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Preface

The main motivation for writing this book was to collect new results on hydrodynamic modeling, guid-
ance, navigation and control of marine craft that have been developed since I published my first book:

Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. John Wiley & Sons, Ltd. Chichester,
UK. ISBN 0-471-94113-1.

The Wiley book from 1994 was the first attempt to bring hydrodynamic modeling and control system
design into a unified notation for modeling, simulation and control. My first book also contains state-of-
the-art control design methods for ships and underwater vehicles up to 1994. In the period 1994–2002
a great deal of work was done on nonlinear control of marine craft. This work resulted in many useful
results and lecture notes, which have been collected and published in a second book entitled Marine
Control Systems: Guidance, Navigation and Control of Ships and Underwater Vehicles. The 1st edition
was published in 2002 and it was used as the main textbook in my course on Guidance and Control at
the Norwegian University of Science and Technology (NTNU). Instead of making a 2nd edition of the
book, I decided to write the Handbook of Marine Craft Hydrodynamics and Motion Control and merge
the most important results from my previous two books with recent results.

Part I of the book covers both maneuvering and seakeeping theory and it is explained in detail how the
equations of motion can be derived for both cases using both frequency- and time-domain formulations.
This includes transformations from the frequency to the time domain and the explanation of fluid-
memory effects. A great effort has been made in the development of kinematic equations for effective
representation of the equations of motion in seakeeping, body, inertial and geographical coordinates.
This is very confusing in the existing literature on hydrodynamics and the need to explain this properly
motivated me to find a unifying notation for marine and mechanical systems. This was done in the period
2002–2010 and it is inspired by the elegant formulation used in robotics where systems are represented in
a vectorial notation. The new results on maneuvering and seakeeping are joint work with Professor Tristan
Perez, University of Newcastle, Australia. The work with Professor Perez has resulted in several joint
publications and I am grateful to him for numerous interesting discussions on hydrodynamic modeling
and control. He should also be thanked for proofreading parts of the manuscript.

Part II of the book covers guidance systems, navigation systems, state estimators and control of marine
craft. This second part of the book focuses on state-of-the-art methods for feedback control such as PID
control design for linear and nonlinear systems as well as control allocation methods. A chapter with more
advanced topics, such as optimal control theory, backstepping, feedback linearization and sliding-mode
control, is included for the advanced reader. Case studies and applications are treated at the end of each
chapter. The control systems based on PID and optimal control theory are designed with a complexity
similar to those used in many industrial systems. The more advanced methods using nonlinear theory are
included so the user can compare linear and nonlinear design techniques before a final implementation is
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made. Many references to existing systems are included so control system vendors can easily find articles
describing state-of-the art design methods for marine craft.

The arrangement of the subject matter in major parts can be seen from the following diagram:

Most of the results in the book have been developed at the Department of Engineering Cybernetics
and the Centre of Ships and Ocean Structures, NTNU, in close cooperation with my former doctoral
students, Ola-Erik Fjellstad, Trygve Lauvdal, Jann Peter Strand, Jan Fredrik Hansen, Bjørnar Vik,
Svein P. Berge, Mehrdad P. Fard, Karl-Petter Lindegaard, Ole Morten Aamo, Roger Skjetne, Ivar-Andre
Flakstad Ihle, Andrew Ross, Gullik A. Jensen and Morten Breivik, in the period 1991–2010. We have
been a productive team, and have written hundreds of international publications in this period. Our joint
efforts have resulted in several patents and industrial implementations. Morten Breivik has contributed
with many important results on guidance systems (Chapter 10) and he should also be thanked for
proofreading parts of the manuscript. Bjarne Stenberg should be thanked for creating the artistic front
and back covers of the book and many other graphical illustrations. Finally, Stewart Clark, Senior
Consultant, NTNU, should be thanked for his assistance with the English language. The book project has
been sponsored by The Norwegian Research Council through the Center of Ships and Ocean Structures,
Norwegian Center of Excellence at NTNU.

Thor I. Fossen
www.wiley.com/go/fossen marine
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Part One

Marine Craft
Hydrodynamics
De Navium Motu Contra Aquas





1
Introduction

The subject of this book is motion control and hydrodynamics of marine craft. The term marine craft
includes ships, high-speed craft, semi-submersibles, floating rigs, submarines, remotely operated and
autonomous underwater vehicles, torpedoes, and other propelled and powered structures, for instance
a floating air field. Offshore operations involve the use of many marine craft, as shown in Figure 1.1.
Vehicles that do not travel on land (ocean and flight vehicles) are usually called craft, such as watercraft,
sailcraft, aircraft, hovercraft and spacecraft. The term vessel can be defined as follows:

Vessel: “hollow structure made to float upon the waterfor purposes of transportation and navigation;
especially, one that is larger than a rowboat.”

The words vessel, ship and boat are often used interchangeably. In Encyclopedia Britannica, a ship and
a boat are distinguished by their size through the following definition:

Ship: “any large floating vessel capable of crossingopen waters, as opposed to a boat, which
is generally a smaller craft. The term formerly was applied to sailing vessels having three or
more masts; in modern times it usually denotes a vessel of more than 500 tons of displacement.
Submersible ships are generally called boats regardless of their size.”

Similar definitions are given for submerged vehicles:

Submarine: “any naval vessel that is capable of propelling itself beneath the water as well as on
the water’s surface. This is a unique capability among warships, and submarines are quite different
in design and appearance from surface ships.”

Underwater Vehicle: “small vehicle that is capable of propelling itself beneath the water surface
as well as on the water’s surface. This includes unmanned underwater vehicles (UUV), remotely
operated vehicles (ROV), autonomous underwater vehicles (AUV) and underwater robotic vehicles
(URV). Underwater vehicles are used both commercially and by the navy.”

From a hydrodynamic point of view, marine craft can be classified according to their maximum operating
speed. For this purpose it is common to use the Froude number:

Fn := U√
gL

(1.1)

Handbook of Marine Craft Hydrodynamics and Motion Control, First Edition. Thor I. Fossen.
© 2011 John Wiley & Sons Ltd. Published 2011 by John Wiley & Sons Ltd.
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where U is the craft speed, L is the overall submerged length of the craft and g is the acceleration of
gravity. The pressure carrying the craft can be divided into hydrostatic and hydrodynamic pressure. The
corresponding forces are:

• Buoyancy force due to the hydrostatic pressure (proportional to the displacement of the ship).
• Hydrodynamic force due to the hydrodynamic pressure (approximately proportional to the square of

the relative speed to the water).

For a marine craft sailing at constant speed U, the following classifications can be made (Faltinsen, 2005):

Displacement Vessels (Fn < 0.4): The buoyancy force (restoring terms) dominates relative to the
hydrodynamic forces (added mass and damping).

Semi-displacement Vessel (0.4−0.5 < Fn < 1.0−1.2): The buoyancy force is not dominant at the
maximum operating speed for a high-speed submerged hull type of craft.

Planing Vessel (Fn > 1.0−1.2): The hydrodynamic force mainly carries the weight. There will be
strong flow separation and the aerodynamic lift and drag forces start playing a role.

In this book only displacement vessels are covered; see Figure 1.2.
The Froude number has influence on the hydrodynamic analysis. For displacement vessels, the waves

radiated by different parts of the hull do not influence other parts of the hull. For semi-displacement
vessels, waves generated at the bow influence the hydrodynamic pressure along the hull towards
the stern. These characteristics give rise to different modeling hypotheses, which lead to different
hydrodynamic theories.

For displacement ships it is widely accepted to use two- and three-dimensional potential theory pro-
grams to compute the potential coefficients and wave loads; see Section 5.1. For semi-displacement

Figure 1.1 Marine craft in operation. Illustration Bjarne Stenberg/Department of Marine Technology,
NTNU.
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Figure 1.2 Displacement vessel.

vessels and planing vessels it is important to include the lift and drag forces in the computations
(Faltinsen, 2005).

Degrees of Freedom and Motion of a Marine Craft

In maneuvering, a marine craft experiences motion in 6 degrees of freedom (DOFs); see Section 9.4.
The DOFs are the set of independent displacements and rotations that specify completely the displaced
position and orientation of the craft. The motion in the horizontal plane is referred to as surge (longi-
tudinal motion, usually superimposed on the steady propulsive motion) and sway (sideways motion).
Yaw (rotation about the vertical axis) describes the heading of the craft. The remaining three DOFs
are roll (rotation about the longitudinal axis), pitch (rotation about the transverse axis) and heave
(vertical motion); see Figure 1.3.

Figure 1.3 Motion in 6 degrees of freedom (DOF).
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Roll motion is probably the most influential DOF with regards to human performance, since it pro-
duces the highest accelerations and, hence, is the principal villain in seasickness. Similarly, pitching
and heaving feel uncomfortable to people. When designing ship autopilots, yaw is the primary mode
for feedback control. Stationkeeping of a marine craft implies stabilization of the surge, sway and
yaw motions.

When designing feedback control systems for marine craft, reduced-order models are often used since
most craft do not have actuation in all DOF. This is usually done by decoupling the motions of the craft
according to:

1 DOF models can be used to design forward speed controllers (surge), heading autopilots (yaw) and
roll damping systems (roll).

3 DOF models are usually:
• Horizontal plane models (surge, sway and yaw) for ships, semi-submersibles and underwater vehicles

that are used in dynamic positioning systems, trajectory-tracking control systems and path-following
systems. For slender bodies such as submarines, it is also common to assume that the motions can
be decoupled into longitudinal and lateral motions.

• Longitudinal models (surge, heave and pitch) for forward speed, diving and pitch control.
• Lateral models (sway, roll and yaw) for turning and heading control.

4 DOF models (surge, sway, roll and yaw) are usually formed by adding the roll equation to the 3 DOF
horizontal plane model. These models are used in maneuvering situations where it is important to
include the rolling motion, usually in order to reduce roll by active control of fins, rudders or stabilizing
liquid tanks.

6 DOF models (surge, sway, heave, roll, pitch and yaw) are fully coupled equations of motion used for
simulation and prediction of coupled vehicle motions. These models can also be used in advanced
control systems for underwater vehicles that are actuated in all DOF.

1.1 Classification of Models
The models in this book can be used for prediction, real-time simulation and controller-observer de-
sign. The complexity and number of differential equations needed for the various purposes will vary.
Consequently, one can distinguish between three types of models (see Figure 1.4):

Simulation Model: This model is the most accurate description of a system, for instance a 6 DOF
high-fidelity model for simulation of coupled motions in the time domain. It includes the marine
craft dynamics, propulsion system, measurement system and the environmental forces due to wind,
waves and ocean currents. It also includes other features not used for control and observer design
that have a direct impact on model accuracy. The simulation model should be able to reconstruct
the time responses of the real system and it should also be possible to trigger failure modes to sim-
ulate events such as accidents and erroneous signals. Simulation models where the fluid-memory
effects are included due to frequency-dependent added mass and potential damping typically consist
of 50–200 ordinary differential equations (ODEs) while a maneuvering model can be represented in
6 DOF with 12 ODEs for generalized position and velocity. In addition, some states are needed to
describe the environmental forces and actuators, but still the number of states will be less than 50 for a
marine craft.

Control Design Model: The controller model is a reduced-order or simplified version of the simu-
lation model that is used to design the motion control system. In its simplest form, this model is
used to compute a set of constant gains for a proportional, integral, derivative (PID) controller. More
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Figure 1.4 Models used in guidance, navigation and control.

sophisticated control systems use a dynamic model to generate feedforward and feedback signals.
This is referred to as model-based control. The number of ODEs used in conventional model-based
ship control systems is usually less than 20. A PID controller typically requires two states: one for
the integrator and one for the low-pass filter used to limit noise amplification. Consequently, setpoint
regulation in 6 DOF can be implemented by using 12 ODEs. However, trajectory-tracking controllers
require additional states for feedforward as well as filtering so higher-order control laws are not
uncommon.

Observer Design Model: The observer model will in general be different from the model used in the
controller since the purpose is to capture the additional dynamics associated with the sensors and navi-
gation systems as well as disturbances. It is a simplified version of the simulation model where attention
is given to accurate modeling of measurement noise, failure situations including dead-reckoning
capabilities, filtering and motion prediction. For marine craft, the model-based observer often includes
a disturbance model where the goal is to estimate wave, wind and ocean current forces by treating
these as colored noise. For marine craft the number of ODEs in the state estimator will typically be 20
for a dynamic positioning (DP) system while a basic heading autopilot is implemented with less than
five states.

1.2 The Classical Models in Naval Architecture
The motions of a marine craft exposed to wind, waves and ocean currents takes place in 6 DOF. The
equations of motion can be derived using the Newton–Euler or Lagrange equations. The equations of
motion are used to simulate ships, high-speed craft, underwater vehicles and floating structures operating
under or on the water surface, as shown in Figure 1.5. In Section 3.3 it is shown that a rigid body with
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Figure 1.5 Ship and semi-submersibles operating offshore. Illustration Bjarne Stenberg/MARINTEK.

constant mass m and center of gravity (xg, yg, zg) relative to a fixed point on the hull can be described
by the following coupled differential equations:

m
[
u̇ − vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)

]= X

m
[
v̇ − wp + ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp + ṙ)

]= Y

m
[
ẇ − uq + vp − zg(p2 + q2) + xg(rp − q̇) + yg(rq + ṗ)

]= Z

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+ m
[
yg(ẇ − uq + vp) − zg(v̇ − wp + ur)

]= K

Iyq̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz

+ m
[
zg(u̇ − vr + wq) − xg(ẇ − uq + vp)

]= M

Izṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+ m
[
xg(v̇ − wp + ur) − yg(u̇ − vr + wq)

]= N

(1.2)

where X, Y, Z, K, M and N denote the external forces and moments. This model is the basis for time-
domain simulation of marine craft. The external forces and moments acting on a marine craft are usually
modeled by using:

Maneuvering Theory: The study of a ship moving at constant positive speed U in calm water within the
framework of maneuvering theory is based on the assumption that the maneuvering (hydrodynamic)
coefficients are frequency independent (no wave excitation). The maneuvering model will in its simplest
representation be linear while nonlinear representations can be derived using methods such as cross-
flow drag, quadratic damping or Taylor-series expansions; see Chapter 6.

Seakeeping Theory: The motions of ships at zero or constant speed in waves can be analyzed using
seakeeping theory where the hydrodynamic coefficients and wave forces are computed as a function of
the wave excitation frequency using the hull geometry and mass distribution. The seakeeping models


