This is a list of more relevant changes/corrections made in the second edition of

HANDBOOK OF BROWNIAN MOTION - FACTS AND FORMULAE.

published year 2002 by Birkhäuser Verlag. These are incorporated into the corrected reprint of the second edition published year 2015.

Any comments/questions can be addressed to Paavo Salminen (e-mail: phsalmin at abo.fi) and/or Andrei Borodin (e-mail: borodin at pdmi.ras.ru).

1. Chapter II item 10 p. 18 l. -1: "solutions" should be "positive solutions".
2. Chapter II item 27 p. 32 l. -1:

$$
\mathbf{E}_{x}\left(A_{t} ; t<\zeta\right) \quad \text { should be } \quad \mathbf{E}_{x}\left(A_{t}^{n} ; t<\zeta\right)
$$

3. Chapter III: A new item discussing Zvonkin's condition added after item 22 p . 47.
4. Chapter IV: Two new items discussing perpetual integral functionals added after item 33 p. 70.
5. Chapter IV item 15 p. 59 l. -6: Sentence "The limit is in the sense of weak convergence of measures on the function space $E^{+} \cap\{\zeta=l\}$." changed to "The limit is in the sense of the convergence of finite dimensional distributions."
6. Chapter VI item 1 p. 103 l. 6: Sentence "Assume also that F and g are bounded." changed to "Assume that g is bounded and that F is bounded and Hölder continuous."
7. Appendix 1 item 9 p. 124: Added text at the end: "The expression for the density is valid for all nonnegative values on c and γ; also when $\gamma c>1$. We remark that the densities in No. 7 and No. 8 can be obtained from the density above by letting $c \rightarrow 0$ and $\gamma \rightarrow 0$, respectively."
8. Appendix 1 item 11 p. 125: Added text at the end: "The expression for the density is valid for all nonnegative values on c and γ; also when $4 \gamma c>1$."
9. Appendix 1 item 12 p. 126: Following corrections:

Speed measure:

$$
m(d x)= \begin{cases}4 \beta d x, & x>0 \\ 4(1-\beta) d x, & x<0\end{cases}
$$

Scale function:

$$
s(x)= \begin{cases}\frac{x}{2 \beta}, & x \geq 0 \\ \frac{x}{2(1-\beta)}, & x \leq 0\end{cases}
$$

Green function:

$$
G_{\alpha}(x, y)=\frac{e^{-|x-y| \sqrt{2 \alpha}}-e^{-(|x|+|y|) \sqrt{2 \alpha}}}{2 \sqrt{2 \alpha}(1+(2 \beta-1) \operatorname{sgn}(x \wedge y))}+\frac{e^{-(|x|+|y|) \sqrt{2 \alpha}}}{2 \sqrt{2 \alpha}} .
$$

Wronskian: $w_{\alpha}=2 \sqrt{2 \alpha}$.
Transition density w.r.t. m :

$$
p(t ; x, y)=\frac{e^{-(x-y)^{2} / 2 t}-e^{-(|x|+|y|)^{2} / 2 t}}{2 \sqrt{2 \pi t}(1+(2 \beta-1) \operatorname{sgn}(x \wedge y))}+\frac{e^{-(|x|+|y|)^{2} / 2 t}}{2 \sqrt{2 \pi t}}
$$

10. Appendix 1 item 13 p. 127: " $\Upsilon=\sqrt{1-4 \gamma c} "$ should be " $\Upsilon=\sqrt{1-\gamma c}$ ". Added text at the end: "The expression for the density is valid for all nonnegative values on c and γ; also when $\gamma c>1$."
11. Appendix 1 item 21 p. 133: Added: "Wronskian: $w_{\alpha}=1$."
12. Appendix 1 item 24 p. 137: the transition density in case $\gamma>0$ is as follows:
$p(t ; x, y)=\frac{1}{2} \frac{\sqrt{|\gamma|}}{\sqrt{2 \pi \operatorname{sh}(|\gamma| t)}} \exp \left(-\frac{|\gamma| t}{2}-\frac{|\gamma|\left(x^{2}+y^{2}\right)}{2}-\frac{\left(x^{2}+y^{2}\right)|\gamma| \operatorname{ch}(|\gamma| t)-2 x y|\gamma|}{2 \operatorname{sh}(|\gamma| t)}\right)$.
13. Appendix 1 item 25 p. 139 l.12: the sentence "For $\nu=0$ this is ... of freedom." should be "For $\nu=0$ and $\gamma=1 / 2$ this is the so-called Rayleigh distribution, for $\nu=1 / 2$ and $\gamma=1 / 2$ we have the Maxwell distribution and, in general, for $\nu=n / 2-1, n=1,2, \ldots$, and $\gamma=1 / 2$ the distribution of the square root of the χ^{2}-distributed random variable with n degrees of freedom."
14. Appendix 1 item 25 p. 139 l.17: θ should be γ
15. Appendix 1 item 25 p. 140 l.6,10:

$$
\exp \left(\frac{|\gamma| x^{2}}{2}\right) \quad \text { should be } \quad \exp \left(-\frac{|\gamma| x^{2}}{2}\right)
$$

16. Appendix 1 item 25 p. 140 l.7,11:

$$
\exp \left(\frac{|\gamma| y^{2}}{2}\right) \text { should be } \quad \exp \left(-\frac{|\gamma| y^{2}}{2}\right)
$$

17. Appendix 1 item 25 p. 140 l.12: θ should be γ
18. Appendix 1 item 26 p. 141 l.-2: θ should be γ
19. Appendix 1 item 26 p. 142 l. $-8,-4$, :

$$
\exp \left(-\frac{|\gamma| x}{2}\right) \quad \text { should be } \quad \exp \left(\frac{|\gamma| x}{2}\right)
$$

20. Appendix 1 item 26 p. 142 l.-7,-3,:

$$
\exp \left(-\frac{|\gamma| y}{2}\right) \quad \text { should be } \quad \exp \left(\frac{|\gamma| y}{2}\right)
$$

21. Appendix 1 item 26 p. 142 l.-2: θ should be γ
22. Appendix 1: added a section on CEV processes.
23. Part II: right hand sides of the following formulas should be divided by $|p-q|$: a. 1.1.6.4, 1.1.6.8, 1.1.27.4, 1.1.27.8, 1.1.29.8,
b. 2.1.6.4, 2.1.6.8, 2.1.27.4, 2.1.27.8, 2.1.29.8,
c. 3.1.6.4, 3.1.6.8, 3.1.27.4, 3.1.27.8, 3.1.29.8,
d. 5.1.6.4, 5.1.6.8, 5.1.27.4, 5.1.27.8,
e. 9.1.6.4.

The right hand side of the inverse Laplace transform formula k. in Appendix 3 p. 649 should also be divided by $|p-q|$. For Formula 5.1.29.8 see below.
24. Part II, Formula 3.1.13.3 p. $344: \star \mathrm{s} c_{t}(y)$ should be $\star \mathrm{s} c_{t}(x, y)$
25. Part II, Formula 3.1.13.4 p. $345: \star \mathrm{s} c_{t-v}(y)$ should be $\star \mathrm{s} c_{t-v}(x, y)$
26. Part II, Formula 5.1 .29 .6 , p. 461: R.H.S. should be:

$$
\frac{\lambda z e^{-\lambda(u+v)}}{x} B_{x}^{(29)}(u, v, y, z) d u d v d y d z \quad \text { for } \quad B_{x}^{(29)}(u, v, y, z) \quad \text { see 1.1.29.6. }
$$

27. Part II, Formula 5.1 .29 .8 , p. 461: R.H.S. should be:
$\frac{z \mathbb{I}_{((q \wedge p) t,(q \vee p) t)}(v)}{x|p-q|} B_{x}^{(29)}\left(\frac{|q t-v|}{|p-q|}, \frac{|p t-v|}{|p-q|}, y, z\right) d v d y d z \quad$ for $\quad B_{x}^{(29)}(u, v, y, z)$ see 1.1.29.6
28. Part II, Formula 7.1 .9 .8 (1) p. 526 is replaced by the following formula for the density

$$
\begin{aligned}
\mathbf{P}_{0}\left(\int_{0}^{t} U_{s}^{2} d s\right. & \left.\in d y \mid U_{t}=0\right) e^{-\theta t / 2+\theta y / 4 \sigma^{2}} \\
& =\frac{\sqrt{\sigma} \sqrt{1-e^{-2 \theta t}}}{(2 \theta)^{1 / 4} \pi y^{5 / 4}} \sum_{k=0}^{\infty} \frac{\Gamma(k+1 / 2)}{k!} e^{-(4 k+1)^{2} t^{2} \sigma^{2} \theta / 8 y} D_{3 / 2}\left(\frac{(4 k+1) t \sigma \sqrt{\theta}}{\sqrt{2 y}}\right) d y
\end{aligned}
$$

29. Part II, Formula 8.1.28.1 p. 578: divide RHS by θ.
30. Appendix 2 p. 637: Expanded; in particular, a section on hypergeometric functions is included
31. Appendix 4 p. 652: Expanded with 8 equations.
