted outdoors to find
the most appropriate marker type to use, and also the
overall results that were achieved during testing.

Keywords: augmented reality, wearable computers, field
programmable gate arrays, mobile user interfaces.

1 Introduction
Our current main area of research has been in developing
mobile outdoor augmented reality systems, particularly
those that allow the user to interact with the 3D environ-
ment directly. Our Tinmith-Metro software allows users
to perform real-time 3D modelling in outdoor environ-
ments using the body and the hands as the user interface
(Piekarski 2001) (Piekarski 2003). Tinmith-Metro runs on
a backpack computer worn by the user (shown in Figure
1) and operates completely autonomously in an outdoor
environment. Since the system is mobile, it is important
that the interface to control it is portable but yet still intui-
tive to use. Our user interface relies on motions of the
user’s hands to provide an intuitive set of controls to in-
teract with the 3D environment. A cursor is implemented
by tracking markers on the gloves worn by the user, and
menus are selected by pinching different fingers with the
thumbs.

Our existing systems have relied on the use of fiducial
markers placed on the tips of the thumbs of gloves worn
by the user, as shown in Figure 2. These fiducial markers
are tracked using ARToolKit software (Kato 1999), and
while this approach worked well for our earlier systems
there were a number of drawbacks. Firstly, ARToolkit
uses a complex algorithm that provides a full six degrees
of freedom (6DOF) tracking and is very sensitive to error,
while only two dimensional tracking is required for our
user interface. Tracking failures are quite common in
typical outdoor environments where conditions are con-

stantly changing and quite harsh. Images with bright or
dark backgrounds, or specular highlights on fiducial
markers, are common in varying sunlight and the tracking
tends to fail quite often. Secondly, the ARToolKit as well
as the live video input and overlay also requires a consid-
erable portion of the processor in the mobile laptop. By
removing the need for these tasks to be performed on the
laptop we can use smaller and less powerful computers,
and free up the processor for other useful tasks. Therefore
in this paper, we describe how we have used specialised
hardware to implement functionality formerly provided
by a general purpose laptop processor. Instead of tracking
complex fiducial markers described previously, simple
coloured balls which are immune to most lighting prob-
lems are used instead, as shown in Figure 2. Robust track-
ing is critical for developing applications that are easy to
use because tracking glitches can cause very confusing
side effects for the user.

Most augmented reality (AR) research that has been pub-
lished to date relies on the use of general purpose com-
puting hardware to perform computations, render com-
puter graphics, and provide video overlay functionality.
Systems that rely on this general purpose computing
hardware will be larger in size and consume more power
than ones which have devices customised for specific
tasks. When working in indoor environments, issues such
as weight and size restrictions and power consumption
are rarely considered as the systems are not required to be
mobile. When working outdoors however, these issues
are very important as the user may be required to carry
the system around with them.

In this paper we describe how we have overcome the
drawbacks of the existing tracker in an effort to miniatur-
ise and optimise the overall system. This includes the use
of a reconfigurable computer containing a field pro-

Figure 1 - Tinmith backpack with the RC200 and

video overlay devices mounted at the top, and the user
wearing gloves with coloured markers attached for the

hardware vision tracker

grammable gate array (FPGA) to perform the hand track-
ing, and a video overlay device to perform the required
AR overlay. By transferring these tasks from the laptop to
custom hardware, we can use a slower general purpose
microprocessor and less sophisticated 3D graphics chipset
which may ultimately result in reduced size and power
consumption of the laptop and possibly remove the need
for it altogether in the future.

This paper is divided into four main sections. Section 2
discusses technologies and research that are relevant to
this paper, including reconfigurable computers with
FPGAs, the current problems with outdoor hand tracking,
and previous vision tracking techniques. In section 3 we
describe how the hand tracker is implemented on the re-
configurable computer, including the selection of the best
algorithm, the marker design, and the use of YUV colour
spaces to extract out the desired features. Section 4 details
the experiments performed into selecting a suitable
marker colour and threshold range, and the performance
of the tracker outdoors. In section 5, we present how the
new hand tracking system was integrated into the current
Tinmith modelling software, including the implementa-
tion of low powered video AR overlay. Finally, we finish
the paper with a summary of the work presented.

2 Background
In this section we will discuss technologies and research
that are relevant to this paper, including reconfigurable
computers, FPGAs, current problems with outdoor hand
tracking, and previous vision tracking techniques.

2.1 Reconfigurable computing
Not all applications can be solved through the use of
software. Many real-time applications require algorithmic
speedup that only dedicated hardware can provide. Appli-
cation specific integrated circuits (ASIC) are a well-
known category of customised hardware that can provide
this algorithmic speedup. ASICs however are not desir-
able in all situations as they can be very costly for short
production runs, require large amounts of engineering
expertise to design, can take many months to design and
verify, and can not be modified once fabricated (Robles
2003).

An alternative to an ASIC that does not have these draw-
backs but retains a similar algorithmic speedup is a Field
Programmable Gate Array (FPGA). An FPGA consists of
an array of uncommitted logic and wire resources that can
be configured by the end user repeatedly through a form
of hardware programming. A reconfigurable computer
(Compton 2002) combines an FPGA with other ASICs to
provide a platform that retains the flexibility of software
but gains the speedup of hardware. The algorithm requir-
ing the hardware speedup is configured onto the FPGA
while other ASICs provide support hardware that is not
suited to the FPGA architecture; for example, video cap-
ture and floating point computation. As the algorithms are
performed in custom hardware, there is a possibility for a
reduction in power consumption and improved perform-
ance as compared to if they were used on a general pur-
pose computer.

Programming hardware circuits for FPGAs involves the
use of a hardware description language (HDL). The two
traditional HDLs are Very High Speed Integrated Circuits
Hardware Description (VHDL) (Ashenden 1990) and
Verilog. A new set of HDLs has recently become popular
to create hardware circuits however. These HDLs are
subsets of common software programming languages
such as C (Bazargan 2000), and examples include Han-
del-C (Celoxica 2003), System-C (Bhasker 2002), and
Hardware Join Java (Hopf 2002). An advantage of these
languages as compared with the traditional HDLs is the
ability to reduce the design time since they use a similar
syntax to traditional languages, but extended to support
hardware circuits. This was demonstrated by Loo (Loo
2002) as students with limited or no VHDL experience
were able to develop hardware applications within weeks.

In the wearable computing and augmented reality do-
mains, the use of FPGAs is still quite rare. This is perhaps
due to the extra complexity of implementing hardware in
VHDL or Verilog rather than software. Plessel et al
(Plessl 2002) described a wearable system that performs
simple tasks such as audio and video decoding through
the use of reconfigurable modules located on an FPGA.
As particular applications are required, the FPGA loads
the appropriate hardware module and performs the task in
hardware. Luk et al (Luk 1998, Luk 1999) used a recon-
figurable computer to support basic functions for aug-
mented reality applications: video mixing, image extrac-
tion and object tracking. The image extraction and object
tracking stages in this system were performed using a
fixed position camera, which significantly reduces the
difficultly in performing these tasks. Matsushita et al
(Matsushita 2003) described ID Cam, which uses custom
hardware and high speed cameras to extract identification
codes from flashing beacons in a scene. The camera con-
tained custom silicon to perform most of the high speed
extraction, and an FPGA was used to process the final
result.

2.2 Outdoor hand tracking
When the Tinmith-Metro modelling system was origi-
nally designed (Piekarski 2001) (Piekarski 2003), the user
interface was built up around the use of gloves as the in-
put device. The user is able to change the environment

Figure 2 - Original ARToolkit marker shown attached
to the left glove, and new robust ball-shaped coloured

markers shown attached to right glove.

using their hands, which is a very intuitive control
mechanism. Tracking the position of the user’s hands is
made particularly difficult when working outdoors, with
known problems such as power consumption, size,
weight, and support infrastructure. Some examples of
these problems are: accelerometers drift over time and
provide inadequate registration; infrared based systems
are unreliable due to the large amounts of radiation gen-
erated by the sun; active magnetic tracking relies on using
large non-portable units to generate magnetic fields and
are affected by equipment carried on the backpack. One
tracking system that has been demonstrated outdoors is
the WearTrack system (Foxlin 2000) which adds ultra-
sonic transmitter and receiver equipment to a wearable
computer.

Our original outdoor tracking implementation (Piekarski
2004) employs optically-based vision tracking however.
This approach does not require any extra hardware since
the user already wears a head mounted camera to provide
the video AR overlay for the rest of the system. An addi-
tional advantage is that since the user sees the same view
as the tracking software, it is possible to achieve accurate
registration. The ARToolKit libraries (Kato 1999) are
used to perform full six degree of freedom tracking of 2
cm x 2 cm paper fiducial markers placed on the thumbs
of the gloves. Only the position values are used, as the
accuracy of the rotation values is not adequate. Perform-
ing this tracking on the laptop is quite CPU intensive
however, and prevents us from using more efficient and
smaller equipment.

2.3 Previous vision tracking algorithms
Vision tracking has been a popular field of research for
many years and has had a wide range of contributions.
Rasmussen et al (Rasmussen 1996) reviewed a number of
different tracking techniques including edge detection,
region based correlation, and blob tracking. They explain
that the tracking of simple blobs is much simpler than
other techniques, and we believe that this will assist with
its implementation on an FPGA. The authors described
how most existing algorithms for blob tracking rely on
static or selective colour distribution to segment an image
accurately. They defined a custom colour space to assist
with an accurate threshold but did not describe other al-
ready available colour spaces which might be easier to
implement. Brusey et al (Brusey 2000) discussed the
problems with recognizing images with colour alone in
many colour spaces, and that in all cases there are differ-
ent objects which are not distinguishable. They present a
decision tree approach with a custom colour space that
separates brightness, using individual colour channels to
make decisions.

There are a number of universities who participate in the
RoboCup robot soccer competitions (Bandlow July 1999)
(Wang 2001). These competitive events rely heavily on
the tracking of coloured markers for estimating the posi-
tions of all the robot players. Since the lighting conditions
are fixed, many of the competititors perform simple
thresholding in RGB space, although other colour spaces
are also used. For other applications of these trackers,
Jebara et al. (Jebara 1997) implemented a system which

allows a user wearing a HMD to visualise predicted ball
motions in a game of billiards. A vision tracking system
was used to automatically capture the locations of the
balls in real time. Cipolla (Cipolla 1993) implemented an
indoor vision tracker using motion parallax to estimate
the 3D pose of gloves worn by a user. Dorfmuller-Ulhass
et al (Dorfmuller-Ulhaas 2001) described the use of blob
tracking with retro-reflective markers and an infra-red
light to detect the rotations of various joints in the hands.
They discuss how they initially used rings around the
fingers, but found that with blobs the centres were much
easier to locate.

3 FPGA based hand tracking
In this section, we describe how the hand tracker is im-
plemented using a reconfigurable computer, and the
modifications made to improve its performance in an out-
door environment. Firstly we discuss what tracking algo-
rithm was used and why. We then outline the colour seg-
mentation step used, followed by blob detection, and fi-
nally the FPGA implementation.

3.1 Overview
Many existing tracking techniques are based on one of
the following methods: edge extraction, region based cor-
relation or template matching, and segmentation tech-
niques (Dorfmuller-Ulhaas 2001) (Rasmussen 1996).
Region-based correlation compares known templates to
the video stream to locate markers, but incurs a high
computational cost. Edge extraction may be performed at
a low cost, however the remaining post-processing slows
the overall performance. We have therefore focused on
segmentation techniques as they can be implemented in
real time on an FPGA the easiest.

Tracking techniques may be further distinguished as hav-
ing either background or foreground constraints
(Dorfmuller-Ulhaas 2001). Background constraint sys-
tems rely on a simple uncluttered environment or may
perform background subtraction based on a static view.
These systems do not apply well to our environment since
our background scene is constantly changing with user
motion. We therefore threshold with a foreground con-
straint, whereby coloured balls are attached to the gloves
of the user. The colours allow the system to distinguish
the balls from the environment, and then blob detection is
used to work out the centre of the ball. We use spherical
markers because they appear the same from a wide range
of angles.

Although there are many vision tracking algorithms, not
all of them can easily be implemented on an FPGA. The
algorithm selected must be suitable for implementation in
parallel, and not have a gate count larger that the target
FPGA. Some operations such as floating point computa-
tion will consume larges amounts of FPGA area and
should be avoided.

3.2 Implementation
In this sub-section we will outline how the reconfigurable
hardware hand tracking system was implemented. We
discuss what implementation language it was written in

and why, what platform was used and why, and detail
each of the components of the algorithm itself.

3.2.1 Language
Programming hardware circuits for FPGAs traditionally
involves the use of a hardware description language
(HDL). The two main HDLs are Very High Speed Inte-
grated Circuits Hardware Description Language (VHDL)
and Verilog. One of the major problems of these HDLs is
the advanced level of hardware knowledge required to
use them. A new set of HDLs has recently become popu-
lar to create hardware circuits. These HDLs are subsets of
common software programming languages and examples
of these languages include Handel-C (Celoxica 2003),
System-C (Bhasker 2002), and Hardware Join Java
(Hopf). The advantage of these languages as compared
with the traditional HDLs is the ability for software engi-
neers to use them and concentrate on the specifications of
the implementation rather than the code semantics (Rao
2004). This was demonstrated in the paper by Loo (Loo
2002) as students with limited or no VHDL experience
were able to develop complex hardware applications in
Handel-C within weeks.

Handel-C is a hardware description language based on an
extended subset of the standard ANSI-C software pro-
gramming language. The major advantage of it is there
are no intermediate stages and it allows hardware to be
directly targeted from software. This provides the neces-
sary features that allow software engineers to easily de-
velop hardware applications. Handel-C comes packaged
with the development environment DK1. DK1 does not
provide synthesis but is able to produce output files in
EDIF format. From this, the traditional place and route
tools of the target device can be used to produce bit-
streams. A more detailed description on Handel-C is
available in the reference manual (Celoxica 2003).

3.3 Platform
The Celoxica RC200 reconfigurable computer was cho-
sen as the target platform for the hand tracking system.
This is shown attached to the top of the backpack in
Figure 1. The hardware consists of a Xilinx Virtex II
1000 FPGA, 8 Megabytes of external memory, program-
mable clocks, TFT touch sensitive screen, Ethernet, au-
dio, video out, VGA out, video in, parallel, and RS-232
serial ports. The RC200 is a single board with dimensions
of 190mm x 150mm and can run from a 12V power
source. The platform contains a Phillips video capture
device and provides synchronous streaming of pixels to
the FPGA. This particular platform was selected because
it has a dense FPGA, supports streaming video, has a se-
rial port for connection to the host, and has an extensive
Handel-C application programming interface.

3.4 Algorithm
Our goal with the algorithm was to select a simple reli-
able algorithm which provides 2DOF tracking capability.
There are many different vision tracking algorithms but
not all of them can be easily implemented on an FPGA.
We have avoided using techniques that require complex

floating point calculations in an effort to minimise the
area used on the FPGA. We found that segmentation
could be performed using very few gates. To provide a
unique target that can be tracked by the algorithm, we
have decided to use coloured balls mounted onto the
thumbs of gloves worn by the user. Figure 2 shows both
the original gloves with fiducial markers, as well as the
new design which contains a single coloured ball. The
marker ball is made of furry material which reduces re-
flections, and the shape is designed to provide highly ro-
bust object detection.

The first step in separating the coloured ball from the
image is to threshold the image based on colour. The na-
ïve approach is to use an RGB colour space to nominate a
range of colours along each axis. The limitation of RGB
is that brightness is encoded into all three channels, and
brightness runs diagonally from black to white. Therefore
it is not possible to specify certain ranges of colours in
RGB that are invariant to brightness, which is important
when working in uncontrolled lighting outdoors. Colour
spaces are a traditional area of computer graphics (Brusey
2000) (Foley 1990) and there are a wide range available.
When encoding colour for hardware such as a television,
schemes such as YUV, YIQ, and YCrCb are used. The Y
channel represents brightness (luminance) while colour
values are stored in the other two chromaticity compo-
nents. When representing colours in the user-oriented
manner often used by artists, colour specification
schemes such as HSV and HLS are used. The H channel
specifies colour in the form of a single hue angle on a
colour wheel, while the other two channels specify
brightness and saturation type values. In all of the above
colour spaces, brightness is separated from colour and
makes it suitable for use in robust colour segmentation.
The limitation of the H channel is that it is an angle and
requires trigonometric operations or lookup tables to be
used.

There are a number of different ways to find the centre of
the segmented region, and we have explored the statisti-
cal filters median, mode, and mean. The median algo-
rithm implements an array of buckets for every row and
column in the image - as pixels are found the matching
buckets are incremented. At the end of this process the
buckets in the row and column arrays are individually
traversed and added up until the total reaches half the
total number of hits - when this occurs then the median
pixel is found. The mode algorithm implements a similar
bucket algorithm as median, except that the row and col-
umn buckets with the most hits is selected as the mode
coordinate. The mean accumulatively adds up the X and
Y locations of the accepted pixels and divides each of
these by the number of accepted pixels. We studied the
accuracy of each of the filters with a variety of software
test cases on a PC and found they all performed reasona-
bly well but with varying failure conditions. We made our
final decision based on which was best suited to imple-
mentation in hardware. The median and mode algorithms
both require two arrays of buckets to be maintained in
memory, and random memory access times on the RC200
are slow in comparison to the time it takes to traverse the
pixel array linearly. However the mean algorithm only
requires three counters to be maintained with Xtotal, Yto-

tal and the number of hits; thus we decided mean is the
best suited filter to implement.

3.5 Circuit Design
The application we have written consists of four parallel
processes: VGA input, video output, mean calculation
(division), and RS-232 serial communications, each of
which will be discussed in more detail in the following
sub-sections. Although the four processes are run in par-
allel to each other, they are all closely interlinked using
control flags for accessing common data values, as de-
picted in Figure 3. The flow of the system starts with the
video stream; a pixel is read and evaluated according to
the threshold values. For all the values that are accepted,
a running total of the X and Y pixel locations is stored.
When the end of the frame is reached the mean calcula-
tion process computes the centre of mass of the accepted
pixels. The result from this is then sent via the RS-232
serial port and displayed to the TFT display for debug-
ging using a cross to indicate the location of the marker
being tracked. The TFT screen is typically used as a de-
bugging device when tuning the tracker outdoors. The
pseudo code for our design has been presented in Figure
4, which outlines the flow of the system on a pixel by
pixel basis.

3.5.1 Video input
The video input process captures a video stream from the
Phillips SAA711H chip. This provides a synchronous
stream of pixels which we evaluate in real time. The pix-
els can be captured in a range of formats, but we have
chosen YCrCb as this separates brightness and colour
information which makes it well suited to outdoor track-
ing. As each pixel is captured, the scan position is used to
evaluate what path will be executed in the circuit. The
first and most common path is executed when a pixel is
read and at this point segmentation is performed to de-
termine if it falls between the threshold values. When a
pixel is within the threshold values, the X and Y locations

are processed using the decided algorithm until the end of
the frame. The second path is executed when the X and Y
scan values indicate the end of a frame (X = 720 and
Y=576). Finally, a shared control flag is set to indicate
the frame is complete and the overall calculation process
can begin.

3.5.2 Mean calculation (division)
The purpose of the mean calculation process is to perform
division on the results calculated in the section above.
The mean calculation process runs as an endless loop, and
a control flag is used to signal when new values are ready
and the division can be preformed. When this occurs the
X and Y totals are divided by the frame hit counter and
provides the final average X and Y results. When this
step is completed another control flag is set indicating the
results are ready for the video output process. Finally, the
results are sent to the RS-232 circuit ready for transmis-
sion to the Tinmith system.

3.5.3 Video output
The video output process is used to display a picture on
the TFT screen and the VGA out of the RC200. We have
used the results from the mean calculation to display the
location of the blob being tracked, as shown in Figure 5.
This video output is not essential for the operation of the
algorithm but has proven to be a valuable tool when tun-
ing the different coloured blobs. It also means the RC200
is a stand alone tracker not relying on the accompanying
laptop computer to demonstrate its operation.

3.5.4 RS-232 serial communications
The RS-232 serial port is used to send results to the host
computer, as well as receive commands used to configure
the RC200. When the RC200 is reset, a set of system ini-
tialisation packets are sent to the host indicating the status
of the RC200. The RC200 then enters normal operation
where it reads incoming commands used for system con-
figuration and sends tracking information to the host.
Incoming commands include setting the threshold values
for tracking of different coloured blobs, setting the cam-
era input port, and running in debugging mode when the
image segmentation is displayed to the TFT screen. Out-
going tracking data is sent when the mean calculation
process indicates a new result is ready. The system sends
approximately 25 updates a second, which is the standard
PAL refresh rate provided by the Phillips capture chip.

Figure 3 - Flowchart of the parallel hand tracking
architecture implemented in hardware

While (True)
 For each pixel in the image
 If pixel falls between segmentation ranges
 Add x coordinate to xtotal
 Add y coordinate to ytotal
 Increment hit counter by one
 End If
 End For

 Calculate xmean with xtotal divided by hits
 Calculate ymean with ytotal divided by hits
 Send results to PC via RS-232 port
End While

Figure 4 – Pseudocode for the FPGA vision tracking
processing algorithm

3.6 Performance
Once the hand tracking algorithm was implemented on
the FPGA, both the clock speed and device utilisation
were recorded. These values were captured from the out-
put files generated from the Xilinx place and route tools.
Including the algorithm and a 32 bit divider circuit, the
total device utilisation was 83%, or 4263 out of 5120
slices of the FPGA. The theoretical maximum clock
speed was 105.27MHz, however the actual clock speed of
the system was set to 25.175MHz due to a requirement of
the TFT display device.

To determine the actual device utilisation of the hand
tracking algorithm itself without the divider circuit
(something that could be easily performed on the host),
the application was recompiled with it removed. The per-
centage of FPGA consumed dropped to 23% or 1177
slices. Therefore, the 32-bit divider circuit consumed
3086 slices or 60% of the FPGA.

Our first implementation of the tracking algorithm per-
formed the segmentation on the FPGA and passed values
to the laptop for division. This immediately reduces the
area used on the FPGA however we then moved the divi-
sion to the FPGA to make it a stand alone unit supporting
our goals of removing the laptop from the wearable com-
puter altogether.

3.7 Power considerations
Since the RC200 is designed for development, it contains
many supporting hardware components that are not used
but still consume a noticeable amount of power. For ex-
ample, the optional LCD screen is useful for debugging
but the display and backlight contribute to a total con-
sumption of 9 W (750 mA at 12 V) of power and so
would be disabled in actual use. During the operation of
our tracker without the display, the power used was meas-
ured as being 4 W (330 mA at 12 V), which is considera-
bly less. However, this measurement is based on the de-
velopment board which has many other features we have
not used. A more efficient solution could be achieved in a
custom circuit board which is comprised of only the
FPGA, video capture, and serial UART chips attached.

We used the Xilinx XPower tools to estimate the power
consumption of the FPGA chip by itself, and the calcu-
lated result was 483 mW. This power value is signifi-
cantly lower than those achieved by the entire RC200
development board. We consulted the data sheet for the
Phillips SAA7113H video capture chip which is used in
the RC200, and found that its power consumption was
rated at less than 500 mW. Therefore, it should be possi-
ble to develop a board which contains only a Virtex II
FPGA and a Phillips SAA7113H that consumes less than
1 W of power.

4 Outdoor experiments
After the implementation of our algorithm on the FPGA,
we tested it outdoors to evaluate its effectiveness. The
first step is to pick suitable colours to track, and then test
to see how well these perform in actual outdoor environ-
ments.

4.1 Suitable colour selection
As was previously mentioned, we require the use of
unique colours to separate the marker balls from the
background environment. Initially we tried to use small
ping pong balls, but found that the surface was too shiny
and contained large specular highlights. These specular
highlights show up as white on the video camera which
exceed its capabilities, and are not visible as any particu-
lar colour. To prevent these highlights, we used furry
balls which are lit much more evenly, even when used in
the brightest direct lighting conditions. A variety of dif-
ferent coloured balls of sizes 1 cm, 2 cm, and 3.5 cm
were evaluated to determine which colour would be the
most suitable to be distinguished from the background
environment.

Our first experiment was to build up a map of the colours
that are present in typical outdoor environments on our
campus. We used a camera outside (a FujiFilm Finepix
40i) and captured over 50 images of various scenes such
as trees, grassy areas, buildings, and signs. We extracted
all the RGB values from the images and converted them
into YUV space. Figure 6 shows plots in U and V of the
presence of different colours in the sampled environments
as dark points, with various primary and secondary col-
ours also labelled for reference. Figure 6 also shows an-
other larger and lighter coloured region indicating the
possible range that the camera is capable of operating to.
Also present is a small streak from the centre of the UV
plot, indicating what a green ball looks like when viewed
with a black background. From these tests, we learned
that saturated colours are not as common as we expected
in the environment - saturated colours are present on the
outer boundaries of the depicted hexagon, while greys are
at the centre. Most colours in the environment are slightly
grey, and so very bright and saturated objects should be
distinguishable from the background. We should also try
and use regions of the colour space in Figure 6 that are
not densely populated with colours from the environment.

Figure 5 - Output from the RC200 showing image
threshold and the calculated marker centre point,

combined with the view of the outdoor environment

4.2 Colour range specification
Our implementation on the RC200 is tuneable via the RS-
232 port so that the laptop keyboard can be used to con-
figure the ranges to accept on the YCrCb channels. We
tested a range of coloured balls (green, blue, orange, yel-
low, red, and white) to evaluate which would produce the
best results in outdoor environments. To tune colours, the
YCrCb filter is opened up to full range (0-255 with 8 bits
per channel) and the thresholded image is viewed on the
RC200 TFT screen. The minimum (min) value for the Cr
channel is then adjusted until just before it begins to filter
out the blob. The maximum (max) value is adjusted in the
opposite direction until the ball is just accepted. The min
and max values are recorded and then opened back up to
full range. The same process for min and max is then per-
formed for the Cb channel so that the ball is thresholded.
The Y channel is slightly restricted to 10-240 so that it
removes out black and white pixels (which contain no
real colour information) and then the Cr and Cb ranges
are both set to the measured values. We then test these
colours against the environment to see if there are
matches against any other objects.

During our testing, we noticed that the CCD camera used
sees colours in the environment different than our own
eyes because the sensor operates over different light
wavelengths. When looking at the output, some colours
such as blue appeared with a noticeable green colour.
When selecting coloured balls to use, the colour the cam-
era sees (and not what the human sees) must be taken into
consideration. The following summarises the colours that
we tested outdoors - Green: When testing the green balls,
we noticed that they conflicted with many of the leaves in
the trees nearby, but not the grass. Under close inspection
the blades of grass actually contain quite a lot of yellow
and so there was no conflict. Unfortunately, the amount
of noise from the trees was enough to affect the tracker.
Blue: The blue coloured balls occasionally conflicted
with the sky under certain brightness conditions, such as
when the camera’s auto adjustment darkened the overall
image. The blue ball appeared to be a turquoise colour in
the camera, but when we tried a more pure blue colour it

still conflicted with the sky colour. Orange: The orange
colour generated the best results with our tracking sys-
tem. After calibrating it we were not able to find any
other objects in the environment of a similar colour that
would cause the tracker to operate incorrectly. The only
time we could cause a conflict was when looking at a
pedestrian crossing sign, which is understandable consid-
ering it was a similar shade of orange. Yellow: The yel-
low marker balls experienced slight conflicts with the
grass, which as mentioned previously contained large
amounts of yellow. This colour would be suitable for use
in environments without grass however, such as on con-
crete or dirt perhaps. Another problem with yellow is that
it is similar to orange and it is not possible to separate
these two colours from each other with their YCrCb
ranges. Red: We experienced our second best result with
the red coloured balls. There were no conflicts for this
colour with the rest of the environment, except for a stop
sign on campus. The results were not quite as good as
orange, but this could perhaps be improved with further
tuning of the YCrCb ranges. Once again, this colour is
similar enough to orange that it too prevents them from
being used together.

From our experiments, we discovered that trying to pro-
vide highly saturated colours for the camera was more
difficult than first thought. Even when using highly satu-
rated coloured balls, the camera tends to capture them
with a slightly washed out colour which slightly reduces
their distinctiveness. We would like to try out new col-
ours, especially those around the cyan or magenta areas
because they are the most different from orange.

4.3 Hand tracker results
The purpose of this project was to develop a separate
hand tracker using an FPGA to integrate with the Tin-
mith-Metro software. The RC200 contains an RS-232
serial port and we transmit 10 byte packets to the PC for
each update to indicate the X and Y coordinates of the
cursor, as well as the number of pixels used in the calcu-
lation as a confidence factor. The RC200 captures frames
at the PAL refresh rate of 50 Hz, but only provides
frames to the FPGA at 25 Hz due to interlacing in the
video signals. The RC200 processes frames in real-time
and so the results are available within 1/25th of a second,
although there is additional delay added by transmission
across the RS-232 cable and in the host laptop operating
system. Figure 5 shows a capture of the thresholded over-
lay and extracted centre point from the RC200, combined
with the view from the camera.

When the 2D cursor is plotted on the display in the Tin-
mith-Metro software, there is some slight lag with the
cursor. This lag is noticeable because the RC200 and the
video overlay hardware operate at PAL refresh rates,
while the laptop is slightly behind with its processing and
rendering of the 3D augmented reality overlay. Previ-
ously this effect was not noticeable because the entire
output was delayed, but now some parts of the display are
faster than others. We could possibly add a delay to the
video stream so that the lag is synchronised, but then this
would make the entire system lag from the physical
world.

Figure 6 - All colours that are present in a selection of

outdoor photos are shown in dark pixels, plotted in UV
coordinates. The brighter area depicts the possible
operating range of the camera, and the small light
streak represents a green marker held in front of a

black background

In terms of accuracy, all of the marker sizes tested pro-
duced cursors which were within the bounds of the
marker, assuming that the signal to noise ratio is rela-
tively high. When smaller markers are used, the signal to
noise ratio is reduced, and the accuracy will suffer while
still being small enough to point to objects accurately. Of
the 1 cm, 2 cm, and 3.5 cm markers tested, we decided to
use the 2 cm markers since they are the size of the finger
tips.

4.4 Tracker operation and comparison
The user interface in our Tinmith-Metro modelling sys-
tem is made up of three components: a cursor based on
the tracking of the user’s thumbs; a command entry sys-
tem where the user’s fingers control menu operations; and
an AR HMD which displays information to the user. Each
of the user’s fingers are mapped to a menu option which
is selected by pressing the appropriate finger to the
thumb. Figure 7 shows our AR software in operation out-
doors, and the menu strips are visible in the bottom left
and right corners. This menu system is used to control all
aspects of the operation of the system, such as performing
3D modelling tasks. Using the cursor, a number of differ-
ent manipulation operations are supported, including se-
lection, rotation, translation, scaling, carving, and paint-
ing operations. Since the thumbs are used as a cursor, the
fingers can still be used to select menu options simulta-
neously.

The original ARToolkit markers (shown in Figure 2) are
a black and white pattern printed on paper and attached to
cardboard. Our new markers were chosen specifically for
their furry matte surface to minimise specular highlights
experienced with the ARToolkit markers. Also they ap-
pear to be the same spherical shape from all angles disre-
garding occlusions. From the user’s perspective, both the
old and the new trackers are very similar, the only differ-
ence is the type of marker attached to the thumb of the
glove. In terms of the application and interface to the user
however, there is no noticeable difference.

In comparison to our previous ARToolKit based tracker,
our new tracker appears to be more robust in outdoor en-
vironments under most conditions. It is able to more eas-

ily survive extreme lighting conditions such as when the
sun is almost in the field of view of the camera, which is
very common. The tracker’s main weakness is operating
under twilight conditions when the camera is unable to
distinguish colours in the environment as easily, while
ARToolKit uses only black and white fiducials. However,
the ARToolKit tracker fails in scenes that are half bright
and half dark, and with specular highlights on the flat
markers.

5 Video overlay implementation
Augmented reality has been traditionally implemented
using either optical or video based combination (Rolland
2000). In optical combination AR, a half silvered mirror
or prism is used to merge the light from the physical
world with the image from an internal LCD or CRT dis-
play. In video combination AR, a video camera captures
the physical world and this is merged with a virtual image
electronically (Bajura 1992). The Tinmith backpack sys-
tem is configurable to operate in either optical or video
overlay mode with a menu option. In our early designs,
optical overlay was used to avoid burdening the laptop
with video combination tasks. As laptop hardware im-
proved, we added vision tracking of the hands. To im-
plement this tracking, a 1394 Firewire camera was added
to supply video to the laptop, since other interfaces such
as composite or S-Video were not available. With the
video signal being sent to the laptop, using the 3D hard-
ware to also perform video overlay was made possible.
We currently prefer video overlay since it makes the sys-
tem much easier to produce accurate registration and
demonstrate to spectators. Optical overlay is much sim-
pler to render however, since the software draws an
empty background wherever optical overlay is desired.

With the new developments in this paper, the FPGA is
now used to perform the vision tracking. To provide the
video AR capability however, the video signal still needs
to be passed to the laptop for it to be combined with the
overlay image. This would be extremely wasteful of the
laptop CPU, and our eventual goal is to try and reduce
our reliance on these inefficient devices. To perform
video overlay, we now use a GrandTec MagicView de-
vice (GrandTec 2004), which is able to genlock a VGA
signal with a live video source and combine them based
on either a luminance or a colour key. The overall opera-
tion of our system is depicted in Figure 8, with the signal
from the video camera replacing parts of the VGA image
where the pixels are black. The main benefit of the
GrandTec MagicView is that it uses only 1.9 W of power
(380 mA at 5V) and requires less rendering from the lap-
top. Improved power savings in the laptop can be made
because it only needs to render a black background in-
stead of capturing, processing, and rendering incoming
video streams.

The quality of the video signal produced by the video
overlay device is excellent for use in AR. The video over-
lay device operates at the same PAL 50 Hz refresh rate as
the video camera, and introduces what we estimate would
be a single frame of delay to synchronise against the
VGA signal. The end result is an AR overlay which is
just as good as connecting the camera directly to the

Figure 7 - Output from the Tinmith modelling soft-

ware, showing the augmented reality overlay. The cur-
sor representing the detected marker location is being

drawn using values from the RC200.

HMD, without the jitter and pixellation associated with
PC based cameras. Since the video overlay device re-
places a specific colour in the image, where the overlay
meets the video there is some slight bleeding caused by
blur in the converted VGA image. When viewing wire-
frames this is noticeable, but is not a major problem. Us-
ing high quality PAL 720x576 signals for display is also
quite comparable to SVGA 800x600 signals - our Sony
Glasstron PLM-700E display renders PAL with only a
slightly noticeable degraded quality compared to SVGA.
By using this video overlay device, we are able to obtain
all the benefits of video AR while mobile but at the much
simpler performance cost of implementing optical AR.

An alternative technique that we are currently exploring
is using the FPGA for both vision tracking and video
overlay. The RC200 currently only has one capture chip,
but it does have the ability to switch between multiple
inputs very quickly. We managed to get the RC200 to
combine frames from two sources but there were syn-
chronisation problems where after a short period of time
the frames would become corrupted. In the future, we
hope to implement this properly on the new Celoxica
RC300, which provides dual video capture inputs and
would therefore provide the desired functionality in
hardware.

The hardware tracking system described in this paper has
been fully integrated into our latest Tinmith backpack
design, which is shown in Figure 1. The existing design
contains a Pentium-III 1.2 GHz laptop with Nvidia Ge-
Force2 for rendering the 3D overlay. An InterSense Iner-
tiaCube 2 sensor measures the orientation of the user’s
head, and a Trimble Ag132 GPS measures position
within an accuracy of 50 cm. A small PAL resolution
CCD colour video camera captures the physical world
and the system output is viewed on PAL resolution IO-
Glasses. Currently, we have not had a chance to redesign
our backpack to take advantage of the power and space
savings that are possible. Our next step is to acquire much
smaller laptop or embedded PC hardware with reduced
functionality, and then build a new design around this.
This reduced hardware will still support the same func-
tionality and performance that our previous system pro-
vided.

6 Conclusion
In this paper, we have described how we have transferred
a CPU intensive vision processing task from our general
purpose laptop to a specialised reconfigurable computer.
The reconfigurable computer uses a field programmable
gate array device to implement the vision processing task
in dedicated hardware, both improving performance and
reducing the amount of power consumed. We have fur-
ther improved the system so that video overlay for aug-
mented reality is performed using a specialised hardware
overlay device to remove the need for the laptop to ever
process video streams at all. With these optimisations the
laptop no longer requires a 3D graphics chipset of the
same calibre as used previously, allowing the use of
smaller and more power efficient laptops in the future. In
this paper, we described vision tracking algorithms that
are suitable for implementation on an FPGA, and how
they can be used to track simple ball shaped markers. The
colour thresholding technique that we use is able to oper-
ate under a wide range of lighting conditions and deliver
robust tracking to our applications. We performed ex-
periments to find out what colours are commonly found
in the environment, and then to test colours against the
environment to see if they were suitable to use. Based on
the results of our work, we have integrated our new vi-
sion tracker successfully into the Tinmith-Metro mobile
outdoor AR system.

7 References

Ashenden, P. (1990): The VHDL Cookbook. 1st ed, Ade-
laide, University of South Australia, 1990.

Bajura, M., Fuchs, H., and Ohbuchi, R. (1992): Merging
Virtual Objects with the Real World: Seeing Ul-
trasound Imagery Within The Patient. In Int'l
Conference on Computer Graphics and Interactive
Techniques, pp 203-210, Chicago, Il, Aug 1992.

Bandlow, T., Klupsch, M., Hanek, R., and Schmitt, T.
(July 1999): Fast Image Segmentation, Object
Recognition and Localization in a RoboCup Sce-
nario. Jul 1999.

Bazargan, K., Kastner, R., Ogrenci, S., and Sarrafzadeh,
M. (2000): A C to Hardware/Software Compiler.
In IEEE Symposium on FPGAs for Custom Com-
puting Machines Napa Valley, Ca, USA, April
2000.

Bhasker, J. (2002): A SystemC Primer. Star Galaxy Pub-
lishing, 2002.

Brusey, J. and Padgham, L. (2000): Techniques for ob-
taining robust, real-time, colour-based vision for
robotics. Springer-Verlag.

Celoxica (2003): Handel-C. http://www.celoxica.com

Cipolla, R., Okamoto, Y., and Kuno, Y. (1993): Robust
Structure from Motion using Motion Parallax. In
4th Int'l Conference on Computer Vision, pp 374-
382, Berlin, Germany, May 1993.

Camera

Physical World

Virtual World

Final View

Display

VGA Graphics

Computer

Video Combiner Reconfigurable
Computer

RS-232

Composite PAL

User
With
HMD

Figure 8 - Overall system schematic, showing the
RC200 integrated with the general purpose laptop, and
video AR implemented using hardware overlay of the

two video signals

Compton, K. and Hauck, S. (2002): Reconfigurable
Computing: A Survey of Systems and Software.
ACM Computing Surveys (CSUR), Vol. 34, No.
2, pp 171-210, 2002.

Dorfmuller-Ulhaas, K. and Schmalstieg, D. (2001): Fin-
ger tracking for interaction in augmented envi-
ronments. In 2nd Int'l Symposium on Augmented
Reality, New York, NY, Oct 2001.

Foley, J., van Dam, S., Feiner, S., and Hughes, J. (1990):
Computer Graphics: Principles and Practice. 2nd
ed, Reading, Ma, Addison-Wesley, 1990.

Foxlin, E. and Harrington, M. (2000): WearTrack: A
Self-Referenced Head and Hand Tracker for
Wearable Computers and Portable VR. In 4th Int'l
Symposium on Wearable Computers, pp 155-162,
Atlanta, Ga, Oct 2000.

GrandTec (2004): MagicView.
http://www.grandtec.com/magicview.htm

Hopf, J., Itzstein, G., and Kearney, D. Specification of
Concurrent Reconfigurable Hardware using
Hardware Join Java. In IEEE Int'l Conference on
Field-Programmable Technology, Hong Kong
SAR, China, 2002.

Hopf, J., Itzstein, G., and Kearney, D. (2002): Specifica-
tion of Concurrent Reconfigurable Hardware using
Hardware Join Java. In Int'l Conference on Field-
Programmable Technology, Hong Kong 2002.

Jebara, T., Eyster, C., Weaver, J., Starner, T., and Pent-
land, A. (1997): Stochasticks: augmenting the bil-
liards experience with probabilistic vision and
wearable computers. In 1st Int'l Symposium on
Wearable Computers, pp 138-145, Cambridge,
Ma, Oct 1997.

Kato, H. and Billinghurst, M. (1999): Marker Tracking
and HMD Calibration for a Video-based Aug-
mented Reality Conferencing System. In 2nd Int'l
Workshop on Augmented Reality, pp 85-94, San
Francisco, Ca, Oct 1999.

Loo, S., Wells, B., and Kulick, J. (2002): Handel-C for
Rapid Prototyping of VLSI Coprocessors for Real
Time Systems. In Southeastern Symposium on
System Theory, Huntsville, Al, March 2002.

Luk, W. (1998): A Reconfigurable Engine for real-time
Video Processing. In Field Programmable Logic
and Applications, pp 169-178, 1998.

Luk, W., Lee, T., Rice, J., and Cheung, P. (1999): Recon-
figurable Computing for Augmented Reality. In
7th IEEE Symposium on Field-Programmable
Custom Computing Machines, pp 136-145, Napa,
Ca, 1999.

Matsushita, N., Hihara, D., Ushiro, T., Yoshimura, S.,
Rekimoto, J., and Yamamoto, Y. (2003): ID
CAM: A Smart Camera for Scene Capturing and
ID Recognition. In 2nd Int'l Symposium on Mixed
and Augmented Reality, pp 227-236, Tokyo, Ja-
pan, Oct 2003.

Piekarski, W., Avery, B., Thomas, B. H., and Malbezin,
P. (2004): Integrated Head and Hand Tracking for
Indoor and Outdoor Augmented Reality. In IEEE
Virtual Reality Conference, Chicago, Il, Mar 2004.

Piekarski, W. and Thomas, B. H. (2001): Tinmith-Metro:
New Outdoor Techniques for Creating City Mod-
els with an Augmented Reality Wearable Com-
puter. In 5th Int'l Symposium on Wearable Com-
puters, pp 31-38, Zurich, Switzerland, Oct 2001.

Piekarski, W. and Thomas, B. H. (2003): Interactive
Augmented Reality Techniques for Construction
at a Distance of 3D Geometry. In 7th Int'l Work-
shop on Immersive Projection Technology / 9th
Eurographics Workshop on Virtual Environments,
Zurich, Switzerland, May 2003.

Plessl, C., Enzler, R., Walder, H., Beutel, J., Platzner, M.,
and Thiele, L. (2002): Reconfigurable Hardware in
Wearable Compting Nodes. In 6th Int'l Sympo-
sium on Wearable Computers, pp 215-222, Seat-
tle, Wa, 2002.

Rao, D. and Venkatesan, M. (2004): An Efficient Recon-
figurable Architecture and Implmentation of Edge
Detection Algorithm using Handel-C. In ITCC04,
pp 846, Las Vegas, NV, 2004.

Rasmussen, C., Toyama, K., and Hager, G. (1996):
Tracking Objects By Color Alone. New Haven,
CT, Yale University - Department of Computer
Science, Jun 1996.

Robles, R. (2003): ASIC Versus Reconfigurable Compute
Fabric (RCF) Solutions. Denver, Co, Motorola,
pp 8, March 2003.

Rolland, J. P. and Fuchs, H. (2000): Optical Versus Video
See-Through Head-Mounted Displays in Medical
Visualization. Presence: Teleoperators and Virtual
Environments, Vol. 9, No. 3, pp 287-309, 2000.

Wang, C., Wang, H., Soh, W. Y. C., and Wang, H.
(2001): A Real Time Vision System for Robotic
Soccer. In 4th Asian Conference on Robots and its
Applications, Singapore, Jun 2001.

