Handbook of Global Optimization

Edited by

Reiner Horst Department of Mathematics, University of Trier, Trier, Germany

and

Panos M. Pardalos Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida, U.S.A.

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

TABLE OF CONTENTS

Condi	itions for Global Optimality	
	Hiriart-Urruty	1
Comp	exity Issues in Global Optimization: A Survey	
Steph	en A. Vavasis	27
1.	Introduction	27
2.	Convex problems	27
3.		30
4.	General nonconvex problems	33
5.	Approximation algorithms in quadratic programming	38
	Conclusions	40
	References	40
Conca	ave Minimization: Theory, Applications and Algorithms	
Harol	ld P. Benson	43
	Introduction	43
	Overview of Mathematical Properties	47
3.	Some Key Properties of Concave Functions	49
	3.1 Classical Properties	49
	3.2 More Recent Properties	52
	Basic Properties of Concave Minimization Problems	58
	Overview of Applications	61
6.	Direct Applications	62
	6.1 Fixed Charge Problems	62
	6.2 Multiplicative Problems	64
	6.3 Min-Max Problems	66
-	6.4 Problems with Economics of Scale	66
7.	Indirect Applications	67
	7.1 Integer Programming Problems	68
	7.2 Bilinear Programming Problems	69
	7.3 D.C. Optimization Problems 7.4 Complementary Problems	70
	7.5 Some Additional Indirect Applications	73
8	Overview of Three Fundamental Algorithmic Approaches	74 77
	Enumerative Methods	79
7.	9.1 Extreme Point Ranking	79
	9.2 Pure Cutting Plane Approaches	81
	9.3 Combinations of Cuts	83
	9.4 Cone Covering Approaches	88
10.	Successive Approximation Methods	91
	10.1 Outer Approximation	92
	10.2 Polyhedral Annexation	99
	10.3 Successive Underestimation	103
11.	Successive Partitioning Methods	106
	11.1 A Prototype Successive Partitioning Algorithm	107

.

11.2 Analysis of the Prototype Success	sive Partitioning Algorithm	109
11.3 Simplicial Successive Partitioning	g Algorithms	110
11.4 Rectangular Successive Partitioni	ing Algorithms	117
11.5 Conical Successive Partitioning A	Algorithms	123
12. Some Future Research Needs		134
Acknowledgements		137
References		137
D.C. Optimization: Theory, Methods and Alg	orithms	
Hoang Tuy	· · · · · · · · · · · · · · · · · · ·	149
1. Introduction		149
2. Some Typical Examples		151
3. D.C. Functions		156
4. D.C. Sets		160
5. Global Optimality Criterion		163
6. Duality in Global Optimization		167
7. Primal Methods in Reverse Convex Pro	ogramming	172
7.1 Generalities	6	173
7.2 Outer Approximation Method		174
7.3 Cut and Split (Branch and Bound) Methods	176
7.4 Combined Methods	·	179
8. Dual Methods in Reverse Convex Prog	ramming	181
8.1 Polyhedral Annexation Method		181
9. Noncanonical D.C. Optimization Probl	ems	184
9.1 Problems with Separated Noncon	vexity	184
9.1.1 Simplicial Algorithm		184
9.1.2 Rectangular Algorithm		186
9.2 Problems with General Convex C	Constraints	188
9.3 Problems with General Nonconve	5	190
9.3.1 Biconvex and Convex-Con	cave Programming	190
9.3.2 Factorable Programming		192
10. Continuous Optimization Problems		194
10.1 The Relief Indicator Method		194
10.2 Outer Approximation Algorithm		197
10.3 Combined OA/BB Algorithm		199
10.4 Partitioning Method		200
11. Special Methods for Special Problems		201
References		209
Quadratic Optimization		
Christodoulos A. Floudas and V. Visweswaran	n	217
1. Introduction		217
2. The General Quadratic Programming P	roblem	218
2.1 Classification of Quadratic Progra		219
3. Optimality Conditions and Solution Ch	•	220
3.1 Feasible Descent Directions and G	Optimality Conditions	220
3.2 Active Constraints and Optimality	y	221

	3.3 Global Optimality Criteria	222
	. Complexity Issues	222
5	5. Bilinear Programming Problems	224
	5.1 Transformation of Quadratic Problems to Bilinear Problems	228
6	6. Concave Problems	228
	6.1 Extreme Point Ranking Methods	228
	6.2 Cutting Plane Methods	229
	6.3 Convex Envelopes	230
	6.4 Reduction to Bilinear Programming	231
	6.5 Solution of Large Concave QPs with Linear Terms	232
_	6.6 Reduction to Seperable Form	234
7	7. Indefinite Quadratic Problems	235
	7.1 Quadratic Problems with Box Constraints	235
	7.2 Decomposition Techniques	239
	7.3 Large-Scale Indefinite Problems	241
	7.4 Polynomial Time Algorithms	243
8	3. Quadratic Problems with Quadratic Constraints	244
	8.1 Decomposition Techniques	247
	9. Quadratic Optimization and the Linear Complementarity Problem	251
1	0. Applications	252
	10.1 Economies of Scale	252
	10.2 Pooling and Blending Problems	253
	10.3 Multicompotent Separation Problems	254
	10.4 The Quadratic Knapsack Problems	255
	10.5 IC Circuit Layout and Compaction	256
	10.6 Optimal Design of Trusses 10.7 Robust Stability Analysis of Feedback Control Systems	257 257
1	1. Summary of Computational Results	
1	1.1.1 Bilinear Programs and Quadratically Constrained Problems	259
	11.1 Binnear Programs and Quadraticary Constrained Problems 11.2 Concave Quadratic Problems	259
	11.2 Concave Quadratic Problems	259 261
	Conclusions	261
	Acknowledgements	263
	References	264
		204
	nplementary Problems	
Jon	g-Shi Pang	271
1	. Introduction	271
2	Problem Definition	273
3	. Source Problems	274
	3.1 Mathematical Programs	275
	3.2 Equilibrium Problems	277
	3.3 Engineering Applications	280
4	. Global Optimization Formulations	282
	. The KKT System of a VI	286
6	•	289
	6.1 Degree Theory Concepts	289

vii

	6.2 Some Basic Results	289
	6.3 Local Uniqueness of a Solution	293
	6.4 The Affine VI	295
7	. Iterative Algorithms	300
	7.1 The Basic Newton Method	300
	7.2 The Nonsmooth-Equations Approach	304
	7.3 Interior Point Methods	308
8	8. Error Bounds	313
9		317
	9.1 A Local Stability Theory for Nonsmooth Equations	318
	9.2 Local Sensitivity of VI with Fixed Set	320
	9.3 Specialization to a Parametric KKT System	325
	9.4 Parametric VI with Nonunique Multipliers	326
	9.5 Global Sensitivity Analysis	327
1	10. Conclusions and Some Open Topics	328
	Acknowledgement	329
	References	329
Mir	nimax and Its Applications	
Din	ng-Zhu Du	339
1	I. Introduction	339
2	2. Chebysherv Theorem	340
3	3. Linear Programming	341
4	4. Du-Hwang Theorem	342
5	5. Geometric Inequalities	345
e	6. Approximation Performance	348
7	7. Gilbert-Pollak Conjecture	350
8	Refinement of the Proof of Du and Hwang	351
13	8.1 Characteristic Area and Inner Spanning Trees	351
25	8.2 Critical Structure	357
	8.3 Hexagonal Trees	361
9	D. Discussion	365
	References	366
	Itiplicative Programming Problems	
Hire	oshi Konno and Takahito Kuno	369
1	. Introduction	369
2	 Linear Multiplicative Programming Problems 	370
	2.1 A Parametric Objective Simplex Algorithm	373
	2.2 A Parametric Right-Hand-Side Simplex Algorithm	375
	2.3 Other Methods for Linear Multiplicative Programs	377
3	 Convex Multiplicative Programming Problems 	378
	3.1 Minimization of the Product of two Convex Functions	379
	3.2 Minimization of the Product of Several Convex Functions	384
	3.3 Minimization of the Product of Several Affine Functions	389
4	 Other Problems Related to Multiplicative Functions 	393
	4.1 Minimization of a Sum of Convex Multiplicative Functions	393

viii

4.1 Minimization of a Sum of Convex Multiplicative Functions

	4.2 Generalized Linear Multiplicative Program4.3 Programs with a Convex Multiplicative ConstraintReferences	396 397 403
	hitz Optimization e Hansen and Brigitte Jaumard	407
1.	Introduction	407
2.	Univariate Lipschitz Optimization	410
	2.1 Determination of the Globally Optimal Value	410
	2.1.1 Finite Convergence	410
	2.1.2 Tightest Upper Bounding Functions	411
	2.1.3 Bounds on the Number of Evaluation Points	412
	2.1.4 Piyavskii's Algorithm	413
	2.1.5 Convergence of Piyavskii's Algorithm	415
	2.1.6 Bounds on the Number of Iterations of Piyavskii's Algorithm2.1.7 Number of Evaluation Points and Overestimation of the Lipschitz	417
	Constant	418
	2.1.8 Evtushenko's Algorithm	421
	2.1.9 Timonov's Algorithm and a Bayesian Analysis 2.1.10 Schoen's Algorithm Best ε-Optimal Strategies	422
	2.1.10 Schoen's Algorithm Best E-Optimal Strategies 2.1.11 Galperin's Algorithm in the Univariate Case	424 426
	2.1.12 Hansen, Janmard and Lu's Two Phase Algorithm: Principle	420
	2.1.12 Transch, Jaimard and Lu s Two Thas Algorithm. Thispic 2.1.13 Two-Phase Algorithm: Local Quasiconvexity or Quasiconcavity and	427
	Phase 1 Heuristic	428
	2.1.14 Two-Phase Algorithm: Linear Approximation and Phase 2	431
	2.1.15 Computational Comparison of Algorithms for Finding a Globally ε-	
	Optimal Value	435
	2.2 Locating One or All Globally Optimal Points	439
	2.2.1 Basso's Revision of Piyavskii's Algorithm	439
	2.2.2 An Algorithm for Locating All Globally Optimal Points	
	2.2.3 Computational Results with the Algorithm for Locating All Globally	
2	Optimal Points	447
3.	Unconstrained Multivariate Lipschitz Optimization: Exact Algorithms 3.1 Reduction to One-Dimensional Problems	448
	3.1.1 Piyavskii's Nested Optimization Algorithm	449 449
	3.2 Algorithms Using a Single Upper-Bounding Function	449
	3.2.1 Piyavskii's and Mladineo's Algorithms	450
	3.2.2 Mayne and Polak's Algorithm	452
	3.2.3 Jaumard, Herrmann and Ribault's Algorithm	453
	3.2.4 Wood's Algorithm	456
	3.3 Branch-and-Bound Algorithms	459
	3.3.1 General Framework	459
	3.3.2 Galperin's Algorithms	461
	3.3.3 Pointer's Algorithm	462
	3.3.4 Meewella and Mayne's Algorithm	464
	3.3.5 Gourdin, Hansen and Jeaumard's Algorithm	466
	3.4 Computational Comparison	467

ix

4.	Unconstrained Lipschitz Optimization: Heuristic Algorithms	475
	4.1 Unknown Lipschitz Constant: Strongin's Algorithm4.2 Known Lipschitz Constant	475
5	4.2 Known Lipschitz Constant Constrained Lipschitz Optimization: Exact Algorithms	478 478
5.	5.1 Extension of Branch-and-Bound Algorithms	478
	5.2 Thach and Tuy's Algorithms	478
6.		480
0.	6.1 Solution of Nonlinear Equations and Inequalities	483
	6.2 Parametrization of Statistical Models	483
	6.3 Calibration of Nonlinar Descriptive Models	484
	6.4 Black Box System Optimization	484
	6.5 Location Problems	484
	6.6 Vehicular Traffic and Commuter's Departure Time	485
7.	Conclusions	485
	References	487
Frac	tional Programming	
S. Sc	chaible	495
1.	Introduction	495
2.	Single-Ratio Fractional Programs	499
	2.1 Applications	499
	2.1.1 Economic Applications	499
	2.1.2 Non-Economic Applications	502
	2.1.3 Indirect Applications	502
	2.2 Theoretical and Algorithmic Results	505
	2.2.1 Direct Solution of the Quasiconcave Program (P)	505
	2.2.2 Solution of an Equivalent Concave Program (P')	506
	2.2.3 Solution of a Dual Program (D)	507
	2.2.4 Solution of a Parametric Problem (Pq)	509
3.	Maximization of the Smallest of Several Ratio	511
	3.1 Applications	511
	3.2 Theoretical and Algorithmic Results	512
4.	Maximization of a Sum of Ratios	516
	4.1 Applications	516
5	4.2 Theoretical and Algorithmic Results Multi-Objective Fractional Programs	517
	Conclusion	519 523
0. 7.		525
		524
	vork Problems Guisewite	609
-	Introduction	609
	Application areas	612
	Complexity of Network Problems	612
· 4.	• •	622
-7.	4.1 Vertex Ranking Technique	623
	4.2 Branch-and-Bound	623

х

	4.3 Dynamic Programming	627
	4.4 Decomposition Techniques	628
	4.5 Local Search Algorithms	630 634
	4.6 Specific Network Structure 4.7 Special Cost	637
	4.8 Approximate Algorithms and Heuristics	639
	4.9 Related Algorithms	641
5	Summary	641
5.	References	642
Traje	ctory Methods in Global Optimization	
-	Diener	649
1.	Introduction	649
2.	Using Differential Equations	652
	2.1 Griewank's Method	653
	2.2 The Method of Snyman and Fatti	655
	2.3 Branin's Method	655
3.	Newton-Leaves	657
	3.1 Geometry of Newton Leaves	657
	3.2 The Graphs Γ ^k	660
	3.3 Connected Newton Leaves	661
	Connection Trajectory Components	662
5.	Final Remarks References	665 666
		000
Homo W. Fo	otopy Methods	669
1.		
1. 2.	Introduction List of Applications	669 670
۷.	2.1 Applications in Economics	670
	2.2 Mathematical Applications	670
	2.3 Engineering Applications	671
3	Historical Background of Piecewise Linear Algorithms	672
	Fixed Point Theorems and Labelling Lemmas	673
5.	Integer Labelling, Vector Labelling and Pivoting Tables	682
	5.1 Pseudomanifolds and Labelling	682
	5.1.1 Pseudomanifolds	682
	5.1.2 Integer Labelling	683
	5.1.3 Vector Labelling	684
	5.1.4 Primitive Sets	686
	5.2 Pivoting Tables	686
	5.2.1 Pivoting Rules for the Triangulation K1	689
	5.2.2 Pivoting Rules for the Triangulation J1	691
	5.2.3 Pivoting Rules for the Triangulation D1	692
	5.2.4 Triangulations with Continuous Refinement of Grid Size	696
	Some Pivoting Algorithms on \mathbb{R}^n (and \mathbb{C}^n)	696
7.	The Number of Homotopy Invariant Solutions	699

8.	Kuhn's Algorithm for one Polynomial	704
9.	Generalization to Systems of Polynomial Equations	709
	9.1 Systems of n Polynomials in n Variables	709
	9.2 Labelling Function	714
	9.3 Estimates	715
	9.4 Starting Procedure and Algorithm	716
	9.5 Error Estimates	718
	9.6 Computational Complexity	718
	9.7 Systems of m Polynomials in n Variables	719
	9.8 Systems with No Unique Dominating Term	720
10). Implications for Optimization Problems	721
	10.1 Optimization Problems Considered as Problems in R ⁿ	721
	10.2 Optimization Problems Considered as Problems in C ⁿ	722
11	1. Homotopy Methods Based on Differential Topology	724
	11.1 Historical Background and Key Concepts	724
	11.2 The Kellogg, Li, Yorke Algorithm and Extensions	726
12	2. Complementary Problems	731
13	3. Programming Issues	733
14	4. Further Reading	734
15	5. Concluding Remarks	735
10	6. References	737
Inter	rval Methods	
Heln	nut Ratschek and Jon Rokne	751
Intro	oduction	752
Part	I: Interval Analysis	755
	1.1 Advantages of Intervals	755
050	1.2 Interval Arithmetic Operation	757
01.3	1.3 Machine Interval Arithmetic	759
629	1.4 Further Notations	760
	1.5 Inclusion Functions and Natural Interval Extensions	763
270	1.6 Centered Forms	765
EV.E	1.7 Interval Newton Methods	770
598	1.8 The Hansen-Sengupta Version	772
Part	II: Global Unconstrained Optimization	779
	2.1 Introduction	779
£5.4	2.2 The Basic Algorithm	781
	2.3 Termination Criteria	785
	2.4 Accelerating Devices	787
	2.5 Bisections	791
Part I	II: Constrained Optimization	797
	3.1 Introduction	797
	3.2 Controlling the Feasible Domain	799
	3.3 Trouble with Constraints	803
	3.4 The Basic Algorithm	806

3.5 Inexactly Posed Problems	810
3.6 Convergence Conditions	811
3.7 Accelerating Devices	813
3.8 Numerical Examples	819
Bibliography	824
Stochastic Methods	
C. Guus E. Boender and H. Edwin Romeijn	829
1. Introduction	829
2. Two-Phase Methods	830
2.1 Pure Random Search	831
2.2 Multistart	832
2.3 Clustering Methods	832
2.3.1 Density Clustering	832
2.3.2 Single Linkage Clustering	833
2.4 Multi Level Single Linkage (MLSL)	834
3. Random Search Methods	835
3.1 Pure Random Search	835
3.2 Random Search	836
3.3 Pure Adaptive Search	837
3.4 Adaptive Search	838
4. Simulated Annealing	840
4.1 The Algorithm	840
4.2 Convergence	841
4.3 Examples	842
5. The Random Function Approach	846
5.1 Stochastic Processes	847
5.2 The One-Dimensional Wiener Process	850
5.3 The Multidimensional Case	851
6. Stopping Rules	853
6.1 Stopping Rules Based on the Local Optima Structure	856
6.1.1 Statistical Model	856
6.1.2 Non-Sequential Rules	857
6.1.3 Sequential Rules	858
6.1.4 Incorporation of the Function Values	859
6.2 Stopping Rules Based on the Distribution of Function Values	860
6.2.1 The Continuous Case	861
6.2.2 The Discrete Case	862
6.3 Conclusion	864
7. Concluding Remarks and Future Research	865
References	865
Index	871

xiii