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Abstract 
Mobile augmented reality systems use general purpose 
computing hardware to perform tasks such as rendering 
computer graphics, providing video overlay, and perform-
ing vision tracking. Our current Tinmith-Metro modelling 
system implements a user interface which is based on 
tracking the motions of gloves worn by the user, but is 
implemented inefficiently in a mobile laptop carried on a 
backpack by the user. This paper describes how we have 
developed a tracking algorithm which is suitable for im-
plementation in a field programmable gate array. This 
implementation uses minimal power and will allow future 
miniaturisation of our mobile backpack equipment. We 
present the results of studies conducted outdoors to find 
the most appropriate marker type to use, and also the 
overall results that were achieved during testing. 

Keywords: augmented reality, wearable computers, field 
programmable gate arrays, mobile user interfaces. 

1 Introduction 
Our current main area of research has been in developing 
mobile outdoor augmented reality systems, particularly 
those that allow the user to interact with the 3D environ-
ment directly. Our Tinmith-Metro software allows users 
to perform real-time 3D modelling in outdoor environ-
ments using the body and the hands as the user interface 
(Piekarski 2001) (Piekarski 2003). Tinmith-Metro runs on 
a backpack computer worn by the user (shown in Figure 
1) and operates completely autonomously in an outdoor 
environment. Since the system is mobile, it is important 
that the interface to control it is portable but yet still intui-
tive to use. Our user interface relies on motions of the 
user’s hands to provide an intuitive set of controls to in-
teract with the 3D environment. A cursor is implemented 
by tracking markers on the gloves worn by the user, and 
menus are selected by pinching different fingers with the 
thumbs. 

Our existing systems have relied on the use of fiducial 
markers placed on the tips of the thumbs of gloves worn 
by the user, as shown in Figure 2. These fiducial markers 
are tracked using ARToolKit software (Kato 1999), and 
while this approach worked well for our earlier systems 
there were a number of drawbacks. Firstly, ARToolkit 
uses a complex algorithm that provides a full six degrees 
of freedom (6DOF) tracking and is very sensitive to error, 
while only two dimensional tracking is required for our 
user interface. Tracking failures are quite common in 
typical outdoor environments where conditions are con-

stantly changing and quite harsh. Images with bright or 
dark backgrounds, or specular highlights on fiducial 
markers, are common in varying sunlight and the tracking 
tends to fail quite often. Secondly, the ARToolKit as well 
as the live video input and overlay also requires a consid-
erable portion of the processor in the mobile laptop. By 
removing the need for these tasks to be performed on the 
laptop we can use smaller and less powerful computers, 
and free up the processor for other useful tasks. Therefore 
in this paper, we describe how we have used specialised 
hardware to implement functionality formerly provided 
by a general purpose laptop processor. Instead of tracking 
complex fiducial markers described previously, simple 
coloured balls which are immune to most lighting prob-
lems are used instead, as shown in Figure 2. Robust track-
ing is critical for developing applications that are easy to 
use because tracking glitches can cause very confusing 
side effects for the user. 

Most augmented reality (AR) research that has been pub-
lished to date relies on the use of general purpose com-
puting hardware to perform computations, render com-
puter graphics, and provide video overlay functionality. 
Systems that rely on this general purpose computing 
hardware will be larger in size and consume more power 
than ones which have devices customised for specific 
tasks. When working in indoor environments, issues such 
as weight and size restrictions and power consumption 
are rarely considered as the systems are not required to be 
mobile. When working outdoors however, these issues 
are very important as the user may be required to carry 
the system around with them. 

In this paper we describe how we have overcome the 
drawbacks of the existing tracker in an effort to miniatur-
ise and optimise the overall system. This includes the use 
of a reconfigurable computer containing a field pro-

    
Figure 1 - Tinmith backpack with the RC200 and 

video overlay devices mounted at the top, and the user 
wearing gloves with coloured markers attached for the 

hardware vision tracker 



grammable gate array (FPGA) to perform the hand track-
ing, and a video overlay device to perform the required 
AR overlay. By transferring these tasks from the laptop to 
custom hardware, we can use a slower general purpose 
microprocessor and less sophisticated 3D graphics chipset 
which may ultimately result in reduced size and power 
consumption of the laptop and possibly remove the need 
for it altogether in the future. 

This paper is divided into four main sections. Section 2 
discusses technologies and research that are relevant to 
this paper, including reconfigurable computers with 
FPGAs, the current problems with outdoor hand tracking, 
and previous vision tracking techniques. In section 3 we 
describe how the hand tracker is implemented on the re-
configurable computer, including the selection of the best 
algorithm, the marker design, and the use of YUV colour 
spaces to extract out the desired features. Section 4 details 
the experiments performed into selecting a suitable 
marker colour and threshold range, and the performance 
of the tracker outdoors. In section 5, we present how the 
new hand tracking system was integrated into the current 
Tinmith modelling software, including the implementa-
tion of low powered video AR overlay. Finally, we finish 
the paper with a summary of the work presented. 

2 Background 
In this section we will discuss technologies and research 
that are relevant to this paper, including reconfigurable 
computers, FPGAs, current problems with outdoor hand 
tracking, and previous vision tracking techniques. 

2.1 Reconfigurable computing 
Not all applications can be solved through the use of 
software. Many real-time applications require algorithmic 
speedup that only dedicated hardware can provide. Appli-
cation specific integrated circuits (ASIC) are a well-
known category of customised hardware that can provide 
this algorithmic speedup. ASICs however are not desir-
able in all situations as they can be very costly for short 
production runs, require large amounts of engineering 
expertise to design, can take many months to design and 
verify, and can not be modified once fabricated (Robles 
2003). 

An alternative to an ASIC that does not have these draw-
backs but retains a similar algorithmic speedup is a Field 
Programmable Gate Array (FPGA). An FPGA consists of 
an array of uncommitted logic and wire resources that can 
be configured by the end user repeatedly through a form 
of hardware programming. A reconfigurable computer 
(Compton 2002) combines an FPGA with other ASICs to 
provide a platform that retains the flexibility of software 
but gains the speedup of hardware. The algorithm requir-
ing the hardware speedup is configured onto the FPGA 
while other ASICs provide support hardware that is not 
suited to the FPGA architecture; for example, video cap-
ture and floating point computation. As the algorithms are 
performed in custom hardware, there is a possibility for a 
reduction in power consumption and improved perform-
ance as compared to if they were used on a general pur-
pose computer. 

Programming hardware circuits for FPGAs involves the 
use of a hardware description language (HDL). The two 
traditional HDLs are Very High Speed Integrated Circuits 
Hardware Description (VHDL) (Ashenden 1990) and 
Verilog. A new set of HDLs has recently become popular 
to create hardware circuits however. These HDLs are 
subsets of common software programming languages 
such as C (Bazargan 2000), and examples include Han-
del-C (Celoxica 2003), System-C (Bhasker 2002), and 
Hardware Join Java (Hopf 2002). An advantage of these 
languages as compared with the traditional HDLs is the 
ability to reduce the design time since they use a similar 
syntax to traditional languages, but extended to support 
hardware circuits. This was demonstrated by Loo (Loo 
2002) as students with limited or no VHDL experience 
were able to develop hardware applications within weeks. 

In the wearable computing and augmented reality do-
mains, the use of FPGAs is still quite rare. This is perhaps 
due to the extra complexity of implementing hardware in 
VHDL or Verilog rather than software. Plessel et al 
(Plessl 2002) described a wearable system that performs 
simple tasks such as audio and video decoding through 
the use of reconfigurable modules located on an FPGA. 
As particular applications are required, the FPGA loads 
the appropriate hardware module and performs the task in 
hardware. Luk et al (Luk 1998, Luk 1999) used a recon-
figurable computer to support basic functions for aug-
mented reality applications: video mixing, image extrac-
tion and object tracking. The image extraction and object 
tracking stages in this system were performed using a 
fixed position camera, which significantly reduces the 
difficultly in performing these tasks. Matsushita et al 
(Matsushita 2003) described ID Cam, which uses custom 
hardware and high speed cameras to extract identification 
codes from flashing beacons in a scene. The camera con-
tained custom silicon to perform most of the high speed 
extraction, and an FPGA was used to process the final 
result. 

2.2 Outdoor hand tracking 
When the Tinmith-Metro modelling system was origi-
nally designed (Piekarski 2001) (Piekarski 2003), the user 
interface was built up around the use of gloves as the in-
put device. The user is able to change the environment 

 
Figure 2 - Original ARToolkit marker shown attached 
to the left glove, and new robust ball-shaped coloured 

markers shown attached to right glove. 



using their hands, which is a very intuitive control 
mechanism. Tracking the position of the user’s hands is 
made particularly difficult when working outdoors, with 
known problems such as power consumption, size, 
weight, and support infrastructure. Some examples of 
these problems are: accelerometers drift over time and 
provide inadequate registration; infrared based systems 
are unreliable due to the large amounts of radiation gen-
erated by the sun; active magnetic tracking relies on using 
large non-portable units to generate magnetic fields and 
are affected by equipment carried on the backpack. One 
tracking system that has been demonstrated outdoors is 
the WearTrack system (Foxlin 2000) which adds ultra-
sonic transmitter and receiver equipment to a wearable 
computer. 

Our original outdoor tracking implementation (Piekarski 
2004) employs optically-based vision tracking however. 
This approach does not require any extra hardware since 
the user already wears a head mounted camera to provide 
the video AR overlay for the rest of the system. An addi-
tional advantage is that since the user sees the same view 
as the tracking software, it is possible to achieve accurate 
registration. The ARToolKit libraries (Kato 1999) are 
used to perform full six degree of freedom tracking of 2 
cm x 2 cm paper fiducial markers placed on the thumbs 
of the gloves. Only the position values are used, as the 
accuracy of the rotation values is not adequate. Perform-
ing this tracking on the laptop is quite CPU intensive 
however, and prevents us from using more efficient and 
smaller equipment. 

2.3 Previous vision tracking algorithms 
Vision tracking has been a popular field of research for 
many years and has had a wide range of contributions. 
Rasmussen et al (Rasmussen 1996) reviewed a number of 
different tracking techniques including edge detection, 
region based correlation, and blob tracking. They explain 
that the tracking of simple blobs is much simpler than 
other techniques, and we believe that this will assist with 
its implementation on an FPGA. The authors described 
how most existing algorithms for blob tracking rely on 
static or selective colour distribution to segment an image 
accurately. They defined a custom colour space to assist 
with an accurate threshold but did not describe other al-
ready available colour spaces which might be easier to 
implement. Brusey et al (Brusey 2000) discussed the 
problems with recognizing images with colour alone in 
many colour spaces, and that in all cases there are differ-
ent objects which are not distinguishable. They present a 
decision tree approach with a custom colour space that 
separates brightness, using individual colour channels to 
make decisions. 

There are a number of universities who participate in the 
RoboCup robot soccer competitions (Bandlow July 1999) 
(Wang 2001). These competitive events rely heavily on 
the tracking of coloured markers for estimating the posi-
tions of all the robot players. Since the lighting conditions 
are fixed, many of the competititors perform simple 
thresholding in RGB space, although other colour spaces 
are also used. For other applications of these trackers, 
Jebara et al. (Jebara 1997) implemented a system which 

allows a user wearing a HMD to visualise predicted ball 
motions in a game of billiards. A vision tracking system 
was used to automatically capture the locations of the 
balls in real time. Cipolla (Cipolla 1993) implemented an 
indoor vision tracker using motion parallax to estimate 
the 3D pose of gloves worn by a user. Dorfmuller-Ulhass 
et al (Dorfmuller-Ulhaas 2001) described the use of blob 
tracking with retro-reflective markers and an infra-red 
light to detect the rotations of various joints in the hands. 
They discuss how they initially used rings around the 
fingers, but found that with blobs the centres were much 
easier to locate. 

3 FPGA based hand tracking 
In this section, we describe how the hand tracker is im-
plemented using a reconfigurable computer, and the 
modifications made to improve its performance in an out-
door environment. Firstly we discuss what tracking algo-
rithm was used and why. We then outline the colour seg-
mentation step used, followed by blob detection, and fi-
nally the FPGA implementation. 

3.1 Overview 
Many existing tracking techniques are based on one of 
the following methods: edge extraction, region based cor-
relation or template matching, and segmentation tech-
niques (Dorfmuller-Ulhaas 2001) (Rasmussen 1996). 
Region-based correlation compares known templates to 
the video stream to locate markers, but incurs a high 
computational cost. Edge extraction may be performed at 
a low cost, however the remaining post-processing slows 
the overall performance. We have therefore focused on 
segmentation techniques as they can be implemented in 
real time on an FPGA the easiest. 

Tracking techniques may be further distinguished as hav-
ing either background or foreground constraints 
(Dorfmuller-Ulhaas 2001). Background constraint sys-
tems rely on a simple uncluttered environment or may 
perform background subtraction based on a static view. 
These systems do not apply well to our environment since 
our background scene is constantly changing with user 
motion. We therefore threshold with a foreground con-
straint, whereby coloured balls are attached to the gloves 
of the user. The colours allow the system to distinguish 
the balls from the environment, and then blob detection is 
used to work out the centre of the ball. We use spherical 
markers because they appear the same from a wide range 
of angles. 

Although there are many vision tracking algorithms, not 
all of them can easily be implemented on an FPGA. The 
algorithm selected must be suitable for implementation in 
parallel, and not have a gate count larger that the target 
FPGA. Some operations such as floating point computa-
tion will consume larges amounts of FPGA area and 
should be avoided. 

3.2 Implementation 
In this sub-section we will outline how the reconfigurable 
hardware hand tracking system was implemented. We 
discuss what implementation language it was written in 



and why, what platform was used and why, and detail 
each of the components of the algorithm itself. 

3.2.1 Language 
Programming hardware circuits for FPGAs traditionally 
involves the use of a hardware description language 
(HDL). The two main HDLs are Very High Speed Inte-
grated Circuits Hardware Description Language (VHDL) 
and Verilog. One of the major problems of these HDLs is 
the advanced level of hardware knowledge required to 
use them. A new set of HDLs has recently become popu-
lar to create hardware circuits. These HDLs are subsets of 
common software programming languages and examples 
of these languages include Handel-C (Celoxica 2003), 
System-C (Bhasker 2002), and Hardware Join Java 
(Hopf). The advantage of these languages as compared 
with the traditional HDLs is the ability for software engi-
neers to use them and concentrate on the specifications of 
the implementation rather than the code semantics (Rao 
2004). This was demonstrated in the paper by Loo (Loo 
2002) as students with limited or no VHDL experience 
were able to develop complex hardware applications in 
Handel-C within weeks. 

Handel-C is a hardware description language based on an 
extended subset of the standard ANSI-C software pro-
gramming language. The major advantage of it is there 
are no intermediate stages and it allows hardware to be 
directly targeted from software. This provides the neces-
sary features that allow software engineers to easily de-
velop hardware applications. Handel-C comes packaged 
with the development environment DK1. DK1 does not 
provide synthesis but is able to produce output files in 
EDIF format. From this, the traditional place and route 
tools of the target device can be used to produce bit-
streams. A more detailed description on Handel-C is 
available in the reference manual (Celoxica 2003). 

3.3 Platform 
The Celoxica RC200 reconfigurable computer was cho-
sen as the target platform for the hand tracking system. 
This is shown attached to the top of the backpack in 
Figure 1. The hardware consists of a Xilinx Virtex II 
1000 FPGA, 8 Megabytes of external memory, program-
mable clocks, TFT touch sensitive screen, Ethernet, au-
dio, video out, VGA out, video in, parallel, and RS-232 
serial ports. The RC200 is a single board with dimensions 
of 190mm x 150mm and can run from a 12V power 
source. The platform contains a Phillips video capture 
device and provides synchronous streaming of pixels to 
the FPGA. This particular platform was selected because 
it has a dense FPGA, supports streaming video, has a se-
rial port for connection to the host, and has an extensive 
Handel-C application programming interface. 

3.4 Algorithm 
Our goal with the algorithm was to select a simple reli-
able algorithm which provides 2DOF tracking capability. 
There are many different vision tracking algorithms but 
not all of them can be easily implemented on an FPGA. 
We have avoided using techniques that require complex 

floating point calculations in an effort to minimise the 
area used on the FPGA. We found that segmentation 
could be performed using very few gates. To provide a 
unique target that can be tracked by the algorithm, we 
have decided to use coloured balls mounted onto the 
thumbs of gloves worn by the user. Figure 2 shows both 
the original gloves with fiducial markers, as well as the 
new design which contains a single coloured ball. The 
marker ball is made of furry material which reduces re-
flections, and the shape is designed to provide highly ro-
bust object detection. 

The first step in separating the coloured ball from the 
image is to threshold the image based on colour. The na-
ïve approach is to use an RGB colour space to nominate a 
range of colours along each axis. The limitation of RGB 
is that brightness is encoded into all three channels, and 
brightness runs diagonally from black to white. Therefore 
it is not possible to specify certain ranges of colours in 
RGB that are invariant to brightness, which is important 
when working in uncontrolled lighting outdoors. Colour 
spaces are a traditional area of computer graphics (Brusey 
2000) (Foley 1990) and there are a wide range available. 
When encoding colour for hardware such as a television, 
schemes such as YUV, YIQ, and YCrCb are used. The Y 
channel represents brightness (luminance) while colour 
values are stored in the other two chromaticity compo-
nents. When representing colours in the user-oriented 
manner often used by artists, colour specification 
schemes such as HSV and HLS are used. The H channel 
specifies colour in the form of a single hue angle on a 
colour wheel, while the other two channels specify 
brightness and saturation type values. In all of the above 
colour spaces, brightness is separated from colour and 
makes it suitable for use in robust colour segmentation. 
The limitation of the H channel is that it is an angle and 
requires trigonometric operations or lookup tables to be 
used. 

There are a number of different ways to find the centre of 
the segmented region, and we have explored the statisti-
cal filters median, mode, and mean. The median algo-
rithm implements an array of buckets for every row and 
column in the image - as pixels are found the matching 
buckets are incremented. At the end of this process the 
buckets in the row and column arrays are individually 
traversed and added up until the total reaches half the 
total number of hits - when this occurs then the median 
pixel is found. The mode algorithm implements a similar 
bucket algorithm as median, except that the row and col-
umn buckets with the most hits is selected as the mode 
coordinate. The mean accumulatively adds up the X and 
Y locations of the accepted pixels and divides each of 
these by the number of accepted pixels. We studied the 
accuracy of each of the filters with a variety of software 
test cases on a PC and found they all performed reasona-
bly well but with varying failure conditions. We made our 
final decision based on which was best suited to imple-
mentation in hardware. The median and mode algorithms 
both require two arrays of buckets to be maintained in 
memory, and random memory access times on the RC200 
are slow in comparison to the time it takes to traverse the 
pixel array linearly. However the mean algorithm only 
requires three counters to be maintained with Xtotal, Yto-



tal and the number of hits; thus we decided mean is the 
best suited filter to implement. 

3.5 Circuit Design 
The application we have written consists of four parallel 
processes: VGA input, video output, mean calculation 
(division), and RS-232 serial communications, each of 
which will be discussed in more detail in the following 
sub-sections. Although the four processes are run in par-
allel to each other, they are all closely interlinked using 
control flags for accessing common data values, as de-
picted in Figure 3. The flow of the system starts with the 
video stream; a pixel is read and evaluated according to 
the threshold values. For all the values that are accepted, 
a running total of the X and Y pixel locations is stored. 
When the end of the frame is reached the mean calcula-
tion process computes the centre of mass of the accepted 
pixels. The result from this is then sent via the RS-232 
serial port and displayed to the TFT display for debug-
ging using a cross to indicate the location of the marker 
being tracked. The TFT screen is typically used as a de-
bugging device when tuning the tracker outdoors. The 
pseudo code for our design has been presented in Figure 
4, which outlines the flow of the system on a pixel by 
pixel basis. 

3.5.1 Video input 
The video input process captures a video stream from the 
Phillips SAA711H chip. This provides a synchronous 
stream of pixels which we evaluate in real time. The pix-
els can be captured in a range of formats, but we have 
chosen YCrCb as this separates brightness and colour 
information which makes it well suited to outdoor track-
ing. As each pixel is captured, the scan position is used to 
evaluate what path will be executed in the circuit. The 
first and most common path is executed when a pixel is 
read and at this point segmentation is performed to de-
termine if it falls between the threshold values. When a 
pixel is within the threshold values, the X and Y locations 

are processed using the decided algorithm until the end of 
the frame. The second path is executed when the X and Y 
scan values indicate the end of a frame (X = 720 and 
Y=576). Finally, a shared control flag is set to indicate 
the frame is complete and the overall calculation process 
can begin. 

3.5.2 Mean calculation (division) 
The purpose of the mean calculation process is to perform 
division on the results calculated in the section above. 
The mean calculation process runs as an endless loop, and 
a control flag is used to signal when new values are ready 
and the division can be preformed. When this occurs the 
X and Y totals are divided by the frame hit counter and 
provides the final average X and Y results. When this 
step is completed another control flag is set indicating the 
results are ready for the video output process. Finally, the 
results are sent to the RS-232 circuit ready for transmis-
sion to the Tinmith system. 

3.5.3 Video output 
The video output process is used to display a picture on 
the TFT screen and the VGA out of the RC200. We have 
used the results from the mean calculation to display the 
location of the blob being tracked, as shown in Figure 5. 
This video output is not essential for the operation of the 
algorithm but has proven to be a valuable tool when tun-
ing the different coloured blobs. It also means the RC200 
is a stand alone tracker not relying on the accompanying 
laptop computer to demonstrate its operation. 

3.5.4 RS-232 serial communications 
The RS-232 serial port is used to send results to the host 
computer, as well as receive commands used to configure 
the RC200. When the RC200 is reset, a set of system ini-
tialisation packets are sent to the host indicating the status 
of the RC200. The RC200 then enters normal operation 
where it reads incoming commands used for system con-
figuration and sends tracking information to the host. 
Incoming commands include setting the threshold values 
for tracking of different coloured blobs, setting the cam-
era input port, and running in debugging mode when the 
image segmentation is displayed to the TFT screen. Out-
going tracking data is sent when the mean calculation 
process indicates a new result is ready. The system sends 
approximately 25 updates a second, which is the standard 
PAL refresh rate provided by the Phillips capture chip. 

Figure 3 - Flowchart of the parallel hand tracking 
architecture implemented in hardware 

While (True) 
  For each pixel in the image 
    If pixel falls between segmentation ranges
      Add x coordinate to xtotal 
      Add y coordinate to ytotal 
      Increment hit counter by one 
    End If 
  End For 
 
  Calculate xmean with xtotal divided by hits 
  Calculate ymean with ytotal divided by hits 
  Send results to PC via RS-232 port 
End While  

Figure 4 – Pseudocode for the FPGA vision tracking 
processing algorithm 



3.6 Performance 
Once the hand tracking algorithm was implemented on 
the FPGA, both the clock speed and device utilisation 
were recorded. These values were captured from the out-
put files generated from the Xilinx place and route tools. 
Including the algorithm and a 32 bit divider circuit, the 
total device utilisation was 83%, or 4263 out of 5120 
slices of the FPGA. The theoretical maximum clock 
speed was 105.27MHz, however the actual clock speed of 
the system was set to 25.175MHz due to a requirement of 
the TFT display device. 

To determine the actual device utilisation of the hand 
tracking algorithm itself without the divider circuit 
(something that could be easily performed on the host), 
the application was recompiled with it removed. The per-
centage of FPGA consumed dropped to 23% or 1177 
slices. Therefore, the 32-bit divider circuit consumed 
3086 slices or 60% of the FPGA. 

Our first implementation of the tracking algorithm per-
formed the segmentation on the FPGA and passed values 
to the laptop for division. This immediately reduces the 
area used on the FPGA however we then moved the divi-
sion to the FPGA to make it a stand alone unit supporting 
our goals of removing the laptop from the wearable com-
puter altogether. 

3.7 Power considerations 
Since the RC200 is designed for development, it contains 
many supporting hardware components that are not used 
but still consume a noticeable amount of power. For ex-
ample, the optional LCD screen is useful for debugging 
but the display and backlight contribute to a total con-
sumption of 9 W (750 mA at 12 V) of power and so 
would be disabled in actual use. During the operation of 
our tracker without the display, the power used was meas-
ured as being 4 W (330 mA at 12 V), which is considera-
bly less. However, this measurement is based on the de-
velopment board which has many other features we have 
not used. A more efficient solution could be achieved in a 
custom circuit board which is comprised of only the 
FPGA, video capture, and serial UART chips attached. 

We used the Xilinx XPower tools to estimate the power 
consumption of the FPGA chip by itself, and the calcu-
lated result was 483 mW. This power value is signifi-
cantly lower than those achieved by the entire RC200 
development board. We consulted the data sheet for the 
Phillips SAA7113H video capture chip which is used in 
the RC200, and found that its power consumption was 
rated at less than 500 mW. Therefore, it should be possi-
ble to develop a board which contains only a Virtex II 
FPGA and a Phillips SAA7113H that consumes less than 
1 W of power. 

4 Outdoor experiments 
After the implementation of our algorithm on the FPGA, 
we tested it outdoors to evaluate its effectiveness. The 
first step is to pick suitable colours to track, and then test 
to see how well these perform in actual outdoor environ-
ments. 

4.1 Suitable colour selection 
As was previously mentioned, we require the use of 
unique colours to separate the marker balls from the 
background environment. Initially we tried to use small 
ping pong balls, but found that the surface was too shiny 
and contained large specular highlights. These specular 
highlights show up as white on the video camera which 
exceed its capabilities, and are not visible as any particu-
lar colour. To prevent these highlights, we used furry 
balls which are lit much more evenly, even when used in 
the brightest direct lighting conditions. A variety of dif-
ferent coloured balls of sizes 1 cm, 2 cm, and 3.5 cm 
were evaluated to determine which colour would be the 
most suitable to be distinguished from the background 
environment. 

Our first experiment was to build up a map of the colours 
that are present in typical outdoor environments on our 
campus. We used a camera outside (a FujiFilm Finepix 
40i) and captured over 50 images of various scenes such 
as trees, grassy areas, buildings, and signs. We extracted 
all the RGB values from the images and converted them 
into YUV space. Figure 6 shows plots in U and V of the 
presence of different colours in the sampled environments 
as dark points, with various primary and secondary col-
ours also labelled for reference. Figure 6 also shows an-
other larger and lighter coloured region indicating the 
possible range that the camera is capable of operating to. 
Also present is a small streak from the centre of the UV 
plot, indicating what a green ball looks like when viewed 
with a black background. From these tests, we learned 
that saturated colours are not as common as we expected 
in the environment - saturated colours are present on the 
outer boundaries of the depicted hexagon, while greys are 
at the centre. Most colours in the environment are slightly 
grey, and so very bright and saturated objects should be 
distinguishable from the background. We should also try 
and use regions of the colour space in Figure 6 that are 
not densely populated with colours from the environment. 

 
Figure 5 - Output from the RC200 showing image 
threshold and the calculated marker centre point, 

combined with the view of the outdoor environment 



4.2 Colour range specification 
Our implementation on the RC200 is tuneable via the RS-
232 port so that the laptop keyboard can be used to con-
figure the ranges to accept on the YCrCb channels. We 
tested a range of coloured balls (green, blue, orange, yel-
low, red, and white) to evaluate which would produce the 
best results in outdoor environments. To tune colours, the 
YCrCb filter is opened up to full range (0-255 with 8 bits 
per channel) and the thresholded image is viewed on the 
RC200 TFT screen. The minimum (min) value for the Cr 
channel is then adjusted until just before it begins to filter 
out the blob. The maximum (max) value is adjusted in the 
opposite direction until the ball is just accepted. The min 
and max values are recorded and then opened back up to 
full range. The same process for min and max is then per-
formed for the Cb channel so that the ball is thresholded. 
The Y channel is slightly restricted to 10-240 so that it 
removes out black and white pixels (which contain no 
real colour information) and then the Cr and Cb ranges 
are both set to the measured values. We then test these 
colours against the environment to see if there are 
matches against any other objects. 

During our testing, we noticed that the CCD camera used 
sees colours in the environment different than our own 
eyes because the sensor operates over different light 
wavelengths. When looking at the output, some colours 
such as blue appeared with a noticeable green colour. 
When selecting coloured balls to use, the colour the cam-
era sees (and not what the human sees) must be taken into 
consideration. The following summarises the colours that 
we tested outdoors - Green: When testing the green balls, 
we noticed that they conflicted with many of the leaves in 
the trees nearby, but not the grass. Under close inspection 
the blades of grass actually contain quite a lot of yellow 
and so there was no conflict. Unfortunately, the amount 
of noise from the trees was enough to affect the tracker. 
Blue: The blue coloured balls occasionally conflicted 
with the sky under certain brightness conditions, such as 
when the camera’s auto adjustment darkened the overall 
image. The blue ball appeared to be a turquoise colour in 
the camera, but when we tried a more pure blue colour it 

still conflicted with the sky colour. Orange: The orange 
colour generated the best results with our tracking sys-
tem. After calibrating it we were not able to find any 
other objects in the environment of a similar colour that 
would cause the tracker to operate incorrectly. The only 
time we could cause a conflict was when looking at a 
pedestrian crossing sign, which is understandable consid-
ering it was a similar shade of orange. Yellow: The yel-
low marker balls experienced slight conflicts with the 
grass, which as mentioned previously contained large 
amounts of yellow. This colour would be suitable for use 
in environments without grass however, such as on con-
crete or dirt perhaps. Another problem with yellow is that 
it is similar to orange and it is not possible to separate 
these two colours from each other with their YCrCb 
ranges. Red: We experienced our second best result with 
the red coloured balls. There were no conflicts for this 
colour with the rest of the environment, except for a stop 
sign on campus. The results were not quite as good as 
orange, but this could perhaps be improved with further 
tuning of the YCrCb ranges. Once again, this colour is 
similar enough to orange that it too prevents them from 
being used together. 

From our experiments, we discovered that trying to pro-
vide highly saturated colours for the camera was more 
difficult than first thought. Even when using highly satu-
rated coloured balls, the camera tends to capture them 
with a slightly washed out colour which slightly reduces 
their distinctiveness. We would like to try out new col-
ours, especially those around the cyan or magenta areas 
because they are the most different from orange. 

4.3 Hand tracker results 
The purpose of this project was to develop a separate 
hand tracker using an FPGA to integrate with the Tin-
mith-Metro software. The RC200 contains an RS-232 
serial port and we transmit 10 byte packets to the PC for 
each update to indicate the X and Y coordinates of the 
cursor, as well as the number of pixels used in the calcu-
lation as a confidence factor. The RC200 captures frames 
at the PAL refresh rate of 50 Hz, but only provides 
frames to the FPGA at 25 Hz due to interlacing in the 
video signals. The RC200 processes frames in real-time 
and so the results are available within 1/25th of a second, 
although there is additional delay added by transmission 
across the RS-232 cable and in the host laptop operating 
system. Figure 5 shows a capture of the thresholded over-
lay and extracted centre point from the RC200, combined 
with the view from the camera. 

When the 2D cursor is plotted on the display in the Tin-
mith-Metro software, there is some slight lag with the 
cursor. This lag is noticeable because the RC200 and the 
video overlay hardware operate at PAL refresh rates, 
while the laptop is slightly behind with its processing and 
rendering of the 3D augmented reality overlay. Previ-
ously this effect was not noticeable because the entire 
output was delayed, but now some parts of the display are 
faster than others. We could possibly add a delay to the 
video stream so that the lag is synchronised, but then this 
would make the entire system lag from the physical 
world. 

 
Figure 6 - All colours that are present in a selection of 

outdoor photos are shown in dark pixels, plotted in UV 
coordinates. The brighter area depicts the possible 
operating range of the camera, and the small light 
streak represents a green marker held in front of a 

black background 



In terms of accuracy, all of the marker sizes tested pro-
duced cursors which were within the bounds of the 
marker, assuming that the signal to noise ratio is rela-
tively high. When smaller markers are used, the signal to 
noise ratio is reduced, and the accuracy will suffer while 
still being small enough to point to objects accurately. Of 
the 1 cm, 2 cm, and 3.5 cm markers tested, we decided to 
use the 2 cm markers since they are the size of the finger 
tips. 

4.4 Tracker operation and comparison 
The user interface in our Tinmith-Metro modelling sys-
tem is made up of three components: a cursor based on 
the tracking of the user’s thumbs; a command entry sys-
tem where the user’s fingers control menu operations; and 
an AR HMD which displays information to the user. Each 
of the user’s fingers are mapped to a menu option which 
is selected by pressing the appropriate finger to the 
thumb. Figure 7 shows our AR software in operation out-
doors, and the menu strips are visible in the bottom left 
and right corners. This menu system is used to control all 
aspects of the operation of the system, such as performing 
3D modelling tasks. Using the cursor, a number of differ-
ent manipulation operations are supported, including se-
lection, rotation, translation, scaling, carving, and paint-
ing operations. Since the thumbs are used as a cursor, the 
fingers can still be used to select menu options simulta-
neously. 

The original ARToolkit markers (shown in Figure 2) are 
a black and white pattern printed on paper and attached to 
cardboard. Our new markers were chosen specifically for 
their furry matte surface to minimise specular highlights 
experienced with the ARToolkit markers. Also they ap-
pear to be the same spherical shape from all angles disre-
garding occlusions. From the user’s perspective, both the 
old and the new trackers are very similar, the only differ-
ence is the type of marker attached to the thumb of the 
glove. In terms of the application and interface to the user 
however, there is no noticeable difference. 

In comparison to our previous ARToolKit based tracker, 
our new tracker appears to be more robust in outdoor en-
vironments under most conditions. It is able to more eas-

ily survive extreme lighting conditions such as when the 
sun is almost in the field of view of the camera, which is 
very common. The tracker’s main weakness is operating 
under twilight conditions when the camera is unable to 
distinguish colours in the environment as easily, while 
ARToolKit uses only black and white fiducials. However, 
the ARToolKit tracker fails in scenes that are half bright 
and half dark, and with specular highlights on the flat 
markers. 

5 Video overlay implementation 
Augmented reality has been traditionally implemented 
using either optical or video based combination (Rolland 
2000). In optical combination AR, a half silvered mirror 
or prism is used to merge the light from the physical 
world with the image from an internal LCD or CRT dis-
play. In video combination AR, a video camera captures 
the physical world and this is merged with a virtual image 
electronically (Bajura 1992). The Tinmith backpack sys-
tem is configurable to operate in either optical or video 
overlay mode with a menu option. In our early designs, 
optical overlay was used to avoid burdening the laptop 
with video combination tasks. As laptop hardware im-
proved, we added vision tracking of the hands. To im-
plement this tracking, a 1394 Firewire camera was added 
to supply video to the laptop, since other interfaces such 
as composite or S-Video were not available. With the 
video signal being sent to the laptop, using the 3D hard-
ware to also perform video overlay was made possible. 
We currently prefer video overlay since it makes the sys-
tem much easier to produce accurate registration and 
demonstrate to spectators. Optical overlay is much sim-
pler to render however, since the software draws an 
empty background wherever optical overlay is desired. 

With the new developments in this paper, the FPGA is 
now used to perform the vision tracking. To provide the 
video AR capability however, the video signal still needs 
to be passed to the laptop for it to be combined with the 
overlay image. This would be extremely wasteful of the 
laptop CPU, and our eventual goal is to try and reduce 
our reliance on these inefficient devices. To perform 
video overlay, we now use a GrandTec MagicView de-
vice (GrandTec 2004), which is able to genlock a VGA 
signal with a live video source and combine them based 
on either a luminance or a colour key. The overall opera-
tion of our system is depicted in Figure 8, with the signal 
from the video camera replacing parts of the VGA image 
where the pixels are black. The main benefit of the 
GrandTec MagicView is that it uses only 1.9 W of power 
(380 mA at 5V) and requires less rendering from the lap-
top. Improved power savings in the laptop can be made 
because it only needs to render a black background in-
stead of capturing, processing, and rendering incoming 
video streams. 

The quality of the video signal produced by the video 
overlay device is excellent for use in AR. The video over-
lay device operates at the same PAL 50 Hz refresh rate as 
the video camera, and introduces what we estimate would 
be a single frame of delay to synchronise against the 
VGA signal. The end result is an AR overlay which is 
just as good as connecting the camera directly to the 

 
Figure 7 - Output from the Tinmith modelling soft-

ware, showing the augmented reality overlay. The cur-
sor representing the detected marker location is being 

drawn using values from the RC200. 



HMD, without the jitter and pixellation associated with 
PC based cameras. Since the video overlay device re-
places a specific colour in the image, where the overlay 
meets the video there is some slight bleeding caused by 
blur in the converted VGA image. When viewing wire-
frames this is noticeable, but is not a major problem. Us-
ing high quality PAL 720x576 signals for display is also 
quite comparable to SVGA 800x600 signals - our Sony 
Glasstron PLM-700E display renders PAL with only a 
slightly noticeable degraded quality compared to SVGA. 
By using this video overlay device, we are able to obtain 
all the benefits of video AR while mobile but at the much 
simpler performance cost of implementing optical AR. 

An alternative technique that we are currently exploring 
is using the FPGA for both vision tracking and video 
overlay. The RC200 currently only has one capture chip, 
but it does have the ability to switch between multiple 
inputs very quickly. We managed to get the RC200 to 
combine frames from two sources but there were syn-
chronisation problems where after a short period of time 
the frames would become corrupted. In the future, we 
hope to implement this properly on the new Celoxica 
RC300, which provides dual video capture inputs and 
would therefore provide the desired functionality in 
hardware. 

The hardware tracking system described in this paper has 
been fully integrated into our latest Tinmith backpack 
design, which is shown in Figure 1. The existing design 
contains a Pentium-III 1.2 GHz laptop with Nvidia Ge-
Force2 for rendering the 3D overlay. An InterSense Iner-
tiaCube 2 sensor measures the orientation of the user’s 
head, and a Trimble Ag132 GPS measures position 
within an accuracy of 50 cm. A small PAL resolution 
CCD colour video camera captures the physical world 
and the system output is viewed on PAL resolution IO-
Glasses. Currently, we have not had a chance to redesign 
our backpack to take advantage of the power and space 
savings that are possible. Our next step is to acquire much 
smaller laptop or embedded PC hardware with reduced 
functionality, and then build a new design around this. 
This reduced hardware will still support the same func-
tionality and performance that our previous system pro-
vided. 

6 Conclusion 
In this paper, we have described how we have transferred 
a CPU intensive vision processing task from our general 
purpose laptop to a specialised reconfigurable computer. 
The reconfigurable computer uses a field programmable 
gate array device to implement the vision processing task 
in dedicated hardware, both improving performance and 
reducing the amount of power consumed. We have fur-
ther improved the system so that video overlay for aug-
mented reality is performed using a specialised hardware 
overlay device to remove the need for the laptop to ever 
process video streams at all. With these optimisations the 
laptop no longer requires a 3D graphics chipset of the 
same calibre as used previously, allowing the use of 
smaller and more power efficient laptops in the future. In 
this paper, we described vision tracking algorithms that 
are suitable for implementation on an FPGA, and how 
they can be used to track simple ball shaped markers. The 
colour thresholding technique that we use is able to oper-
ate under a wide range of lighting conditions and deliver 
robust tracking to our applications. We performed ex-
periments to find out what colours are commonly found 
in the environment, and then to test colours against the 
environment to see if they were suitable to use. Based on 
the results of our work, we have integrated our new vi-
sion tracker successfully into the Tinmith-Metro mobile 
outdoor AR system. 
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