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Preface
The aim of this book is to acquaintengineers,scientists,and studentswith the

basic conceptsof image algebraand its use in the conciserepresentationof computer
vision algorithms. In order to achievethis goal we provide a brief surveyof commonly
usedcomputervision algorithmsthat we believerepresentsa core of knowledgethat all
computervision practitionersshouldhave.This surveyis not meantto be an encyclopedic
summaryof computervision techniquesas it is impossibleto do justice to the scopeand
depthof the rapidly expandingfield of computervision.

Thearrangementof thebook is suchthat it canserveasa referencefor computer
vision algorithmdevelopersin generalaswell asfor algorithmdevelopersusingthe image
algebraC++ object library, iac++.1 The techniquesandalgorithmspresentedin a given
chapter follow a progressionof increasingabstractness.Each techniqueis introduced
by way of a brief discussionof its purposeand methodology. Since the intent of this
text is to train the practitioner in formulating his algorithms and ideas in the succinct
mathematicallanguageprovidedby imagealgebra,an effort hasbeenmadeto providethe
precisemathematicalformulation of eachmethodology.Thus, we suspectthat practicing
engineersandscientistswill find this presentationsomewhatmorepracticalandperhapsa
bit lessesotericthanthosefound in researchpublicationsor varioustextbooksparaphrasing
thesepublications.

Chapter1 provides a short introduction to field of image algebra. Chapters
2–11 are devotedto particular techniquescommonly usedin computervision algorithm
development,rangingfrom earlyprocessingtechniquesto suchhigherlevel topicsasimage
descriptorsand artificial neuralnetworks. Although the chapterson techniquesare most
naturally studied in succession,they are not tightly interdependentand can be studied
accordingto the reader’sparticularinterest.In the Appendixwe presentiac++ computer
programsof someof the techniquessurveyedin this book. Theseprogramsreflect the
imagealgebrapseudocodepresentedin the chaptersandserveasexamplesof how image
algebrapseudocodecan be convertedinto efficient computerprograms.

1 The iac++ library supportsthe useof imagealgebrain the C++ programminglanguageand is available
for anonymousftp from ftp://ftp.cis.ufl.edu/pub/src/ia/.
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Notation
The tables presentedhere provide a brief explantationof the notation used

throughoutthis document.The readeris referredto Ritter [1] for a comprehensivetreatise
covering the mathematicsof image algebra.

Logic

Symbol Explanation

" implies ." If is true, then is true.

" if andonly if ," which meansthat and are logically
equivalent.

if f "if andonly if"

"not"

"thereexists"

"theredoesnot exist"

"for each"

s.t. "suchthat"

SetsTheoretic Notation and Operations

Symbol Explanation

Uppercasecharactersrepresentarbitrarysets.

Lowercasecharactersrepresentelementsof an arbitraryset.

Bold, uppercasecharactersareusedto representpoint sets.

Bold, lowercasecharactersareusedto representpoints,i.e.,
elementsof point sets.

The set .

The setof integers,positiveintegers,andnegativeintegers.

The set .

The set .

The set .

The setof real numbers,positivereal numbers,negativereal
numbers,andpositivereal numbersincluding 0.
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Symbol Explanation

The setof complexnumbers.

An arbitrarysetof values.

The set unionedwith .

The set unionedwith .

The set unionedwith .

The emptyset (the set that hasno elements).

The powersetof (the setof all subsetsof ).

"is an elementof"

"is not an elementof"

"is a subsetof"

Union

Let be a family of setsindexedby an indexingset
.

Intersection

Let be a family of setsindexedby an indexingset
.

Cartesianproduct

The Cartesianproductof copiesof , i.e., .
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Symbol Explanation

Setdifference
Let and be subsetsof someuniversalset ,

.

Complement
, where is the universalset that contains .

The cardinality of the set .

A function that randomlyselectsan elementfrom the set .

Point and Point Set Operations

Symbol Explanation

If , then

If , then

If , then

If , then

If , then

If , then

In general,if , and

If and and , then

If , then

If , then

If and then

If , then

If , thenIf , then

If , then

If , then

If , then

If , then
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Symbol Explanation

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then

If , then the supremumof . If
then

For a point set with total order ,

If , then the infimum of . If
, then

For a point set with total order ,

If , then

If , then
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Morphology

In following table and denotesubsetsof .

Symbol Explanation

The reflectionof acrossthe origin .

The complementof ; i.e., .

Minkowskiaddition is defined as
. (Section7.2)

Minkowskisubtractionis definedas .
(Section7.2)

The openingof by is denoted andis definedby
. (Section7.3)

The closingof by is denoted andis definedby
. (Section7.3)

Let be an orderedpair of structuringelements.
The hit-and-misstransformof the set is given by

. (Section7.5)

Functions and Scalar Operations

Symbol Explanation

is a function from into .

The domainof the function is the set .

The rangeof the function is the set
.

The inverseof the function .

The setof all functionsfrom into , i.e., if , then
.

Given a function anda subset , the
restrictionof to , , is definedby

for .

Given and , the extensionof to is

definedby
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Symbol Explanation

Given two functions and , the
composition is definedby

, for every .

Let and be real or complex-valuedfunctions,then
.

Let and be real or complex-valuedfunctions,then
.

Let be a real or complex-valuedfunction, and be a real
or complexnumber,then , .

, where is a real (or complex)-valued
function,and denotesthe absolutevalue(or
magnitude)of .

The identity function is given by .

The projectionfunction onto the th coordinate is defined
by .

The cardinality of the set .

A function which randomlyselectsan elementfrom the set
.

For , is the maximumof and .

For , is the minimun of and .

For the ceiling function returnsthe smallest
integerthat is greaterthanor equalto .

For the floor function returnsthe largestinteger
that is lessthanor equalto .

For the roundfunctionreturnsthe nearestintegerto .
If therearetwo suchintegersit yields the integerwith
greatermagnitude.

For , if thereexists with
suchthat .

The characteristicfunction is definedby
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Images and Image Operations

Symbol Explanation

Bold, lowercasecharactersareusedto representimages.
Imagevariableswill usuallybe chosenfrom the beginningof
the alphabet.

The image is an -valuedimageon . The set is called
the valuesetof and the spatialdomainof .

Let be a setwith unit . Then denotesan image,all of
whosepixel valuesare .

Let be a setwith zero . Then denotesan image,all of
whosepixel valuesare .

The domainrestrictionof to a subset of is
definedby .

The rangerestrictionof to the subset is
definedby . The double-barnotationis
usedto focusattentionon the fact that the restrictionis
appliedto the secondcoordinateof .

If , , and , thenthe restrictionof to
and is definedas .

Let and be subsetsof the sametopologicalspace.The
extensionof to is definedby

Row concatenationof images and , respectivelythe row
concatenationof images .

Columnconcatenationof images and .

If and , thenthe image is
given by , i.e.,

.

If and , the inducedimage is
definedby .

If is a binary operationon , thenan inducedoperationon
canbe defined.Let ; the inducedoperationis

given by .
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Symbol Explanation

Let , , and be a binary operationon . An
inducedscalaroperationon imagesis definedby

.

Let ; .

Let
.

Pointwisecomplexconjugateof image , .

denotesreductionby a genericreduceoperation
.

The following four itemsarespecificexamplesof the global reduceoperation.Each
assumes and .

Dot product, .

Complementationof a set-valuedimage .

Complementationof a Booleanimage .

Transposeof image .
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Templatesand Template Operations

Symbol Explanation

Bold, lowercasecharactersareusedto representtemplates.
Usually charactersfrom the middle of the alphabetareused
astemplatevariables.

A templateis an imagewhosepixel valuesare images.In
particular,an -valuedtemplatefrom to is a function

. Thus, and is an -valued
imageon .

Let . For each , . The image
is given by .

If and , thenthe supportof is
denotedby andis definedby

.

If , then .

If , then .

If , then .

A parameterized -valuedtemplatefrom to with
parametersin is a function of the form .

Let . The transpose is definedas
.

Image-Template Operations

In the table below, is a finite subsetof .

Symbol Explanation

Let be a semiringand , , then
the genericright productof with is definedas

With the conditionsabove,exceptthat now , the
genericleft productof with is definedas
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Symbol Explanation

Let , , and , where .
The right linear product(or convolution)is definedas

With the conditionsabove,exceptthat , the left
linear product(or convolution)is definedas

For and , the right additivemaximum
is definedby

For and , the left additivemaximumis
definedby

For and , the right additiveminimum
is definedby

For and , the left additiveminimumis
definedby

For and , the right
multiplicativemaximumis definedby

For and , the left multiplicative
maximumis defined by
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Symbol Explanation

For and , the right

multiplicativeminimumis definedby

For and , the left multiplicative
minimumis defined by

Neighborhoodsand Neighborhood Operations

Symbol Explanation

Italic uppercasecharactersareusedto denoteneighborhoods.

A neighborhoodis an imagewhosepixel valuesaresetsof
points. In particular,a neighborhoodfrom to is a
function .

A parameterizedneighborhoodfrom to with parameters
in is a function of the form .

Let , the transpose is definedas
, that is,

.

The dilation of by is definedby
.

Image-NeighborhoodOperations

In the table below, is a finite subsetof .

Symbol Explanation

Given and , andreduceoperation
, the genericright reductionof with is

definedas .

With the conditionsabove,exceptthat now , the
genericleft reductionof with is definedas

.
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Symbol Explanation

Given , andthe imageaveragefunction ,
yielding the averageof its imageargument,

.

Given , andthe imagemedianfunction ,
yielding the averageof its imageargument,

.

Matrix and Vector Operations

In the table below, and representmatrices.

Symbol Explanation

The conjugateof matrix .

The transposeof matrix .

, The matrix productof matrices and .

The tensorproductof matrices and .

The p-productof matrices and .

The dual p-productof matrices and , definedby
.
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CHAPTER 1
IMAGE ALGEBRA

1.1. Intr oduction

Sincethe field of imagealgebrais a recentdevelopmentit will be instructiveto
providesomebackgroundinformation. In thebroadsense,imagealgebrais a mathematical
theoryconcernedwith thetransformationandanalysisof images.Althoughmuchemphasis
is focusedon the analysisand transformationof digital images, the main goal is the
establishmentof a comprehensiveand unifying theory of image transformations,image
analysis,and imageunderstandingin the discreteaswell as the continuousdomain[1].

The idea of establishinga unifying theory for the variousconceptsand opera-
tions encounteredin imageandsignalprocessingis not new. Over thirty yearsago,Unger
proposedthat many algorithmsfor imageprocessingand imageanalysiscould be imple-
mentedin parallelusingcellular array computers[2]. Thesecellulararraycomputerswere
inspiredby the work of von Neumannin the 1950s[3, 4]. Realizationof von Neumann’s
cellular arraymachineswasmadepossiblewith the adventof VLSI technology.NASA’s
massivelyparallelprocessoror MPP andthe CLIP seriesof computersdevelopedby Duff
andhis colleaguesrepresentthe classicembodimentof von Neumann’soriginal automaton
[5, 6, 7, 8, 9]. A moregeneralclassof cellulararraycomputersarepyramidsandThinking
MachinesCorporation’sConnectionMachines[10, 11, 12]. In an abstractsense,the vari-
ousversionsof ConnectionMachinesareuniversalcellular automatonswith an additional
mechanismaddedfor non-local communication.

Many operationsperformedby thesecellular arraymachinescanbe expressedin
termsof simpleelementaryoperations.Theseelementaryoperationscreatea mathematical
basis for the theoreticalformalism capableof expressinga large numberof algorithms
for imageprocessingandanalysis. In fact, a commonthreadamongdesignersof parallel
imageprocessingarchitecturesis the belief that large classesof imagetransformationscan
be describedby a small set of standardrules that inducethesearchitectures.This belief
led to the creation of mathematicalformalisms that were used to aid in the design of
special-purposeparallelarchitectures.MatheronandSerra’sTextureAnalyzer[13] ERIM’s
(EnvironmentalResearchInstitute of Michigan) Cytocomputer[14, 15, 16], and Martin
Marietta’s GAPP [17, 18, 19] are examplesof this approach.

The formalismassociatedwith thesecellular architecturesis that of pixel neigh-
borhoodarithmeticandmathematicalmorphology.Mathematicalmorphologyis thepartof
imageprocessingconcernedwith imagefiltering and analysisby structuringelements.It
grewout of theearlywork of Minkowski andHadwiger[20, 21, 22], andenteredthemod-
ern erathroughthe work of MatheronandSerraof the EcoledesMines in Fontainebleau,
France[23, 24, 25, 26]. Matheronand Serranot only formulatedthe modernconcepts
of morphologicalimagetransformations,but alsodesignedandbuilt the TextureAnalyzer
System. Since thoseearly days, morphologicaloperationshave beenapplied from low-
level, to intermediate,to high-levelvision problems.Among somerecentresearchpapers
on morphologicalimageprocessingareCrimminsandBrown [27], Haralicket al. [28, 29],
MaragosandSchafer[30, 31, 32], Davidson[33, 34], Dougherty[35], Goutsias[36, 37],
and Koskinen and Astola [38].

SerraandSternberg were the first to unify morphologicalconceptsandmethods
into a coherentalgebraic theory specifically designedfor image processingand image

1
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analysis. Sternberg was also the first to use the term “image algebra” [39, 40]. In the
mid 1980s,Maragosintroduceda new theoryunifying a largeclassof linear andnonlinear
systemsunder the theory of mathematicalmorphology [41]. More recently, Davidson
completedthe mathematicalfoundationof mathematicalmorphologyby formulating its
embeddinginto the lattice algebra known as Mini-Max algebra [42, 43]. However,
despitetheseprofoundaccomplishments,morphologicalmethodshavesomewell-known
limitations. For example,such fairly common image processingtechniquesas feature
extraction basedon convolution, Fourier-like transformations,chain coding, histogram
equalizationtransforms,imagerotation,andimageregistrationandrectificationare— with
theexceptionof a few simplecases— eitherextremelydifficult or impossibleto expressin
termsof morphologicaloperations.Thefailure of a morphologicallybasedimagealgebrato
expressa fairly straightforwardU.S.government-furnishedFLIR (forward-lookinginfrared)
algorithm was demonstratedby Miller of Perkin-Elmer[44].

The failure of an image algebrabasedsolely on morphologicaloperationsto
providea universalimageprocessingalgebrais dueto its set-theoreticformulation,which
restson the Minkowski addition and subtractionof sets [22]. Theseoperationsignore
the lineardomain,transformationsbetweendifferentdomains(spacesof differentsizesand
dimensionality),andtransformationsbetweendifferentvaluesets(algebraicstructures),e.g.,
setsconsistingof real, complex,or vector valuednumbers.The imagealgebradiscussed
in this text includestheseconceptsandextendsthe morphologicaloperations[1].

The developmentof imagealgebragrew out of a need,by the U.S. Air Force
SystemsCommand,for a common image-processinglanguage. Defensecontractorsdo
not usea standardized,mathematicallyrigorousand efficient structurethat is specifically
designedfor imagemanipulation. Documentationby contractorsof algorithmsfor image
processingand rationaleunderlyingalgorithm designis often accomplishedvia word de-
scriptionor analogiesthat areextremelycumbersomeandoften ambiguous.The resultof
thesead hoc approacheshas beena proliferation of nonstandardnotation and increased
researchanddevelopmentcost. In responseto this chaoticsituation,the Air ForceArma-
mentLaboratory(AFATL — now known asWright LaboratoryMNGA) of the Air Force
SystemsCommand,in conjunctionwith the DefenseAdvancedResearchProjectAgency
(DARPA — now known as the AdvancedResearchProjectAgencyor ARPA), supported
the early developmentof imagealgebrawith the intent that the fully developedstructure
would subsequentlyform the basisof a commonimage-processinglanguage.The goal of
AFATL wasthedevelopmentof a complete,unifiedalgebraicstructurethatprovidesa com-
monmathematicalenvironmentfor image-processingalgorithmdevelopment,optimization,
comparison,coding,andperformanceevaluation.Thedevelopmentof this structureproved
highly successful,capableof fulfilling the tasksset forth by the government,and is now
commonly known as image algebra.

Becauseof thegoalssetby thegovernment,thetheoryof imagealgebraprovides
for a languagewhich, if properlyimplementedasa standardimageprocessingenvironment,
cangreatlyreduceresearchanddevelopmentcosts.Sincethefoundationof this languageis
purely mathematicaland independentof any future computerarchitectureor language,the
longevityof animagealgebrastandardis assured.Furthermore,savingsdueto commonality
of languageand increasedproductivity could dwarf any reasonableinitial investmentfor
adaptingimagealgebraas a standardenvironmentfor imageprocessing.

Although commonality of languageand cost savings are two major reasons
for consideringimage algebraas a standardlanguagefor image processing,there exists
a multitude of other reasonsfor desiring the broad acceptanceof image algebraas a
componentof all image processingdevelopmentsystems. Premieramong theseis the
predictableinfluenceof an imagealgebrastandardon future imageprocessingtechnology.
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In this, it can be comparedto the influenceon scientific reasoningand the advancement
of sciencedueto the replacementof the myriad of differentnumbersystems(e.g.,Roman,
Syrian, Hebrew, Egyptian, Chinese,etc.) by the now common Indo-Arabic notation.
Additional benefitsprovidedby the useof imagealgebraare

• The elementalimage algebraoperationsare small in number, translucent,
simple,and provide a methodof transformingimagesthat is easily learnedand
used;

• Imagealgebraoperationsandoperandsprovidethe capabilityof expressing
all image-to-imagetransformations;

• Theoremsgoverningimagealgebramakecomputerprogramsbasedon image
algebranotationamenableto both machinedependentandmachineindependent
optimization techniques;

• The algebraicnotationprovidesa deeperunderstandingof imagemanipula-
tion operationsdueto concisenessandbrevityof codeandis capableof suggesting
new techniques;

• Thenotationaladaptabilityto programminglanguagesallowsthesubstitution
of extremelyshort and conciseimagealgebraexpressionsfor equivalentblocks
of code,and thereforeincreasesprogrammerproductivity;

• Imagealgebraprovidesa rich mathematicalstructurethat can be exploited
to relateimageprocessingproblemsto other mathematicalareas;

• Without image algebra,a programmerwill never benefit from the bridge
thatexistsbetweenan imagealgebraprogramminglanguageandthemultitudeof
mathematicalstructures,theorems,andidentitiesthatarerelatedto imagealgebra;

• Thereis no competingnotationthat adequatelyprovidesall thesebenefits.

The role of image algebrain computervision and image processingtasksand
theory shouldnot be confusedwith the government’sAda programminglanguageeffort.
Thegoalof thedevelopmentof theAdaprogramminglanguagewasto provideasinglehigh-
order languagein which to implementembeddedsystems.The specialarchitecturesbeing
developednowadaysfor image processingapplicationsare not often capableof directly
executingAda languageprograms,often due to supportof parallel processingmodelsnot
accommodatedby Ada’s taskingmechanism.Hence,mostapplicationsdesignedfor such
processorsare still written in specialassemblyor microcodelanguages.Image algebra,
on the other hand,providesa level of specification,directly derivedfrom the underlying
mathematicson which imageprocessingis basedandthatis compatiblewith bothsequential
and parallel architectures.

Enthusiasmfor image algebramust be temperedby the knowledgethat image
algebra,like any other field of mathematics,will neverbe a finishedproductbut remain
a continuouslyevolving mathematicaltheory concernedwith the unification of image
processingand computervision tasks. Much of the mathematicsassociatedwith image
algebraandits implication to computervision remainslargely uncharteredterritory which
awaitsdiscovery. For example,very little work hasbeendonein relating imagealgebra
to computervision techniqueswhich employ tools from suchdiverseareasas knowledge
representation,graphtheory, and surfacerepresentation.
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Several image algebraprogramminglanguageshave been developed. These
include image algebraFortran (IAF) [45], an image algebraAda (IAA) translator[46],
image algebraConnectionMachine *Lisp [47, 48], an image algebra language(IAL)
implementationon transputers[49, 50], andan imagealgebraC++ classlibrary (iac++)
[51, 52]. Unfortunately,there is often a tendencyamongengineersto confuseor equate
theselanguageswith image algebra. An image algebraprogramminglanguageis not
image algebra,which is a mathematicaltheory. An image algebra-basedprogramming
languagetypically implementsa particularsubalgebraof thefull imagealgebra.In addition,
simplistic implementationscanresult in poor computationalperformance.Restrictionsand
limitationsin implementationareusuallydueto a combinationof factors,themostpertinent
beingdevelopmentcostsandhardwareandsoftwareenvironmentconstraints.Theyarenot
limitations of imagealgebra,andthey shouldnot be confusedwith the capabilityof image
algebraas a mathematicaltool for imagemanipulation.

Imagealgebrais a heterogeneousor many-valuedalgebrain thesenseof Birkhoff
andLipson [53, 1], with multiple setsof operandsandoperators.Manipulationof images
for purposesof imageenhancement,analysis,and understandinginvolves operationsnot
only on images,but also on different typesof valuesandquantitiesassociatedwith these
images.Thus,thebasicoperandsof imagealgebraareimagesandthevaluesandquantities
associatedwith these images. Roughly speaking,an image consistsof two things, a
collectionof pointsanda setof valuesassociatedwith thesepoints. Imagesare therefore
endowedwith two typesof information,namelythe spatialrelationshipof the points,and
also sometype of numericor other descriptiveinformation associatedwith thesepoints.
Consequently,the field of imagealgebrabridgestwo broadmathematicalareas,the theory
of point setsand the algebraof value sets,and investigatestheir interrelationship.In the
sectionsthat follow we discusspoint and value setsas well as images,templates,and
neighborhoodsthat characterizesomeof their interrelationships.

1.2. Point Sets

A point set is simply a topological space. Thus, a point set consistsof two
things,a collectionof objectscalledpointsanda topologywhich providesfor suchnotions
asnearnessof two points,theconnectivityof a subsetof thepoint set,theneighborhoodof
a point, boundarypoints, andcurvesandarcs. Point setswill be denotedby capitalbold
lettersfrom the end of the alphabet,i.e., W, X, Y, and Z.

Points(elementsof point sets)will be denotedby lower casebold letters from
the endof the alphabet,namely . Note also that if , thenx is of form

, wherefor each , denotesa real numbercalled
the ith coordinate of x.

Themostcommonpoint setsoccurringin imageprocessingarediscretesubsetsof
n–dimensionalEuclideanspace with or 3 togetherwith thediscretetopology.
However,othertopologiessuchasthevonNeumanntopologyandtheproducttopologyare
also commonlyusedtopologiesin computervision [1].

There is no restriction on the shape of the discrete subsetsof used
in applications of image algebra to solve vision problems. Point sets can assume
arbitrary shapes. In particular, shapescan be rectangular, circular, or snake-like.
Some of the more pertinent point sets are the set of integer points (here we view

), the n–dimensional lattice (i.e.,
) with or , and

rectangularsubsetsof . Two of the most often encounteredrectangularpoint setsare
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of form

or

We follow standardpracticeandrepresenttheserectangularpoint setsby listing thepointsin
matrix form. Figure1.2.1providesagraphicalrepresentationof thepoint set .

... ...

... ...

... ...

...

...

...

...

...

...

x�

y�

1�
2�

m�

1� 2� n�

Figure 1.2.1. The rectangularpoint set

Point Operations

As mentioned,someof the more pertinentpoint setsare discretesubsetsof the
vector space . Thesepoint setsinherit the usual elementaryvector spaceoperations.
Thus,for example,if (or ) and

, then the sum of the points x and y is definedas

while themultiplicationandadditionof a scalar (or ) anda point x is givenby

and

respectively.Point subtractionis also definedin the usualway.

In additionto thesestandardvectorspaceoperations,imagealgebraalsoincorpo-
ratesthreebasictypesof point multiplication. Theseare the Hadamard product, the cross
product(or vectorproduct) for pointsin (or ), andthedotproductwhicharedefinedby

and

respectively.
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Notethat thesumof two points,theHadamardproduct,andthecrossproductare
binary operationsthat takeasinput two pointsandproduceanotherpoint. Thereforethese
operationscan be viewed as mappings wheneverX is closedunder these
operations.In contrast,thebinaryoperationof dotproductis ascalarandnotanothervector.
This providesanexampleof a mapping , where denotestheappropriatefield
of scalars.Anothersuchmapping,associatedwith metric spaces,is the distancefunction

which assignsto eachpair of points x andy the distancefrom x to y. The
mostcommondistancefunctionsoccurringin imageprocessingaretheEuclideandistance,
the city block or diamonddistance,andthe chessboard distancewhich aredefinedby

and

respectively.

Distancescan be convenientlycomputedin termsof the norm of a point. The
threenormsof interesthereare derivedfrom the standard norms

The norm is given by

where . Specifically, the Euclideannorm is given by

. Thus, . Similarly, the city block distance
can be computedusing the formulation and the chessboarddistance
by using

Note that the p-norm of a point x is a unary operation, namely a function
. Another assemblageof functions which play a major role in

variousapplicationsaretheprojectionfunctions.Given , thenthe ith projectionon
X, where , is denotedby anddefinedby , where denotes
the ith coordinateof x.

Characteristicfunctions and neighborhoodfunctions are two of the most fre-
quently occurring unary operationsin imageprocessing. In order to define theseopera-
tions, we needto recall the notion of a powerset of a set. The power set of a set S is
definedas the setof all subsetsof S and is denotedby . Thus, if Z is a point set, then

.

Given (i.e., ), then the characteristicfunction associatedwith
X is the function
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defined by

Forapairof pointsetsX andZ, aneighborhoodsystemfor X in Z, or equivalently,
a neighborhood function from X to Z, is a function

It follows that for eachpoint , . The set is calleda neighborhood
for x.

Thereare two neighborhoodfunctionson subsetsof which are of particular
importancein imageprocessing.Thesearethe vonNeumannneighborhoodandthe Moore
neighborhood.The von Neumannneighborhood � is definedby

where , while theMooreneighborhood � is definedby

Figure 1.2.2 providesa pictorial representationof thesetwo neighborhoodfunctions; the
hashedcenterarearepresentsthepoint x andtheadjacentcellsrepresenttheadjacentpoints.
The von Neumannand Moore neighborhoodsare also called the four neighborhood and
eight neighborhood, respectively. They are local neighborhoodssince they only include
the directly adjacentpoints of a given point.

N
�

(x)  = M(x)  =

Figure 1.2.2. The von Neumannneighborhood
and the Moore neighborhood of a point x.

There are many other point operationsthat are useful in expressingcomputer
vision algorithmsin succinctalgebraicform. For instance,in certaininterpolationschemes
it becomesnecessaryto switch from points with real-valuedcoordinates(floating point
coordinates)to correspondinginteger-valuedcoordinatepoints. Onesuchmethodusesthe
inducedfloor operation definedby , where

and denotesthe largestintegerlessthanor equalto
(i.e., and if with , then ).

Summary of Point Operations

We summarizesomeof themorepertinentpoint operations.Someimagealgebra
implementationssuchas iac++ providemanyadditionalpoint operations[54].
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Binary operations. Let , and
.

addition
subtraction
multiplication
division
supremum
infimum
dot product
crossproduct
concatenation
scalar operations

where

Unary operations. In the following let .

negation
ceiling
floor
rounding
projection
sum
product
maximum
minimum
Euclidean norm

norm
norm

dimension
neighborhood

characteristicfunction

It is important to note that severalof the aboveunary operationsare special
instancesof spatialtransformations . Spatialtransformsplay a vital role in many
imageprocessingand computervision tasks.

In the abovesummarywe only consideredpoints with real- or integer-valued
coordinates. Points of other spaceshave their own induced operations. For example,
typical operationson points of (i.e., Boolean-valuedpoints) are the usual
logical operationsof , , , and complementation.

Point Set Operations

Point arithmeticleadsin a naturalway to the notion of set arithmetic. Given a
vector spaceZ, then for (i.e., ) and an arbitrary point we
define the following arithmeticoperations:

addition
subtraction
point addition
point subtraction
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Anothersetof operationson aretheusualsetoperationsof union, intersection,
set difference (or relative complement), symmetricdifference, and Cartesianproduct as
defined below.

union
intersection
setdifference
symmetricdifference
Cartesianproduct

Note that with the exceptionof the Cartesianproduct, the set obtainedfor eachof the
aboveoperationsis again an elementof .

Another commonset theoreticoperationis set complementation.For ,
the complementof X is denotedby , and defined as .
In contrastto the binary set operationsdefined above, set complementationis a unary
operation. However,complementationcan be computedin termsof the binary operation
of set differenceby observingthat .

In additionto complementationtherearevariousothercommonunaryoperations
which play a major role in algorithmdevelopmentusingimagealgebra.Amongtheseis the
cardinality of a setwhich, whenappliedto a finite point set,yields thenumberof elements
in the set,andthe choicefunction which, whenappliedto a set,selectsa randomlychosen
point from the set. The cardinalityof a setX will be denotedby card(X). Note that

while

Thatis, and , wherex is somerandomlychosenelementof X.

As was the casefor operationson points,algebraicoperationson point setsare
too numerousto discussat length in a short treatiseas this. Therefore,we again only
summarizesomeof the more frequentlyoccurringunary operations.

Summary of Unary Point Set Operations

In the following .

negation
complementation
supremum
infimum
choicefunction
cardinality

The interpretationof is as follows. SupposeX is finite, say
. Then ,

where denotesthe binary operation of the supremumof two points de-
fined earlier. Equivalently, if for , then

. More generally, is definedto be the
leastupperboundof X (if it exists). The infimum of X is interpretedin a similar fashion.

If X is finite andhasa total order,thenwe alsodefinethemaximumandminimum
of X, denotedby and , respectively,asfollows. Suppose
and , wherethe symbol denotesthe particular total order on X.
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Then and . The most commonlyusedorder for a subsetX of
is the row scanningorder. Note also that in contrastto the supremumor infimum, the
maximumandminimum of a (finite totally ordered)set is alwaysa memberof the set.

1.3. Value Sets

A heterogeneousalgebra is a collection of nonemptysetsof possiblydifferent
types of elementstogetherwith a set of finitary operationswhich provide the rules of
combiningvariouselementsin order to form a new element.For a precisedefinition of a
heterogeneousalgebrawe refer the readerto Ritter [1]. Note that the collection of point
sets,points,andscalarstogetherwith theoperationsdescribedin theprevioussectionform
a heterogeneousalgebra.

A homogeneousalgebrais a heterogeneousalgebrawith only onesetof operands.
In other words, a homogeneousalgebrais simply a set togetherwith a finite numberof
operations.Homogeneousalgebraswill be referredto as valuesetsand will be denoted
by capital blackboardfont letters, e.g., , and . There are severalvalue setsthat
occurmoreoften thanothersin digital imageprocessing.Thesearethesetof integers,real
numbers(floating point numbers),the complexnumbers,binary numbersof fixed lengthk,
the extendedreal numbers(which includethe symbols and/or ), andthe extended
non–negativereal numbers.We denotethesesetsby , ,

, , and , respectively,
wherethe symbol denotesthe set of positive real numbers.

Operations on Value Sets

The operationson and betweenelementsof a given value set are the usual
elementaryoperationsassociatedwith . Thus, if , then the binary
operationsare the usual arithmetic and logic operationsof addition, multiplication, and
maximum,and the complementaryoperationsof subtraction,division, and minimum. If

, then the binary operationsare addition, subtraction,multiplication, and division.
Similarly, we allow the usualelementaryunaryoperationsassociatedwith thesesetssuch
as the absolutevalue, conjugation,as well as trigonometric,logarithmic and exponential
functionsastheseareavailablein all higher-levelscientificprogramminglanguages.

For the set we needto extendthe arithmeticand logic operationsof as
follows:

Notethattheelement actsasanull elementin thesystem if we
view theoperation+ asmultiplicationandtheoperation asaddition. Thesamecannotbe
saidabouttheelement in thesystem since .
In orderto remedythissituationwedefinethedualstructure of
as follows:



1. 3 Value Sets 11

Now theelement actsasanull elementin thesystem Observe,however,
that the dual additions and introducean asymmetrybetween and The
resultantstructure is known asa boundedlattice orderedgroup [1].

Dual structuresprovide for the notion of dual elements.For each we
defineits dual or conjugate by , where . The following duality
laws are a direct consequenceof this definition:� �

� � �
and

� � �
.

Closely relatedto the additiveboundedlattice orderedgroupdescribedaboveis
the multiplicativeboundedlattice orderedgroup . Herethe dual of
ordinary multiplication is definedas

with both multiplicative operationsextendedas follows:

Hence,the element0 actsas a null elementin the system and the element
actsasa null elementin the system . The conjugate of an element

of this value set is definedby

if
if
if

Anotheralgebraicstructurewith dualitywhich is of interestin imagealgebrais the

valueset , where .
The logical operations and arethe usualbinary operationsof max (or) andmin (and),
respectively,while the dual additiveoperations and aredefinedby the tablesshown
in Figure 1.3.1.

0 1 0 1

0 1 0 0 1 0

1 0 1 1 0 1

Figure 1.3.1. The dual additive operations and .

Note that theaddition (aswell as ) restrictedto is theexclusive
or operationxor andcomputesthe valuesfor the truth tableof the biconditionalstatement

(i.e., p if and only if q).
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Theoperationson thevalueset canbeeasilygeneralizedto its k-fold Cartesian
product . Specifically, if
and , where for , then

.

The addition shouldnot be confusedwith the usualaddition on .
In fact, for , where

Many point setsare also value sets. For example,the point set is a
metric spaceas well as a vector spacewith the usualoperationof vector addition. Thus,

, wherethesymbol“ ” denotesvectoraddition,will at varioustimesbeusedboth
asa point setandasa valueset. Confusionas to usagewill not ariseasusageshouldbe
clear from the discussion.

Summary of Pertinent Numeric Value Sets

In order to focus attentionon the value setsmost often usedin this treatisewe
provide a listing of their algebraicstructures:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

In contrastto structurec, theadditionandmultiplication in structured is addition
and multiplication .

Theselisted structuresrepresentthe pertinentglobal structures. In variousap-
plicationsonly certainsubalgebrasof thesealgebrasare used. For example,the subalge-
bras and of play specialroles in mor-
phologicalprocessing.Similarly, the subalgebra of , where

, is the only pertinentapplicablealgebrain certaincases.

The complementarybinary operations,wheneverthey exist, are assumedto be
part of the structures.Thus,for example,subtractionanddivision which canbe definedin
termsof additionandmultiplication,respectively,areassumedto bepartof .

Value Set Operators

As for point sets,given a valueset , the operationson 	 are againthe usual
operationsof union, intersection,set difference,etc. If, in addition, is a lattice, then
the operationsof infimum andsupremumarealsoincluded. A brief summaryof valueset
operatorsis given below.
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For the following operationsassumethat 
 for somevalueset .

union
intersection
setdifference
symmetricdifference
Cartesianproduct
choicefunction
cardinality
supremum
infimum

1.4. Images

Theprimaryoperandsin imagealgebraareimages,templates,andneighborhoods.
Of thesethreeclassesof operands,imagesare the most fundamentalsincetemplatesand
neighborhoodscanbeviewedasspecialcasesof thegeneralconceptof animage. In orderto
providea mathematicallyrigorousdefinitionof an imagethatcoverstheplethoraof objects
called an “image” in signal processingand imageunderstanding,we definean image in
generalterms,with a minimumof specification.In thefollowing we usethenotation to
denotethe setof all functions (i.e., ).

Definition: Let be a valuesetandX a point set. An -valuedimage
on X is any elementof � . Given an –valuedimage � (i.e.,

), then is called the setof possiblerangevaluesof a and
X the spatial domainof a.

It is oftenconvenientto let thegraphof an image representa. Thegraph
of an image is also referredto as the data structure representationof the image. Given
the datastructurerepresentation , then an element of
the datastructureis called a picture elementor pixel. The first coordinatex of a pixel is
called the pixel location or imagepoint, andthe secondcoordinatea(x) is called the pixel
value of a at location x.

The abovedefinition of an imagecoversall mathematicalimageson topological
spaceswith rangein an algebraicsystem.RequiringX to be a topologicalspaceprovides
uswith thenotionof nearnessof pixels. SinceX is not directly specifiedwe maysubstitute
anyspacerequiredfor theanalysisof animageor imposedby a particularsensorandscene.
For example,X could be a subsetof with of form , where
the first coordinates denotespatial location and t a time variable.

Similarly, replacingtheunspecifiedvalueset with or
providesus with digital integer-valuedanddigital vector-valuedimages,respectively.An
implication of theseobservationsis that our imagedefinition also characterizesany type
of discreteor continuousphysical image.

Induced Operations on Images

Operationson and between -valuedimagesare the natural inducedoperations
of the algebraicsystem . For example,if is a binary operationon , then inducesa
binary operation— againdenotedby — on definedas follows:
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Let . Then

For example,suppose and our value set is the algebraicstructureof the real
numbers . Replacing by the binary operations , and we obtain
the basic binary operations

and

on real-valuedimages.Obviously,all four operationsarecommutativeandassociative.

In additionto the binary operationbetweenimages,the binary operation on
also inducesthe following scalaroperationson images:

For ,

and

Thus,for , we obtain the following scalarmultiplication andadditionof real-valued
images:

and

It follows from the commutativityof real numbersthat,

Althoughmuchof imageprocessingis accomplishedusingreal-,integer-,binary-,
or complex-valuedimages,many higher-levelvision tasksrequiremanipulationof vector
and set-valuedimages.A set-valuedimageis of form � . Here the underlying
value set is � , wherethe tilde symbol denotescomplementation.Hence,the
operationson set-valuedimagesarethoseinducedby the Booleanalgebraof the valueset.
For example,if � , then

and

where .
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Theoperationof complementationis, of course,a unaryoperation.A particularly
useful unary operationon imageswhich is inducedby a binary operationon a value set
is known as the global reduceoperation. More precisely, if is an associativeand
commutativebinary operationon and X is finite, say , then
inducesa unary operation

called the global reduceoperationinducedby , which is definedas

Thus,for example,if and is the operationof addition( ), then and

In all, thevalueset providesfor four basicglobalreduceoperations,namely
, and .

Induced Unary Operations and Functional Composition

In theprevioussectionwe discussedunaryoperationson elementsof induced
by a binary operation on . Typically, however,unary image operationsare induced
directly by unaryoperationson . Given a unaryoperation , then the induced
unary operation is againdenotedby f and is definedby

Note that in this definition we view the composition as a unary operationon
with operanda. This subtledistinction hasthe importantconsequencethat f is viewed as
a unary operation— namelya function from to — and a as an argumentof f.
For example,substituting for and the sine function for f, we obtain the
inducedoperation , where

As anotherexample,considerthe characteristicfunction

Then for any , is the Boolean(two-valued)imageon X with value 1 at
locationx if andvalue0 if . An obviousapplicationof this operation
is the thresholdingof an image.Givena floatingpoint imagea andusingthecharacteristic
function

then the imageb in the imagealgebraexpression
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is given by

Theunaryoperationson an image discussedthusfar haveresultedeither
in a scalar(an elementof ) by useof the global reductionoperation,or another -valued
imageby useof thecomposition . More generally,givena function ,
thenthecomposition providesfor a unaryoperationwhich changesan -valuedimage
into a -valuedimage . Taking the sameviewpoint, but using a function f between
spatialdomainsinstead,providesa schemefor realizing naturally inducedoperationsfor
spatialmanipulationof imagedata. In particular, if and , then we
define the inducedimage by

Thus, the operationdefined by the aboveequationtransformsan -valuedimagedefined
over the spaceX into an -valuedimagedefinedover the spaceY.

Examplesof spatialbasedimagetransformationsareaffine andperspectivetrans-
forms. For instance,suppose , where is a rectangular array. If

and is definedas

then is a onesidedreflectionof a acrosstheline . Furtherexamplesareprovided
by severalof the algorithmspresentedin this text.

Simpleshiftsof animagecanbeachievedby usingeithera spatialtransformation
or point addition. In particular,given , , and , we definea shift
of a by y as

Note that is an imageon since , which provides
for the equivalentformulation

Of course,one could just as well define a spatial transformation by
in order to obtain the identicalshifted image .

Another simple unary imageoperationthat can be definedin termsof a spatial
mapis imagetransposition. Givenan image   , thenthe transposeof a, denoted
by , is definedas where is givenby .

Binary Operations Induced by Unary Operations

Various unary operationsimage operationsinducedby functions
can be generalizedto binary operationson . As a simple illustration, considerthe
exponentiationfunction definedby , wherek denotessomenon-
negativereal number. Then f inducesthe exponentiationoperation
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wherea is a non-negativereal-valuedimageon X. We mayextendthis operationto a binary
imageoperationas follows: if , then

The notion of exponentiationcanbe extendedto negativevaluedimagesaslong
as we follow the rules of arithmetic and restrict this binary operationto thosepairs of
real-valuedimagesfor which . This avoidscreationof complex,
undefined,and indeterminatepixel values such as , respectively.
However, there is one exceptionto theserules of standardarithmetic. The algebraof
imagesprovidesfor the existenceof pseudoinverses. For , the pseudoinverseof
a, which for reasonof simplicity is denotedby is definedas

Note that if somepixel valuesof a arezero,then , where1 denotesunit image
all of whosepixel valuesare1. However,theequality alwaysholds. Hence
the name“pseudoinverse.”

The inverseof exponentiationis definedin the usualway by taking logarithms.
Specifically,

As for real numbers, is definedonly for positive images;i.e., .

Anothersetof examplesof binaryoperationsinducedby unaryoperationsarethe
characteristicfunctionsfor comparingtwo images.For we define

Functional Specification of Image Operations

Thebasicconceptsof elementaryfunction theoryprovidethe underlyingfounda-
tion of a functional specificationof imageprocessingtechniques.This is a direct conse-
quenceof viewing imagesas functions. The mostelementaryconceptsof function theory
are the notionsof domain,range,restriction,andextensionof a function.

Imagerestrictionsand extensionsare usedto restrict imagesto regionsof par-
ticular interestand to embedimagesinto larger images,respectively.Employingstandard
mathematicalnotation, the restriction of to a subsetZ of X is denotedby ,
and defined by

Thus, . In practice,the usermay specify Z explicitly by providing boundsfor
the coordinatesof the points of Z.
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Thereis nothing magicalaboutrestrictinga to a subsetZ of its domainX. We
canjust aswell definerestrictionsof imagesto subsetsof the rangevalues.Specifically,if

and , then the restrictionof a to S is denotedby anddefinedas

In termsof the pixel representationof we have . The
double-barnotationis usedto focus attentionon the fact that the restrictionis appliedto
the secondcoordinateof .

Imagerestrictionsin termsof subsetsof the value set is an extremelyuseful
conceptin computervision asmanyimageprocessingtasksarerestrictedto imagedomains
over which the image values satisfy certain properties. Of course, one can always
write this type of restriction in terms of a first coordinaterestriction by setting

so that . However, writing a programstatementsuch
as is of little value since Z is implicitly specified in terms of S; i.e., Z
must be determinedin terms of the property “ .” Thus, Z would have to be
precomputed,addingto the computationaloverheadaswell asincreasedcode. In contrast,
directrestrictionof thesecondcoordinatevaluesto anexplicitly specifiedsetSavoidsthese
problemsand providesfor easierimplementation.

As mentioned,restrictionsto the rangeset provide a useful tool for expressing
variousalgorithmicprocedures.For instance,if andS is the interval ,
wherek denotessomegiven thresholdvalue, then denotesthe imagea restricted
to all thosepoints of X wherea(x) exceedsthe value k. In order to reducenotation,we
define . Similarly,

As in thecaseof characteristicfunctions,a moregeneralform of rangerestriction
is given whenS correspondsto a set-valuedimage � ; i.e., .
In this casewe define

For example,for we define

Combining the conceptsof first and secondcoordinate(domain and range)
restrictionsprovidesthe generaldefinition of an imagerestriction. If , , and

, then the restrictionof a to Z and S is definedas

It follows that , , and

� .

The extensionof to on Y, whereX and Y are subsetsof the
sametopologicalspace,is denotedby and definedby

In actualpractice,the userwill haveto specify the function b.
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Two of the most important conceptsassociatedwith a function are its domain
andrange. In the field of imageunderstanding,it is convenientto view theseconceptsas
functions that map imagesto setsassociatedwith certain imageproperties. Specifically,
we view the conceptof rangeas a function

�

definedby .

Similarly, the conceptof domainis viewed as the function

�
where � �
and domain is definedby

Thesemappingcan be usedto extractpoint setsandvaluesetsfrom regionsof
imagesof particular interest. For example,the statement

yields the set of all points (pixel locations) where a(x) exceedsk, namely
. The statement

on the other hand,resultsin a subsetof insteadof X.

Closelyrelatedto spatialtransformationsandfunctionalcompositionis thenotion
of imageconcatenation. Concatenationservesas a tool for simplifying algorithm code,
addingtranslucencyto code,andto providea link to the usualblock notion usedin matrix
algebra.Given � � and � � , thenthe row-order concatenationof a with
b is denotedby and is definedas

Note that � � .

Assumingthe correctdimensionalityin the first coordinate,concatenationof any
numberof imagesis definedinductively using the formula so that
in generalwe have

Column-order concatenationcanbedefinedin a similar manneror by simpletransposition;
i.e.,

...
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Multi-V alued Image Operations

Although generalimage operationsdescribedin the previoussectionsapply to
both single and multi-valuedimagesas long as thereis no specificvalue type associated
with the genericvalueset , thereexist a large numberof multi-valuedimageoperations
thatarequitedistinct from single-valuedimageoperations.As the generaltheoryof multi-
valuedimageoperationsis beyondthe scopeof this treatise,we shall restrictour attention
to somespecificoperationson vector-valuedimageswhile referring the readerinterested
in moreintricatedetailsto Ritter [1]. However,it is importantto realizethat vector-valued
imagesare a specialcasesof multi-valued images.

If and , thena(x) is a vectorof form
where for each , . Thus, an image is of form

andwith eachvectorvaluea(x) thereareassociatedn realvalues .

Real-valuedimageoperationsgeneralizeto theusualvectoroperationson .
In particular, if , then

If , then we also have

etc. In the specialcasewhere , we simply usethe scalar anddefine
, and so on.

As before,binary operationson multi-valued imagesare inducedby the corre-
spondingbinaryoperation on thevalueset . It turnsout to beuseful
to generalizethis conceptby replacingthe binary operation by a sequenceof binary
operations , where , and defining

For example,if is definedby

thenfor and , the componentsof have
values

for .

As anotherexample,suppose and aretwo binary operations
defined by

and
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respectively. Now if representtwo complex-valuedimages, then the
product representspointwisecomplexmultiplication, namely

Basic operationson single and multi-valued imagescan be combinedto form
imageprocessingoperationsof arbitrarycomplexity. Two suchoperationsthathaveproven
to be extremelyuseful in processingreal vector-valuedimagesare the winner takeall jth-
coordinatemaximumandminimum of two images.Specifically, if , thenthe
jth-coordinatemaximumof a and b is definedas

while the jth-coordinate minimum is definedas

Unaryoperationson vector-valuedimagesaredefinedin a similar componentwise
fashion. Given a function , then f inducesa function , againdenoted
by f, which is definedby

Thesefunctions provide for one type of unary operationson vector-valuedimages. In
particular, if , then

Thus, if , then

Similarly, if , then

Any function gives rise to a sequenceof functions
, where . Conversely,given a sequenceof functions ,

where , thenwe can define a function by

where . Suchfunctionsprovidefor a morecomplextype of unary
image operationssince by definition

which meansthat the constructionof each new coordinatedependson all the original
coordinates.To provide a specificexample,define by

and by . Then the inducedfunction
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given by . Applying f to an image results
in the image

Thus, if we representcomplexnumbersas points in and a denotesa complex-valued
image,then is a pointwiseapplicationof the complexsine function.

Global reduce operationsare also applied componentwise. For example, if
, and , then

In contrast,the summation sinceeach . Note that the

projectionfunction is a unary operation .

Similarly,

and

Summary of Image Operations

The lists below summarizesomeof the moresignificantimageoperations.

Binary image operations.

It is assumedthat only appropriatelyvaluedimagesareemployedfor the opera-
tions listed below. Thus, for the operationsof maximumand minimum apply to real- or
integer-valuedimagesbut not complex-valuedimages. Similarly, union and intersection
apply only to set-valuedimages.

generic
addition
multiplication
maximum
minimum
scalar addition
scalar multiplication
point addition
union
intersection

exponentiation

logarithm
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concatenation � � � �
concatenation

characteristics

Wheneverb is a constantimage,say (i.e., ), then we
simplywrite for and for . Similarly, wehave , , , etc.

Unary image operations.

As in the caseof binary operations,we again assumethat only appropriately
valuedimagesare employedfor the operationslisted below.
value transform

spatial transform

domain restriction

range restriction

extension

domain

range

generic reduction

imagesum

imageproduct

imagemaximum

imageminimum

imagecomplement

pseudoinverse

imagetranspose

1.5. Templates

Templatesareimageswhosevaluesareimages.Thenotionof a template,asused
in imagealgebra,unifiesandgeneralizestheusualconceptsof templates,masks,windows,
and neighborhoodfunctions into one generalmathematicalentity. In addition, templates
generalizethenotionof structuringelementsasusedin mathematicalmorphology[26, 55].
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Definition. A template is an image whose pixel values are images
(functions). In particular,an -valuedtemplatefrom Y to X is a function�

. Thus,
� �

and t is an
�

-valuedimageon Y.

For notationalconveniencewe define � . The image �
has representation

� �
Thepixel values � of this imagearecalledtheweightsof thetemplate
at point y.

If t is a real- or complex-valuedtemplatefrom Y to X, then the supportof
is denotedby and is definedas

More generally,if and is an algebraicstructurewith a zeroelement0, then
the supportof will be definedas .

For extendedreal-valuedtemplateswe also define the following supportsat
infinity:

and

If X is a spacewith an operation suchthat is a group,thena template
is saidto be translationinvariant (with respectto the operation ) if andonly

if for eachtriple we havethat . Templatesthat are not
translationinvariant are called translationvariant or, simply, variant templates.A large
classof translationinvariant templateswith finite supporthavethe nice propertythat they
canbe definedpictorially. For example,let andy = (x,y) be an arbitrarypoint of
X. Set . Define by
defining the weights
wheneverx is not an elementof . Note that it follows from the definition
of t that . Thus,at any arbitrarypoint y, the configurationof the
supportand weightsof is as shownin Figure 1.5.1. The shadedcell in the pictorial
representationof indicatesthe location of the point y.

y�

x�

y�

x�

x� +1�

y� -1

 3  1

 2 4

Figure 1.5.1. Pictorial representationof a translationinvariant template.
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Therearecertaincollectionsof templatesthat canbe definedexplicitly in terms
of parameters.Theseparameterizedtemplatesareof greatpracticalimportance.

Definition. A parameterized -valuedtemplatefrom Y to X with param-
etersin P is a function of form �

�
The setP is calledthe

setof parametersandeach is calleda parameterof t.

Thus,a parameterized -valuedtemplatefrom Y to X gives rise to a family of

regular -valuedtemplatesfrom Y to X, namely .

Image-Template Products

The definition of an image-templateproduct provides the rules for combining
imageswith templatesandtemplateswith templates.Thedefinitionof this productincludes
the usualcorrelationandconvolutionproductsusedin digital imageprocessing.Suppose

is a valuesetwith two binary operations and , where distributesover , and
is associativeandcommutative.If , then for each , . Thus, if

, whereX is finite, then and . It follows that the
binary operations and inducea binary operation

where

is defined by

Therefore,if , then

The expression is called the right product of a with t. Note that while
a is an imageon X, the product is an imageon Y. Thus, templatesallow for the
transformationof an imagefrom onetype of domainto an entirely differentdomaintype.

Replacing by changes into

the linear image-templateproduct, where

, and .

Every template has a transpose which is defined
. Obviously, and reversesthe mappingorder from
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to . By definition, and , whenever and

. Hencethe binary operations and induceanotherproductoperation

where

is defined by

The expression is called the left productof a with s.
Whencomputing , it is not necessaryto usethe transpose since

This allows us to redefine the transformation as

For the remainderof this sectionwe assumethat is a monoid and let 0
denotethe zero of under the operation . Suppose and , where
X and Z are subsetsof the samespace. Since is a monoid, the operator can be
extendedto a mapping

where is definedby is definedby

Theleft product is definedin asimilar fashion.Subsequentexampleswill demonstrate
thattheability of replacingX with Z greatlysimplifiestheissueof templateimplementation
and the useof templatesin algorithm development.

Significantreductionin thenumberof computationsinvolved the image-template
productcanbeachievedif is a commutativesemiring.Recallthat if ,
then the support of t at a point with respectto the operation is defined as

. Since whenever , we have that
whenever and, therefore,

It follows that the computationof the new pixel valueb(y) doesnot dependon the sizeof
X, but on the sizeof . Therefore,if , thenthe computationof
b(y) requiresa total of operationsof type and .

As pointedout earlier,substitutionof differentvaluesetsandspecific binary op-
erationsfor and resultsin a wide varietyof differentimagetransforms.Our primeex-
amplesarethering andthevaluesets and
The structure providesfor two lattice products:
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where

and

where

In orderto distinguishbetweenthesetwo typesof latticetransforms,wecall theoperator
the additivemaximumand the additiveminimum. It follows from our earlierdiscussion
that if , then the value of b(y) is , the zero of under the
operationof . Similarly, if , then .

The left additive max and min operationsare definedby

and

respectively. The relationshipbetweenthe additive max and min is given in terms of
lattice duality by

where the image is defined by , and the conjugate(or dual) of
is the template definedby . It follows

that .

The valueset also providesfor two lattice products.Specif-
ically, we have

where

and

where

Here 0 is the zero of under the operation of , so that whenever
. Similarly, whenever .
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The lattice products and are called the multiplicative maximumand
multiplicative minimum, respectively. The left multiplicative max and left multiplicative
min are defined as

and

respectively.The duality relationbetweenthe multiplicative max andmin is given by

where and . Here denotesthe conjugateof r in .

Summary of Image-Template Products

In the following list of pertinent image-templateproducts and
. Again, for eachoperationwe assumethe appropriatevalueset .

right genericproduct

right linear product

right additivemax

right additivemin

right multiplicative max

right multiplicative min

right xor max

right xor min
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In the next set of operations, .

left genericproduct

left linear product

left additivemax

left additivemin

left multiplicative max

left multiplicative min

Binary and Unary Template Operations

Since templatesare images,all unary and binary image operationsdiscussed
earlier apply to templatesas well. Any binary on induces a binary operation
(again denotedby ) on as follows: for eachpair the induced
operation is definedin termsof the inducedbinary imageoperationon , namely

. Thus, if , , and , then
, where denotesthe pointwisesumof the two images

and .

The unarytemplateoperationsof prime importancearethe global reduceopera-
tions. SupposeY is a finite point set,say , and . Any
binary semigroupoperation on inducesa global reduceoperation

which is definedby
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Thus,for example,if and is the operationof addition( ), then and

Therefore, is an image,namelythe sumof a finite numberof images.

In all, the value set providesfor four basicglobal reduceoper-
ations,namely , and .

If thevalueset hastwo binaryoperations and sothat is a ring (or

semiring),thenunderthe inducedoperations is alsoa ring (or semiring).
Analogousto the image-templateproduct,thebinaryoperations and inducea template
convolution product

definedas follows. Suppose , , and X a finite point set. Then the

templateproduct , where , is definedas

Thus, if and , then is given by the formula

The lattice product is definedin a similar manner.For

and , the product templater is given by

The following exampleprovidesa specificinstanceof the aboveproductformu-
lation.

Example: Suppose are the following translationinvariant
templates:

1 12
�

1

3

-1

s   � =y� t   
�

=y�
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Then the templateproduct is the templatedefinedby

r   =y�
1 2

�
1

36
�

3

-1 -2 -1

If  "! are defined as above with values outside the
support,thenthe templateproduct is the templatedefinedby

r   # =y$
2 3 2

4
%

5
&

4
%

0
'

1 0
'

The templatet is not an (*)+ -valuedtemplate.To providean exampleof
the templateproduct , we redefinet as

t   
,

=y-
1

3

1

Then is given by

r   . =y-
1 2 1

3 6
/

3

1 2 1

Theutility of templateproductsstemsfrom thefact that in semiringstheequation

holds [1]. This equationcan be utilized in order to reducethe computationalburden

associatedwith typical convolutionproblems.For example,if 0 0 is definedby
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, then

r   =y�
4
1

6
�

4
1

6
�

9
2

-6

-4 -6

-4

where

t   
3

=y$s   4 =y$ 2 3 -2

2
5

3

-2

The constructionof the new image requiresnine multiplicationsand
eightadditionsperpixel (if we ignoreboundarypixels). In contrast,thecomputationof the
image requiresonly six multiplicationsandfour additionsper pixel. For
large images(e.g.,size ) this amountsto significantsavingsin computation.

Summary of Unary and Binary Template Operations

In the following and denotesthe appropriatevalueset.

genericbinary operation

templatesum

max of two templates

min of two templates

genericreduceoperation

sum reduce

product reduce

max reduce

min reduce



1. 6 RecursiveTemplates 33

In the next list, , , X is a finite point set,and denotes
the appropriatevalue set.

generic templateproduct

linear templateproduct

additivemax product

additivemin product

multiplicative max product

multiplicative min product

1.6. Recursive Templates

In this section we introduce the notions of recursivetemplatesand recursive
template operations,which are direct extensionsof the notions of templatesand the
correspondingtemplateoperationsdiscussedin the precedingsection.

A recursivetemplateis definedin termsof a regulartemplatefrom somepoint
set X to anotherpoint set Y with somepartial order imposedon Y.

Definition. A partially ordered set (or poset) is a set P together
with abinaryrelation , satisfyingthefollowing threeaxiomsfor arbitrary

:

(i)

(ii)

(iii)

Now supposethat X is a point set,Y is a partially orderedpoint setwith partial
order , and a monoid. An -valuedrecursivetemplatet from Y to X is a function6 , where 6 and , suchthat

Thus,for each , 6 is an -valuedimageon X and is an -valuedimage
on Y.

In most applications,the relation or usually holds. Also,
for consistencyof notation and for notationalconvenience,we define 6 6 and

so that 6 . The support of t at a point y is defined as6 . The setof all -valuedrecursivetemplatesfrom Y to X will

be denotedby .

In analogyto our previousdefinition of translationinvariant templates,if X is
closedunder the operation , then a recursivetemplate is called
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translation invariant if for eachtriple , we have , or
equivalently, 7 7 and . An exampleof an
invariant recursivetemplateis shownin Figure 1.6.1.

1

1

1-1
=tt =

Figure1.6.1. An exampleof an integer-valuedinvariantrecursivetemplatefrom to .

If t is an invariantrecursivetemplateandhasonly onepixel definedon thetarget
point of its nonrecursivesupport 8 , then t is called a simplified recursivetemplate.
Pictorially, a simplified recursivetemplatecan be drawn the sameway as a nonrecursive
templatesincethe recursivepart and the nonrecursivepart do not overlap. In particular,
the recursivetemplateshownin Figure1.6.1canbe redrawnasillustratedin Figure1.6.2

11

1-1

t =

Figure1.6.2. An exampleof an integer-valuedsimplified recursivetemplate.

The notionsof transposeanddual of a recursivetemplatearedefinedin termsof
thosefor nonrecursivetemplates.In particular,the transpose of a recursivetemplatet is

definedas 9 . Similarly, if , then the additivedual of

t is definedby 9 . Themultiplicativedual for recursive -valuedtemplates
is defined in a likewise fashion.

Operations betweenImagesand Recursive Templates

In order to facilitate the discussionon recursivetemplatesoperations,we begin
by extendingthe notions of the linear product , the additive maximum , and the
multiplicative maximum to the correspondingrecursiveoperations , and

, respectively.

Let X andY befinite subsetsof with Y partially orderedby . If and
, thenthe recursivelinear image-templateproduct is definedby

: 9

The recursivetemplateoperation computesa new pixel value based
on both the pixel values of the sourceimage and somepreviouslycalculatednew
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pixel values which are determinedby the partial order and the region of support
of the participating template. By definition of a recursivetemplate, for every

and . Therefore, is alwaysrecursivelycomputable.Some
partialordersthatarecommonlyusedin two-dimensionalrecursivetransformsareforward
and backwardrasterscanningand serpentinescanning.

It follows from thedefinitionof thatthecomputationof anewpixel can
bedoneonly afterall its predecessors(orderedby ) havebeencomputed.Thus,in contrast
to nonrecursivetemplateoperations,recursivetemplateoperationsare not computedin a
globally parallel fashion.

Note that if the recursivetemplatet is definedsuch that for all
, then one obtainsthe usualnonrecursivetemplateoperation

;
<

Hence,recursivetemplateoperationsare naturalextensionsof nonrecursivetemplateop-
erations.

Recursiveadditivemaximumandmultiplicativeminimumaredefinedin a similar
fashion. Specifically,if and , then

is defined by

;
<

For and ,

is defined by

;
<

The operations of the recursive additive minimum and multiplicative minimum
are definedin the samestraightforwardfashion.

Recursiveadditivemaximum,minimumaswell asrecursivemultiplicativemaxi-
mumandminimumarenonlinearoperations.However,therecursivelinearproductremains
a linear operation.

Thebasicrecursivetemplateoperationsdescribedabovecanbeeasilygeneralized
to the generic recursive image-templateproduct by simple substitutionof the specific
operations,suchasmultiplication andaddition,by the genericoperations and . More
precisely, given a semiring with identity, then one can define the generic
recursiveproduct
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by defining by

= >
Again, in additionto thebasicrecursivetemplateoperationsdiscussedearlier,awidevariety
of recursivetemplateoperationscan be derived from the generalizedrecursiverule by
substitutingdifferentbinaryoperationsfor and . Additionally, parameterizedrecursive
templatesaredefined in the samemannerasparametrizednonrecursivetemplates;namely
as functions

whereP denotesthe setof parameters,and > with >
and .

Summary of Recursive Template Operations

In the following list of pertinentrecursiveimage-templateproducts and
. As before,for eachoperationwe assumetheappropriatevalueset .

recursivegenericproduct

= >

recursivelinear product

= >

recursiveadditivemax

= >

recursiveadditivemin

= >

recursivemultiplicative max

= >
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right multiplicative min

?
@

The definition of the left recursiveproduct is alsostraightforward.How-
ever, for sake of brevity and since the different left productsare not required for the
remainderof this text, we dispensewith their formulation. Additional factsaboutrecursive
products,their propertiesand applicationscanbe found in [1, 56, 57].

1.7. Neighborhoods

Thereareseveraltypesof templateoperationsthat aremoreeasily implemented
in termsof neighborhoodoperations.Typically, neighborhoodoperationsreplacetemplate
operationswheneverthevaluesin thesupportof a templateconsistonly of theunit elements
of the value set associatedwith the template. A template with the property
that for each , the valuesin the supportof consistonly of the unit of is called
a unit template.

For example,the invarianttemplate A A shownin Figure1.7.1is a unit

templatewith respectto the value set sincethe value1 is the unit with respect
to multiplication.

t
B

=

1

1

11

1

1

1

1

1

Figure 1.7.1. The unit Moore templatefor the value set .

Similarly, the template C C shownin Figure 1.7.2 is a unit template

with respectto the value set since the value 0 is the unit with respectto
the operation .

 0

 0

 0

 0rD =  0

Figure1.7.2. The unit von Neumanntemplatefor the valueset .
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If is an arrayof points, , and E E is the
unit Moore template,then the valuesof the imageb obtainedfrom the statement

are computedby using the equation

We needto point out that the differencebetweenthe mathematicalequality and
the pseudocodestatement is that in the latter the new imageis computedonly
for thosepoints y for which . Observethat since and

, where denotesthe Moore neighborhoodof y (seeFigure 1.2.2),
it follows that

This observationleads to the notion of neighborhood reduction. In implementation,
neighborhoodreductionavoidsunnecessarymultiplication by the unit elementand,aswe
shall shortly demonstrate,neighborhoodreduction also avoids some standardboundary
problemsassociatedwith image-templateproducts.

To preciselydefinethenotionof neighborhoodreductionwe needa moregeneral
notion of the reduceoperation , which was defined in terms of a binary
operation on . The more generalform of is a function

where .

For example,if , where is an arrayof points,thenone
such function could be definedas

where . Another examplewould be to define

as , then implementsthe averagingfunction, which we

shall denoteby average. Similarly, for integer-valuedimages,the medianreduction

is defined as , where
.

Now suppose , is a unit template with respectto the
operation of the semiring , is a neighborhoodsystemdefinedby

, and . It then follows that is given by

This observationleads to the following definition of an image-neighborhood
product. Given , , a reductionfunction , anda neighborhood
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system (i.e., ), thenthe image-neighborhoodproduct
is defined by

for each . Note that the product is similar to the image templateproduct
in that is a function

In particular, if , F is the Moore neighborhood,and

F F is the unit Moore templatedefined earlier, then .

Likewise, , where F F denotesthe von Neumannunit template
(Figure 1.7.2) and N denotesthe von Neumannneighborhood(1.2.2). The latter equality
stemsfrom the fact that if and , then since for all

and for all points , we havethat

Unit templatesact like characteristicfunctionsin that they do not weigh a pixel,
but simply note which pixels are in their supportand which are not. When employedin
the image-templateoperationsof their semiring, they only serveto collect a numberof
valuesthat needto be reducedby the gammaoperation. For this reason,unit templates
are also referredto as characteristictemplates. Now supposethat we wish to describea
translationinvariantunit templatewith a specific supportsuchasthe supportof the
Moore templatet shownin Figure1.7.1. Supposefurther that we would like this template
to be usedwith a variety of reductionoperations,for instance,summationandmaximum.
In fact, we cannotdescribesuchanoperandwithout regardof theimage-templateoperation

by which it will be used.For us to derivethe expectedresults,the templatemustmap
all points in its supportto the unitary value with respectto the combiningoperation .
Thus, for the reduceoperationof summation , the unit valuesin the supportmust be
1, while for the maximumreduceoperation , the valuesin the supportmust all be 0.
Therefore,we cannotdefine a single templateoperandto characterizea neighborhoodfor
reductionwithout regardto the image-templateoperationto be usedto reducethe values
within the neighborhood.However,we can captureexactly the information of interestin
unit templateswith the simple notion of neighborhoodfunction. Thus, for example,the
MooreneighborhoodM canbeusedto addthevaluesin every neighborhoodaswell as
to find the maximumor minimum in sucha neighborhoodby usingthe statements ,

, and , respectively.This is oneadvantagefor replacingunit templateswith
neighborhoods.

Another advantageof using neighborhoodsinsteadof templatescan be seenby
consideringthe simpleexampleof imagesmoothingby local averaging.Suppose ,

where is an arrayof points,and F F is the unit Mooretemplate

with unit values1. The imageb obtainedfrom the statement representsthe
imageobtainedfrom a by local averagingsincethe new pixel value is given by
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Of course, there will be a boundary effect. In particular, if
, then

which is not the averageof four points. One may either ignore this boundaryeffect (the
most commonchoice), or one may one of severalschemesto preventit [1]. However,
eachof theseschemesaddsto the computationalburden. A simpler and more elegant
way is to usethe Moore neighborhoodfunction M combinedwith the averagingreduction

. Thesimplestatement providesfor thedesiredlocally averaged
image without boundaryeffect.

Neighborhoodcompositionplaysan importantrole in algorithmoptimizationand
simplificationof algebraicexpressions.Given two neighborhoodfunctionsG

, then the dilation of by , denotedby , is a neighborhoodfunctionG
which is definedas

where . Just as for templatecomposition,algorithm
optimizationcanbe achievedby useof the equation for
appropriateneighborhoodfunctionsandneighborhoodreductionfunctions . For ,
thekth iterateof aneighborhood

G
is definedinductivelyas ,

where .

Most neighborhoodfunctionsusedin imageprocessingare translationinvariant
subsetsof (in particular,subsetsof ). A neighborhoodfunction

G
is said to be translationinvariant if for every point .
Given a translationinvariantneighborhoodN, we defineits reflectionor conjugate by

, where and
denotesthe origin. Conjugateneighborhoodsplay an important role in morphological
image processing.

Note alsothat for a translationinvariantneighborhoodN, thekth iterateof N can
be expressedin terms of the sum of sets

Furthermore, since and

, we have the symmetric relation

.

Summary of Image-NeighborhoodProducts

In the following list of pertinentimage-neigborhoodproducts , ,
and . Again, for eachoperationwe assumethe appropriatevalueset .

genericneighborhoodreduction
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neigborhoodsum

neighborhoodmaximum

neighborhoodminimum

Note that

and, therefore, . Similarly, .

Although we did not addressthe issuesof parameterizedneighborhoodsand
recursiveneighborhoodoperations,it shouldbe clear that theseare definedin the usual
way by simplesubstitutionof the appropriateneighborhoodfunction for the corresponding
Booleantemplate.For example,a parameterizedneighborhoodwith parametersin the set
P is a function . Thus,for eachparameter , is a neighborhood
systemfor X in Z since . Similarly, a recursiveneighborhoodsystemfor
a partially orderedset is a function H satisfyingthe
conditionsthat for each , , and for each , .

1.8. The p-Product

It is well known that in the linear domain templateconvolution productsand
image-templateproductsare equivalent to matrix productsand vector-matrix products,
respectively[58, 1]. The notion of a generalizedmatrix productwas developedin order
to provide a generalmatrix theory approachto image-templateproductsand template
convolutionproductsin both the linearandnon-lineardomains.This generalizedmatrix or
p-productwas first definedin Ritter [59]. This new matrix operationincludesthe matrix
and vector productsof linear algebra,the matrix product of minimax algebra[60], as
well as generalizedconvolutionsas specialcases[59]. It providesfor a transformation
that combinesthe sameor different typesof values(or objects)into valuesof a possibly
differenttype from thoseinitially usedin the combiningoperation.It hasbeenshownthat
the p-productcanbe appliedto expressvariousimageprocessingtransformsin computing
form [61, 62, 63]. In this document,however,we consideronly productsbetweenmatrices
having the sametype of values. In the subsequentdiscussion, and the setof
all matriceswith entriesfrom will bedenotedby . We will follow theusual
conventionof setting andview asthe setof all n-dimensionalrow vectors
with entriesfrom . Similarly, the set of all m-dimensionalcolumn vectorswith entries
from is given by
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Let and p be positive integerswith p dividing both m and n. Define the
following correspondences:

I

and

I

Since , linearizesthe array
using the row scanningorder as shown:

...
...

...
...

...
...

...
...

It follows that the row-scanningorder on is given by

or, equivalently,by

We define the one-to-onecorrespondence

The one-to-onecorrespondenceallows us to re-indexthe entriesof a matrix
in termsof a triple index by using the convention
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Example: Suppose . Then
. Hencefor JLK M NPORQ , we have

SLS S N SUT SWV SLX S Q
N S NLN N T N V N X NUQ

S KZY S K S\[ S K Y S K N [ S K Y]N\K S^[ S K_Y`NLK N [ S K_Y T K SL[ S K Y T K N [
NLK_Y S K S^[ N\K Y S K N [ N\K Y]N\K S^[ NLK_Y`NLK N [ NLK_Y T K SL[ N\K Y Tba N [

The factor of the Cartesianproduct is decomposedin a similar
fashion. Here the row-scanningmap is given by

This allows us to re-index the entriesof a matrix in termsof a
triple index by using the convention

Example: Suppose . Then
. Hencefor J\K M cdORe , we have

SLS S N SUT
N S NLN N TTfS T N TLT
VbS V N VgT

Y S K SL[ K S Y S K S^[ K N Y S K S^[ K T
Y S K N [ K S Y S K N [ K N Y S K N [ K T
Y]N\K SL[ K S Y]N\K S^[ K N Y`N\K S^[ K T
Y]N\K N [ K S Y]N\K N [ K N Y`N\K N [ K T

Now let and . Using the maps and
, A and B can be rewritten as

h i j k l m
j n o p q m

The p-product or generalizedmatrix product of A and B is denotedby , and is
the matrix

defined by
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where denotesthe th row and th column entry of C. Here we usethe
lexicographicalorder Thus, the matrix C
has the following form:

rWs]tUu twvxsytUu tzv {W{U{|rWs]t}u tzvysytUu ~zv rWs]t}u twvys��Lu tzv�{}{}{�rWsyt}u tzvys��Lu ~�v {W{W{�rWs]t}u t�vxsx�]u ��v {}{W{�r sxtUu tzv � ��u ~
r syt}u �}vysytUu tzv {W{U{|r s]t}u �}vysytUu ~zv r s]t}u ��vys��Lu tzv {}{}{�r syt}u �}vys��Lu ~�v {W{W{�r s]t}u �Wvxsx�yu ��v {}{W{�r sxtUu �}v � ��u ~

...
...

...
...

...r tUuy�� s]t}u t�v {W{U{�r t}u]�� sytUu ~�v r tUuy�� s��^u t�v {}{}{�r t}u`�� s��^u ~�v {W{W{�r t}u]�� s��]u �xv {}{W{�r t}u`�� � � u ~rWs��^u tzvysytUu tzv�{W{U{|rWs��^u tzvysytUu ~zv rWs��^u twvys��Lu tzv�{}{}{�rWs��^u tzvys��Lu ~�v {W{W{�rWs��^u t�vxsx�yu ��v {}{W{�r s��Lu tzv � ��u ~
...

...
...

...
...

...r �Luy�� s]t}u t�v {W{U{�r �^u]�� sytUu ~�v r �Luy�� s��^u t�v {}{}{�r �^u`�� s��^u ~�v {W{W{�r �^u]�� s��]u �xv {}{W{�r �^u`�� � ��u ~
...

...
...

...
...

...r s��Uu ��vysxt}u tzv {W{U{�r s��Uu ��vxsytUu ~�v r s��Uu �Wvxs��^u twv {}{}{�r s��Uu ��vxs��Lu ~�v {W{W{�r s��Uu �Wvxs��]u �xv {}{W{�r sx�Uu ��v � ��u ~
...

...
...

...
...

...rWsy��u t�vxs]t}u t�v {W{U{�rWs���u tzvxs]t}u ~�v rWsx��u t�vxs��^u t�v {}{}{�rWs���u tzvxs��^u ~�v {W{W{�rWsx��u t�vxs��]u �xv {}{W{�r s���u tzv � ��u ~
...

...
...

...
...

...r ��u`�� s]t}u twv {W{U{�r ��u`�� sytUu ~�v r ��u`�� s��^u t�v {}{}{�r ��u]�� s��Lu ~�v {W{W{�r ��u`�� s��]u �xv {}{W{�r ��uy�� � ��u ~

The entry in the (s,j)-row and (i,t)-column is underlinedfor emphasis.

To provide an example,supposethat . Then
for p = 2, oneobtains . Now let

and

Then the (2,1)-row and (2,3)-columnelement of the matrix

is given by

Thus,in order to compute , the two underlinedelementsof A arecombinedwith
the two underlinedelementsof B as illustrated:
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In particular,

If

then

This shows that the transposeproperty, which holds for the regular matrix product, is
generallyfalse for the p-product. The reasonis that the p-productis not a dual operation
in the transposedomain. In order to makethe transposepropertyhold we definethe dual
operation of by

It follows that

and the p-productis the dual operationof . In particular,we now havethe transpose

property .
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Sincethe operation is definedin termsof matrix transposition,labeling of
matrix indices are reversed. Specifically, if is an matrix, then A gets
reindexedas , using the convention

Similarly, if is an matrix, then the entriesof B are relabeledas ,
using the convention

The product is then definedby the equation

Note that the dimensionof C is .

To providea specificexampleof the dual operation , supposethat

In this casewe have . Thus, for p = 2 and using the
schemedescribedabove,the reindexedmatriceshaveform

Accordingto thedualproductdefinition,thematrix is a matrix givenby

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
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The underlinedelement is obtainedby using the formula:

Thus, in order to compute , the two underlinedelementsof A are combinedwith the
two underlinedelementsof B as illustrated:

As a final observation,notethat the matricesA, B, andC in this examplehavethe form of
the transposesof the matricesB, A, andC, respectively,of the previousexample.
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