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Preface

This book contains a collection of general mathematical results, formulas, and integrals that
occur throughout applications of mathematics. Many of the entries are based on the updated
fifth edition of Gradshteyn and Ryzhik’s ”Tables of Integrals, Series, and Products,” though
during the preparation of the book, results were also taken from various other reference works.
The material has been arranged in a straightforward manner, and for the convenience of the
user a quick reference list of the simplest and most frequently used results is to be found in
Chapter 0 at the front of the book. Tab marks have been added to pages to identify the twelve
main subject areas into which the entries have been divided and also to indicate the main
interconnections that exist between them. Keys to the tab marks are to be found inside the
front and back covers.

The Table of Contents at the front of the book is sufficiently detailed to enable rapid location
of the section in which a specific entry is to be found, and this information is supplemented by
a detailed index at the end of the book. In the chapters listing integrals, instead of displaying
them in their canonical form, as is customary in reference works, in order to make the tables
more convenient to use, the integrands are presented in the more general form in which they
are likely to arise. It is hoped that this will save the user the necessity of reducing a result to a
canonical form before consulting the tables. Wherever it might be helpful, material has been
added explaining the idea underlying a section or describing simple techniques that are often
useful in the application of its results.

Standard notations have been used for functions, and a list of these together with their
names and a reference to the section in which they occur or are defined is to be found at the
front of the book. As is customary with tables of indefinite integrals, the additive arbitrary
constant of integration has always been omitted. The result of an integration may take more
than one form, often depending on the method used for its evaluation, so only the most common
forms are listed.

A user requiring more extensive tables, or results involving the less familiar special functions,
is referred to the short classified reference list at the end of the book. The list contains works
the author found to be most useful and which a user is likely to find readily accessible in a
library, but it is in no sense a comprehensive bibliography. Further specialist references are to
be found in the bibliographies contained in these reference works.

Every effort has been made to ensure the accuracy of these tables and, whenever possible,
results have been checked by means of computer symbolic algebra and integration programs,
but the final responsibility for errors must rest with the author.

xix





Preface to the Fourth Edition

The preparation of the fourth edition of this handbook provided the opportunity to
enlarge the sections on special functions and orthogonal polynomials, as suggested by many
users of the third edition. A number of substantial additions have also been made elsewhere,
like the enhancement of the description of spherical harmonics, but a major change is the
inclusion of a completely new chapter on conformal mapping. Some minor changes that have
been made are correcting of a few typographical errors and rearranging the last four chapters
of the third edition into a more convenient form. A significant development that occurred
during the later stages of preparation of this fourth edition was that my friend and colleague
Dr. Hui-Hui Dai joined me as a co-editor.

Chapter 30 on conformal mapping has been included because of its relevance to the solu-
tion of the Laplace equation in the plane. To demonstrate the connection with the Laplace
equation, the chapter is preceded by a brief introduction that demonstrates the relevance of
conformal mapping to the solution of boundary value problems for real harmonic functions
in the plane. Chapter 30 contains an extensive atlas of useful mappings that display, in the
usual diagrammatic way, how given analytic functions w = f(z) map regions of interest in the
complex z-plane onto corresponding regions in the complex w-plane, and conversely. By form-
ing composite mappings, the basic atlas of mappings can be extended to more complicated
regions than those that have been listed. The development of a typical composite mapping is
illustrated by using mappings from the atlas to construct a mapping with the property that a
region of complicated shape in the z-plane is mapped onto the much simpler region compris-
ing the upper half of the w-plane. By combining this result with the Poisson integral formula,
described in another section of the handbook, a boundary value problem for the original, more
complicated region can be solved in terms of a corresponding boundary value problem in the
simpler region comprising the upper half of the w-plane.

The chapter on ordinary differential equations has been enhanced by the inclusion of mate-
rial describing the construction and use of the Green’s function when solving initial and
boundary value problems for linear second order ordinary differential equations. More has
been added about the properties of the Laplace transform and the Laplace and Fourier con-
volution theorems, and the list of Laplace transform pairs has been enlarged. Furthermore,
because of their use with special techniques in numerical analysis when solving differential
equations, a new section has been included describing the Jacobi orthogonal polynomials. The
section on the Poisson integral formulas has also been enlarged, and its use is illustrated by an
example. A brief description of the Riemann method for the solution of hyperbolic equations
has been included because of the important theoretical role it plays when examining general
properties of wave-type equations, such as their domains of dependence.

For the convenience of users, a new feature of the handbook is a CD-ROM that contains
the classified lists of integrals found in the book. These lists can be searched manually, and
when results of interest have been located, they can be either printed out or used in papers or

xxi
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worksheets as required. This electronic material is introduced by a set of notes (also included in
the following pages) intended to help users of the handbook by drawing attention to different
notations and conventions that are in current use. If these are not properly understood, they
can cause confusion when results from some other sources are combined with results from
this handbook. Typically, confusion can occur when dealing with Laplace’s equation and other
second order linear partial differential equations using spherical polar coordinates because
of the occurrence of differing notations for the angles involved and also when working with
Fourier transforms for which definitions and normalizations differ. Some explanatory notes and
examples have also been provided to interpret the meaning and use of the inversion integrals
for Laplace and Fourier transforms.

Alan Jeffrey
alan.jeffrey@newcastle.ac.uk

Hui-Hui Dai
mahhdai@math.cityu.edu.hk



Notes for Handbook Users

The material contained in the fourth edition of the Handbook of Mathematical Formulas and
Integrals was selected because it covers the main areas of mathematics that find frequent use
in applied mathematics, physics, engineering, and other subjects that use mathematics. The
material contained in the handbook includes, among other topics, algebra, calculus, indefinite
and definite integrals, differential equations, integral transforms, and special functions.

For the convenience of the user, the most frequently consulted chapters of the book are to
be found on the accompanying CD that allows individual results of interest to be printed out,
included in a work sheet, or in a manuscript.

A major part of the handbook concerns integrals, so it is appropriate that mention of these
should be made first. As is customary, when listing indefinite integrals, the arbitrary additive
constant of integration has always been omitted. The results concerning integrals that are
available in the mathematical literature are so numerous that a strict selection process had
to be adopted when compiling this work. The criterion used amounted to choosing those
results that experience suggested were likely to be the most useful in everyday applications of
mathematics. To economize on space, when a simple transformation can convert an integral
containing several parameters into one or more integrals with fewer parameters, only these
simpler integrals have been listed.

For example, instead of listing indefinite integrals like
∫
eax sin(bx + c)dx and

∫
eax

cos(bx + c)dx, each containing the three parameters a, b, and c, the simpler indefinite inte-
grals

∫
eax sin bxdx and

∫
eax cos bxdx contained in entries 5.1.3.1(1) and 5.1.3.1(4) have

been listed. The results containing the parameter c then follow after using additive prop-
erty of integrals with these tabulated entries, together with the trigonometric identities
sin(bx + c) = sin bx cos c + cos bx sin c and cos(bx + c) = cos bx cos c−sin bx sin c.

The order in which integrals are listed can be seen from the various section headings.
If a required integral is not found in the appropriate section, it is possible that it can be
transformed into an entry contained in the book by using one of the following elementary
methods:

1. Representing the integrand in terms of partial fractions.
2. Completing the square in denominators containing quadratic factors.
3. Integration using a substitution.
4. Integration by parts.
5. Integration using a recurrence relation (recursion formula),

xxiii
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or by a combination of these. It must, however, always be remembered that not all integrals can
be evaluated in terms of elementary functions. Consequently, many simple looking integrals
cannot be evaluated analytically, as is the case with

∫
sin x

a + bex
dx.

A Comment on the Use of Substitutions
When using substitutions, it is important to ensure the substitution is both continuous and
one-to-one, and to remember to incorporate the substitution into the dx term in the integrand.
When a definite integral is involved the substitution must also be incorporated into the limits
of the integral.

When an integrand involves an expression of the form
√

a2−x2, it is usual to use the
substitution x = |a sin θ| which is equivalent to θ = arcsin(x/ |a|), though the substitution
x = |a| cos θ would serve equally well. The occurrence of an expression of the form

√
a2 + x2 in

an integrand can be treated by making the substitution x = |a| tan θ, when θ = arctan(x/ |a|)
(see also Section 9.1.1). If an expression of the form

√
x2−a2 occurs in an integrand, the

substitution x = |a| sec θ can be used. Notice that whenever the square root occurs the positive
square root is always implied, to ensure that the function is single valued.

If a substitution involving either sin θ or cos θ is used, it is necessary to restrict θ to a
suitable interval to ensure the substitution remains one-to-one. For example, by restricting θ
to the interval − 1

2π ≤ θ ≤ 1
2π, the function sin θ becomes one-to-one, whereas by restricting θ

to the interval 0 ≤ θ ≤ π, the function cos θ becomes one-to-one. Similarly, when the inverse
trigonometric function y = arcsin x is involved, equivalent to x = sin y, the function becomes
one-to-one in its principal branch − 1

2π ≤ y ≤ 1
2π, so arcsin(sin x) = x for − 1

2π ≤ x ≤ 1
2π

and sin(arcsin x) = x for −1 ≤ x ≤ 1. Correspondingly, the inverse trigonometric function
y = arccos x, equivalently x = cos y, becomes one-to-one in its principal branch 0 ≤ y ≤ π,
so arccos(cos x) = x for 0 ≤ x ≤ π and sin(arccos x) = x for −1 ≤ x ≤ 1.

It is important to recognize that a given integral may have more than one representation,
because the form of the result is often determined by the method used to evaluate the integral.
Some representations are more convenient to use than others so, where appropriate, integrals
of this type are listed using their simplest representation. A typical example of this type is

∫
dx√

a2 + x2
=

{
arcsinh(x/a)

ln
(
x +

√
a2 + x2

)

where the result involving the logarithmic function is usually the more convenient of the two
forms. In this handbook, both the inverse trigonometric and inverse hyperbolic functions all
carry the prefix “arc.” So, for example, the inverse sine function is written arcsin x and the
inverse hyperbolic sine function is written arcsinh x, with corresponding notational conventions
for the other inverse trigonometric and hyperbolic functions. However, many other works
denote the inverse of these functions by adding the superscript −1 to the name of the function,
in which case arcsin x becomes sin−1 x and arcsinh x becomes sinh−1 x. Elsewhere yet another
notation is in use where, instead of using the prefix “arc” to denote an inverse hyperbolic
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function, the prefix “arg” is used, so that arcsinh x becomes argsinh x, with the corresponding
use of the prefix “arg” to denote the other inverse hyperbolic functions. This notation is
preferred by some authors because they consider that the prefix “arc” implies an angle is
involved, whereas this is not the case with hyperbolic functions. So, instead, they use the
prefix “arg” when working with inverse hyperbolic functions.

Example: Find I =
∫

x5√
a2−x2 dx.

Of the two obvious substitutions x = |a| sin θ and x = |a| cos θ that can be used, we will make
use of the first one, while remembering to restrict θ to the interval − 1

2π ≤ θ ≤ 1
2π to ensure

the transformation is one-to-one. We have dx = |a| cos θdθ, while
√

a2−x2 =
√

a2−a2 sin2 θ =
|a|

√
1−sin2 θ = |a cos θ|. However cos θ is positive in the interval − 1

2π ≤ θ ≤ 1
2π, so we may

set
√

a2−x2 = |a| cos θ. Substituting these results into the integrand of I gives

I =
∫ |a|5 sin5 θ |a| cos θdθ

|a| cos θ
= a4 |a|

∫
sin5 θdθ,

and this trigonometric integral can be found using entry 9.2.2.2, 5. This result can be expressed
in terms of x by using the fact that θ = arcsin (x/ |a|), so that after some manipulation we find
that

I = −1
5
x4

√
a2−x2 − 4a2

15

√
a2−x2

(
2a2 + x2

)
.

A Comment on Integration by Parts
Integration by parts can often be used to express an integral in a simpler form, but it also has
another important property because it also leads to the derivation of a reduction formula,
also called a recursion relation. A reduction formula expresses an integral involving one or
more parameters in terms of a simpler integral of the same form, but with the parameters
having smaller values. Let us consider two examples in some detail, the second of which given
a brief mention in Section 1.15.3.

Example:

(a) Find a reduction formula for

Im =
∫

cosm θdθ,

and hence find an expression for I5.
(b) Modify the result to find a recurrence relation for

Jm =
∫ π/2

0

cosm θdθ,

and use it to find expressions for Jm when m is even and when it is odd.
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To derive the result for (a), write

Im =
∫

cosm−1 θ
d(sin θ)

dθ
dθ

= cosm−1 θ sin θ−
∫

sin θ(m−1) cosm−2 θ(− sin θ)dθ

= cosm−1 θ sin θ+ (m−1)
∫

cosm−2 θ(1−cos2 θ)dθ

= cosm−1 θ sin θ+ (m−1)
∫

cosm−2 θdθ− (m−1)
∫

cosm θdθ.

Combining terms and using the form of Im, this gives the reduction formula

Im =
cosm−1 θ sin θ

m
+

(
m−1

m

)
Im−2.

we have I1 =
∫
cos θdθ = sin θ. So using the expression for I1, setting m = 5 and using the

recurrence relation to step up in intervals of 2, we find that

I3 =
1
3

cos2 θ sin θ+
2
3
I1 =

1
3

cos2 θ+
2
3

sin θ,

and hence that

I5 =
1
5

cos4 θ sin θ+
4
5
I3

=
1
5

cos4 θ sin θ− 4
15

sin3 θ+
4
5

sin θ.

The derivation of a result for (b) uses the same reasoning as in (a), apart from the fact that
the limits must be applied to both the integral, and also to the uν term in

∫
udν = uν− ∫

νdu,
so the result becomes

∫
b
audν = (uν)b

a − ∫ b

a
νdu. When this is done it leads to the result

Jm =
(

cosm−1 θ sin θ
m

)π/2

θ=0

+
(

m−1
m

)
Jm−2 =

(
m−1

m

)
Jm−2.

When m is even, this recurrence relation links Jm to J0 =
∫ π/2

0
1dθ = 1

2π, and when m is odd,

it links Jm to J1 =
∫ π/2

0
cos θdθ = 1. Using these results sequentially in the recurrence relation,

we find that

J2n =
1 · 3 · 5 . . . (2n−1)

2 · 4 · 6 . . . 2n

1
2
π, (m = 2n is even)

and

J2n+1 =
2 · 4 · 6 . . . 2n

3 · 5 · 7 . . . (2n + 1)
(m = 2n + 1 is odd).
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Example: The following is an example of a recurrence formula that contains two param-
eters. If Im,n =

∫
sinm θ cosn θdθ, an argument along the lines of the one used in the previous

example, but writing

Im,n =
∫

sinm−1 θ cosn θd(− cos θ),

leads to the result

(m + n)Im,n = − sinm−1 θ cosn+1 θ+ (m−1)Im−2,n,

in which n remains unchanged, but m decreases by 2.
Had integration by parts been used differently with Im,n written as

Im,n =
∫

sinmθ cosn−1 θd(sin θ)

a different reduction formula would have been obtained in which m remains unchanged but n
decreases by 2.

Some Comments on Definite Integrals
Definite integrals evaluated over the semi-infinite interval [0,∞) or over the infinite interval
(−∞,∞) are improper integrals and when they are convergent they can often be evaluated
by means of contour integration. However, when considering these improper integrals, it is
desirable to know in advance if they are convergent, or if they only have a finite value in
the sense of a Cauchy principal value. (see Section 1.15.4). A geometrical interpretation of
a Cauchy principal value for an integral of a function f(x) over the interval (−∞,∞) follows
by regarding an area between the curve y = f(x) and the x-axis as positive if it lies above the
x-axis and negative if it lies below it. Then, when finding a Cauchy principal value, the areas to
the left and right of the y-axis are paired off symmetrically as the limits of integration approach
±∞. If the result is a finite number, this is the Cauchy principal value to be attributed to the
definite integral

∫ ∞
−∞ f(x)dx, otherwise the integral is divergent. When an improper integral

is convergent, its value and its Cauchy principal value coincide.
There are various tests for the convergence of improper integrals, but the ones due to Abel

and Dirichlet given in Section 1.15.4 are the main ones. Convergent integrals exist that do
not satisfy all of the conditions of the theorems, showing that although these tests represent
sufficient conditions for convergence, they are not necessary ones.

Example: Let us establish the convergence of the improper integral
∫ ∞

a
sin mx

xp dx, given that
a, p > 0.

To use the Dirichlet test we set f(x) = sin x and g(x) = 1/xp. Then lim
x→∞ g(x) = 0

and
∫ ∞

a
|g′(x)|dx = 1/ap is finite, so this integral involving g(x) converges. We also have

F (b) =
∫ b

a
sin mxdx =(cos ma − cos mb)/m, from which it follows that |F (b)| ≤ 2 for all
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a ≤ x ≤ b < ∞. Thus the conditions of the Dirichlet test are satisfied showing that
∫ ∞

a
sin x
xp dx

is convergent for a, p > 0.
It is necessary to exercise caution when using the fundamental theorem of calculus to

evaluate an improper integral in case the integrand has a singularity (becomes infinite) inside
the interval of integration. If this occurs the use of the fundamental theorem of calculus is
invalid.

Example: The improper integral
∫ a

−a
dx
x2 with a > 0 has a singularity at the origin and is, in

fact, divergent. This follows because if ε, δ > 0, we have lim
ε→0

∫ −ε
−a

dx
x2 + lim

δ→0

∫ b

δ
dx
x2 = ∞. However,

an incorrect application of the fundamental theorem of calculus gives
∫ a

−a
dx
x2 =

(− 1
x

)a

x=−a
=

− 2
a . Although this result is finite, it is obviously incorrect because the integrand is positive

over the interval of integration, so the definite integral must also be positive, but this is not
the case here because a > 0 so −2/a < 0.

Two simple results that often save time concern the integration of even and odd functions
f(x) over an interval −a ≤ x ≤ a that is symmetrical about the origin.

We have the obvious result that when f(x) is odd, that is when f(−x) = −f(x), then

∫ a

−a

f(x)dx = 0,

and when f(x) is even, that is when f(−x) = f(x), then

∫ a

−a

f(x)dx = 2
∫ a

0

f(x)dx.

These simple results have many uses as, for example, when working with Fourier series and
elsewhere.

Some Comments on Notations, the Choice of Symbols, and Normalization
Unfortunately there is no universal agreement on the choice of symbols used to identify a
point P in cylindrical and spherical polar coordinates. Nor is there universal agreement on
the choice of symbols used to represent some special functions, or on the normalization of
Fourier transforms. Accordingly, before using results derived from other sources with those
given in this handbook, it is necessary to check the notations, symbols, and normalization
used elsewhere prior to combining the results.

Symbols Used with Curvilinear Coordinates
To avoid confusion, the symbols used in this handbook relating to plane polar coordinates,
cylindrical polar coordinates, and spherical polar coordinates are shown in the diagrams in
Section 24.3.
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The plane polar coordinates (r, θ) that identify a point P in the (x, y)-plane are shown in
Figure 1(a). The angle θ is the azimuthal angle measured counterclockwise from the x-axis
in the (x, y)-plane to the radius vector r drawn from the origin to the point P . The connection
between the Cartesian and the plane polar coordinates of P is given by x = r cos θ, y = r sin θ,
with 0 ≤ θ < 2π.

0

y

r

x

�

P (r, �) 

Figure 1(a)

We mention here that a different convention denotes the azimuthal angle in plane polar
coordinates by θ, instead of by φ.

The cylindrical polar coordinates (r, θ, z) that identify a point P in space are shown in
Figure 1(b). The angle θ is again the azimuthal angle measured as in plane polar coordinates,
r is the radial distance measured from the origin in the (x, y)-plane to the projection of P
onto the (x, y)-plane, and z is the perpendicular distance of P above the (x, y)-plane. The
connection between cartesian and cylindrical polar coordinates used in this handbook is given
by x = r cos θ, y = r sin θ and z = z, with 0 ≤ θ < 2π.

0

z

z

y

x

�

P (r, �, z)

r

Figure 1(b)
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Here also, in a different convention involving cylindrical polar coordinates, the azimuthal
angle is denoted by φ instead of by θ.

The spherical polar coordinates (r, θ,φ) that identify a point P in space are shown in Fig-
ure 1(c). Here, differently from plane cylindrical coordinates, the azimuthal angle measured
as in plane cylindrical coordinates is denoted by φ, the radius r is measured from the origin to
point P , and the polar angle measured from the z-axis to the radius vector OP is denoted
by θ, with 0 ≤ φ < 2π, and 0 ≤ θ ≤ π. The cartesian and spherical polar coordinates used in
this handbook are connected by x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

0

z

y

x

�

�

P (r, �, �)

Figure 1(c)

In a different convention the roles of θ and φ are interchanged, so the azimuthal angle is denoted
by θ, and the polar angle is denoted by φ.

Bessel Functions
There is general agreement that the Bessel function of the first kind of order ν is denoted
by Jν(x), though sometimes the symbol ν is reserved for orders that are not integral, in which
case n is used to denote integral orders. However, notations differ about the representation
of the Bessel function of the second kind of order ν. In this handbook, a definition of
the Bessel function of the second kind is adopted that is true for all orders ν (both integral
and fractional) and it is denoted by Yν(x). However, a widely used alternative notation for
this same Bessel function of the second kind of order ν uses the notation Nν(x). This choice
of notation, sometimes called the Neumann form of the Bessel function of the second
kind of order ν, is used in recognition of the fact that it was defined and introduced by the
German mathematician Carl Neumann. His definition, but with Yν(x) in place of Nν(x), is given
in Section 17.2.2. The reason for the rather strange form of this definition is because when
the second linearly independent solution of Bessel’s equation is derived using the Frobenius
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method, the nature of the solution takes one form when ν is an integer and a different one
when ν is not an integer. The form of definition of Yν(x) used here overcomes this difficulty
because it is valid for all ν.

The recurrence relations for all Bessel functions can be written as

Zν−1(x) + Zν+1(x) =
2ν
x

Zν(x),

Zν−1(x) − Zν+1(x) = 2Z ′
ν(x),

Z ′
ν(x) = Zν−1(x) − ν

x
Zν(x)′

Z ′
ν(x) = −Zν+1(x) +

ν

x
Zν(x),

(1)

where Zν(x) can be either Jν(x) or Yν(x). Thus any recurrence relation derived from these
results will apply to all Bessel functions. Similar general results exist for the modified Bessel
functions Iν(x) and Kν(x).

Normalization of Fourier Transforms
The convention adopted in this handbook is to define the Fourier transform of a function
f(x) as the function F (ω) where

F (ω) =
1√
2π

∫ ∞

−∞
f(x)eiωxdx, (2)

when the inverse Fourier transform becomes

f(x) =
1√
2π

∫ ∞

−∞
F (ω)e−iωxdω, (3)

where the normalization factor multiplying each integral in this Fourier transform pair is
1/

√
2π. However other conventions for the normalization are in common use, and they follow

from the requirement that the product of the two normalization factors in the Fourier and
inverse Fourier transforms must equal 1/(2π).

Thus another convention that is used defines the Fourier transform of f(x) as

F (ω) =
∫ ∞

−∞
f(x)eiωxdx (4)

and the inverse Fourier transform as

f(x) =
1
2π

∫ ∞

−∞
F (ω)e−iωxdω. (5)

To complicate matters still further, in some conventions the factor eiωx in the integral defining
F (ω) is replaced by e−iωx and to compensate the factor e−iωx in the integral defining f(x) is
replaced by eiωx.
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If a Fourier transform is defined in terms of an angular frequency, the ambiguity concerning
the choice of normalization factors disappears because the Fourier transform of f(x) becomes

F (ω) =
∫ ∞

−∞
f(x)e2πixsdx (6)

and the inverse Fourier transform becomes

f(x) =
∫ ∞

−∞
F (ω)e−2πixωdω. (7)

Nevertheless, the difference between definitions still continues because sometimes the expo-
nential factor in F (s) is replaced by e−2πixs, in which case the corresponding factor in the
inverse Fourier transform becomes e2πixs. These remarks should suffice to convince a reader
of the necessity to check the convention used before combining a Fourier transform pair from
another source with results from this handbook.

Some Remarks Concerning Elementary Ways of Finding Inverse
Laplace Transforms
The Laplace transform F (s) of a suitably integrable function f(x) is defined by the improper
integral

F (s) =
∫ ∞

0

f(x)e−xsdx. (8)

Let a Laplace transform F (s) be the quotient F (s) = P (s)/Q(s) of two polynomials P (s) and
Q(s). Finding the inverse transform L−1{F (s)} = f(x) can be accomplished by simplifying
F (s) using partial fractions, and then using the Laplace transform pairs in Table 19.1 together
with the operational properties of the transform given in 19.1.2.1. Notice that the degree of
P (s) must be less than the degree of Q(s) because from the limiting condition in 19.11.2.1(10),
if F (s) is to be a Laplace transform of some function f(x), it is necessary that lim

s→∞F (s) = 0.

The same approach is valid if exponential terms of the type e−as occur in the numerator P (s)
because depending on the form of the partial fraction representation of F (s), such terms will
simply introduce either a Heaviside step function H(x − a), or a Dirac delta function δ(x − a)
into the resulting expression for f(x).

On occasions, if a Laplace transform can be expressed as the product of two simpler Laplace
transforms, the convolution theorem can be used to simplify the task of inverting the Laplace
transform. However, when factoring the transform before using the convolution theorem, care
must be taken to ensure that each factor is in fact a Laplace transform of a function of x.
This is easily accomplished by appeal to the limiting condition in 19.11.2.1(10), because if
F (s) is factored as F (s) = F1(s)F2(s), the functions F1(s) and F2(s) will only be the Laplace
transforms of some functions f1(x) and f2(x) if lim

s→∞F1(s) = 0 and lim
s→∞F2(s) = 0.
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Example: (a) Find L−1{F (s)} if F (s) = s3+3s2+5s+15
(s2+1)(s2+4s+13) . (b) Find L−1{F (s)} if

F (s) = s2

(s2+a2)2 .

To solve (a) using partial fractions we write F (s) as F (s) = 1
s2+1 + s+2

s2+4s+13 . Taking the
inverse Laplace transform of F (s) and using entry 26 in Table 19.1 gives

L−1{F (s)} = sin x + L−1

(
s + 2

s2 + 4s + 13

)
.

Completing the square in the denominator of the second term and writing, s+2
s2+4s+13 =

s+2
(s+2)2+32 , we see from the first shift theorem in 19.1.2.1(4) and entry 27 in Table 19.1 that

L−1
{

s+2
(s+2)2+32

}
= e−2x cos 3x. Finally, combining results, we have

L−1{F (s)} = sin x + e−2x cos 3x.

To solve (b) by the convolution transform, F (s) must be expressed as the product of two factors.
The transform F (s) can be factored in two obvious ways, the first being F (s) = s2

(s2+a2)
1

(s2+a2)

and the second being F (s) = s
(s2+a2)

s
(s2+a2) .

Of these two expressions, only the second is the product of two Laplace transforms, namely
the product of the Laplace transforms of cos ax. The first result cannot be used because the
factor s2/(s2 + a2) fails the limiting condition in 19.11.2.1(10), and so is not the Laplace
transform of a function of x.

The inverse of the convolution theorem asserts that if F (s) and G(s) are Laplace transforms
of the functions f(x) and g(x), then

L−1{F (s)G(s)} =
∫ x

0

f(τ)g(x−τ)dτ. (9)

So setting F (s) = G(s) = cos ax, it follows that

f(x) = L−1

{
s2

(s2 + a2)2

}
=

∫ x

0

cos τ cos(x−τ)dτ =
sin ax

2a
+

x cos ax

2
.

When more complicated Laplace transforms occur, it is necessary to find the inverse Laplace
transform by using contour integration to evaluate the inversion integral in 19.1.1.1(5). More
will be said about this, and about the use of the Fourier inversion integral, after a brief review
of some key results from complex analysis.
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Using the Fourier and Laplace Inversion Integrals
As a preliminary to discussing the Fourier and Laplace inversion integrals, it is necessary to
record some key results from complex analysis that will be used.

An analytic function A complex valued function f(z) of the complex variable z = x + iy
is said to be analytic on an open domain G (an area in the z-plane without its boundary
points) if it has a derivative at each point of G. Other names used in place of analytic are
holomorphic and regular. A function f(z) = u(x, y) + ν(x, y) will be analytic in a domain G if
at every point of G it satisfies the Cauchy-Riemann equations

∂u

∂x
=

∂ν

∂y
and

∂u

∂y
= − ∂ν

∂x
. (10)

These conditions are sufficient to ensure that f(z) had a derivative at every point of G, in
which case

df

dz
=

∂u

∂x
+ i

∂ν

∂x
=

∂ν

∂y
− i

∂u

∂y
. (11)

A pole of f (z ) An analytic function f(z) is said to have a pole of order p at z = z0 if in
some neighborhood the point z0 of a domain G where f(z) is defined,

f(z) =
g(z)

(z−z0)p
, (12)

where the function g(z) is analytic at z0. When p = 1, the function f(z) is said to have simple
pole at z = z0.

A meromorphic function A function f(z) is said to be meromorphic if it is analytic
everywhere in a domain G except for isolated points where its only singularities are poles.
For example, the function f(z) = 1/(z2 + a2) = 1/ [(z − ia)(z + ia)] is a meromorphic function
with simple poles at z = ± ia.

The residue of f (z ) at a pole If a function has a pole of order p at z = z0, then its
residue at z = z0 is given by

Residue (f(z) : z = z0) = lim
z→z0

[
1

(p−1)!
dp−1

dzp−1
(z−z0)

p
f(z)

]
.

For example, the residues of f(z) = 1/(z2 + a2) at its poles located at z = ± ia are

Residue (1/(z2 + a2) : z = ia) = −i/(2a)

and

Residue (1/(z2 + a2) : z = −ia) = i/(2a).
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The Cauchy residue theorem Let � be a simple closed curve in the z-plane (a non-
intersecting curve in the form of a simple loop). Denoting by

∫
�

f(z)dz the integral of f(z)
around � in the counter-clockwise (positive) sense, the Cauchy residue theorem asserts
that ∫

�

f(z)dz = 2πi × (sum of residues of f(z) inside �). (13)

So, for example, if � is any simple closed curve that contains only the residue of f(z) =
1/(z2 + a2) located at z = ia, then

∫

�

1/(z2 + a2)dz = 2πi × (−i/(2a)) = π/a.

Jordan’s Lemma in Integral Form, and Its Consequences
This lemma take various forms, the most useful of which are as follows:

(i) Let C+ be a circular arc of radius R located in the first and/or second quadrants, with
its center at the origin of the z-plane. Then if f(z) → 0 uniformly as R → ∞,

lim
R→∞

∫

C+

f(z)eimzdz = 0, where m > 0.

(ii) Let C− be a circular arc of radius R located in the third and/or fourth quadrant with its
center at the origin of the z plane. Then if f(z) → 0 uniformly as R → ∞,

lim
R→∞

∫

C−
f(z)e−imzdz = 0, where m > 0.

(iii) In a somewhat different form the lemma takes the form
∫ π/2

0
e−k sin θdθ ≤ π

2k

(
1 − e−k

)
.

The first two forms of Jordan’s lemma are useful in general contour integration when estab-
lishing that the integral of an analytic function around a circular arc of radius R centered on
the origin vanishes in the limit as R → ∞. The third form is often used when estimating the
magnitude of a complex function that is integrated around a quadrant. The form of Jordan’s
lemma to be used depends on the nature of the integrand to which it is to be applied. Later,
result (iii) will be used when determining an inverse Laplace transform by means of the Laplace
inversion integral.

The Fourier Transform and Its Inverse
In this handbook, the Fourier transform F (ω) of a suitably integrable function f(x) is defined as

F (ω) =
1√
2π

∫ ∞

−∞
f(x)eiωxdx, (14)
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while the inverse Fourier transform becomes

f(x) =
1√
2π

∫ ∞

−∞
F (ω)e−iωxdω, (15)

it being understood that when f(x) is piecewise continuous with a piecewise continuous first
derivative in any finite interval, that this last result is to be interpreted as

f(x−) + f(x+)
2

=
1√
2π

∫ ∞

−∞
F (ω)e−iωxdω, (16)

with f(x±) the values of f(x) on either side of a discontinuity in f(x). Notice first that although
f(x) is real, its Fourier transform F (ω) may be complex. Although F (ω) may often be found
by direct integration care is necessary, and it is often simpler to find it by converting the line
integral defining F (ω) into a contour integral. The necessary steps involve (i) integrating f(x)
along the real axis from −R to R, (ii) joining the two ends of this segment of the real axis by a
semicircle of radius R with its center at the origin where the semicircle is either located in the
upper half-plane, or in the lower half-plane, (iii) denoting this contour by �R, and (iv) using
the limiting form � of the contour �R as R → ∞ as the contour around which integration is
to be performed. The choice of contour in the upper or lower half of the z-plane to be used
will depend on the sign of the transform variable ω.

This same procedure is usually necessary when finding the inverse Fourier transform,
because when F (ω) is complex direct integration of the inversion integral is not possible. The
example that follows will illustrate the fact that considerable care is necessary when working
with Fourier transforms. This is because when finding a Fourier transform, the transform vari-
able ω often occurs in the form |ω|, causing the transform to take one form when ω is positive,
and another when it is negative.

Example: Let us find the Fourier transform of f(x) = 1/(x2 + a2) where a > 0, the result
of which is given in entry 1 of Table 20.1.

Replacing x by the complex variable z, the function f(z) = eiωz/(z2 + a2), the integrand
in the Fourier transform, is seen to have simple poles at z = ia and z = −ia, where the
residues are, respectively, −ie−ωa/(2a) and ieωa/(2a). For the time being, allowing CR to be
a semicircle in either the upper or the lower half of the z-plane with its center at the origin,
we have

F (ω) = lim
R→∞

1√
2π

∫ R

−R

eiωx

(x2 + a2)
dx + lim

R→∞
1√
2π

∫

CR

eiωz

(z2 + a2)
dz.

To use the residue theorem we need to show the second integral vanishes in the limit as
R → ∞. On CR we can set z = Reiθ, so dz = iReiθdθ, showing that

1√
2κ

∫

CR

eiωz

(z2 + a2)
dz =

1√
2π

∫

CR

eiωR(cos θ+i sin θ)iR eiθ

(R2e2iθ + a2)
e−ωR sin θdθ.
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We now estimate the magnitude of the integral on the right by the result

∣
∣
∣
∣

1√
2π

∫

CR

eiωz

(z2 + a2)
dz

∣
∣
∣
∣ ≤

1√
2π

R

|R2 − a2|
∫

CR

e−ωR sin θdθ.

The multiplicative factor involving R on the right will vanish as R → ∞, so the integral around
CR will vanish if the integral on the right around CR remains finite or vanishes as R → ∞.
There are two cases to consider, the first being when ω > 0, and the second when ω < 0.
If ω = 0 the integral will certainly vanish as R → ∞, because then the integral around CR

becomes
∫

CR
dθ = π.

The case ω > 0. The integral on the right around CR will vanish in the limit as
R → ∞ provided sin θ ≥ 0 because its integrand vanishes. This happens when CR becomes
the semicircle CR+ located in the upper half of the z-plane.

The case ω < 0. The integral around CR will vanish in the limit as R → ∞, provided
sin θ ≤ 0 because its integrand vanishes. This happens when CR becomes the semicircle CR−
located in the lower half of the z-plane.

We may now apply the residue theorem after proceeding to the limit as R → ∞. When
ω > 0 we have CR = CR+, in which case only the pole at z = ia lies inside the contour at
which the residue is −ie−ωa/(2a), so

1√
2π

∫ ∞

−∞

eiωx

(x2 + a2)
dx = 2πi × 1√

2π

[
− ie−ωa

2a

]
=

√
π

2
e−ωa

a
, (ω > 0).

Similarly, when ω < 0 we have CR = CR−, in which case only the pole at z = −ia lies inside
the contour at which the residue is ieωa/(2a). However, when integrating around CR− in the
positive (counterclockwise) sense, the integration along the x-axis occurs in the negative sense,
that is from x = R to x = −R, leading to the result

1√
2π

∫ −∞

∞

eiωx

(x2 + a2)
dx = 2πi × 1√

2π

[
ieωa

2a

]
= −

√
π

2
eωa

a
, (ω < 0).

Reversing the order of the limits in the integral, and compensating by reversing its sign, we
arrive at the result

1√
2π

∫ ∞

−∞

eiωx

(x2 + a2)
dx =

√
π

2
eωa

a
, (ω < 0).

Combining the two results for positive and negative ω we have shown the Fourier transform
F (ω) of f(x) = 1/(x2 + a2) is

F (ω) =
√
π

2
e−a|ω|

a
, (a > 0).
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The function f(x) can be recovered from its Fourier transform F (ω) by means of the
inversion integral, though this case is sufficiently simplest that direct integration can be used.

f(x) =
1√
2π

∫ ∞

−∞

√
π

2
e−iωxe−a|ω|

a
dω =

1
2a

∫ ∞

−∞
e−a|ω| (cos(ωx) − i sin(ωx)) dω.

The imaginary part of the integrand is an odd function, so its integral vanishes. The real part
of the integrand is an even function, so the interval of integration can be halved and replaced
by 0 ≤ ω < ∞, while the resulting integral is doubled, with the result that

f(x) =
1
a

∫ ∞

0

e−aω cos(ωx)dω =
1

x2 + a2
.

The Inverse Laplace Transform
Given an elementary function f(x) for which the Laplace transform F (s) exists, the determi-
nation of the form of F (s) is usually a matter of routine integration. However, when finding
f(x) from F (s) cannot be accomplished by use of a table of Laplace transform pairs and the
properties of the transform, it becomes necessary to make use of the Laplace inversion formula

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)esxds. (17)

Here the real number γ must be chosen such that all the poles of the integrand lie to the
left of the line s = γ in the complex s-plane. This integral is to be interpreted as the limit
as R → ∞ of a contour integral around the contour shown in Figure 2. This is called the
Bromwich contour after the Cambridge mathematician T.J.I’A. Bromwich who introduced
it at the beginning of the last century.

Example: To illustrate the application of the Laplace inversion integral it will suffice to
consider finding f(x) = L−1 {1/

√
s}.

The function 1
√

s has a branch point at the origin, so the Bromwich contour must be
modified to make the function single valued inside the contour. We will use the contour shown
in Figure 3, where the branch point is enclosed in a small circle about the origin while the
complex s-plane is cut along the negative real axis to make the function single valued inside
the contour.

Let CR1 denote the large circular arc and CR2 denote the small circle around the origin.
Then on CR1 s = γ+ Reiθ for π

2 ≤ θ ≤ 3π
2 , and for subsequent use we now set θ = π

2 + φ, so
s = γ+ iReiφ with 0 ≤ φ ≤ π. Consequently, ds = −Reiφdφ, with the result that |ds| = Rdφ.
Thus, when R is sufficiently large |s| =

∣
∣γ+ iReiφ

∣
∣ ≥ ∣

∣
∣
∣Reiφ

∣
∣ − |γ|∣∣ = R − γ.

Also for subsequent use, we need the result that

|esx| = |exp
[
x [(γ− R sinφ) + iR cosφ]

]
| = eγx exp [−Rx sinφ] .
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R

0 Re {s}

Pole

Im {s}

�

�

Figure 2. The Bromwich contour for the inversion of a Laplace transform.

The integral around the modified Bromwich contour is the sum of the integrals along each of
its separate parts, so we now estimate the magnitudes of the respective integrals.

The magnitude of the integral around the large circular arc CR1 can be estimated as

IR =
∣
∣
∣
∣

∫

ABEF

esx

√
s
ds

∣
∣
∣
∣ ≤

∫

ABEF

|esx|
|s|1/2

|ds| ≤ eγxR

(R−γ)1/2

∫ π

0

exp [−Rx sinφ]dφ.

The symmetry of sinφ about φ = 1
2π allows the inequality to be rewritten as

IR ≤ 2eγxR

(R−γ)1/2

∫ π/2

0

exp [−Rx sinφ]dφ,

so after use of the Jordan inequality in form (iii), this becomes

IR ≤ πeγx

(R−γ)1/2x

(
1 − e−Rx

)
, when x > 0.

This shows that when x > 0, lim
R→∞

IR = 0, so that the integral around CR1 vanishes in the

limit as R → ∞.
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R
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Re {s}
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A

0

Im {s}

�

�

Figure 3. The modified Bromwich contour with an indentation and a cut.

On the small circle CR2 with radius ε we have s = εeiθ, so ds = iεeiθdθ and s1/2 = eiθ/2
√
ε,

so the integral around CR2 becomes

∫ π

−π

1
eiθ/2

√
ε

exp [εx (cos θ+ i sin θ)] iεeiθdθ,

but this vanishes as ε→ 0, so in the limit the integral around CR2 also vanishes.
Along the top BC of the branch cut s = reπi = −r, so

√
s = eπi/2

√
r = i

√
r, so that

ds = −dr. Along the bottom BC of the branch cut the situation is different, because there
s = re−πi = −r, so

√
s = e−πi/2

√
r = −i

√
r, where again ds = −dr.

The construction of the Bromwich contour has ensured that no poles lie inside it, so from
the Cauchy residue theorem, in the limit as R → ∞ and ε→ 0, the only contributions to the
contour integral come from integration along opposite sides of the branch cut, so we arrive at
the result

1
2πi

∫ γ+i∞

γ−i∞

esx

√
s
ds =

1
2πi

{
−

∫ 0

∞

ie−rx

√
r

dr +
∫ ∞

0

ie−rx

√
r

dr

}
=

1
π

∫ ∞

0

e−rx

√
r

dr.
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Finally, the change of variable r = u2, followed by setting ν = u
√

x, changes this result to

1
2πi

∫ γ+i∞

γ−i∞

esx

√
s
ds =

2
π
√

x

∫ ∞

0

e−v2
dν.

This last definite integral is a standard integral, and from entry 15.3.1(29) we have∫ ∞

0

e−ν
2
dν =

√
π/2, so we have shown that

L−1

{
1√
s

}
=

1√
πx

, for Re{s} > 0.

The inversion integral can generate an infinite series if an infinite number of isolated poles

lie along a line parallel to the imaginary s-axis. This happens with L−1

{
1

s cosh s

}
, where the

poles are actually located on the imaginary axis.
We omit the details, but straightforward reasoning using the standard Bromwich contour

shows that

f(x) = L−1

{
1

s cosh s

}
= 1 +

4
π

∞∑

n=0

(−1)n+1 cos [(2n + 1)πx/2]
2n + 1

.

To understand why this periodic representation of f(x) has occurred, notice that F (s) =
1/[s cosh s] is the Laplace transform of the piecewise continuous function

f(x) =






0, 0 < x < 1
2, 1 < x < 3
0, 3 < x < 4,

that is periodic with period 4 and defined for x ≥ 0. So f(x) is in fact the Fourier series
representation of this function with period 4 when it is defined for all x. Here the term period
is used in the usual sense that X is the period of f(x) if f(X + x) = f(x) is true for all x and
X is the smallest value for which this result is true.





Index of Special Functions
and Notations

Section of formula
Notation Name containing its definition

|a| Absolute value of the real number a 1.1.2.1
am u Amplitude of an elliptic function 12.2.1.1.2

˜
Asymptotic relationship 1.14.2.1

α Modular angle of an elliptic integral 12.1.2
arg z Argument of complex number z 2.1.1.1
A(x) A(x) = 2P (x) − 1; probability function 13.1.1.1.7
A Matrix
A−1 Multiplicative inverse of a square matrix A 1.5.1.1.9
AT Transpose of matrix A 1.5.1.1.7
|A| Determinant associated with a square matrix A 1.4.1.1
Bn Bernoulli number 1.3.1.1
B∗

n Alternative Bernoulli number 1.3.1.1.6
Bn(x) Bernoulli polynomial 1.3.2.1.1
B(x, y) Beta function 11.1.7.1
(n

k

)

Binomial coefficient 1.2.1.1
(n

k

)

=
n!

k!(n − k)!
,

(n

0

)

= 1

(a)n Pochhammer symbol
(a)n = a(a + 1)(a + 2) · · · (a + n − 1) 0.3

C(x) Fresnel cosine integral 14.1.1.1.1
Cij Cofactor of element aij in a square matrix A 1.4.2
nCm or nCm Combination symbol nCm =

( n

m

)

1.6.2.1

cn u Jacobian elliptic function 12.2.1.1.4
cn−1u Inverse Jacobian elliptic function 12.4.1.1.4
curlF = ∇× F Curl of vector F 23.8.1.1.6
δ(x) Dirac delta function 19.1.3
δij Kronecker delta symbol 1.4.2.11
Dn(x) Dirichlet kernel 1.13.1.10.3
dn u Jacobian elliptic function 12.2.1.1.5
dn−1u Inverse Jacobian elliptic function 12.4.1.1.5
divF = ∇ · F Divergence of vector F 23.8.1.1.4
eiθ Euler formula; eiθ = cos θ+ i sin θ 2.1.1.2.1
e Euler’s constant 0.3
Ei(x) Exponential integral 5.1.2.2
E(ϕ, k) Incomplete elliptic integral of the second kind 12.1.1.1.5
E(k), E′(k) Complete ellipitic integrals of the second kind 13.1.1.1.8,

13.1.1.1.10

xliii



xliv Index of Special Functions and Notations

Section of formula
Notation Name containing its definition

eAz Matrix exponential 1.5.4.1
erf x Error function 13.2.1.1
erfc x Complementary error function 13.2.1.1.4
En Euler number 1.3.1.1
E∗

n Alternative Euler number 1.3.1.1.6
En(x) Euler polynomial 1.3.2.3.1
f(x) A function of x
f ′(x) First derivative df/dx 1.15.1.1.6

f (n)(x) nth derivative dnf/dxn 1.12.1.1

f (n)(x0) nth derivative dnf/dxn at x0 1.12.1.1
F (ϕ, k) Incomplete elliptic integral of the first kind 12.1.1.1.4
||Φn|| Norm of Φn(x) 18.1.1.1
gradφ = ∇φ Gradient of the scalar function φ 23.8.1.6
�(x) Gamma function 11.1.1.1
�(a, x), γ(a, x) Incomplete gamma functions 11.1.8.9
γ Euler–Mascheroni constant 1.11.1.1.7
H(x) Heaviside step function 19.1.2.5
Hn(x) Hermite polynomial 18.5.3
i Imaginary unit 1.1.1.1
Im{z} Imaginary part of z = x + iy; Im{z} = y 1.1.1.2
I Unit (identity) matrix 1.5.1.1.3
inerfc x nth repeated integral of erfcx 13.2.7.1.1
I± ν(x) Modified Bessel function of the first kind of order ν 17.6.1.1
∫

f(x)dx Indefinite integral (antiderivative) of f(x) 1.15.2
∫ b

a
f(x)dx Definite integral of f(x) from x = a to x = b 1.15.2.5

jn(x) Spherical Bessel function 17.14.1
J± ν(x) Bessel function of the first kind of order ν 17.1.1.1
k Modulus of an elliptic integral 12.1.1.1
k′ Complementary modulus of an elliptic integral; 12.1.1.1

k′ =
√

1 − k2

K(k), K′(k) Complete elliptic integrals of the first kind 12.1.1.1.7,
12.1.1.1.9

kv(x) Modified Bessel function of the second kind of order v 17.6.1.1
L[f(x); s] Laplace transform of f(x) 19.1.1
Ln(x) Laguerre polynomial 18.4.1

L
(α)
n Generalized Laguerre polynomial 18.4.8.2

loga x Logarithm of x to the base a 2.2.1.1
In x Natural logarithm of x (to the base e) 2.2.1.1
Mij Minor of element aij in a square matrix A 1.4.2
n! Factorial n; n! = 1 · 2 · 3 · · ·n; 0! = 1 1.2.1.1
(2n)!! Double factorial; (2n)!! = 2 · 4 · 6 · · · (2n) 15.2.1
(2n − 1)!! Double factorial; (2n − 1)!! = 1 · 3 · 5 · · · (2n − 1) 15.2.1
[n

2

]

Integral part of n/2 18.2.4.1.1

nPm or nPm Permutation symbol; nPm =
n!

(n − m)!
1.6.1.1.3
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Section of formula
Notation Name containing its definition

Pn(x) Legendre polynomial 18.2.1
P n

m(x) First solution of the associated Legendre equation 18.2.10.1

P
(α,β)
n (x) Jacobi polynomial of degree n 18.6.1

P (x) Normal probability distribution 13.1.1.1.5
n∏

k=1

uk Product symbol;

n∏

k=1

uk = u1u2 · · ·un 1.9.1.1.1

P.V.
∫∞
−∞ f(x)dx Cauchy principal value of the integral 1.15.4.IV

π Ratio of the circumference of a circle to its diameter 0.3
�(x) pi function 11.1.1.1
�(ϕ, n, k) Incomplete elliptic integral of the third kind 12.1.1.1.6
ψ(z) psi (digamma) function 11.1.6.1
Q(x) Probability function; Q(x) = 1 − P (x) 13.1.1.1.6
Q(x) Quadratic form 1.5.2.1
Qn(x) Legendre function of the second kind 18.2.7
Qn

m(x) Second solution of the associated Legendre equation 18.2.10.1

r Modulus of z = x + iy; r = (x2 + y2)1/2

Re {z} Real part of z = x + iy; Re{z} = x 1.1.1.2
sgn(x) Sign of x
sn u Jacobian elliptic function 12.2.1.1.3
sn−1u Inverse Jacobian elliptic function 12.4.1.1.3
S(x) Fresnel sine integral 14.1.1.1.2
Si(x), Ci(x) Sine and cosine integrals 14.2.1

n∑

k=m

ak Summation symbol;

n∑

k=m

ak = am + am+1 + · · · + an 1.2.3

and if n < m we define

n∑

k=m

ak = 0.

∞∑

k=m

ak(x − x0)
k Power series expanded about x0 1.11.1.1.1

Tn(x) Chebyshev polynomial 18.3.1.1
trA Trace of a square matrix A 15.1.1.10
Un(x) Chebyshev polynomial 18.3.11
x = f−1(y) Function inverse to y = f(x) 1.11.1.8
Yv(x) Bessel function of the second kind of order v 17.1.1.1
Y m

n (θ,φ) Spherical harmonic 18.2.10.1
yn(x) Spherical Bessel function 17.14.1
z Complex number z = x + iy 1.1.1.1

|z| Modulus of z = x + iy; r = |z| = (x2 + y2)1/2 1.1.1.1
z̄ Complex conjugate of z = x + iy; z̄ = x − iy 1.1.1.1
zb{x[n]} bilateral z-transform 26.1
zu{x[n]} unilateral z-transform 26.1


