Handbook of Matrices

H. Lütkepohl
Humboldt-Universität zu Berlin, Germany

JOHN WILEY & SONS
Chichester • New York • Brisbane • Toronto • Singapore
Contents

Preface xi
List of Symbols xiii

1 Definitions, Notation, Terminology 1
 1.1 Basic Notation and Terminology 1
 1.2 Operations Relating Matrices 3
 1.3 Inequality Relations Between Matrices 4
 1.4 Operations Related to Individual Matrices 4
 1.5 Some Special Matrices 9
 1.6 Some Terms and Quantities Related to Matrices 11

2 Rules for Matrix Operations 15
 2.1 Rules Related to Matrix Sums and Differences 15
 2.2 Rules Related to Matrix Multiplication 16
 2.3 Rules Related to Multiplication by a Scalar 18
 2.4 Rules for the Kronecker Product 19
 2.5 Rules for the Hadamard Product 20
 2.6 Rules for Direct Sums 22

3 Matrix Valued Functions of a Matrix 23
 3.1 The Transpose 23
 3.2 The Conjugate 24
 3.3 The Conjugate Transpose 25
 3.4 The Adjoint of a Square Matrix 27
 3.5 The Inverse of a Square Matrix 27
 3.5.1 General Results 27
 3.5.2 Inverses Involving Sums and Differences 28
 3.5.3 Partitioned Inverses 29
 3.5.4 Inverses Involving Commutation, Duplication and
 Elimination Matrices 31
CONTENTS

3.6 Generalized Inverses ... 32
 3.6.1 General Results ... 32
 3.6.2 The Moore–Penrose Inverse 34
3.7 Matrix Powers .. 37
3.8 The Absolute Value ... 39

4 Trace, Determinant and Rank of a Matrix 41
 4.1 The Trace ... 41
 4.1.1 General Results ... 41
 4.1.2 Inequalities Involving the Trace 43
 4.1.3 Optimization of Functions Involving the Trace 45
 4.2 The Determinant ... 47
 4.2.1 General Results ... 47
 4.2.2 Determinants of Partitioned Matrices 49
 4.2.3 Determinants Involving Duplication Matrices 51
 4.2.4 Determinants Involving Elimination Matrices 52
 4.2.5 Determinants Involving Both Duplication and Elimination Matrices ... 53
 4.2.6 Inequalities Related to Determinants 54
 4.2.7 Optimization of Functions Involving a Determinant 56
 4.3 The Rank of a Matrix ... 58
 4.3.1 General Results ... 58
 4.3.2 Matrix Decompositions Related to the Rank 60
 4.3.3 Inequalities Related to the Rank 61

5 Eigenvalues and Singular Values 63
 5.1 Definitions ... 63
 5.2 Properties of Eigenvalues and Eigenvectors 64
 5.2.1 General Results ... 64
 5.2.2 Optimization Properties of Eigenvalues 67
 5.2.3 Matrix Decompositions Involving Eigenvalues 69
 5.3 Eigenvalue Inequalities 72
 5.3.1 Inequalities for the Eigenvalues of a Single Matrix ... 72
 5.3.2 Relations Between Eigenvalues of More Than One Matrix 74
 5.4 Results for the Spectral Radius 76
 5.5 Singular Values ... 78
 5.5.1 General Results ... 78
 5.5.2 Inequalities ... 80

6 Matrix Decompositions and Canonical Forms 83
 6.1 Complex Matrix Decompositions 83
 6.1.1 Jordan Type Decompositions 83
 6.1.2 Diagonal Decompositions 85
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.3</td>
<td>Other Triangular Decompositions and Factorizations</td>
<td>86</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Miscellaneous Decompositions</td>
<td>88</td>
</tr>
<tr>
<td>6.2</td>
<td>Real Matrix Decompositions</td>
<td>89</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Jordan Decompositions</td>
<td>89</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Other Real Block Diagonal and Diagonal Decompositions</td>
<td>90</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Other Triangular and Miscellaneous Reductions</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>Vectorization Operators</td>
<td>95</td>
</tr>
<tr>
<td>7.1</td>
<td>Definitions</td>
<td>95</td>
</tr>
<tr>
<td>7.2</td>
<td>Rules for the vec Operator</td>
<td>97</td>
</tr>
<tr>
<td>7.3</td>
<td>Rules for the vech Operator</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Vector and Matrix Norms</td>
<td>101</td>
</tr>
<tr>
<td>8.1</td>
<td>General Definitions</td>
<td>101</td>
</tr>
<tr>
<td>8.2</td>
<td>Specific Norms and Inner Products</td>
<td>103</td>
</tr>
<tr>
<td>8.3</td>
<td>Results for General Norms and Inner Products</td>
<td>104</td>
</tr>
<tr>
<td>8.4</td>
<td>Results for Matrix Norms</td>
<td>106</td>
</tr>
<tr>
<td>8.4.1</td>
<td>General Matrix Norms</td>
<td>106</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Induced Matrix Norms</td>
<td>108</td>
</tr>
<tr>
<td>8.5</td>
<td>Properties of Special Norms</td>
<td>109</td>
</tr>
<tr>
<td>8.5.1</td>
<td>General Results</td>
<td>109</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Inequalities</td>
<td>111</td>
</tr>
<tr>
<td>9</td>
<td>Properties of Special Matrices</td>
<td>113</td>
</tr>
<tr>
<td>9.1</td>
<td>Circulant Matrices</td>
<td>113</td>
</tr>
<tr>
<td>9.2</td>
<td>Commutation Matrices</td>
<td>115</td>
</tr>
<tr>
<td>9.2.1</td>
<td>General Properties</td>
<td>116</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Kronecker Products</td>
<td>117</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Relations With Duplication and Elimination Matrices</td>
<td>118</td>
</tr>
<tr>
<td>9.3</td>
<td>Convergent Matrices</td>
<td>119</td>
</tr>
<tr>
<td>9.4</td>
<td>Diagonal Matrices</td>
<td>120</td>
</tr>
<tr>
<td>9.5</td>
<td>Duplication Matrices</td>
<td>122</td>
</tr>
<tr>
<td>9.5.1</td>
<td>General Properties</td>
<td>122</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Relations With Commutation and Elimination Matrices</td>
<td>123</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Expressions With vec and vech Operators</td>
<td>123</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Duplication Matrices and Kronecker Products</td>
<td>124</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Duplication Matrices, Elimination Matrices and Kronecker Products</td>
<td>126</td>
</tr>
<tr>
<td>9.6</td>
<td>Elimination Matrices</td>
<td>127</td>
</tr>
<tr>
<td>9.6.1</td>
<td>General Properties</td>
<td>127</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Relations With Commutation and Duplication Matrices</td>
<td>127</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Expressions With vec and vech Operators</td>
<td>128</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Elimination Matrices and Kronecker Products</td>
<td>128</td>
</tr>
</tbody>
</table>
9.6.5 Elimination Matrices, Duplication Matrices and Kronecker Products
9.7 Hermitian Matrices
 9.7.1 General Results
 9.7.2 Eigenvalues of Hermitian Matrices
 9.7.3 Eigenvalue Inequalities
 9.7.4 Decompositions of Hermitian Matrices
9.8 Idempotent Matrices
9.9 Nonnegative, Positive and Stochastic Matrices
 9.9.1 Definitions
 9.9.2 General Results
 9.9.3 Results Related to the Spectral Radius
9.10 Orthogonal Matrices
 9.10.1 General Results
 9.10.2 Decompositions of Orthogonal Matrices
9.11 Partitioned Matrices
 9.11.1 General Results
 9.11.2 Determinants of Partitioned Matrices
 9.11.3 Partitioned Inverses
 9.11.4 Partitioned Generalized Inverses
 9.11.5 Partitioned Matrices Related to Duplication Matrices
9.12 Positive Definite, Negative Definite and Semidefinite Matrices
 9.12.1 General Properties
 9.12.2 Eigenvalue Results
 9.12.3 Decomposition Theorems for Definite Matrices
9.13 Symmetric Matrices
 9.13.1 General Properties
 9.13.2 Symmetry and Duplication Matrices
 9.13.3 Eigenvalues of Symmetric Matrices
 9.13.4 Eigenvalue Inequalities
 9.13.5 Decompositions of Symmetric and Skew-Symmetric Matrices
9.14 Triangular Matrices
 9.14.2 Triangularity, Elimination and Duplication Matrices
 9.14.3 Properties of Strictly Triangular Matrices
9.15 Unitary Matrices

10 Vector and Matrix Derivatives
 10.1 Notation
 10.2 Gradients and Hessian Matrices of Real Valued Functions with Vector Arguments
 10.2.1 Gradients