Torben G. Andersen • Richard A. Davis Jens-Peter Kreiß • Thomas Mikosch Editors

Handbook of Financial Time Series

Contents

Forewor	d		v
List of C	Contrib	outors	xxv
Torben G Mikosch	. Ander	rsen, Richard A. Davis, Jens-Peter Kreiss and Thomas	13
Refer	ences .		10
Part I F	lecent	Developments in GARCH Modeling	
An Intro		on to Univariate GARCH Models	17
1	Intro	duction	17
2	The A	ARCH Model	18
3	The C	Generalized ARCH Model	19
	3.1	Why Generalized ARCH?	19
	3.2	Families of univariate GARCH models	20
	3.3	Nonlinear GARCH	23
	3.4	Time-varying GARCH	26
	3.5	Markov-switching ARCH and GARCH	27
	3.6	Integrated and fractionally integrated GARCH	28
	3.7	Semi- and nonparametric ARCH models	30
	3.8	GARCH-in-mean model	30
	3.9	Stylized facts and the first-order GARCH model	31
4	Famil	y of Exponential GARCH Models	34
	4.1	Definition and properties	34
	4.2	Stylized facts and the first-order EGARCH model .	35
	4.3	Stochastic volatility	36
5	Comp	paring EGARCH with GARCH	37
6	Final	Remarks and Further Reading	38
Refer	rences .		39
Stationa	rity, N	Mixing, Distributional Properties and Moments	
		q)-Processes	43
Alexande		-/	
1	Intro	duction	43

viii Contents

2	Statio	onary Solutions	44
	2.1	Strict stationarity of $ARCH(1)$ and $GARCH(1,1)$.	45
	2.2	Strict stationarity of $GARCH(p,q)$	49
	2.3	Ergodicity	52
	2.4	Weak stationarity	53
3		$ARCH(\infty)$ Representation and the Conditional	
		nce	54
4	Existe	ence of Moments and the Autocovariance Function of	
	the Se	quared Process	55
	4.1	Moments of ARCH(1) and GARCH(1,1)	56
	4.2	Moments of $GARCH(p,q)$	57
	4.3	The autocorrelation function of the squares	60
5	Stron	g Mixing	62
6		Distributional Properties	64
7		els Defined on the Non-Negative Integers	66
8		lusion	67
Ref			67
	_		
		odels and Long Memory Properties	71
Liudas (Remigijus Leipus and Donatas Surgailis	
1		duction	71
2		onary ARCH(∞) Process	73
	2.1	Volterra representations	73
	2.2	Dependence structure, association, and central	
		limit theorem	75
	2.3	Infinite variance and integrated $ARCH(\infty)$	77
3	Linea	r ARCH and Bilinear Model	79
Ref	erences		82
A To	. i 4h.	Agreementatic Theory of CARCH Estimation	85
		Asymptotic Theory of GARCH Estimation	00
		q and Jean-Michel Zakoïan duction	85
$egin{array}{c} 1 \ 2 \end{array}$		S-Squares Estimation of ARCH Models	87
$\frac{2}{3}$		i-Maximum Likelihood Estimation	89
. 3	•		90
	3.1	Pure GARCH models	90
	3.2	ARMA-GARCH models	
4		ent Estimation	95
5		native Estimators	99
	5.1	Self-weighted LSE for the ARMA parameters	100
	5.2	Self-weighted QMLE	100
	5.3	L_p -estimators	101
	5.4	Least absolute deviations estimators	102
	5.5	Whittle estimator	103
	5.6	Moment estimators	104
6		erties of Estimators when some GARCH Coefficients	
	are E	Equal to Zero	104

Contents

	6.1 6.2	Fitting an ARCH(1) model to a white noise On the need of additional assumptions	$\frac{105}{106}$
	6.3	Asymptotic distribution of the QMLE on the	
		boundary	106
	6.4	Application to hypothesis testing	107
7	Conclus	sion	109
Refere	ences		109
ctical Zivot	Issues	in the Analysis of Univariate GARCH Models	113
 1	Introdu	ction	113
2		tylized Facts of Asset Returns	114
3		CH and GARCH Model	115
J	3.1	Conditional mean specification	118
	3.2	Explanatory variables in the conditional variance	
	5.2	equation	119
	3.3	The GARCH model and stylized facts of asset	
	0.0	returns	119
	3.4	Temporal aggregation	121
4		for ARCH/GARCH Effects	121
-	4.1	Testing for ARCH effects in daily and monthly	
	1.1	returns	122
5	Estimat	ion of GARCH Models	123
	5.1	Numerical accuracy of GARCH estimates	125
	5.2	Quasi-maximum likelihood estimation	126
	5.3	Model selection	126
	5.4	Evaluation of estimated GARCH models	127
	5.5	Estimation of GARCH models for daily and	
	0.0	monthly returns	127
6	GARCE	H Model Extensions	131
	6.1	Asymmetric leverage effects and news impact	131
	6.2	Non-Gaussian error distributions	135
7		lemory GARCH Models	137
	7.1	Testing for long memory	139
	7.2	Two component GARCH model	139
	7.3	Integrated GARCH model	140
	7.4	Long memory GARCH models for daily returns	141
8	GARCE	H Model Prediction	142
	8.1	GARCH and forecasts for the conditional mean	142
	8.2	Forecasts from the GARCH(1,1) model	143
	8.3	Forecasts from asymmetric GARCH(1,1) models	144
	8.4	Simulation-based forecasts	145
	8.5	Forecasting the volatility of multiperiod returns	145
	8.6	Evaluating volatility predictions	146
		O	

x Contents

		8.7	Forecasting the volatility of Microsoft and the S&P 500	150
	9	Final :	Remarks	151
	Refere			151
			c and Nonparametric ARCH Modeling	157
Oliv		Linton	1	1 5 5
	1		luction	157
	2		GARCH Model	157
	3		Ionparametric Approach	158
		3.1	Error density	158
		3.2	Functional form of volatility function	159
		3.3	Relationship between mean and variance	162
		3.4	Long memory	163
		3.5	Locally stationary processes	164
		3.6	Continuous time	164
	4		usion	165
	Refer	ences .		165
			cient GARCH Models	169
Pav			Vladimir Spokoiny	1.00
	1		luction	169
	2		tional Heteroscedasticity Models	171
		2.1	Model estimation	173
		2.2	Test of homogeneity against a change-point	4 = 0
			alternative	173
	3		tive Nonparametric Estimation	175
		3.1	Adaptive choice of the interval of homogeneity	176
		3.2	Parameters of the method and the implementation	
		_	details	176
	4		Data Application	179
		4.1	Finite-sample critical values for the test of	
			homogeneity	179
		4.2	Stock index S&P 500	180
	5	Concl	usion	183
	Refer	ences .		183
			Theory for GARCH Processes	187
Ric	hard A		s and Thomas Mikosch	
	1		Model	187
	2		Stationarity and Mixing Properties	188
	3		dding a GARCH Process in a Stochastic Recurrence	
			ion	189
	4		Cails of a GARCH Process	190
	5	Limit	Theory for Extremes	194
		5.1	Convergence of maxima	194

Contents xi

		5.2	Convergence of point processes	195
		5.3	The behavior of the sample autocovariance function	
	Refere	ences	• • • • • • • • • • • • • • • • • • • •	199
			ARCH Models	201
АШ	1		ection	201
	2		Culon	203
	-	2.1	Models of the conditional covariance matrix	204
		2.2	Factor models	207
		2.3	Models of conditional variances and correlations	210
		2.4	Nonparametric and semiparametric approaches	215
	3		cal Properties	218
	4		esis Testing in Multivariate GARCH Models	218
		4.1	General misspecification tests	219
		4.2	Tests for extensions of the CCC-GARCH model	221
	5	An Apr	plication	222
	6		emarks	224
	Refere			226
Pa	rt II F	Recent 1	Developments in Stochastic Volatility Modelin	g
Sto	chasti	ic Volat	ility: Origins and Overview	233
Nei	l Shepl	nard and	Torben G. Andersen	
	1	Introdu	ction	233
	2	The Or	igin of SV Models	235
	3	Second	Generation Model Building	240
		3.1	Univariate models	240
		3.2	Multivariate models	241
	4	Inference	ce Based on Return Data	242
		4.1	Moment-based inference	242
		4.2	Simulation-based inference	243
	5	Options	s	246
		5.1	Models	246
	6	Realize	d Volatility	247
	Refere	ences		250
Pre	obabili	istic Pr	operties of Stochastic Volatility Models	255
			and Thomas Mikosch	
	1	The Mo	odel	255
	2		arity, Ergodicity and Strong Mixing	256
		2.1	Strict stationarity	256
		2.2	Ergodicity and strong mixing	257
	3	The Co	variance Structure	258
	4	Momen	ts and Tails	261
	5	Asympt	totic Theory for the Sample ACVF and ACF	263

xii Contents

	Refere	ences		266
Mor	nent-	-Based	Estimation of Stochastic Volatility Models	269
	Renai		•	
	1	Introdu	ction	270
	2		e of a Regression Model to Analyze Fluctuations in	
			e	272
		2.1		272
		2.2	The SR-SARV(p) model	274
		2.3	The Exponential SARV model	277
		2.4	Other parametric SARV models	279
	3		tions of SV Model Specification for Higher Order	
		_	ts	281
		3.1	Fat tails and variance of the variance	281
		3.2	Skewness, feedback and leverage effects	284
	4		ious Time Models	286
	_	4.1	Measuring volatility	287
		4.2	Moment-based estimation with realized volatility	288
		4.3	Reduced form models of volatility	292
		4.4	High frequency data with random times separating	
			successive observations	293
	5	Simulat	ion-Based Estimation	295
		5.1	Simulation-based bias correction	296
		5.2	Simulation-based indirect inference	298
		5.3	Simulated method of moments	300
		5.4	Indirect inference in presence of misspecification	304
	6		ling Remarks	305
	-		ing romanic	307
	160101	nees		001
Para	amete	er Estin	nation and Practical Aspects of Modeling	
Stoc	hasti	c Volat	ility	313
Boru	ıs Jun	gbacker	and Siem Jan Koopman	
	1		ction	313
:	2	A Quas	i-Likelihood Analysis Based on Kalman Filter	
		Method	s	316
		2.1	Kalman filter for prediction and likelihood	
			evaluation	319
		2.2	Smoothing methods for the conditional mean,	
			variance and mode	320
		2.3	Practical considerations for analyzing the	
			linearized SV model	321
	3	A Mont	e Carlo Likelihood Analysis	322
		3.1	Construction of a proposal density	323
		3.2	Sampling from the importance density and Monte	
			Carlo likelihood	325
	4	Some G	eneralizations of SV Models	327

Contents xiii

		4.1	Basic SV model	327
		4.2	Multiple volatility factors	328
		4.3	Regression and fixed effects	329
		4.4	Heavy-tailed innovations	330
		4.5	Additive noise	331
		4.6	Leverage effects	331
		4.7	Stochastic volatility in mean	333
	5	Empirio	eal Illustrations	333
		5.1	Standard & Poor's 500 stock index: volatility	
			estimation	334
		5.2	Standard & Poor's 500 stock index: regression	
			effects	335
		5.3	Daily changes in exchange rates: dollar-pound and	
			dollar–yen	337
	6	Conclus	sions	340
	Apper	ndix		340
	Refere	ences		342
Sto	chasti	c Volat	ility Models with Long Memory	345
			h and Philippe Soulier	010
0 111	1		ction	345
	2		roperties of the LMSV Model	346
	3		tric Estimation	347
	4		rametric Estimation	349
	5	-	lizations of the LMSV Model	352
	6		tions of the LMSV Model	352
	•			353
TC4		. of C+o	shootis Valetility Madela	255
			chastic Volatility Models	355
Rici				255
	1		ction	355
	2		il Behavior of the Marginal Distribution	356
		2.1	The light-tailed case	356
		2.2	The heavy-tailed case	357
	3		rocess Convergence	358
		3.1	Background	358
	D (3.2	Application to stochastic volatility models	360
	Refere	ences		364
			chastic Volatility	365
Side	dhartha	a Chib, Y	Yasuhiro Omori and Manabu Asai	
	1	Introdu	ction	366
	2	Basic M	ISV Model	369
		2.1	No-leverage model	369
		2.2	Leverage effects	373
		2.3	Heavy-tailed measurement error models	377

xiv Contents

	3	Factor MSV Model	379
		3.1 Volatility factor model	379
		3.2 Mean factor model	382
		3.3 Bayesian analysis of mean factor MSV model	384
	4	Dynamic Correlation MSV Model	388
		4.1 Modeling by reparameterization	388
		4.2 Matrix exponential transformation	390
		4.3 Wishart process	391
	5	Conclusion	396
	Refere	ences	397
Dav	.+ TTT	Topics in Continuous Time Processes	
rar	τ 111	Topics in Continuous Time Processes	
		view of Asset-Price Models	403
Pete		rockwell	
	1	Introduction	404
	2	Shortcomings of the BSM Model	409
	3	A General Framework for Option Pricing	410
	4	Some Non-Gaussian Models for Asset Prices	411
	5	Further Models	415
	Refere	ences	416
		-Uhlenbeck Processes and Extensions	421
Ros	s A. M	Ialler, Gernot Müller and Alex Szimayer	
	1	Introduction	422
	2	OU Process Driven by Brownian Motion	422
	3	Generalised OU Processes	424
		3.1 Background on bivariate Lévy processes	424
		3.2 Lévy OU processes	426
		3.3 Self-decomposability, self-similarity, class L ,	
		Lamperti transform	429
	4	Discretisations	430
		4.1 Autoregressive representation, and perpetuities	430
		4.2 Statistical issues: Estimation and hypothesis testing	431
		4.3 Discretely sampled process	431
		4.4 Approximating the COGARCH	432
	5	Conclusion	435
	Refere	ences	435
Jur	np–Ty	ype Lévy Processes	439
Ern	st Ebe	rlein	,
	1	Probabilistic Structure of Lévy Processes	439
	2	Distributional Description of Lévy Processes	443
	3	Financial Modeling	446
	4	Examples of Lévy Processes with Jumps	449
		4.1 Poisson and compound Poisson processes	449

Contents xv

	4.2	Lévy jump diffusion	450
	4.3	Hyperbolic Lévy processes	450
	4.4	Generalized hyperbolic Lévy processes	451
	4.5	CGMY and variance gamma Lévy processes	452
	4.6		453
		α-Stable Lévy processes	
D - C	4.7	Meixner Lévy processes	453
Refer	ences		454
•		Continuous-Time ARMA Processes	457
Peter J. I			450
1		duction	458
2		nd-Order Lévy-Driven CARMA Processes	460
3		ections with Discrete-Time ARMA Processes	470
4		pplication to Stochastic Volatility Modelling	474
5		inuous-Time GARCH Processes	476
6		ence for CARMA Processes	478
Refer	rences		479
Continue	ous Ti	me Approximations to GARCH and Stochastic	
		lels	481
Alexander			
1		nastic Volatility Models and Discrete GARCH	481
$\overset{1}{2}$		inuous Time GARCH Approximations	482
-	2.1	Preserving the random recurrence equation property	483
	2.2	The diffusion limit of Nelson	484
	2.3	The COGARCH model	486
	$\frac{2.3}{2.4}$	Weak GARCH processes	488
	$\frac{2.4}{2.5}$	Stochastic delay equations	489
	2.6	A continuous time GARCH model designed for	400
	2.0	option pricing	490
3	Conti	inuous Time Stochastic Volatility Approximations	491
3	3.1	Sampling a continuous time SV model at	491
	3.1	equidistant times	491
	2.0	-	
D - C-	3.2	Approximating a continuous time SV model	493
Refer	rences		495
Maximu	m Lik	elihood and Gaussian Estimation of Continuous	
Time M	odels i	in Finance	497
Peter C. I	B. Phil	lips and Jun Yu	
1		duction	498
2		t ML Methods	499
	2.1	ML based on the transition density	499
	2.2	ML based on the continuous record likelihood	502
3		oximate ML Methods Based on Transition Densities	503
9	3.1	The Euler approximation and refinements	504
	3.2	Closed-form approximations	509

xvi Contents

	3.3	Simulated infill ML methods	512
	3.4	Other approaches	514
4	Appro	eximate ML Methods Based on the Continuous	
	Recor	d Likelihood and Realized Volatility	516
5		e Carlo Simulations	519
6		nation Bias Reduction Techniques	520
	6.1	Jackknife estimation	521
	6.2	Indirect inference estimation	522
7	Multi	variate Continuous Time Models	524
8	Concl	lusions	527
Refe	rences .		527
ъ			
		ference for Discretely Sampled Stochastic	
		uations	531
Michael S			
1		duction	531
2		ptotics: Fixed Frequency	532
3		hood Inference	536
4		ingale Estimating Functions	538
5		cit Inference	543
6	_	Frequency Asymptotics and Efficient Estimation	548
Refe	rences .		551
Realized	l Volat	ility	555
		rsen and Luca Benzoni	000
1		duction	556
2		uring Mean Return versus Return Volatility	557
3		ratic Return Variation and Realized Volatility	559
4		itional Return Variance and Realized Volatility	561
5		s and Bipower Variation	563
6		ent Sampling versus Microstructure Noise	564
7		rical Applications	566
'	7.1	Early work	566
	7.2	Volatility forecasting	567
	7.3	The distributional implications of the no-arbitrage	301
	1.5	condition	568
	7.4	Multivariate quadratic variation measures	568
	$\frac{7.4}{7.5}$	Realized volatility, model specification and	000
	6.5	estimation	560
8	Dogg!1		569 569
-	ronces	ble Directions for Future Research	570

Contents xvii

\mathbf{Est}	imatir	ng Volatility in the Presence of Market
Mic	rostrı	ucture Noise: A Review of the Theory and Practical
Cor	nsidera	ations 57
Yaci	ine Aït	-Sahalia and Per A. Mykland
	1	Introduction
	2	Estimators
		2.1 The parametric volatility case 57
		2.2 The nonparametric stochastic volatility case 58
	3	Refinements
		3.1 Multi-scale realized volatility
		3.2 Non-equally spaced observations
		3.3 Serially-correlated noise
		3.4 Noise correlated with the price signal 58
		3.5 Small sample edgeworth expansions 59
		3.6 Robustness to departures from the data generating
		process assumptions
	4	Computational and Practical Implementation
		Considerations
		4.1 Calendar, tick and transaction time sampling 59
		4.2 Transactions or quotes
		4.3 Selecting the number of subsamples in practice 59
		4.4 High versus low liquidity assets 59
		4.5 Robustness to data cleaning procedures 59
		4.6 Smoothing by averaging 59
	5	Conclusions
	_	ences
	recrei	31000
Opt	tion P	ricing 59
$_{ m Jan}$	Kallse	n
	1	Introduction
	2	Arbitrage Theory from a Market Perspective 60
	3	Martingale Modelling 60
	4	Arbitrage Theory from an Individual Perspective 60
	5	Quadratic Hedging 60
	6	Utility Indifference Pricing 60
	Refere	ences
An	Overv	view of Interest Rate Theory 61
	nas Bjö	
	1	General Background 61
	2	Interest Rates and the Bond Market 61
	3	Factor Models
	4	Modeling under the Objective Measure P
	_	4.1 The market price of risk
	5	Martingale Modeling
	_	5.1 Affine term structures

xviii Contents

	5.2	Short rate models	625
	5.3	Inverting the yield curve	627
6	Forwa	ard Rate Models	629
	6.1	The HJM drift condition	629
	6.2	The Musiela parameterization	631
7	Chan	ge of Numeraire	632
	7.1	Generalities	632
	7.2	Forward measures	635
	7.3	Option pricing	635
8	LIBO	R Market Models	638
	8.1	Caps: definition and market practice	638
	8.2	The LIBOR market model	640
	8.3	Pricing caps in the LIBOR model	641
	8.4	Terminal measure dynamics and existence	641
9	Poter	ntials and Positive Interest	642
	9.1	Generalities	642
	9.2	The Flesaker–Hughston fractional model	644
	9.3	Connections to the Riesz decomposition	646
	9.4	Conditional variance potentials	647
	9.5	The Rogers Markov potential approach	648
10	Notes	3	650
Refe	erences		651
TD4		lanting December 1	cro
		ontinuous-Time Processes	653
Vicky Fa		dustion	652
$\frac{1}{2}$		duction	653 654
2	2.1	eme Value Theory	655
	$\frac{2.1}{2.2}$	Extremes of discrete—time processes	656
	$\frac{2.2}{2.3}$	Extremes of continuous–time processes	656
3		Extensions	657
3	3.1	Generalized Ornstein-Uhlenbeck (GOU)-Model The Ornstein-Uhlenbeck process	658
	$\frac{3.1}{3.2}$	The non-Ornstein-Uhlenbeck process	659
	3.3	Comparison of the models	661
4	0.0	Behavior of the Sample Maximum	661
5		ing sample Maxima and Extremal Index Function	663
6		lusion	664
•		iusion	665
neie	rences .	•••••	000
Part IV	Topic	s in Cointegration and Unit Roots	
Cointeg	ration:	Overview and Development	671
Søren Jo			
1	Intro	duction	671
		Two examples of cointegration	672

Contents xix

		1.2	Three ways of modeling cointegration	673
		1.3	The model analyzed in this article	674
	2	Integrat	tion, Cointegration and Granger's Representation	
		Theorem	n	675
		2.1	Definition of integration and cointegration	675
		2.2	The Granger Representation Theorem	677
		2.3	Interpretation of cointegrating coefficients	678
	3	Interpre	etation of the $I(1)$ Model for Cointegration	680
		3.1	The models $H(r)$	680
		3.2	Normalization of parameters of the $I(1)$ model	681
		3.3	Hypotheses on long-run coefficients	681
		3.4	Hypotheses on adjustment coefficients	682
	4	Likeliho	od Analysis of the $I(1)$ Model	683
		4.1	Checking the specifications of the model	683
		4.2	Reduced rank regression	683
		4.3	Maximum likelihood estimation in the $I(1)$ model	
			and derivation of the rank test	684
	5	Asympt	otic Analysis	686
		5.1	Asymptotic distribution of the rank test	686
		5.2	Asymptotic distribution of the estimators	687
	6	Further	Topics in the Area of Cointegration	689
		6.1	Rational expectations	689
		6.2	The $I(2)$ model	690
	7	Conclud	ling Remarks	691
	Refere	nces		692
m:	- C		Desta and Near the Hait Circle	cor
			Roots on or Near the Unit Circle	695
		Chan	-+:	COL
	$rac{1}{2}$		ction	695
	Z	2.1	oot Models	696 697
		2.1		
			AR(p) models	699
	3	2.3	Model selection	$702 \\ 704$
			-	704
	neiere	inces		100
Frac	tiona	l Coint	egration	709
			d Clifford M. Hurvich	
	1	Introdu	ction	709
	2		and Type II Definitions of $I(d)$	710
		2.1	Univariate series	710
		2.2	Multivariate series	713
	3	Models	for Fractional Cointegration	715
		3.1	Parametric models	716
	4		g	717
	5	Semipar	rametric Estimation of the Cointegrating Vectors	718

xx Contents

	6	Testing for Cointegration; Determination of Cointegrating Rank	723				
	Refere	ences	724				
Par	t V S	pecial Topics – Risk					
Diff	erent	Kinds of Risk	729				
		echts, Hansjörg Furrer and Roger Kaufmann					
	1	Introduction	729				
	2	Preliminaries	732				
		2.1 Risk measures	732				
		2.2 Risk factor mapping and loss portfolios	735				
	3	Credit Risk	736				
		3.1 Structural models	737				
		3.2 Reduced form models	737				
		3.3 Credit risk for regulatory reporting	738				
	4	Market Risk	738				
		4.1 Market risk models	739				
		4.2 Conditional versus unconditional modeling	740				
		4.3 Scaling of market risks	740				
	5	Operational Risk	742				
	6	Insurance Risk	744				
		6.1 Life insurance risk	744				
		6.2 Modeling parametric life insurance risk	745				
		6.3 Non-life insurance risk	747				
	7	Aggregation of Risks	748				
	8	Summary	749				
	Refere	ences	750				
Vəli	10-at-	-Risk Models	753				
		stoffersen	100				
1 000	1	Introduction and Stylized Facts	753				
	2	A Univariate Portfolio Risk Model	755				
	-	2.1 The dynamic conditional variance model	756				
		2.2 Univariate filtered historical simulation	757				
		2.3 Univariate extensions and alternatives	759				
	3	Multivariate, Base–Asset Return Methods	760				
	_	3.1 The dynamic conditional correlation model	761				
		3.2 Multivariate filtered historical simulation	761				
		3.3 Multivariate extensions and alternatives	763				
	4	Summary and Further Issues	764				
	Refere	ferences					

Contents xxi

_		Models for Financial Time Series	767
Andrew			
1		duction	767
2	•	la-Based Models for Time Series	771
	2.1	Copula—based models for multivariate time series .	772
	2.2	Copula-based models for univariate time series	773
	2.3	Estimation and evaluation of copula–based models	
		for time series	775
3		ications of Copulas in Finance and Economics	778
4	Conc	lusions and Areas for Future Research	780
Refe	erences		781
		lodeling	787
David L			
1		duction	787
2	Mode	eling the Probability of Default and Recovery	788
3	Two 1	Modeling Frameworks	789
4	Credi	it Default Swap Spreads	792
5		orate Bond Spreads and Bond Returns	795
6	Credi	it Risk Correlation	795
Refe	erences		797
		latility and Correlation Forecasts	801
1		duction	801
1	1.1	Notation	803
2		t Evaluation of Volatility Forecasts	804
_^	2.1	Forecast optimality tests for univariate volatility	004
		forecasts	805
	2.2	MZ regressions on transformations of $\hat{\sigma}_t^2$	806
	2.3	Forecast optimality tests for multivariate volatility	
		forecasts	807
	2.4	Improved MZ regressions using generalised least	
		squares	808
	2.5	Simulation study	810
3	Direc	et Comparison of Volatility Forecasts	815
	3.1	Pair-wise comparison of volatility forecasts	816
	3.2	Comparison of many volatility forecasts	817
	3.3	'Robust' loss functions for forecast comparison	818
	3.4	Problems arising from 'non-robust' loss functions .	819
	3.5	Choosing a "robust" loss function	823
	3.6	Robust loss functions for multivariate volatility	
		comparison	825

xxii Contents

		1	828
	4	Indirect Evaluation of Volatility Forecasts	830
		4.1 Portfolio optimisation	831
		4.2 Tracking error minimisation	832
			833
	5	Conclusion	835
	-	ences	835
Str	uctura	al Breaks in Financial Time Series	839
		reou and Eric Ghysels	000
	1	Introduction	839
	2		840
	3	Methods for Detecting Structural Breaks	843
	J	3.1 Assumptions	844
		3.2 Historical and sequential partial–sums	011
			845
		3.3 Multiple breaks tests	848
	4	Change—Point Tests in Returns and Volatility	851
	4	4.1 Tests based on empirical volatility processes	851
			854
		The second secon	
		4.3 Tests based on parametric volatility models	858
		4.4 Change—point tests in long memory	861
	_	4.5 Change–point in the distribution	863
	5	Conclusions	865
	Refere	ences	866
		G and a second	871
The	is Lang	ge and Anders Rahbek	
	1	Introduction	871
		1.1 Markov and observation switching	872
	2	Switching ARCH and CVAR	874
		2.1 Switching ARCH and GARCH	875
		2.2 Switching CVAR	877
	3	Likelihood-Based Estimation	879
	4	Hypothesis Testing	881
	5	Conclusion	883
	Refere	ences	883
Mo	del Se	election	889
		eeb and Benedikt M. Pötscher	000
1101	1	The Model Selection Problem	889
	1	1.1 A general formulation	889
		1.1 A general formulation	892
	9		092
	2	Properties of Model Selection Procedures and of	000
		Post-Model-Selection Estimators	900
		2.1 Selection probabilities and consistency	900

Contents	xxiii
----------	-------

		2.2	Risk properties of post-model-selection estimators	903			
		2.3	Distributional properties of post-model-selection				
	_		estimators	906			
	3		Selection in Large- or Infinite-Dimensional Models .	908			
	4		Procedures Based on Shrinkage and Model				
	_		ng	915			
	5		Reading	916			
	Refere	ences		916			
			Modeling in Financial Time Series	927			
Jürg	gen Fra		s-Peter Kreiss and Enno Mammen				
	1 Introduction						
	2	Nonpara	ametric Smoothing for Time Series	929			
		2.1	Density estimation via kernel smoothing	929			
		2.2	Kernel smoothing regression	932			
		2.3	Diffusions	935			
	3	Testing		937			
	4	Nonpara	ametric Quantile Estimation	940			
	5	Advance	ed Nonparametric Modeling	942			
	6	Sieve M	ethods	944			
	Refere	ences		947			
Mo	dellin	σ Finan	cial High Frequency Data Using Point				
		_	Tight frequency Dava Cong Form	953			
			Nikolaus Hautsch	000			
Luc	1		ction	953			
	2		ental Concepts of Point Process Theory	954			
	2	2.1	Notation and definitions	955			
		2.2	Compensators, intensities, and hazard rates	955			
		2.3	Types and representations of point processes	956			
		$\frac{2.5}{2.4}$	The random time change theorem	959			
	3		c Duration Models	960			
	J	3.1	ACD models	960			
		3.2	Statistical inference	963			
		3.3	Other models	964			
		3.4	Applications	965			
	4		c Intensity Models	967			
	4	4.1	Hawkes processes	967			
		4.1	Autoregressive intensity processes	969			
		4.2	Statistical inference	973			
		4.3	Applications	975			
	Refere		• •	976			
	Detell	CHICES		2710			

xxiv Contents

Part	\mathbf{v}	Special	Topics -	Simulation	Based	Methods
1 41 0	•	prociai	TODICS	Dimuadadi	Lasca	MICHIOUS

Resamp	ling an	d Subsampling for Financial Time Series	983
Efstathio	s Papare	oditis and Dimitris N. Politis	
1	Introd	luction	983
2	Resan	apling the Time Series of Log-Returns	986
	2.1	Parametric methods based on i.i.d. resampling of	
		residuals	986
	2.2	Nonparametric methods based on i.i.d. resampling	
		of residuals	988
	2.3	Markovian bootstrap	990
3	Resan	apling Statistics Based on the Time Series of	
	Log-F	Returns	992
	3.1	Regression bootstrap	992
	3.2	Wild bootstrap	993
	-3.3	Local bootstrap	994
4	Subsa	mpling and Self-Normalization	995
Refe	rences .		997
Maulaaa	Ch aire	Manta Carlo	1001
		Monte Carlos and Nicholas Polson	1001
Michael a		s and Menoias Poison luction	1001
2		riew of MCMC Methods	
	2.1		
	$\frac{2.1}{2.2}$	Clifford-Hammersley theorem	
	$\frac{2.2}{2.3}$	Constructing Markov chains	
0		Convergence theory	
3	Finan	cial Time Series Examples	
		Geometric Brownian motion	
	3.2	Time-varying expected returns	
4	3.3	Stochastic volatility models	
4 D 6		er Reading	
Refe	rences .		1012
Particle	Filteri	ng	1015
		s and Nicholas Polson	
1	Introd	luction	1015
2	A Mo	tivating Example	1017
3		ele Filters	
	3.1	Exact particle filtering	
	3.2	SIR	
	3.3	Auxiliary particle filtering algorithms	
4	Furthe	er Reading	
Refe			
Index			1031