

HANDBOOK OF METAHEURISTICS

INTERNATIONAL SERIES IN

OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Frederick S. Hillier, Series Editor

Stanford University

Weyant, J. / ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U. / APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O. / DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in MCDM

Models, Algorithms, Theory, and Applications
Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K. / COMPUTATIONAL PROBABILITY
Pomerol, J.-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S. / INVENTORY CONTROL
Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE

PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of

Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners
Balsamo, S., Personé, V., & Onvural, R. / ANALYSIS OF QUEUEING NETWORKS WITH

BLOCKING
Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE

ANALYTIC HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT

MODELS
Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR

SCHEDULING PROJECTS
Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A. / HANDBOOK OF MARKOV DECISION PROCESSES: Methods and

Applications
Ramík, J. & Vlach, M. / GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION AND

DECISION ANALYSIS
Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and Optimization
Kozan, E. & Ohuchi, A. / OPERATIONS RESEARCH/MANAGEMENT SCIENCE AT WORK
Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in Honor of

Bernard Roy
Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F. / MODELING UNCERTAINTY: An Examination of

Stochastic Theory, Methods, and Applications
Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules

for Incomplete Information
Sarker, R., Mohammadian, M. & Yao, X. / EVOLUTIONARY OPTIMIZATION
Demeulemeester, R. & Herroelen, W. / PROJECT SCHEDULING: A Research Handbook
Gazis, D.C. / TRAFFIC THEORY
Zhu, J. / QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING
Ehrgott, M. & Gandibleux, X. / MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated

Bibliographical Surveys
Bienstock, D. / Potential Function Methods for Approx. Solving Linear Programming Problems
Matsatsinis, N.F. & Siskos, Y. / INTELLIGENT SUPPORT SYSTEMS FOR MARKETING

DECISIONS
Alpern, S. & Gal, S. / THE THEORY OF SEARCH GAMES AND RENDEZVOUS
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE—2nd Ed.

HANDBOOK OF METAHEURISTICS

edited by

Fred Glover

Leeds School of Business

University of Colorado at Boulder

Gary A. Kochenberger

College of Business

University of Colorado at Denver

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48056-5
Print ISBN: 1-4020-7263-5

©2003 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2003 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

To our wives, Diane and Ann, whose meta-patience and meta-support have
sustained us through this effort!

This page intentionally left blank

CONTENTS

List of Contributors
Preface

ix
xi

1 Scatter Search and Path Relinking: Advances and Applications 1

Fred Glover, Manuel Laguna and Rafael Marti

2 An Introduction to Tabu Search 37

Michel Gendreau

3 Genetic Algorithms 55

Colin Reeves

4 Genetic Programming: Automatic Synthesis of Topologies and

Numerical Parameters 83

John R. Koza

5 A Gentle Introduction to Memetic Algorithms 105

Pablo Moscato and Carlos Cotta

6 Variable Neighborhood Search 145

Pierre Hansen and Nenad

7 Guided Local Search 185

Christos Voudouris and Edward P.K. Tsang

8 Greedy Randomized Adaptive Search Procedures 219

Mauricio G.C. Resende and Celso C. Ribeiro

9 The Ant Colony Optimization Metaheuristic: Algorithms,

Applications, and Advances 251

Marco Dorigo and Thomas Stützle

viii Contents

10 The Theory and Practice of Simulated Annealing 287

Darrall Henderson, Sheldon H. Jacobson and Alan W. Johnson

11 Iterated Local Search 321

Helena R. Lourenço, Olivier C. Martin and Thomas Stützle

12 Multi-Start Methods 355

Rafael Martí

13 Local Search and Constraint Programming 369

Filippo Focacci, François Laburthe and Andrea Lodi

14 Constraint Satisfaction

Eugene C. Freuder and Mark Wallace

405

15 Artificial Neural Networks for Combinatorial Optimization 429

Jean-Yves Potvin and Kate A. Smith

16 Hyper-heuristics: an Emerging Direction in

Modern Search Technology 457

Edmund Burke, Graham Kendall, Jim Newall, Emma Hart,
Peter Ross and Sonia Schulenburg

17 Parallel Strategies for Meta-heuristics 475

Teodor Gabriel Crainic and Michel Toulouse

18 Metaheuristic Class Libraries 515

Andreas Fink, Stefan Voß and David L. Woodruff

19 Asynchronous Teams

Sarosh Talukdar, Sesh Murthy and Rama Akkiraju

537

Index 557

LIST OF CONTRIBUTORS

Rama Akkiraju
IBM T.J. Watson Labs
E-mail: akkiraju@us.ibm.com

Edmund Burke
University of Nottingham
E-mail: ekb@cs.nott.ac.uk

Carlos Cotta
Universidad de Malaga
E-mail: ccottap@lcc.uma.es

Teodor Gabriel Crainic
University of Montreal
E-mail: theo@crt.umontreal.ca

Marco Dorigo
Universite Libre de Bruxelles
E-mail: mdorigo@ulb.ac.be

Andreas Fink
Universitat Braunschweig
E-mail: a.fink@tu-bs.de

Filippo Focacci
ILOG S. A.
E-mail: ffocacci@ilog.fr

Eugene C. Freuder
University of New Hampshire
E-mail: ecf@cs.unh.edu

Michel Gendreau
University of Montreal
E-mail: michelg@crt.umontreal.ca

Fred Glover
University of Colorado
E-mail: fred.glover@colorado.edu

Andrea Lodi
University of Bologna
E-mail: alodi@deis.unibo.it

Manuel Laguna
University of Colorado
E-mail: manuel.laguna@Colorado.edu

François Laburthe
Bouygues e-Lab
E-mail: flaburthe@bouygues.com

John R. Koza
Stanford University
E-mail: koza@stanford.edu

Graham Kendall
University of Nottingham
E-mail: gxk@cs.nott.ac.uk

Alan W. Johnson
US Military Academy
E-mail: aa2895@usma.edu

Sheldon H. Jacobson
University of Illinois
E-mail: shj@uiuc.edu

Darrall Henderson
US Military Academy
E-mail: darrall@stanfordalumni.org

Emma Hart
Napier University
E-mail: emmah@dcs.napier.ac.uk

Pierre Hansen
University of Montreal
E-mail: pierreh@crt.umontreal.ca

x List of Contributors

Helena R. Lourenço
Universitat Pompeu Fabra
E-mail: helena.ramalhinho@econ.upf.es

Rafael Martí
Universitat de Valencia
E-mail: rafael.marti@uv.es

Olivier C. Martin
Universite Paris-Sud
E-mail: martino@ipno.in2p3.fr

Nenad
Serbian Academy of Science
E-mail: nenad@mi.sanu.ac.yu

Pablo Moscato
Universidade Estadual de Campinas
E-mail: moscato@densis.fee.unicamp.br

Sesh Murthy
IBM T.J. Watson Labs
E-mail: murthy@watson.ibm.com

Jim Newall
University of Nottingham
E-mail: jpn@cs.nott.ac.uk

Jean-Yves Potvin
University of Montreal
E-mail: potvin@iro.unmontreal.ca

Colin Reeves
Coventry University
E-mail: c.reeves@coventry.ac.uk

Mauricio G.C. Resende
AT&T Labs Research
E-mail: mgcr@research.att.com

Celso C. Ribeiro
Catholic University of Rio de Janeiro
E-mail: celso@inf.puc-rio.br

Peter Ross
Napier University
E-mail: peter@dcs.napier.ac.uk

David L. Woodruff
University of California at Davis
E-mail: dlwoodruff@ucdavis.edu

Mark Wallace
Imperial College
E-mail: mgw@icparc.ic.ac.uk

Cristos Voudouris
BTexact Technologies
E-mail: chris.voudouris@bt.com

Stefan Voß
Universitat Braunschweig
E-mail: stefan.voss@tu-bs.de

Edward P.K. Tsang
University of Essex
E-mail: edward@essex.ac.uk

Michel Toulouse
University of Manitoba
E-mail: toulouse@cs.umanitoba.ca

Sarosh Talukdar
Carnegie Mellon University
E-mail: talukdar@ece.cmu.edu

Thomas Stützle
Darmstadt University of Technology
E-mail: stuetzle@informatik.
tu-darmstadt.de

Kate A. Smith
Monash University
E-mail: kate.smith@infotech.monash.
edu.au

Sonia Schulenburg
Napier University
E-mail: s.schulenberg@napier.ac.uk

PREFACE

Metaheuristics, in their original definition, are solution methods that orchestrate an
interaction between local improvement procedures and higher level strategies to create
a process capable of escaping from local optima and performing a robust search of a
solution space. Over time, these methods have also come to include any procedures
that employ strategies for overcoming the trap of local optimality in complex solution
spaces, especially those procedures that utilize one or more neighborhood structures
as a means of defining admissible moves to transition from one solution to another, or
to build or destroy solutions in constructive and destructive processes.

The degree to which neighborhoods are exploited varies according to the type of
procedure. In the case of certain population-based procedures, such as genetic algo-
rithms, neighborhoods are implicitly (and somewhat restrictively) defined by reference
to replacing components of one solution with those of another, by variously chosen
rules of exchange popularly given the name of “crossover.” In other population-based
methods, based on the notion of path relinking, neighborhood structures are used in their
full generality, including constructive and destructive neighborhoods as well as those
for transitioning between (complete) solutions. Certain hybrids of classical evolution-
ary approaches, which link them with local search, also use neighborhood structures
more fully, though apart from the combination process itself. Meanwhile, “single
thread” solution approaches, which do not undertake to manipulate multiple solutions
simultaneously, run a wide gamut that not only manipulate diverse neighborhoods but
incorporate numerous forms of strategies ranging from thoroughly randomized to thor-
oughly deterministic, depending on the elements such as the phase of search or (in the
case of memory-based methods) the history of the solution process.1

A number of the tools and mechanisms that have emerged from the creation of
metaheuristic methods have proved to be remarkably effective, so much so that meta-
heuristics have moved into the spotlight in recent years as the preferred line of attack
for solving many types of complex problems, particularly those of a combinatorial
nature. While metaheuristics are not able to certify the optimality of the solutions
they find, exact procedures (which theoretically can provide such a certification, if
allowed to run long enough)2 have often proved incapable of finding solutions whose

1 Methods based on incorporating collections of memory-based strategies, invoking forms of memory more
flexible and varied than those used in approaches such as tree search and branch and bound, are sometimes
grouped under the name Adaptive Memory Programming. This term, which originated in the tabu search
literature where such adaptive memory strategies were first introduced and continue to be the primary focus, is
also sometimes used to encompass other methods that have more recently adopted memory-based elements.

2Some types of problems seem quite amenable to exact methods, particularly to some of the methods
embodied in the leading commercial software packages for mixed integer programming. Yet even by these
approaches the “length of time” required to solve many problems exactly appears to exceed all reasonable
measure, including in some cases measures of astronomical scale. It has been conjectured that metaheuristics

xii Preface

quality is close to that obtained by the leading metaheuristics—particularly for real
world problems, which often attain notably high levels of complexity. In addition,
some of the more successful applications of exact methods have come about by
incorporating metaheuristic strategies within them. These outcomes have motivated
additional research and application of new and improved metaheuristic methodologies.

This handbook is designed to provide the reader with a broad coverage of the con-
cepts, themes and instrumentalities of this important and evolving area of optimization.
In doing so, we hope to encourage an even wider adoption of metaheuristic methods
for assisting in problem solving, and to stimulate research that may lead to additional
innovations in metaheuristic procedures.

The handbook consists of 19 chapters. Topics covered include Scatter Search, Tabu
Search, Genetic Algorithms, Genetic Programming, Memetic Algorithms, Variable
Neighborhood Search, Guided Local Search, GRASP, Ant Colony Optimization, Simu-
lated Annealing, Iterated Local Search, Multi-Start Methods, Constraint Programming,
Constraint Satisfaction, Neural Network Methods for Optimization, Hyper-Heuristics,
Parallel Strategies for Metaheuristics, Metaheuristic Class Libraries, and A-Teams.
This family of metaheuristic chapters, while not exhaustive of the many approaches that
have sprung into existence in recent years, encompasses the critical strategic elements
and their underlying ideas that represent the state-of-the-art of modern metaheuristics.

This book is intended to provide the communities of both researchers and practi-
tioners with a broadly applicable, up to date coverage of metaheuristic methodologies
that have proven to be successful in a wide variety of problem settings, and that hold
particular promise for success in the future. The various chapters serve as stand alone
presentations giving both the necessary underpinnings as well as practical guides for
implementation. The nature of metaheuristics invites an analyst to modify basic meth-
ods in response to problem characteristics, past experiences, and personal preferences
and the chapters in this handbook are designed to facilitate this process as well.

The authors who have contributed to this volume represent leading figures from
the metaheuristic community and are responsible for pioneering contributions to the
fields they write about. Their collective work has significantly enriched the field of
optimization in general and combinatorial optimization in particular. We are especially
grateful to them for agreeing to provide the first-rate chapters that appear in this hand-
book. We would also like to thank our graduate students, Gyung Yung and Rahul Patil,
for their assistance. Finally, we would like to thank Gary Folven and Carolyn Ford
of Kluwer Academic Publishers for their unwavering support and patience throughout
this project.

succeed where exact methods fail because of their ability to use strategies of greater flexibility than permitted
to assure that convergence will inevitably be obtained.

Chapter 1

SCATTER SEARCH AND PATH RELINKING:
ADVANCES AND APPLICATIONS

Fred Glover and Manuel Laguna
Leeds School of Business, Campus Box 419,

University of Colorado, Boulder,

CO 80309-0419, USA

E-mail: Fred.Glover@Colorado.edu, Manuel.Laguna@Colorado.edu

Rafael Marti
Dpto. de Estadística e Investigación Operativa, Facultad de Matemáticas, Universitat de

Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain

E-mail: Rafael.Marti@uv.es

Abstract Scatter search (SS) is a population-based method that has recently been shown to
yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based
on formulations originally proposed in the 1960s for combining decision rules and problem
constraints, SS uses strategies for combining solution vectors that have proved effective in a
variety of problem settings. Path relinking (PR) has been suggested as an approach to integrate
intensification and diversification strategies in a search scheme. The approach may be viewed
as an extreme (highly focused) instance of a strategy that seeks to incorporate attributes of
high quality solutions, by creating inducements to favor these attributes in the moves selected.
The goal of this paper is to examine SS and PR strategies that provide useful alternatives to
more established search methods. We describe the features of SS and PR that set them apart
from other evolutionary approaches, and that offer opportunities for creating increasingly more
versatile and effective methods in the future. Specific applications are summarized to provide a
clearer understanding of settings where the methods are being used.

1 INTRODUCTION

Scatter search (SS), from the standpoint of metaheuristic classification, may be viewed
as an evolutionary (population-based) algorithm that constructs solutions by combining
others. It derives its foundations from strategies originally proposed for combining
decision rules and constraints in the context of integer programming. The goal of this
methodology is to enable the implementation of solution procedures that can derive
new solutions from combined elements in order to yield better solutions than those
procedures that base their combinations only on a set of original elements. For example,
see the overview by Glover (1998).

F. Glover et al.2

The antecedent strategies for combining decision rules were first introduced in
the area of scheduling, as a means to obtain improved local decisions. Numerically
weighted combinations of existing rules, suitably restructured so that their evaluations
embodied a common metric, generated new rules (Glover, 1963). The approach was
motivated by the conjecture that information about the relative desirability of alternative
choices is captured in different forms by different rules, and that this information can
be exploited more effectively when integrated than when treated in isolation (i.e., by
choosing selection rules one at a time). Empirical outcomes disclosed that the decision
rules created from such combination strategies produced better outcomes than standard
applications of local decision rules. The strategy of creating combined rules also proved
superior to a “probabilistic learning approach” that used stochastic selection of rules at
different junctures, but without the integration effect provided by the combined rules
(Crowston et al., 1963).

The associated procedures for combining constraints likewise employed a mech-
anism of generating weighted combinations. In this case, nonnegative weights were
introduced to create new constraint inequalities, called surrogate constraints, in the
context of integer and nonlinear programming (Glover, 1965, 1968). The approach
isolated subsets of (original) constraints that were gauged to be most critical, relative
to trial solutions that were obtained based on the surrogate constraints. This critical sub-
set was used to produce new weights that reflected the degree to which the component
constraints were satisfied or violated. In addition, the resulting surrogate constraints
served as source constraints for deriving new inequalities (cutting planes) which in turn
provide material for creating further surrogate constraints.

Path relinking has been suggested as an approach to integrate intensification and
diversification strategies (Glover and Laguna, 1997) in the context of tabu search.
This approach generates new solutions by exploring trajectories that connect high-
quality solutions, by starting from one of these solutions and generating a path in the
neighborhood space that leads toward the other solutions.

Recent applications of both methods (and of selected component strategies within
them) that have proved highly successful are:

The Linear Ordering Problem (Campos, Laguna and Martí)

The Bipartite Drawing Problem (Laguna and Martí)

The Graph Coloring Problem (Hamiez and Hao)

Capacitated Multicommodity Network Design (Ghamlouche, Crainic and
Gendreau)

The Maximum Clique Problem (Cavique, Rego and Themido)

Assigning Proctor to Exams (Ramalhinho, Laguna and Martí)

Periodic Vehicle Loading (Delgado, Laguna and Pacheco)

Job Shop Scheduling (Nowicki and Smutnicki)

The Arc Routing Problem (Greistorfer)

Resource Constrained Project Scheduling (Valls, Quintanilla and Ballestín)

Multiple Criteria Scatter Search (Beausoleil)

Meta-Heuristic Use of Scatter Search via OptQuest (Hill)

3Scatter Search and Path Relinking

Pivot Based Search Integrated with Branch and Bound for Binary MIPs

(Løkketangen and Woodruff)

Scatter Search to Generate Diverse MIP Solutions (Glover, Løkketangen and
Woodruff)

Path Relinking to Improve Iterated Start Procedures (Ribeiro and Resende)

A number of these applications are described in Section 4 where a collection of vignettes
is presented. They provide a diverse range of settings where SS and PR have made useful
contributions, and suggest the form of additional applications where similar successes
may be anticipated.

2 SCATTER SEARCH

Scatter search is designed to operate on a set of points, called reference points, which
constitute good solutions obtained from previous solution efforts. Notably, the basis for
defining “good” includes special criteria such as diversity that purposefully go beyond
the objective function value. The approach systematically generates combinations of
the reference points to create new points, each of which is mapped into an associ-
ated feasible point. The combinations are generalized forms of linear combinations,
accompanied by processes to adaptively enforce feasibility conditions, including those
of discreteness (Glover, 1977).

The SS process is organized to (1) capture information not contained separately
in the original points, (2) take advantage of auxiliary heuristic solution methods (to
evaluate the combinations produced and to actively generate new points), and (3) make
dedicated use of strategy instead of randomization to carry out component steps. SS
basically consist of five methods:

1.

2.

3.

4.

5.

A Diversification Generation Method to generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (or seed solutions) as an
input.

An Improvement Method to transform a trial solution into one or more enhanced
trial solutions. (Neither the input nor the output solutions are required to be fea-
sible, though the output solutions are typically feasible. If the input trial solution
is not improved as a result of the application of this method, the “enhanced”
solution is considered to be the same as the input solution.)

A Reference Set Update Method to build and maintain a reference set consisting
of the b “best” solutions found (where the value of b is typically small, e.g., no
more than 20), organized to provide efficient accessing by other parts of the
solution procedure. Several alternative criteria may be used to add solutions to
the reference set and delete solutions from the reference set.

A Subset Generation Method to operate on the reference set, to produce a subset
of its solutions as a basis for creating combined solutions, The most common
subset generation method is to generate all pairs of reference solutions (i.e., all
subsets of size 2).

A Solution Combination Method to transform a given subset of solutions pro-
duced by the Subset Generation Method into one or more combined solutions.

4 F. Glover et al.

The combination method is analogous to the crossover operator in genetic algo-
rithms although it should be capable of combining more than two solutions.
(The combination processes proposed in the original SS paper included forms of
“crossover” not envisioned in the GA literature until a decade later, and combi-
nation processes proposed since then, as in Glover (1994,1995) utilize principles
and constructions that remain beyond the scope embraced by GA approaches.)

The basic procedure in Figure 1.1 starts with the creation of an initial reference
set of solutions (RefSet). The Diversification Generation Method is used to build a
large set of diverse solutions The size of is typically 10 times the size of
RefSet. Initially, the reference set RefSet consists of distinct and maximally diverse
solutions from The solutions in RefSet are ordered according to quality, where
the best solution is the first one in the list. The search is then initiated by assigning
the value of TRUE to the Boolean variable NewSolutions. In step 3, NewSubsets is
constructed and NewSolutions is switched to FALSE. For illustrative purposes we focus
attention on subsets of size 2. Hence the cardinality of NewSubsets corresponding to
the initial reference set is given by which accounts for all pairs of solutions
in RefSet. (Special conditions are imposed on subsets of larger sizes to ensure a suitable
composition is achieved while generating no more than a restricted number of these
subsets.) The pairs in NewSubsets are selected one at a time in lexicographical order
and the Solution Combination Method is applied to generate one or more solutions
in step 5. If a newly created solution improves upon the worst solution currently in

Scatter Search and Path Relinking 5

RefSet, the new solution replaces the worst and RefSet is reordered in step 6. The
NewSolutions flag is switched to TRUE and the subset s that was just combined is
deleted from NewSubsets in steps 7 and 8, respectively.

This basic design can be expanded and improved in different ways. The SS method-
ology is very flexible, since each of its elements can be implemented in a variety of ways
and degrees of sophistication. Different improvements and designs from this basic SS
algorithm are given in Glover (1998), Glover et al. (1999, 2000), Laguna (2000) and
Laguna and Armentano (2001).

3 PATH RELINKING

One of the main goals in any search method is to create a balance between search inten-
sification and search diversification. Path relinking has been suggested as an approach
to integrate intensification and diversification strategies (Glover and Laguna, 1997).
Features that have been added to Scatter Search, by extension of its basic philosophy,
are also captured in the Path Relinking framework. This approach generates new solu-
tions by exploring trajectories that connect high-quality solutions—by starting from
one of these solutions, called an initiating solution, and generating a path in the neigh-
borhood space that leads toward the other solutions, called guiding solutions. This
is accomplished by selecting moves that introduce attributes contained in the guiding
solutions.

The approach may be viewed as an extreme (highly focused) instance of a strategy
that seeks to incorporate attributes of high quality solutions, by creating inducements to
favor these attributes in the moves selected. However, instead of using an inducement
that merely encourages the inclusion of such attributes, the path relinking approach
subordinates other considerations to the goal of choosing moves that introduce the
attributes of the guiding solutions, in order to create a “good attribute composition” in
the current solution. The composition at each step is determined by choosing the best
move, using customary choice criteria, from a restricted set—the set of those moves
currently available that incorporate a maximum number (or a maximum weighted value)
of the attributes of the guiding solutions.

The approach is called path relinking either by virtue of generating a new path
between solutions previously linked by a series of moves executed during a search, or
by generating a path between solutions previously linked to other solutions but not to
each other. Figure 1.2 shows two hypothetical paths (i.e., a sequence of moves) that link
solution A to solution B, to illustrate relinking of the first type. The solid line indicates
an original path produced by the “normal” operation of a procedure that produced a
series of moves leading from A to B, while the dashed line depicts the relinking path.
The paths are different because the move selection during the normal operation does not
“know” where solution B lies until it is finally reached, but simply follows a trajectory
whose intermediate steps are determined by some form of evaluation function. For
example, a commonly used approach is to select a move that minimizes (or maximizes)
the objective function value in the local sense. During path relinking, however, the main
goal is to incorporate attributes of the guiding solution (or solutions) while at the same
time recording the objective function values.

The effort to represent the process in a simple diagram such as the one preceding
creates some misleading impressions, however. First, the original (solid line) path,

6 F. Glover et al.

whch is shown to be “greedy” relative to the objective function, is likely to be signif-
icantly more circuitous along dimensions we are not able to show, and by the same
token to involve significantly more steps (intervening solutions)—an aspect not por-
trayed in Figure 1.2. Second, because the relinked path is not governed so strongly by
local attraction, but instead is influenced by the criterion of incorporating attributes of
the guiding solution, it opens the possibility of reaching improved solutions that would
not be found by a “locally myopic” search. Figure 1.2 shows one such solution (the
darkened node) reached by the dotted path. Beyond this, however, the relinked path
may encounter solutions that may not be better than the initiating or guiding solution,
but that provide fertile “points of access” for reaching other, somewhat better, solu-
tions. For this reason it is valuable to examine neighboring solutions along a relinked
path, and keep track of those of high quality which may provide a starting point for
continued search.

The incorporation of attributes from elite parents in partially or fully constructed
solutions was foreshadowed by another aspect of scatter search, embodied in an accom-
panying proposal to assign preferred values to subsets of consistent and strongly

determined variables. The theme is to isolate assignments that frequently or influ-
entially occur in high quality solutions, and then to introduce compatible subsets of
these assignments into other solutions that are generated or amended by heuristic pro-
cedures. (Such a process implicitly relies on a form of frequency-based memory to
identify and exploit variables that qualify as consistent.)

Multiparent path generation possibilities emerge in path relinking by considering
the combined attributes provided by a set of guiding solutions, where these attributes
are weighted to determine which moves are given higher priority. The generation of
such paths in neighborhood space characteristically “relinks” previous points in ways
not achieved in the previous search history, hence giving the approach its name. This
multiparent Path relinking approach generates new elements by a process that emulates
the strategies of the original Scatter Search approach at a higher level of generalization.
The reference to neighborhood spaces makes it possible to preserve desirable solution
properties (such as complex feasibility conditions in scheduling and routing), without

Scatter Search and Path Relinking 7

requiring artificial mechanisms to recover these properties in situations where they may
otherwise become lost.

The PR approach benefits from a tunneling strategy that often encourages a differ-
ent neighborhood structure to be used than in the standard search phase. For example,
moves for Path relinking may be periodically allowed that normally would be excluded
due to creating infeasibility. Such a practice is protected against the possibility of
becoming “lost” in an infeasible region, since feasibility evidently must be recovered
by the time the guiding solution is reached.

A natural variation of path relinking occurs by using constructive neighborhoods

for creating offspring from a collection of parent solutions. In this case the guiding
solutions consist of subsets of elite solutions, as before, but the initiating solution
begins as a partial (incomplete) solution or even as a null solution, where some of the
components of the solutions, such as subsets of free variables, are not yet assigned.
The use of a constructive neighborhood permits such an initiating solution to “move
toward” the guiding solutions, by a neighborhood path that progressively introduces
elements contained in the guiding solutions, or that are evaluated as attractive based
on the composition of the guiding solutions.

4 SS/PR VIGNETTES

This section provides a collection of “vignettes” that briefly summarize applications
of SS and PR in a variety of settings. These vignettes are edited versions of reports
by researchers and practitioners who are responsible for the applications. A debt of
gratitude is owed to the individuals whose contributions have made this summary
possible.

4.1 The Linear Ordering Problem

Given a matrix of weights the linear ordering problem (LOP) consists
of finding a permutation p of the columns (and rows) in order to maximize the sum of
the weights in the upper triangle. In mathematical terms, we seek to maximize:

where p(i) is the index of the column (and row) in position i in the permutation. In
the LOP, the permutation p provides the ordering of both the columns and the rows.
The equivalent problem in graphs consists of finding, in a complete weighted graph,
an acyclic tournament with a maximal sum of arc weights. In economics, the LOP
is equivalent to the so-called triangulation problem for input-output tables (Reinelt,
1985).

Campos et al. (1999) propose a solution method for the linear ordering problem
based on the scatter search template in Glover (1998). The procedure combines the
following elements:

(a)

(b)

Diversification Generator

Improvement Method

8 F. Glover et al.

(c)

(d)

(e)

Reference Set Update Method

Subset Generation Method

Solution Combination Method

where (a), (b) and (e) are context dependent and (c) and (d) are “generic” elements.
The authors developed and tested 10 Diversification Generation Methods. These

methods included a completely random method, several versions of GRASP, a
deterministic method that disregards the objective function, and a method using
frequency-based memory as proposed in tabu search. The diversification approach
using TS frequency-based memory was found to clearly outperform the competing
methods.

The Improvement Method is based on the neighborhood search developed for the
Tabu Search algorithm for the LOP in Laguna, Martí and Campos (1999).

The Solution Combination Method uses a min-max construction based on votes.
The method scans each reference permutation to be combined, and uses the rule that
each reference permutation votes for its first element that is still not included in the
combined permutation (referred to as the “incipient element”).

In a set of Computational Testing Experiments, the authors compare the perfor-
mance of two variants of the scatter search implementation with three methods: Chanas
and Kobylanski (CK, 1996), Tabu Search (TS, Laguna, Martí and Campos, 1998) and a
greedy procedure especially designed for the LOP. The scatter search procedures were
tested on four sets of instances.

The tabu search method and the two scatter search instances dominate the other
approaches in terms of solution quality. The TS method is the fastest of the high
quality methods, running 3–5 times faster than the first scatter search variant, but the
scatter search variants give the best overall solution quality, indicating their value where
quality is the dominant consideration.

4.2 The Bipartite Drawing Problem

The problem of minimizing straight-line crossings in layered bipartite graphs consists
of aligning the two shores and of a bipartite graph on two
parallel straight lines (layers) such that the number of crossing between the edges in
E is minimized when the edges are drawn as straight lines connecting the end-nodes.
The problem is also known as the bipartite drawing problem (BDP).

The main application of this problem is found in automated drawing systems,
where drawing speed is a critical factor. Simple heuristics are very fast but result in
inferior solutions, while high-quality solutions have been found with meta-heuristics
that demand an impractical amount of computer time. Laguna and Martí (1999) pro-
pose a method that combines GRASP and Path Relinking to develop a procedure
that can compete in speed with the simple heuristics and in quality with the complex
meta-heuristics.

The hybrid procedure proposed for the BDP utilizes GRASP as the multistart
method to be augmented, and stores a small set of high quality (elite) solutions to
be used for guiding purposes.

In a set of Computational Testing Experiments, the authors compare the per-
formance of the GRASP and Path Relinking implementations with two methods: the

Scatter Search and Path Relinking 9

iterated barycenter (BC, Eades and Kelly, 1986) and a version of the Tabu Search
algorithm (TS, Martí, 1996). The former is the best of the simple heuristics for the
BDP (Martí and Laguna, 1997), while the later has been proven to consistently pro-
vide the best solutions in terms of quality. For these experiments 3,200 instances have
been generated with the random_bigraph code of the Stanford GraphBase by Knuth
(1993).

The first experiment shows that the best solution quality is obtained by the tabu
search method, which is able to match the 900 known optimal solutions, while GRASP
matches 750 and PR matches 866. However, in contrast to some other applications (such
as the Linear Ordering problem previously described), TS employs more computational
time (15 s) than the other methods reported. GRASP performs quite well, considering
its average percent deviation from optima of 0.44% achieved on an average of 0.06 s.
Notably, path relinking achieves a significantly improved average percent deviation
of 0.09% with a modest increase in computer time (0.28 s). Finally, iterated BC from
10 random starts turns in a substantially less attractive performance, with an average
percent deviation of 3.43% achieved in 0.08 s.

The second experiment is devoted to sparse graphs. It is shown that the path relinking
algorithm achieves the best average deviation of less than 1%. The computational
effort associated with the PR variant is very reasonable (with a worst case average
of 1.61 s).

A third experiment was performed to assess the efficiency of the proposed proce-
dures in denser graphs (relative to the second experiment). The results show that the
tabu search procedure outperforms both the BC and the GRASP variants. The aver-
age deviation from the best known values is 1.41% for the TS procedure, while PR
obtains an average deviation of 8.96%, using similar computational time (i.e., 26 s for
TS versus 22 s for PR).

The enhancements produced by path relinking suggests the potential merit of joining
the PR guidance strategies with other multistart methods.

4.3 The Graph Coloring Problem

Graph k-coloring can be stated as follows: given an undirected graph G with a set V

of vertices and a set E of edges connecting vertices, k-coloring G means finding a
partition of V into k classes called color classes, such that no couple of
vertices belongs to the same color class. Formally, is a valid
k-coloring of the graph G = (V , E) if and
The graph coloring problem (GCP) is the optimization problem associated with k-

coloring. It aims at searching for the minimal k such that a proper k-coloring exists.
This minimum is the chromatic number X(G) of graph G.

Graph coloring has many real applications, e.g., timetable construction, frequency
assignment, register allocation or printed circuit testing. There are many resolution
methods for this problem: greedy constructive approaches (DSATUR, RLF), hybrid
strategies (HCA for instance), local search metaheuristics (simulated annealing, tabu),
neural network attempts, . . . Despite the fact that the literature on graph coloring is
always growing, there exists, to our knowledge, no approach relying on scatter search
for the graph coloring problem. We summarize here such an experimental investigation
following the scatter search template of Glover (1998).

10 F. Glover et al.

Our Diversification Generation Method uses independent sets to build initial
configurations. Color classes are built one by one by selecting vertices in a random
order to insure diversity.

The Improvement Method is based on the tabu search algorithm of Dorne and
Hao (1998). This algorithm iteratively changes the current color of a conflicting vertex
to another one, until achieving a proper coloring. A tabu move leading to a configura-
tion better than the best configuration found so far, within the same execution of the
improvement method or within the overall scatter search procedure, is always accepted
(aspiration criterion).

Although the Reference Set Update Method is usually a “generic” element of
scatter search, we provide here the way configurations are compared in terms of diver-

sity. This point is crucial since, in the context of graph coloring, the Hamming distance
is not well suited to compare two configurations and The distance between
and is the minimum number of moves necessary to transform into The fitness

of any configuration is naturally its number of conflicting edges.
The Solution Combination Method uses a generalization of the powerful greedy

partition crossover (GPX), proposed by Galinier and Hao (1999) within an evolution-
ary algorithm. GPX has been especially developed for the graph coloring problem with
results reaching, and sometimes improving, those of the best known algorithms for
the GCP. Given a subset p generated by the subset generation method, the general-
ized combination operator builds the k color classes of the new configuration one by
one. First, choose a configuration Remove from c a minimal set of conflict-
ing vertices such as c becomes a partial proper k-coloring. Next, fill in a free color
class of the new configuration with all conflict-free vertices of the color class having
maximum cardinality in c. Repeat these steps until the k color classes of the new con-
figuration contain at least one vertex. Finally, to complete the new configuration if
necessary, assign to each free vertex a color such that it minimizes the conflicts over
the graph.

Computational Testing Experiments has been carried out on some of the well-
known DIMACS benchmark graphs (Johnson and Trick, 1996). The scatter search
procedure (SSGC) was compared with the generic tabu search (GTS) algorithm of
Dorne and Hao (1998) together with the best-known methods available for the graph
coloring problem: two local search algorithms based on particular neighborhoods and
a distributed population-based algorithm (Morgenstern, 1996), and an hybrid method
including a descent algorithm and a tabu procedure with various heuristics mixed
with a greedy construction stage and the search for a maximum clique (Funabiki and
Higashino, 2000).

The scatter search approach SSGC managed to reach the results of the best-known
algorithms in quality (minimal number of colors used), except on the r1000.5 graph for
which a 237-coloring has been published recently (Funabiki and Higashino, 2000). (The
sophisticated algorithm used to reach this coloring includes, among other components,
the search for a maximum clique.) Nevertheless, SSGC obtained here a better coloring
(240) than GTS (242) and outperformed the previous best result (241) for this graph
(Morgenstern, 1996). Our scatter search approach also improves in quality on the
results obtained with tabu search (GTS) on a few graphs. This means that tabu search,
the improvement method we used within scatter search, surely benefits from the other
general components of scatter search.

Scatter Search and Path Relinking 11

4.4 Capacitated Multicommodity Network Design

The fixed-charge capacitated multicommodity network design formulation (CMND)
represents a generic model for a wide range of applications in planning the construction,
development, improvement, and operations of transportation, logistics, telecommuni-
cation, and production systems, as well as in many other major areas. The problem is
usually modeled as a combinatorial optimization problem and is NP-hard in the strong
sense. Thus, not only the generation of optimal solutions to large problem instances con-
stitutes a significant challenge, but even identifying efficiently good feasible solutions
has proved a formidable task not entirely mastered.

The goal of a CMND formulation is to find the optimal configuration—the links
to include in the final design—of a network of limited capacity to satisfy the demand
of transportation of different commodities sharing the network. The objective is to
minimize the total system cost, computed as the sum of the link fixed and routing
costs.

The paper Ghamlouche, Crainic and Gendreau (2001) proposed a new class of
cycle-based neighborhood structures for the CMND and evaluated the approach within
a very simple tabu-based local search procedure that currently appears as the best
approximate solution method for the CMND in terms of robust performance, solu-
tion quality, and computing efficiency. Still more recently, Ghamlouche, Crainic and
Gendreau (2002) explore the adaptation of path relinking to the CMND. This work
evaluates the benefits of combining the cycle-based neighborhood structures and the
path relinking framework into a better meta-heuristic for this difficult problem.

The method proceeds with a sequence of cycle-based tabu search phases that inves-
tigate each visited solution and add elite ones to the reference set R. When a predefined
number of consecutive moves without improvement is observed, the method switches
to a path relinking phase.

What solutions are included in the reference set, how good and how diversified
they are, has a major impact on the quality of the new solutions generated by the path
relinking method. We study six strategies corresponding to different ways to build R.

In strategy S1, R is built using each solution that, at some stage of the tabu search
phase, improves the best overall solution and become the best one.

—Strategy S2 retains the “best” local minima found during the tabu search phase.
This strategy is motivated by the idea that local minimum solutions share
characteristics with optimum solutions.

—Strategy S3 selects R-improving local minima, that is local minimum solutions
that offer a better evaluation of the objective function than those already in R.

—Strategy S4 allows solutions to be retained in R not only according to an attractive
solution value but also according to a diversity, or dissimilarity criterion.

—Strategy S5 aims to ensure both the quality and the diversity of solutions in
R. Starting with a large set of “good” solutions, R is partially filled with the
best solutions found, to satisfy the purpose of quality. It is then extended with
solutions that change significantly the structure of the solutions already in R to
ensure diversity.

—Strategy S6 proceeds similarly to S5 with the difference that R is extended with
solutions close to those already in R.

12 F. Glover et al.

During the path relinking phase, moves from the initial to a neighboring one direct the
search towards the guiding solution. Due to the nature of the neighborhoods used, there
is no guarantee that the guiding solution will be reached. One cannot, therefore, stop
the process only if the current and the guiding solutions are the same. We then define

as the number of arcs with different status between the initial and the guiding
solutions and we allow the search to explore a number of solutions not larger than

Initial and guiding solutions are chosen from the reference set. This choice is also
critical to the quality of the new solutions and, thus, the performance of the procedure.
We investigate the effect of the following criteria:

—C1: Guiding and initial solutions are defined as the best and worst solutions,
respectively.

—C2: Guiding solution is defined as the best solution in the reference set, while the
initial solution is the second best one.

—C3: Guiding solution is defined as the best solution in the reference set, while the
initial solution is defined as the solution with maximum Hamming distance from
the guiding solution.

—C4: Guiding and initial solutions are chosen randomly from the reference set.
—C5: Guiding and initial solutions are chosen as the most distant solutions in the

reference set.
—C6: Guiding and initial solutions are defined respectively as the worst and the

best solutions in the reference set.

The path relinking phase stops when the reference set becomes empty (cardinality
Then, either stopping conditions are verified, or the procedure is repeated to build a
new reference set.

Extensive computational experiments, conducted on one of the 400 MHz processors
of a Sun Enterprise 10000, indicate that the path relinking procedure offers excellent
results. It systematically outperforms the cycle-based tabu search method in both solu-
tion quality and computational effort. On average, for 159 problems path relinking
obtains a gap of 2.91% from the best solutions found by branch-and-bound versus a
gap of 3.69% for the cycle-based tabu search. (However, the branch and bound code,
CPLEX 6.5, was allowed to run for 10 CPU hours.) Thus, path relinking offers the best
current meta-heuristic for the CMND.

4.5 A Scatter Search for the Maximum Clique Problem

The maximum clique problem (MCP) can be defined as follows. Given an undirected
graph G = (V, A) and denoting the set of vertices such that then
a graph G1 = (V 1, A 1) is called a subgraph of G if and for every

A graph G1 is said to be complete if there is an arc for each
pair of vertices. A complete subgraph is also called a clique. A clique is maximal, if
it is not contained in any other clique. In the MCP the objective is to find a complete
subgraph of largest cardinality in a graph. The clique number is equal to the cardinality
of the largest clique of G.

The MCP is an important problem in combinatorial optimization with many appli-
cations which include: market analysis, project selection, and signal transmission. The
interest for this problem led to the algorithm thread challenge on experimental analysis

Scatter Search and Path Relinking 13

and algorithm performance promoted by Second DIMACS Implementation Challenge
(Johnson and Trick, 1996).

Cavique et al. (2001) developed an experimental study for solving the Maximum
Clique Problem (MCP) using a Scatter Search framework. The proposed algorithm
considers structured solution combinations weighted by a “filtering vector” playing
the role of linear combinations. For the heuristic improvement a simple tabu search
procedure based on appropriate neighborhood structures is used. Some special features
and techniques have been introduced for the implementation to this problem. The
algorithm implementation is structured into five basic methods.

4.5.1 Diversification Generation Method

The aim of the diversification generation method is to create a set of solutions as
scattered as possible within the solution space while also using as many variables (or
solution attributes) as possible. In the MCP, all vertices in the graph G should be present
in RS.

When the algorithm starts, RS is initialized with a set of diverse solutions obtained
by a constructive procedure, which starting from a single vertex, each step adds a new
vertex to the current clique until a maximal clique is found. Starting from a different
vertex not yet included in RS, the procedure is repeated as many times as the cardinality
of the reference set. The clique value is used to order the solutions in RS.

4.5.2 Improvement Method

The improvement method has two phases: given a solution that is typically infeasible,
the method first undertakes to recover to a feasible one; and afterward it attempts to
increase the objective function value. Neighborhood structures based on add, drop, and
node swap moves are used in the local search. The method allows for the solutions being
infeasible by temporarily dealing with non complete subgraphs, which implements a
strategic oscillation allowing trajectories to cross infeasible regions of solutions.

4.5.3 Reference Set Update Method

The reference set update method must be carefully set up with diverse and high quality
solutions to avoid the phenomenon of premature convergence of RS, which occurs
when all the solutions are similar. To prevent this “pitfall”, the reference set RS is
divided into two groups: the set of best solutions and the set of diverse solutions.

Regarding the replacement policy, a combination of the best replacement policy
and the worst replacement policy called “journal replacement” policy is used, which
replaces the worst solution with the new best solution found, reporting all the “hits” of
the search.

4.5.4 Subset Generation Method

This method generates the following types of solution subsets which are combined in
the next method. The method generates subsets with two, three or more elements in a
relatively reduced computational effort. To eliminate repetition of the elements in the
subsets, the reference set with diverse solutions is used for the two by two combinations,
instead of the complete reference set. The method also includes a new feature by adding
a distant (or diverse) solution maximizing the distance from the region defined as the

14 F. Glover et al.

union of the vertices in the solution’s subset. In this way, a new point “far from” the
solution cluster is obtained at each iteration to maintain an appropriate diversity of
solutions in the reference set.

4.5.5 Solution Combination Method

This method uses each subset generated in the subset generation method and combines
the subset solutions, returning one or more trial solutions. Solution combinations are
created using a filter vector applied to the union of solutions, called The
are used in Scatter Search as a form of structured combinations of solutions. Instead
of drifting within the solution space defined by the reference set, the SS procedure
searches each region extensively by applying different Each generates
a trial solution to be improved by the Improvement Method. A sequence of previously
planned generates a set of solutions within and beyond regions defined by two
or more solutions in which new trial solutions will be chosen for updating the reference
set in an evolutionary fashion.

Applying in subsets with diverse solutions, a bypass strategy is created.
Instead of finding solutions between two others, it is possible to bypass the path using
a intermediate reference solution.

Computational results obtained on a set of the most challenging clique DIMACS
benchmark instances shown the scatter search algorithm can be advantageously
compared with some of the most competitive algorithms for the MCP.

4.6 Assigning Proctor to Exams with Scatter Search

Several real assignment problems can be viewed as a generalization of the well-known
Generalized Assignment Problem. One of these problems is the proctor assignment
problem (PAP), which consists in the assignment of proctors to final exams at a school
or university, with respect to some objective function as for example the maximization
of the total preferences of proctors to exams’ dates.

Martí, Lourenço and Laguna (2000) presented a Scatter Search to solve particular
instances of the PAP, based on the real data from a Spanish University. The problem was
formulated as a multiobjective integer program with a total preference and workload-
fairness objective functions, and can be stated as follows: consider a set of proctors
at a large university. Each proctor has a maximum number of hours that he/she can
devote to proctor final exams. This limit depends on his/her contract and teaching load.
Each final exam requires a given number of proctors for proctoring. Since the most of
the proctors are graduate students and Teaching Assistants (TAs), they also have final
exams and therefore they cannot proctor exams during periods that conflict with their
own exams. The constraints can be summarized as follows:

Each exam must be proctored by a specified number of TAs.

A TA cannot exceed his/her maximum number of proctor hours.

A TA cannot proctor more than one exam at the same time.

A TA cannot proctor a final exam that conflicts with one of his/her own.

A TA should proctor the exams of the courses he/she taught.

The last constraint can be handled before formulating the model by simply assigning
proctors to the exams of the courses they taught and adjusting the associated input data

Scatter Search and Path Relinking 15

accordingly (e.g., reducing the total number of proctor hours and the exam require-
ments). Teaching assistants have preferences for some exams, which reflect their desire
for proctoring on a given day or avoiding certain days. For example, some TAs would
like to avoid proctoring an exam the day before one of their own exams. As a result of
these preferences, one objective of the problem is to make assignments that maximize
a function of the total preferences.

Another important criterion is the assignment of proctor to exams such that the
workload is evenly distributed among TA’s. Unfair workloads are likely to generate
conflicts among TA’s and between TA’s and the administration. Several objective func-
tions can be formulated to measure the workload-fairness of a given assignment. One
possibility is to maximize the minimum workload associated with each TA. Since the
number of available hours for each TA varies, the workload can be expressed as the
ratio of assigned hours to available hours.

Martí et al. (2000) considered a weighted function to deal with the multiobjective
model and proposed a scatter search method based on the work by Glover (1998),
Laguna (1999) and Campos et al. (1998). The diversification generation method gen-
erates the population solutions using the preferences values modified by a frequency
function. This frequency function is used to bias the potential assignment of TAs to
exams during subsequent constructions of solutions, and therefore to induce diversity
in the new solutions with respect to the solutions already in the population. TAs are
assigned to exams in order to maximize the modified preference values. The reference
set is constructed by using the best solutions and a distance function between solutions
to diversify the solutions in this set. The solution combination method is applied to
each subset generated as in Glover (1998). It is based on a voting system, where each
solution votes for specific assignment of TAs to exams. The resulting solution may
be infeasible with respect to some constraints, and in this case, a repair mechanism is
applied. The method outputs the best solution with respect to the weighting function.

The data used for these experiments correspond to real instances of the proctor
assignment problem at the Universitat Pompeu Fabra in Barcelona (Spain). The results
were compared with manually generated assignments also with assignments found by
solving the mixed-integer programming formulation with Cplex 6.5 (some of which are
optimal). For the set of test problems that utilize the utility function, the scatter search
solutions are often slightly sub-optimal. However, this is offset by the advantage that the
scatter search reference set contains a number of high-quality solutions, allowing the
decision-maker to choose the one to implement, based on non-quantitative elements.
The maximum standard deviation of the utility function value for solutions in the final
reference set was 0.000407 for all problem instances. This indicates that practically
all of the solutions in the final reference set have the same quality with respect to the
objective function value. Since the utility function is a mathematical representation of
some subjective measure of performance associated with a given assignment, the ability
to choose among solutions that have similar objective function values is an important
feature of a decision support system designed for this managerial situation.

Since scatter-search is a population-based search, the method is a useful solution
technique to solve multiobjective problems by finding an approximation of the set of
Pareto-optimal solutions. A multiobjective scatter search for the solving the PAP is
investigated in Lourenço et al. (2001). The main features of this approach are the con-
struction and updating of the reference set using the set of non-dominated solutions.
Also, the cardinality of the reference set varies with respect to the size of the set of

16 F. Glover et al.

non-dominated solutions. An improvement method is applied to improve the solutions
obtained by the greedy heuristic, the diversification method and the solution combi-
nation method. This improvement method consists of a simple local search method,
where the neighborhood is obtained by exchanging one TA for another one from the
list of proctors. Finally, the method is restarted with the set of non-dominated solutions
in the reference set. Preliminary results for this new approach indicate that multiobjec-
tive scatter search with restarting gives the best results with respect to the weighting
function, across different versions of the method. Also, multiobjective scatter search
enables the user to analyze a collection of very good solutions and make the final
decision.

4.7 Periodic Vehicle Loading

Delgado et al. (2002) address a logistical problem of a manufacturer of auto parts in
the north of Spain. The manufacturer stores auto parts in its warehouse until customers
retrieve them. The customers and the manufacturer agree upon an order pickup fre-
quency. The problem is to find the best pickup schedule, which consists of the days and
times during the day that each customer is expected to retrieve his/her order. For a given
planning horizon, the optimization problem is to minimize the labor requirements to
load the vehicles that the customers use to pick up their orders.

Heuristically, the authors approach this situation as a decision problem in two levels.
In the first level, customers are assigned to a calendar, consisting of a set of days with
the required frequency during the planning horizon. Then, for each day, the decision
at the second level is to assign each customer to a time slot. The busiest time slot
determines the labor requirement for a given day. Therefore, once customers have been
assigned to particular days in the planning horizon, the second-level decision problem
is equivalent to a multiprocessor scheduling problem (MSP), where each time slot is
the equivalent of a processor, and wherethe objective is to minimize the makespan.

A scatter search procedure is developed for the problem of minimizing labor require-
ments in this periodic vehicle-loading problem and artificial as well as real data are
used to assess its performance. The scatter search constructs and combines calendar
assignments and uses a heuristic to solve the MSP’s for each day in the planning horizon
and thus obtain a complete solution.

The diversification method is based on GRASP constructions. The greedy function
calculates the increase in labor requirements from assigning a previously unassigned
order to a calendar. The procedure starts with all the orders in the “unassigned” set.
The orders are considered one by one, from the largest to the smallest (i.e., from the
one that requires the most amount of labor to the one that requires the least amount of
labor).

The improvement method is based on a procedure that changes the assignment of
an order from its current calendar to another. Preliminary experiments showed that the
performance of the improving method with simple moves (i.e., the change of calendars
for one order only) was not as good as the performance of a local search employing
composite moves. A composite move is a chain of simple moves. Therefore, while
a simple move prescribes the change of one order from one calendar to another, a
composite move prescribes the change of several orders from their current calendars
to others. It may seem that a local search based on simple moves should be capable
of finding sequences of moves that are equivalent to composite moves. However, this

Scatter Search and Path Relinking 17

is not necessarily the case because the local search based on simple moves is greedy
and searches for the best exchange and performs the exchange only if it results in an
improving move. A local search with composite moves, on the other hand, may perform
some non-improving simple moves that lead to a large improving move.

The combination method generates new solutions by combining the calendar assign-
ments of two reference solutions. The objective function values of the reference
solutions being combined are used to probabilistically assign orders to calendars in
the new trial solution. That is, on the average, most of the assignments come from the
reference solution with the better objective function value. The procedure uses a static
update of the reference set.

Using both randomly generated data adapted from the literature and real data from
a manufacturer, the authors were able to show the merit of the scatter search design. In
particular, extensive experiments show that significant savings may be realized when
replacing the manufacturer’s current rules of thumb with the proposed procedure for
planning purposes.

4.8 Tabu and Scatter Search in Job-Shop Scheduling

The job-shop scheduling problem is known as a particularly hard combinatorial opti-
mization case. It arises from OR practice, has a relatively simple formulation, excellent
industrial applications, a finite but potentially astronomical number of solutions and
unfortunately is strongly NP-hard. It is also considered an indicator of practical effi-
ciency of advanced scheduling algorithms. In the early nineties, after a series of works
dealing with optimization algorithms of the B&B type, it became clear that pure opti-
mization methods for this problem had a ceiling on their performance. In spite of
important advances over the past two decades, the best B&B methods cannot solve
instances with more than 200 operations in a reasonable time (hours, days, weeks).

A new era started when job-shop algorithms based on the TS approach appeared.
The simple and almost ascetic Algorithm TSAB (Nowicki and Smutnicki, 1996),
designed originally in 1993, found the optimal solution of the notorious job-shop
instance FT 10 (100 operations) in a few seconds on a PC. This instance had waited
26 years, since 1963, to be solved by an optimization algorithm. But going far beyond
the solution of FT10, the TSAB approach made it possible to solve, in a very short
time on a PC, instances of size up to 2,000 operations with unprecedented accuracy—
producing a deviation from an optimality bound of less than 4% on average. This
is considerably better than the deviation of approximately 20% for special inser-
tions technique, 35% for standard priority rules and over 130% for random solutions.
Another highly effective tabu search method for the job shop problem has recently been
introduced by Grabowski and Wodecki (2001).

Further exploration of the ideas underlying TSAB focuses on two independent sub-
jects: (1) acceleration of the speed of the algorithm or some its components, and (2) a
more sophisticated diversification mechanism, the key for advanced search scattering.
Recent papers by Nowicki and Smutnicki (2001a,b), provide some original proposals
located precisely in these research streams. They refer to a new look at the landscape
and valleys in the solution space, set against the background of theoretical properties
of various distance measures. There are proposed accelerators based on theoretical
properties, which, by means of skillful decomposition and aggregation of calculations,

18 F. Glover et al.

speed up significantly search process, namely: (a) INSA accelerator (advanced imple-
mentation of insertion algorithm used for starting solution in TSAB), (b) tabu status
accelerator, (c) NSP accelerator (fast single neighborhood search). Next, in order to
diversify the search, TSAB has been embedded in the Scatter Search and Path Relink-
ing framework. The resulting algorithm i-TSAB described in Nowicki and Smutnicki
(2001a), the powerful successor of TSAB, works with elite centers of local search
areas forming a MILESTONE structure, modified by space explorations conducted from
VIEWPOINTS located on GOPS (a class of goal oriented paths).

As the immediate practical result of this new approach, 24 better upper bounds
(new best solutions) have been found for 24 of the 35 instances from the common
benchmark set of Taillard, attacked by all job-shop algorithms designed till now. The
proposed algorithm still runs on a standard PC in a time of minutes.

4.9 A Tabu Scatter Search Metaheuristic for the Arc Routing Problem

The problem treated in Greistorfer (2001a) is the so-called capacitated Chinese post-

man problem (CCPP). The goal of the (undirected) CCPP is to determine a least-cost
schedule of routes in an undirected network under the restriction of a given fleet of vehi-
cles with identical capacity, which operates from a single depot node. In the standard
version of the CCPP the number of vehicles is unlimited, i.e. it is a decision variable.
The CCPP is a special instance of the general class of arc routing problems, a group of
routing problems where the demand is located on arcs or edges (one-way or two-way
roads) connecting a pair of nodes (junctions). Relevant practical examples of the CCPP
are postal mail delivery, school bus routing, road cleaning, winter gritting or household
refuse collection. But applications are not limited to the routing of creatures or goods.
There are also cases in industrial manufacturing, e.g. the routing of automatic machines
that put conducting layers or components on to a printed circuit board.

The algorithmic backbone of the tabu scatter search (TSS) metaheuristic intro-
duced is a tabu search (TS) which operates with a set of neighborhood operators (edge
exchange and insert moves) on a long-term diversification strategy guided by frequency
counts. The short-term tabu memory works with edges and simply prohibits reversal
moves within a dynamically varied tenure period. Additionally, the procedure has a
pool component which accompanies the TS by maintaining a set of elite solutions
found in the course of the optimization. If the classic genetic algorithm can be under-
stood as a pure parallel pool method because it always works on a set of high quality
solutions, then the TSS follows a sequential pool design, where periods of isolated
and single-solution improvements of the TS alternate with multi-solution combina-
tions. With respect to the type of encoding, the solution combination method (SCM)
is purely phenotypical, which turns this pool method into a type of scatter search (SS)
algorithm. The TSS architecture as proposed here does not exactly follow the template
ideas of Glover (1998), although there are many common features as will be outlined
below.

The SCM component combines elite solutions which have been collected by the TS.
As suggested in the template paper and further literature, the combination of solutions
is supported by generalized rounding procedures which may follow heuristic rules or
approaches based on linear programming (LP). The underlying principle of the SCM
proposed follows an adapted transportation problem (TPP) formulation, which is the
generalization of the assignment operator of Cung et al. (1997).

Scatter Search and Path Relinking 19

The TSS and its SCM benefit from a data structure which, generally, can be used
for problems described by pure permutations (customers) or by permutations where
sub-strings (routes) have to be considered as well. The SCM works as follows. Given a
set of elite solutions the TPP coefficients denote the number of times a
customer j is assigned to a route i in this pool subset. The TPP coefficient matrix can
be interpreted as an assignment frequency matrix (AFM), being the linear combination
of the c individual assignment matrices. Unit TPP demands are a consequence of the
need that every edge has to be serviced by a single vehicle. The supply of a route
is approximated by the average number of customers that can be serviced respecting
the vehicle capacity whereas a dummy column picks up the oversupply. Maximizing
this TPP results in customer-route assignments which maximize the total number of
desirable assignments while simultaneously minimizing the total Euclidean distance
to the AFM, which represents the (infeasible) combination of the initial trial points.
Although the outcome of this SCM can be directly used, it is clearly improvable since
the optimal clusters (sets) provided do not imply any guidance of how the vehicle routes
(sequences) should be formed. Therefore, a greedy sequencing heuristic (GSH) is used
for post-optimization to put the customers of all routes into a cost-convenient order.

The overall TSS starts from a random pool whose elements are exchanged for
solutions which have been improved in the TS phase. The SCM is occasionally called
and forms a combined solution which is then returned to the TS for further inspections.
This alternating process between TS and the SCM stops after a pre-defined period of
iterations.

The TSS is tested on several classes of CCPP instances: there are a number of pla-
nar Euclidean grid-graph instances, Euclidean random instances and the well-known
DeArmon data set as used for the CARPET arc routing heuristic of Hertz et al. (2000).
In a direct comparison with an old TS method (see Greistorfer (1995)) the TSS signifi-
cantly improves the results for the Euclidean classes (in 54% of all cases) and is clearly
able to keep up with CARPET regarding the instances from literature. Here the number
of (known) optimal solutions is identical, while the TSS finds one more best-known
solution. Its worst average deviation (due to a single instance) is only 1.29% higher
than the one of CARPET. The total running times, which are scaled with respect to the
CARPET-PC, are longer. However, it is shown that on average the TSS obtains its best
results faster than the CARPET heuristic. Thus, adding a pool component to a TS and
using an advanced SCM has obvious merits.

4.9.1 Testing Population Designs

The theme of Greistorfer (2001a) is continued in Greistorfer (2001 b), where the focus
is more on the methodology. The task is to work out relevant pool strategies and to
evaluate them by means of thorough computational comparisons. Test results again
refer to a sample of CCPP arc routing instances but, as mentioned above, the encoding
offers a certain ability to generalize the algorithmic findings for a number of different
problems. From the manifold design options for heuristic pool methods, the discus-
sion concentrates on three basic components: the input and output functions, which
are responsible for pool maintenance and which determine the transfer of elite solu-
tions, and a solution combination method which must effectively combine a set of elite
solutions provided by the output function.

20 F. Glover et al.

The heuristic design variants of the TSS comprise four input strategies, four
output strategies, and three SCMs, namely (including the settings of
Greistorfer (2001a), indexed with a 0).

Input strategy reduces the quality aspect to the cost dimension of a solution
and does not deal with structural properties of a solution or their relations to each
other. overcomes this disadvantage by including full duplication checks between
potential elite solutions and pool members. known as the reference set update

method of Glover (1998), is additionally linked with preceding hash comparisons. In
an attempt is made to find a compromise by skipping the full duplication part in

i.e. only relies on hashing. Input functions build on ordered structures which
are provided by a sorting algorithm. A corresponding procedure is suggested by the
author as well as a relevant hash function.

By analogy to does not utilize structural information and simply refers to
a random selection. uses frequency counts and selects those solutions for combi-
nations which have not been used before or have been used rarely. Such a tracking of
the number of involvements of a solution in a combination process introduces a certain
memory effect. By contrast, the subset generation method of Glover (1998) explicitly
makes use of an algorithmic structure which completely avoids a duplicate subset selec-
tion. Output strategies and select solutions which have the smallest and largest
distance to each other, respectively. For that purpose a distance function is proposed
which aggregates the customer positions and their route membership.

The combination strategy is the LP-based transportation method which is
described in detail in Greistorfer (2001 a). The last two SCM variants are based on
deriving average solutions. constructs average customer labels whereas deter-
mines average customer positions (see also Campos et al., 1999). Both approaches
relax the capacity restriction whose validity has to be secured afterwards by splitting
the permutation sequence into a set of route clusters. The final offspring is obtained
after applying the post-optimizing GSH.

The computational investigation of the results for the different TSS designs was
performed by checking all possible 4 . 4 . 3 = 48 TSS configurations against each other.
Each configuration was run over the whole set of test instances and evaluated by its
corresponding average objective function value derived from the best solutions found.
The best configuration turned out to be In order to evaluate the specific
effects of an input, output or combination variant, all results were checked according
to a variance analysis by means of SPSS.

Generally, effects of variations tended to be smaller at the input side of the pool
since all tests did not indicate any significant difference between the input strategies
described. One model of explanation is that duplications are effectively prevented
by each of the input procedures while the (empirical) probability of collision
(hashing error) is smaller than 0.195% for Another reason might be that strongly
diversifying input strategies are not adequately utilized by the other variable compo-
nents. The results generated by the straightforward algorithmic setting of cannot
keep up with the results of the other methods.

The picture completely changes when output strategies or different SCMs are looked
upon. It was found that the min-distance approach in is definitely an inferior option.
The argument that good solutions are mostly found in the vicinity of the best solution
cannot be upheld, which is clearly in agreement with the SS philosophy of selecting
diverse solutions to be combined. This fact is also underlined by the superiority of the

Scatter Search and Path Relinking 21

max-distance function over The expected memory effect in turned out to
be too small to guide the selection process. Random sampling in can be justified in
an isolated view which ignores input and combination method effects.

As an SCM, the LP approach of significantly contributes to finding better
solutions than and While there are no significant relations between the latter
ones, the individual best choice for proves its very useful role in the collective
optimal design

4.10 A Population Based Approach to the Resource Constrained

Project Scheduling

Valls et al. (2001) propose a population-based approach to the resource-constrained
project-scheduling problem (RCPSP), where n activities have to de processed, taking
into account the precedence relations and the resource restrictions. The procedure
incorporates different strategies for generating and improving a population of schedules.
The method has two phases. Phase 1 (figure) can be interpreted in terms of the scatter
search methodology.

INITIAL_SET_1(size) is the Diversification Generation Method, which generates
a collection of diverse trial solutions. To achieve quality and diversity, different well-
known priority rules and random procedures are used. The best size solutions are stored
in the set POP.

The Improvement Method is called HIA, the Homogenous Interval Algorithm. It
is applied to the solutions in POP and is an iterative procedure for improving the local
use of resources. It incorporates an oscillatory mechanism that alternatively searches
two different regions of the schedule space (strategic oscillation).

The Subset Generation Method and the Solution Combination Method are carried
out by the Convex Search Algorithm (CSA). CSA(k, SET) generates all pairs of refer-
ence solutions of SET and combine each of them with a procedure that integrates path
relinking characteristics.

First of all, CSA codifies each schedule by a topological order (TO) representation.
A TO representation of a schedule S is a special priority value vector , the one that
fulfills the conditions (1) (2)

being the beginning of activity i in S, and (3) and
i.e., the label is used to order activities with the same beginning. The Serial schedule
generation scheme can be used to decodify a TO representation and obtain an active

22 F. Glover et al.

schedule by selecting at each stage the eligible activity j with the lowest priority

Afterwards, for each pair of reference schedules A and B, CSA calculates the
priority value vectors defined by

where k is an integer and and are the TO representations of A and B,
respectively. Although is not a TO representation, is a vector of priorities compatible
with the precedence relations that can be easily transformed into a TO representation
that gives the same schedule as when decodified. Moreover, the priority vectors

are uniformly distributed in the geometric segment joining
and and it can be statistically proved that something similar happens to the schedules

in the path between and This means that each
incorporates more attributes of and less of as p increases, so this

procedure builds a trajectory between and
The best 40 schedules calculated by CSA are introduced in POP40, and the improve-

ment procedure HIA is applied to each of them. The Reference Set Update Method is
quite simple: the first reference set contains the best 5 schedules calculated in step 2 and
the following reference sets are formed by the best 5 solutions obtained after having
applied CSA and HIA. So, the reference set is totally replaced in each iteration, looking
for a fast convergence, since step 3 is applied only twice.

At the end of phase 1, the best solution obtained so far is generally of high quality.
Experience seems to indicate that good candidate schedules are usually to be found
“fairly close” to other good schedules. The objective of the second phase is therefore
to closely explore regions near high quality sequences. Exploring such a region means,
first, generating a population by taking a random sample from a region near a good
sequence, and second, applying to the population the improving procedure used in
the first phase—but with a variation. The on-going search is interrupted when a better
sequence is obtained and a fresh search starts from the point of the newer sequence.
Phase two begins from the best solution obtained in phase one.

Computational experiments have been carried out on the standard j120 set generated
using ProGen. They show that the indicated SS algorithm produces higher quality
solutions than state-of-the-art heuristics for the RCPSP in an average time of less than
5 s in a PC at 400 MHz.

4.11 Multiple Criteria Scatter Search

Beausoleil (2001) has developed a scatter search procedure that uses the concept of
Pareto optimality to obtain a good approximate Pareto frontier. Tabu Search is used
to obtain an initial set of reference points. Different frequency memories are used to
diversify the search. In order to designate a subset of strategies to generate a reference
solutions a choice function called Kramer Selection is used. A Kemen-Snell measure
is applied in order to find a diverse set to complement the subset of high quality
current Pareto solutions. Path Relinking and Extrapolated Path Relinking are used as
a Combination Method.

Structured weighted combination is used in a special case to obtain weighted solu-
tions inside the convex region spanned by selected reference points. To implement the
process, in the Tabu Search phase, memory is maintained of selected attributes of recent
moves and their associated solutions. A thresholding aspiration guides the selection
of an initial set of solutions. Solution quality is measured by introducing an Additive

23Scatter Search and Path Relinking

Value Function in this phase. A study involving multiple cases demonstrates the ability
of the algorithm to find a diverse Pareto frontier.

The results of the experiments show that the first TS phase generates an initial
good Pareto frontier. The combined method using path relinking and extrapolated path
relinking as an intensification-diversification method proves an effective mechanism
to generate new Pareto points, yielding a good approximation to the Pareto frontier in
a relatively small number of iterations.

4.12 Meta-Heuristic Use of Scatter Search via OptQuest

Optimization and simulation models play an important role in Defense Analyses.
A crucial component of a model-based analysis effort is agreement upon the planning
scenario upon which the analysis is conducted. For example in military force structur-
ing, the model might suggest a prescribed force structure necessary to best meet the
demands of a planning scenario. Conversely, given some proposed force structure, a
model might provide insight into a “best use” of that force within the specified scenario.
A particularly perplexing challenge for military analysts occurs when they must sug-
gest a single overall force structure after considering multiple competing scenarios,
each suggestive of potentially differing optimal force structures.

Hill and McIntyre (2000) addressed this particular vexing military force structure
problem. They define a robust force structure (solution) as that force structure (solu-
tion) “providing the best overall outcome as evaluated with respect to some set of
scenarios each of which has an associated likelihood of occurrence.” Their approach
considered the multi-scenario optimization problem within which each particular sce-
nario solution becomes a component of an aggregate multi-scenario solution. They
treat the multi-scenario space as a composite of the component scenario spaces where
each component space contributes relative to its likelihood of occurring or relative
importance weight. Using a meta-heuristic to guide a search using the combat model
as an evaluation function provides a means to find a single solution, potentially opti-
mal in the multi-scenario space, and by definition, robust across each of the individual
scenario spaces.

The Hill and McIntyre approach is presented graphically in the Figure above. Cen-
tral to the approach is a CONTROLLER interface between the meta-heuristic module

24 F. Glover et al.

and the combat models conducting the evaluations. The META-HEURISTIC guides the
search process providing the CONTROLLER potential solutions (input force structure)
and receiving from the CONTROLLER evaluations of those solutions. The COMBAT
MODEL receives its input (and scenario) from the CONTROLLER, evaluates the input,
and returns the requisite quality measure from the combat model assessment associated
with the input. The CONTROLLER accepts the potential solutions, provides those to
each of the scenario evaluators in the COMBAT MODEL, and combines each measure
into the final value or fitness of the potential solution. This process continues until pre-
defined stopping conditions are satisfied at which time the best, or set of best, solutions
are returned.

Bulut (2001) applied scatter search, implemented within the OptQuest callable
library (Laguna and Marti, 2002) to solve a multi-scenario optimization problem
based on the United States Air Force’s Combat Forces Assessment Model (CFAM), a
large-scale linear programming model for weapons allocation analyses. Three notional
planning scenarios were used and a robust solution sought to the multi-scenario prob-
lem. He compared OptQuest results with previous results obtained using a genetic
algorithm (for the same scenarios). His results indicated that better overall solutions, a
greater diversity of solutions, and quicker convergence results were obtained using the
OptQuest scatter search approach.

The methodology proposed by Hill and McIntyre (2000) and implemented by Bulut
(2001) using OptQuest is directly applicable to any analytical situation involving com-
peting “scenarios” within which one needs a single solution that is “robust” relative to
any differences among the scenarios.

4.13 Pivot Based Search Integrated with Branch and Bound for Binary MIPs

Linear programming models with a mixture of real-valued and binary variables are often
appropriate in strategic planning, production planning with significant setup times,
personnel scheduling and a host of other applications. The abstract formulation for
linear problems with binary integers takes as data a row vector c, of length n, a m × n

matrix A and a column vector b of length m. Let D be the index set 1, . . . ,n. The
problem is to select a column vector, x of length n so as to

subject to

where the index set I gives the variables that must take on zero-one values.
Issues related to the behavior of a pivot based tabu search integrated with branch

and bound algorithm, using path relinking and chunking are discussed by Løkketangen
and Woodruff (2000).

The integration takes place primarily in the form of local searches launched from
the nodes of the branch and bound tree. These searches are terminated when an integer

25Scatter Search and Path Relinking

feasible solution is found or after some number of pivots, NI. Any time a new best is
found, the search is continued for an additional NI pivots. Chunking (see Woodruff
1996, 1998) is used to detect solutions that should be used for special path relink-
ing searches that begin at the LP relaxation and to determine when the use of pivot
searches should be discontinued. (See also Glover et al., 2000, for another application
of chunking to the same kind of problems.)

As the search is launched from nodes in a B&B tree, there are some special consid-
erations that come into play that sets this use of the pivot based search somewhat apart
from other implementations. First, the chunking mechanism and the path relinking
based target searches, respectively, fulfill the functions of diversification or intensifi-
cation. Second, the purpose, or focus, of the search is somewhat different from the
stand-alone search, in that for some of the searches, the emphasis is shifted more
towards obtaining integer feasibility quickly. This focus is controlled by a separate
parameter skew, that is used to adjust the relative importance of obtaining feasibility
versus maintaining a good objective function value.

Chunking addresses the questions of when the launching of pivot based searches
should be terminated, and when the path relinking searches should be launched. More
specifically, path relinking searches are used to exploit “unique” or “outlying” solutions.
The meaning of “unique” and “outlying” can be supplied by chunking.

Two types of local searches can be launched at a node. The first are the normal
TS pivot-based searches launched from nodes in the B&B tree (see Løkketangen and
Glover, 1995, 1996, 1998, 1999).

The other type are the Path Relinking searches. After a best-so-far solution x* has
been found, the chunking mechanisms try to identify distant solutions, (w.r.t. the
current sample). When such a distant solution has been identified, a 2-target search is
launched. This is a variant of path relinking, with the purpose of launching a new search
into unknown territory, while at the same time keeping good parts of the solutions. This
integrates the considerations of intensification and diversification.

The starting point of this search is the relaxed root node solution LP* (being an
upper bound on the objective function value), and the target for the path relinking is
the hyperplane defined by the common integer solution values of x* and . All integer
variables are freed. To allow the search to focus on this hyperplane, the integer infea-
sibility part of the move evaluation function is temporarily modified. (The objective
function value component is unaltered, as is the aspiration criterion—see Løkketangen
and Woodruff, 2000.) Instead of using the normal integer infeasibility measure of sum-
ming up over all the integer variables the distance to the nearest integer, the authors
use the following scheme:

Sum up over all the integer variables.

If the two targets have the same integer solution value for the variable, use the
distance to this value.

If the two targets differ, use the normal integer infeasibility measure (i.e., the
closest integer value).

When the search reaches the hyperplane connecting x* and , the normal move
evaluation function is reinstated, and the search continues in normal fashion for NI

iterations.

26 F. Glover et al.

Computational testing was done on problems from Miplib and Dash Associates,
consisting of a mix of MIP’s and IP’s. The testing showed that the local searches
had a beneficial effect on the overall search time for a number of problem instances,
particularly those that were harder to solve.

4.14 Scatter Search to Generate Diverse MIP Solutions

Often, scatter search and star path algorithms (Glover, 1995), generate diverse sets
of solutions as a means to an end. In a recent paper by Glover, Løkketangen and
Woodruff (2000) diversity is the ultimate goal for which scatter search and star paths
are employed. This paper presents methods of systematically uncovering a diverse
set of solutions for 0–1 mixed integer programming problems. These methods can be
applied to instances without any special foreknowledge concerning the characteristics
of the instances, but the absence of such knowledge gives rise to a need for general
methods to assess diversity.

When the objective function is only an approximation of the actual goals of the
organization and its stakeholders, the one solution that optimizes it may be no more
interesting than other solutions that provide good values. However, information over-
load can be a problem here as well. It is not desirable to swamp the decision maker with
solutions. Highly preferable is to identify a set of solutions that are decently good and,
especially, diverse. One can reasonably rely on the objective function to quantify the
notion of “decently good”. The diversification methods given by Glover, Løkketangen
and Woodruff are based on the idea of generating extreme points in a polyhedral region
of interest and then using these points and the paths between them in a variety of ways.
The methods examine points on the polyhedron, within and “near” it. Their algorithm
proceeds in two phases: first it generates a set of centers and then connects them using
star paths.

The description of the generation of centers can also be broken into two phases.
First a diversification generator is used to create points. In the second phase, these
points are provided as data to an optimization problem that results in extreme points
that are averaged to create the centers.

Although a diverse set of good solutions is clearly desirable, it is not clear in advance
how to measure the property of diversity. In spite of the fact that the objective function
is not exact, it presumably gives a reasonable way to assess the relative “goodness” of
a set of solutions. No such simple mapping is known from solution vectors to a one-
dimensional measure of diversity. Diversity measures are required both for the design
of practical software and for research purposes. For practical software, it is important
to know if the user should be “bothered” with a particular solution vector—that is, to
know if a vector adds enough diversity to warrant adding it to the set of solutions that
are displayed. For research purposes, one might want to compare the set of vectors
generated by one method with a set of vectors generated by another.

There are a number of advantages to the quadratic metric known in this context
as Mahalanobis distances. This metric is scale invariant and can take correlations
into account if based on a covariance matrix. Furthermore, this type of distance con-
nects naturally with a scalar measure of the diversity of a set of vectors, which is the
determinant of the covariance matrix of the set. Under the assumption of multivariate
normality, the covariance matrix defines ellipsoids of constant Mahalanobis distances
that constitute probability contours. Large covariance determinants correspond to large

Scatter Search and Path Relinking 27

volumes in the ellipsoids. The assumption of multivariate normality is not needed to
use the covariance determinant to put an order on sets of vectors and furthermore it is
not needed to see that adding points with large Mahalanobis distances will increase the
covariance determinant.

However, there is a major difficulty. In order to calculate a covariance matrix for a
set of vectors of length p = n one must have a set of vectors that does not lie entirely
in a subspace. This means that at a minimum the set must contain n + 1 vectors and
for MIP solutions, more vectors will often be required to span the full n dimensions.
For even modest sized MIPs this is not good. In order to have a working definition
of diversity, one must have thousands of solution vectors. A remedy for this difficulty
that also increases the plausibility of multivariate normality has been referred to as
chunking by Woodruff (1998). A generalization based on principal components has
also been proposed by Woodruff (2001).

As general purpose optimization methods are embedded in decision support sys-
tems, there will unquestionably be an increased need not only for optimal solutions,
but also for a diverse set of good solutions. Scatter search and star paths can be an
effective means to this end.

Results of computational experiments demonstrate the efficacy of the “scatter-star-
path” method for generating good, diverse vectors for MIP problems. Furthermore, the
results show that the method offers particular advantages when used in conjunction
with brand and bound. The creation of these results illustrates the use of methods for
measuring the diversity for a set of solutions.

4.15 Path Relinking to Improve Iterated Re-start Procedures

Research has been performed to investigate the ability of path relinking to improve
the performance of iterated re-start procedures, with attention focused in particular on
the GRASP method (Ribeiro and Resende, 2002). One possible shortcoming of the
standard GRASP algorithm is the independence of its iterations, i.e., the fact that it
does not learn from the history of solutions found in previous iterations. This is so
because it discards information about any solution encountered that does not improve
the incumbent. Information gathered from good solutions can be used to implement
extensions based on path-relinking.

Path relinking was originally proposed in the context of tabu search as an inten-
sification strategy which explores trajectories connecting high-quality solutions. The
use of path relinking within a GRASP procedure was first proposed by Laguna and
Martí (1999), being followed by several extensions, improvements, and successful
applications (e.g., Canuto et al., 2001; Aiex et al., 2002; Ribeiro et al., 2002). Path
relinking and a very short term memory used within the local search were instru-
mental to make a recently proposed GRASP heuristic for the capacitated minimum
spanning tree problem competitive with other approaches in the literature (Souza et al.,
2002). Two basic strategies are used to apply path relinking in the context of a GRASP
heuristic:

apply path relinking as a post-optimization step to all pairs of elite solutions; and

apply path relinking as an intensification strategy to each local optimum obtained
after the local search phase

28 F. Glover et al.

Both strategies maintain and handle a pool with a limited number Max_Elite of elite
solutions found along the search (we used Max_Elite ranging from 10 to 20 in most
implementations). The pool is originally empty. Each locally optimal solution obtained
by local search is considered as a candidate to be inserted into the pool if it is suffi-
ciently different from every other solution currently in the pool. If the pool already has
Max_Elite solutions and the candidate is better than the worst of them, then the former
replaces the latter. If the pool is not full, the candidate is simply inserted.

Applying path relinking as an intensification strategy to each local optimum seems
to be more effective than simply using it as a post-optimization step. In this context,
path relinking is applied to pairs X–Y of solutions, where X is the locally optimal
solution obtained after local search and Y is one of a few elite solutions randomly
chosen from the pool (usually only one elite solution is selected). The algorithm starts
by computing the symmetric difference between X and Y, resulting in a set of moves
which should be applied to one of them (the initial solution) to reach the other (the
guiding solution). Starting from the initial solution, the best move still in is applied,
until the guiding solution is attained. The best solution found along this trajectory is
also considered as a candidate for insertion in the pool and the incumbent is updated.
Several alternatives have been considered and combined in recent implementations to
explore trajectories connecting X and Y:

do not apply path relinking at every GRASP iteration, but instead only
periodically;

explore two different trajectories, using first X, then Y as the initial solution;

explore only one trajectory, starting from either X or Y; and

do not follow the full trajectory, but instead only part of it.

All these alternatives involve trade-offs between computation time and solution qual-
ity. Ribeiro et al. (2002) observed that exploring two different trajectories for each pair
X–Y takes approximately twice the time needed to explore only one of them, with
very marginal improvements in solution quality. They also observed that if only one
trajectory is to be investigated, better solutions are found when path relinking starts
from the best among X and Y. Since the neighborhood of the initial solution is much
more carefully explored than that of the guiding one, starting from the best of them
gives to the algorithm a better chance to investigate with more details the neighbor-
hood of the most promising solution. For the same reason, the best solutions are usually
found closer to the initial solution than to the guiding one, allowing pruning the relink-
ing trajectory before the latter is reached. The same findings were also observed on
a recent implementation of a GRASP heuristic for a multicommodity flow problem
arising from PVC rerouting in frame relay services. Detailed computational results and
implementation strategies are described by Resende and Ribeiro (2002).

Path relinking is a quite effective strategy to introduce memory in GRASP, leading to
very robust implementations. This is illustrated by the results obtained with the hybrid
GRASP with path relinking for the Steiner problem in graphs described in Ribeiro et al.
(2002) which in particular improved the best known solutions for 33 out of the 41 still
open problems in series i640 of the SteinLib repository (Voss et al., 2001) on April 6,
2001.

Scatter Search and Path Relinking 29

Even though parallelism is not yet systematically used to speed up or to improve the
effectiveness of metaheuristics, parallel implementations are very robust and abound
in the literature (see e.g. Cung et al., 2001 for a recent survey). Most parallel imple-
mentations of GRASP follow the independent-thread multiple-walk strategy, based on
the distribution of the iterations over the processors.

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics, running multiple copies of the same sequential algorithm, has been
addressed by some authors. A given target value for the objective function is
broadcasted to all processors which independently run the sequential algorithm. All
processors halt immediately after one of them finds a solution with value at least as good
as The speedup is given by the ratio between the times needed to find a solution with
value at least as good as , using respectively the sequential algorithm and the parallel
implementation with processors. These speedups are linear for a number of meta-
heuristics, including simulated annealing, iterated local search, and tabu search. This
observation can be explained if the random variable time to find a solution within some

target value is exponentially distributed (Verhoeven and Aarts, 1995). In this case, the
probability of finding a solution within a given target value in time pt with a sequential
algorithm is equal to that of finding a solution at least as good as the former in time
t using p independent parallel processors, leading to linear speedups. An analogous
proposition can be stated for a two parameter (shifted) exponential distribution.

Aiex et al. (2002) have shown experimentally that the solution times for GRASP also
have this property, showing that they fit a two-parameter exponential distribution. This
result was based on computational experiments involving GRASP procedures applied
to 2400 instances of five different problems: maximum independent set, quadratic
assignment, graph planarization, maximum weighted satisfiability, and maximum cov-
ering. The same result still holds when GRASP is implemented in conjunction with
a post-optimization path relinking procedure.

In the case of multiple-walk cooperative-thread parallel strategies, the threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution but,
also, to find better solutions than independent-thread strategies. Cooperative-thread
strategies may be implemented using path-relinking, combining elite solutions stored
in a central pool with the local optima found by each processor at the end of each
GRASP iteration. Canuto et al. (2000, 2001) used path relinking to implement a par-
allel GRASP for the prize-collecting Steiner tree problem. A similar approach was
recently adopted by Aiex et al. (2000) for the 3-index assignment problem. Each
processor, upon completing its iterations, applies path relinking to pairs of elite solu-
tions stored in a pool, and each processor keeps its own local pool of elite solutions.
The strategy used in Canuto (2000) is truly cooperative, since pairs of elite solutions
from a centralized unique central pool are distributed to the processors which perform
path relinking in parallel. Computational results obtained with implementations using
MPI and running on a cluster of 32 Pentium II-400 processors and on a SGI Challenge
computer with 28 196-MHz MIPS R10000 processor (Aiex et al., 2000) show linear
speedups and further illustrate the effectiveness of path relinking procedures used in
conjunction with GRASP to improve the quality of the solutions found by the latter.

30 F. Glover et al.

ACKNOWLEDGEMENTS

Research by F. Glover and M. Laguna was partially supported by the U.S. Office of
Naval Research grant N00014-02-0151, and research by R. Martí partially supported
by the Ministerio de Ciencia y Tecnología of Spain: TIC2000-1750-C06-01.

REFERENCES

Aiex, R.M., Resende, M.G.C., Pardalos, P.M. and Toraldo, G. (2000) GRASP with
path relinking for the three-index assignment problem (submitted for publication).

Aiex, R.M., Resende, M.G.C. and Ribeiro, C.C. (2002) Probability distribution of
solution time in GRASP: An experimental investigation. Journal of Heuristics, 8,
343–373.

Alvarez, A., González, J.L. and De Alba, K. (200la) Un algoritmo de búsqueda
para un problema de red capacitada multiproducto. In: C. Zozaya, M. Mejía, P. Nor-
iega, A. Sánchez (eds.), Proceedings of 3rd International Meeting of Computational

Sciences, Aguascalientes Mexico, pp. 105–114.

Alvarez, A., González, J.L. and De Alba, K. (2001 b) Scatter search for the multi-
commodity capacitated network design problem. Proceedings of the 6th Annual
International Conference on Industrial Engineering—Theory, Applications and
Practice. San Francisco, CA, USA.

Beausoleil, R.P. (2001) Multiple criteria scatter search. 4th Metaheuritics International
Congress, Porto, Portugal, pp. 539–543.

Bulut, G. (2001) Robust multi-scenario optimization of an air expeditionary force force
structure applying scatter search to the combat forces assessment model. Masters
Thesis, Department of Operational Sciences, Air Force Institute of Technology,
AFIT/GOR/ENS/01M-05.

Campos, V., Laguna, M. and Martí, R. (1999) Scatter search for the linear ordering
problem. In: David Corne, Marco Dorigo and Fred Glover (eds.), New Ideas in

Optimization, McGraw-Hill, pp. 331–340.

Canuto, S. A. (2000) Local Search for the Prize-collecting Steiner Tree Problem (in Por-
tuguese), M.Sc. Dissertation, Department of Computer Science, Catholic University
of Rio de Janeiro.

Canuto, S.A., Resende, M.G.C. and Ribeiro, C.C. (2001) Local search with per-
turbations for the prize-collecting Steiner tree problem in graphs. Networks, 38,
50–58.

Cavique, L., Rego, C. and Themido, I. (2001) A Scatter Search Algorithm for the Max-
imum Clique Problem. Essays and Surveys in Metaheuristics, Kluwer Academic
Publishers.

Chanas, S. and Kobylanski, P. (1996) A new heuristic algorithm solving the
linear ordering problem. Computational Optimization and Applications, 6,
191–205.

Crowston, W.B., Thompson, G.L. and Trawick, J.D. (1963) Probabilistic learning
combinations of local job shop scheduling rules. Chapters II and III, ONR Research
Memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA.

Scatter Search and Path Relinking 31

Cung, V.-D., Mautor, T., Michelon, P. and Tavares, A. (1997) A scatter search based
approach for the quadratic assignment problem. In: T. Bäck, Z. Michalewicz and
X. Yao (eds.), Proceedings of IEEE-ICEC-EPS'97, IEEE International Confer-

ence on Evolutionary Computation and Evolutionary Programming Conference.

Indianapolis, pp. 165–170.

Cung, V.D., Martins, S.L., Ribeiro, C.C. and Roucairol, C. (2001) Strategies for the
parallel implementation of metaheuristics. In: C.C. Ribeiro and P. Hansen (eds.),
Essays and Surveys in Metaheuristics. Kluwer, pp. 263–308.

Delgado, C., Laguna, M. and Pacheco, J. (2002) Minimizing Labor Requirements in
a Periodic Vehicle Loading Problem. University of Burgos, Spain.

Dorne, R. and Hao, J.-K. (1998) Tabu search for graph coloring, T-colorings and
set T-colorings. In: S. Voss, S. Martello, I.H. Osman and C. Roucairol (eds.),
Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization.

Kluwer, pp. 77–92.

Eades, P. and Kelly, D. (1986) Heuristics for drawing 2-layered networks. Ars

Combinatoria, 21, 89–98.

Festa, P. and Resendee, M.G.C. (2001) GRASP: an annotated bibliography. In:
P. Hansen and C. Riberio (eds.), Essays and Surveys on Meta-Heuristics, Kluwer
Academic Publishers, Boston, USA.

Fleurent, C. and Glover, F. (1999) Improved constructive multi-start strategies for
the quadratic assignment problem using adaptive memory. INFORMS Journal on

Computing, 11, 198–204.

Funabiki, N. and Higashino, T. (2000) A minimal-state processing search algorithm
for graph colorings problems. IEICE Transactions on Fundamentals, E83-A(7),
1420–1430.

Galinier, P. and Hao, J.-K. (1999) Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4), 379–397.

García, F., Melián, B., Moreno, J.A. and Moreno, J.M. (2001) Hybrid metaheuristics
based on the scatter search. Proceeding of EUNITE 2001. pp. 479–485. ISBN: 3-
89653-916-7. (European Symposium on Intelligent Technologies, Hybriis Systems
and their implementation on Smart Adaptive Systems. December 13–14. Puerto de
la Cruz, Tenerife, Spain.)

Garey, M. and Johnson, D. (1979) Computers and Intractability. A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, New York.

Ghamlouche, I., Crainic, T.G. and Gendreau, M. (2002) Path relinking, cycle-based
neighbourhoods and capacitated multicommodity network design. Publication CRT-
2002-01, Centre de recherche sur les transports, Université de Montréal.

Ghamlouche, I., Crainic, T.G. and Gendreau, M. (2001) Cycle-based neighbourhoods
for fixed-charge capacitated multicommodity network design. Publication CRT-
2001-01, Centre de recherche sur les transports, Université de Montréal.

Glover, F. (1963) Parametric combinations of local job shop scheduling rules.
Chapter IV, ONR Research Memorandum No. 117, GSIA, Carnegie Mellon
University, Pittsburgh, PA.

32 F. Glover et al.

Glover, F. (1965) A multiphase dual algorithm for the zero-one integer programming
problem. Operations Research, 13(6), 879–919.

Glover, F. (1968) Surrogate constraints. Operations Research, 16(4), 741–749.

Glover, F. (1977) Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1), 156–166.

Glover, F. (1994) Tabu search for nonlinear and parametric optimization (with links to
genetic algorithms). Discrete Applied Mathematics, 49, 231–255.

Glover, F. (1995) Scatter search and star paths: beyond the genetic metaphor. OR

Spektrum, 17, 125–137.

Glover, F. (1997) Tabu search and adaptive memory programming—advances, appli-
cations and challenges. In. R. Barr, Helgason and Kennington (Co-eds.), Advances

in Meta-heuristics, Optimization and Stochastic Modeling Techniques. Kluwer
Academic Publishers, Boston, USA, pp. 1–175.

Glover, F. (1998) A template for scatter search and path relinking. In: J.-K. Hao, E.
Lutton, E. Ronald, M. Schoenauer and D. Snyers (eds.), Artificial Evolution, Lecture

Notes in Computer Science 1363. Springer, pp. 3–51.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Boston.

Glover, F., Løkketangen, A. and Woodruff, D.L. (2000) Scatter search to generate
diverse MIP solutions. In: M. Laguna and J.L. González-Velarde (eds.), OR Com-

puting Tools for Modeling, Optimization and Simulation: Interfaces in Computer

Science and Operations Research, pp. 299–317.

Grabowski, J. and Wodecki, M. (2001) A new very fast tabu search algorithm for the
job shop problem. Preprint 21/2001, Instytut Cybernetyki Techncznej Politechniki
Wroclawskiej, Wroclaw.

Greistorfer, P. (1995) Computational experiments with heuristics for a capacitated
arc routing problem. In: U. Derigs, A. Bachem and A. Drexl (eds.), Operations

Research Proceedings 1994. Springer-Verlag, Berlin, pp. 185–190.

Greistorfer, P. (2001a) A tabu scatter search metaheuristic for the arc routing problem.
Computers & Industrial Engineering (forthcoming).

Greistorfer, P. (2001b) Testing population designs. 4th Metaheuristics International

Conference (MIC'2001). Porto, pp. 713–717 (17 pages submitted as “Experimental
pool design”).

Hamiez, J.P. and Hao, J.K. (2001) Scatter search for graph coloring. To appear in the
LNCS series (Springer).

Herrmann J.W., Ioannou, G., Minis, I. and Proth, J.M. (1996) A dual ascent approach
to the fixed-charge capacitated network design problem. European Journal of

Operational Research, 95, 476–490.

Hill, R.R. and McIntyre, G. (2000) A methodology for robust, multi-scenario
optimization. Phalanx, 33(3).

Johnson, D.S. and Trick, M.A. (eds.) (1996) Cliques, Coloring, and Satisfiabil-

ity: 2nd DIMACS Implementation Challenge, 1993, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 26, American Mathematical
Society.

Knuth, D.E. (1993) The Stanford GraphBase: A Platform for Combinatorial Comput-

ing. Addison Wesley, New York.

Laguna, M. (1999) Scatter search. In: P.M. Pardalos and M.G.C. Resende (eds.),
Handbook of Applied Optimization. Oxford Academic Press (to appear).

Laguna, M. and Martí, R. (1999) GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11(1), 44–52.

Laguna, M. and Martí, R. (2002) The OptQuest callable library. In: S. Voss and D.L.
Woodruff (eds.), Optimization Software Class Libraries, Kluwer, Boston.

Laguna, M., Martí, R. and Campos, V. (1999) Intensification and diversification
with Elite Tabu search solutions for the linear ordering problem. Computers and

Operations Research, 26, 1217–1230

Løkketangen, A. and Woodruff (2000) Integrating pivot based search with branch and
bound for binary MIP's. Control and Cybernetics, Special Issue on Tabu Search,

29(3), 741–760.

Løkketangen, A. and Glover, F. (1998) Solving zero-one mixed integer program-
ming problems using tabu search. European Journal of Operational Research, 106,
624–658.

Løkketangen, A. and Glover, F. (1995) Tabu search for zero/one mixed integer pro-
gramming with advanced level strategies and learning. International Journal of

Operations and Quantitative Management, 1(2), 89–109.

Løkketangen, A. and Glover, F. (1996) Probabilistic move selection in Tabu search for
0/1 mixed integer programming problems. In: Metaheuristics: Theory and Appli-

cations, by Kluwer, March 96. An earlier version is in the conference proceedings
from MIC ’95.

Løkketangen, A. and Glover, F. (1999) Candidate list and exploration strategies for
solving 0/1 MIP problems using a Pivot neighborhood. In: S. Voß, S. Martello,
I.H. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization. Kluwer Academic Publishers, pp. 141–155.

Magnanti, T. and Wong, R. (1984) Network design and transportation planning: models
and algorithms. Transportation Science, 18, 1–55.

Martí, R. (1998) A Tabu search algorithm for the Bipartite drawing problem. European

Journal of Operational Research, 106, 558–569.

Martí, R. and Laguna, M. (1997) Heuristics and metaheuristics for 2-layer straight line
crossing minimization. Discrete and Applied Mathematics (to appear).

Martí, R., Lourenço, L. and Laguna, M. (2000) Assigning proctors to exams with
scatter search. In: M. Laguna and J.L. González Velarde (eds.), Computing

Tools for Modeling, Optimization and Simulation, Kluwer Academic Publishers,
pp.215–228.

Martí, R., Lourenço, L. and Laguna, M. (2001) Assigning proctors to exams with

scatter search (second part), Economic Working Papers Series, Department of
Economics and Business, Universitat Pompeu Fabra, no. 534.

Morgenstern, C. A. (1996) Distributed coloration neighborhood search. In Johnson and
Trick (1996), pp. 335–357.

Scatter Search and Path Relinking 33

34 F. Glover et al.

Nowicki, E. and Smutnicki, C. (1996) A fast tabu search algorithm for the job-shop
problem. Management Science, 42(6), 797–813.

Nowicki, E., and Smutnicki, C. (2001a) New ideas in TS for job-shop schedul-
ing. Technical Report 50/2001. In: C. Rego and B. Alidaee (eds.), Adaptive

Memory and Evolution: Tabu Search and Scatter Search. Kluwer Academic
Publishers.

Nowicki, E. and Smutnicki, C. (2001b) New tools to solve the job-shop problem.
Technical Report 51.

Osman, I.H. (2000) Meta-heuristics: A general framework. In: Proceedings of the

Workshop on “algorithm engineering as a new paradigm: a challenge to hard com-

putation problems ” October 30–November 2, Research Institute for Mathematical
Science, Kyoto University, Japan, pp. 117–118.

Osman, I.H. and Samad Ahmadi (2001) Guided Construction search Meta-Heuristics
for the Capacitated Clustering Problem. Working Paper, School of Business,
American University of Beirut.

Osman, I.H. (1994) Capacitated clustering problems by hybrid simulated annealing
and tabu search. International Transactions in Operational Research, I, 317–336.

Rego, Cesar and Pedro Leão (2000) A Scatter Search Tutorial for Graph-Based Per-
mutation Problems. Hearin Center for Enterprise Science, U of Mississippi, Report
Number: HCES-10-00.

Reinelt, G. (1985) The Linear Ordering Problem: Algorithms and Applications,

Research and Exposition in Mathematics, Vol. 8, H.H. Hofmann and R. Wille
(eds.), Heldermann Verlag Berlin.

Resende, M.G.C. and Ribeiro, C.C. (2001) A GRASP with path relinking for
permanent virtual circuit routing. Research Report (submitted for publication).

Resende, M.G.C. and C.C. Ribeiro (2002) “GRASP”, In: F. Glover and G. Kochen-
berger (eds.), State-of-the-Art Handbook of Metaheuristics. Kluwer (to appear).

Ribeiro, C.C., ~Uchoa, E. and Werneck, R.F. (2002) A hybrid GRASP with pertur-
bations for the Steiner problem in graphs. INFORMS Journal on Computing (to
appear)

Rusell, R.A. and Igo, W. (1979) An assignment routing problem. Networks, 9, 1–17.

Souza, M.C., Duhamel, C. and Ribeiro, C.C. (2002) A GRASP heuristic using a path-
based local search for the capacitated minimum spanning tree problem. Research

Report (submitted for publication).

Valls, V., Quintanilla, S. and Ballestín, F. (2001) A Population Based Approach to the
Resource Constrained Project Scheduling. TR06-2001, Departamento de Estadística
e Investigación Operativa, Facultad de Matemáticas, Universitat de Valencia (Spain).

Verhoeven, M.G.A. and Aarts, E.H.L. (1995) Parallel local search. Journal of

Heuristics, 1, 43–65.

Voss, S., Martin, A. and Koch, T. (2001) SteinLib testdata library. online document at
http://elib.zib.de/steinlib/steinlib.html.

Woodruff, D.L. (1998) Proposals for chunking and Tabu search. European Journal of

Operation Research, 106, 585–598.

Scatter Search and Path Relinking 35

Woodruff, D.L. (2001) General purpose metrics for solution variety. Technical Report,
Graduate School of Management, UC Davis, Davis CA 95616.

Woodruff, D.L. (1996) Chunking applied to reactive Tabu search. In:
I.H. Osman and J.P. Kelly (eds.), Metaheuristics: Theory and Applications.

pp. 555–570.

This page intentionally left blank

Chapter 2

AN INTRODUCTION TO TABU SEARCH

Michel Gendreau
Centre de recherche sur les transports

Département d’informatique et de recherche opérationnelle

Université de Montréal

Case postale 6128, Succursale “Centre-ville”

Montréal, Canada H3C 3J7

E-mail: michelg@crt.umontreal.ca

Abstract This chapter presents the fundamental concepts of Tabu Search (TS) in a tutorial
fashion. Special emphasis is put on showing the relationships with classical Local Search methods
and on the basic elements of any TS heuristic, namely, the definition of the search space, the
neighborhood structure, and the search memory. Other sections cover other important concepts
such as search intensification and diversification and provide references to significant work on
TS. Recent advances in TS are also briefly discussed.

1 INTRODUCTION

Over the last fifteen years, well over a hundred papers presenting applications of Tabu
Search (TS), a heuristic method originally proposed by Glover in 1986, to various
combinatorial problems have appeared in the operations research literature. In several
cases, the methods described provide solutions very close to optimality and are among
the most effective, if not the best, to tackle the difficult problems at hand. These
successes have made TS extremely popular among those interested in finding good
solutions to the large combinatorial problems encountered in many practical settings.
Several papers, book chapters, special issues and books have surveyed the rich TS
literature (a list of some of the most important references is provided in a later section).
In spite of this abundant literature, there still seem to be many researchers who, while
they are eager to apply TS to new problem settings, find it difficult to properly grasp the
fundamental concepts of the method, its strengths and its limitations, and to come up
with effective implementations. The purpose of this chapter is to address this situation
by providing an introduction in the form of a tutorial focusing on the fundamental
concepts of TS. Throughout the chapter, two relatively straightforward, yet challenging
and relevant, problems will be used to illustrate these concepts: the Classical Vehicle
Routing Problem (CVRP) and the Capacitated Plant Location Problem (CPLP). These
will be introduced in the following section. The remainder of the chapter is organized as
follows. The basic concepts of TS (search space, neighborhoods, and short-term tabu
lists) are described and illustrated in Section 3. Intermediate, yet critical, concepts,
such as intensification and diversification, are described in Section 4. This is followed

38 M. Gendreau

in Section 5 by a brief discussion of advanced topics and recent trends in TS, and in
Section 6 by a short list of key references on TS and its applications. Section 7 provides
practical tips for newcomers struggling with unforeseen problems as they first try to
apply TS to their favorite problem. Section 8 concludes the chapter with some general
advice on the application of TS to combinatorial problems.

2 ILLUSTRATIVE PROBLEMS

2.1 The Classical Vehicle Routing Problem

Vehicle Routing Problems have very important applications in the area of distribution
management. As a consequence, they have become some of the most studied problems
in the combinatorial optimization literature and large number of papers and books deal
with the numerous procedures that have been proposed to solve them. These include
several TS implementations that currently rank among the most effective. The Classical

Vehicle Routing Problem (CVRP) is the basic variant in that class of problems. It can
formally be defined as follows. Let G = (V, A) be a graph where V is the vertex set
and A is the arc set. One of the vertices represents the depot at which a fleet of
identical vehicles of capacity Q is based, and the other vertices customers that need
to be serviced. With each customer vertex are associated a demand and a service
time With each arc of A are associated a cost and a travel time The
CVRP consists in finding a set of routes such that:

1.

2.

3.

4.

5.

Each route begins and ends at the depot;

Each customer is visited exactly once by exactly one route;

The total demand of the customers assigned to each route does not exceed Q;

The total duration of each route (including travel and service times) does not
exceed a specified value L;

The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers into
groups, each of total demand no larger than Q, that are sequenced to yield routes

(starting and ending at the depot) of duration no larger than L.

2.2 The Capacitated Plant Location Problem

The Capacitated Plant Location Problem (CPLP) is one of the basic problems in
Location Theory. It is encountered in many application settings that involve locating
facilities with limited capacity to provide services. The CPLP can be formally described
as follows. A set of customers I with demands for some product are to be
served from plants located in a subset of sites from a given set J of “potential sites”.
For each site the fixed cost of “opening” the plant at is and its capacity is

The cost of transporting one unit of the product from site to customer is The
objective is to minimize the total cost, i.e., the sum of the fixed costs for open plants
and the transportation costs.

Letting denote the quantity shipped from site to customer
(the are the so-called flow variables) and be a 0–1 variable indicating

An Introduction to Tabu Search 39

whether or not the plant at site is open (the are the location variables), the
problem can be formulated as the following mathematical program:

Remark 2.1. For any vector of location variables, optimal (w.r.t. to this plant con-

figuration) values for the flow variables can be retrieved by solving the associated

transportation problem:

If the optimal location variable vector, the optimal solution to the original

CPLP problem is simply given by (y*,x(y*)).

Remark 2.2. An optimal solution of the original CPLP problem can always be found

at an extreme point of the polyhedron of feasible flow vectors defined by the constraints:

This property follows from the fact that the CPLP can be interpreted as a fixed-charge

problem defined in the space of the flow variables. This fixed-charge problem has a

concave objective function that always admits an extreme point minimum. The optimal

values for the location variables can easily be obtained from the optimal flow vector

by setting equal to 1 if and to 0 otherwise.

To our knowledge, no TS heuristic has ever been proposed for the CPLP, but we

will see in the following that this problem can be used to illustrate many important

concepts related to the approach.

40 M. Gendreau

3 BASIC CONCEPTS

3.1 Historical Background

Before introducing the basic concepts of TS, we believe it is useful to go back in time to
try to better understand the genesis of the method and how it relates to previous work.

Heuristics, i.e., approximate solution techniques, have been used since the begin-
nings of operations research to tackle difficult combinatorial problems. With the
development of complexity theory in the early 70’s, it became clear that, since most
of these problems were indeed NP-hard, there was little hope of ever finding efficient
exact solution procedures for them. This realization emphasized the role of heuristics
for solving the combinatorial problems that were encountered in real-life applications
and that needed to be tackled, whether or not they were NP-hard. While many different
approaches were proposed and experimented with, the most popular one was based
on Local Search (LS) improvement techniques. LS can be roughly summarized as an
iterative search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modifications (or moves). At each iteration, the
search moves to an improving feasible solution that differs only slightly from the current
one (in fact, the difference between the previous and the new solutions amounts to one
of the local modifications mentioned above). The search terminates when it encounters
a local optimum with respect to the transformations that it considers, an important
limitation of the method: unless one is extremely lucky, this local optimum is often
a fairly mediocre solution. In LS, the quality of the solution obtained and computing
times are usually highly dependent upon the “richness” of the set of transformations
(moves) considered at each iteration of the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance
of a paper in which the authors (Kirkpatrick, Gelatt and Vecchi) were describing a new
heuristic approach called Simulated Annealing (SA) that could be shown to converge
to an optimal solution of a combinatorial problem, albeit in infinite computing time.
Based on analogy with statistical mechanics, SA can be interpreted as a form of con-
trolled random walk in the space of feasible solutions. The emergence of SA indicated
that one could look for other ways to tackle combinatorial optimization problems and
spurred the interest of the research community. In the following years, many other
new approaches, mostly based on analogies with natural phenomena, were proposed
(TS, Ant Systems, Threshold Methods) and, together with some older ones, such as
Genetic Algorithms (Holland, 1975), they gained an increasing popularity. Now col-
lectively known under the name of Meta-Heuristics (a term originally coined by Glover
in 1986), these methods have become over the last fifteen years the leading edge of
heuristic approaches for solving combinatorial optimization problems.

3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed in 1986 a new
approach, which he called Tabu Search, to allow LS methods to overcome local optima.
(In fact, many elements of this first TS proposal, and some elements of later TS elab-
orations, were introduced in Glover, 1977, including short term memory to prevent
the reversal of recent moves, and longer term frequency memory to reinforce attrac-
tive components.) The basic principle of TS is to pursue LS whenever it encounters
a local optimum by allowing non-improving moves; cycling back to previously visited

An Introduction to Tabu Search 41

solutions is prevented by the use of memories, called tabu lists, that record the recent
history of the search, a key idea that can be linked to Artificial Intelligence concepts. It
is interesting to note that, the same year, Hansen proposed a similar approach, which
he named steepest ascent/mildest descent. It is also important to remark that Glover
did not see TS as a proper heuristic, but rather as a Meta-Heuristic, i.e., a general strat-
egy for guiding and controlling “inner” heuristics specifically tailored to the problems
at hand.

3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, basic TS
can be seen as simply the combination of LS with short-term memories. It follows that
the two first basic elements of any TS heuristic are the definition of its search space

and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible solu-
tions that can be considered (visited) during the search. For instance, in the CVRP
example described in Section 2, the search space could simply be the set of feasible
solutions to the problem, where each point in the search space corresponds to a set of
vehicles routes satisfying all the specified constraints. While in that case the definition
of the search space seems quite natural, it is not always so. Consider now the CPLP
example of Section 2: the feasible space involves both integer location and continuous
flow variables that are linked by strict conditions; moreover, as has been indicated
before, for any feasible set of values for the location variables, one can fairly easily
retrieve optimal values for the flow variables by solving the associated transportation
problem. In this context, one could obviously use as a search space the full feasible
space; this would involve manipulating both location and flow variables, which is not
an easy task. A more attractive search space is the set of feasible vectors of location
variables, i.e., feasible vectors in any solution in that space being “completed”
to yield a feasible solution to the original problem by computing the associated opti-
mal flow variables. It is interesting to note that these two possible definitions are not
the only ones. Indeed, on the basis of Remark 2.2, one could also decide to search
instead the set of extreme points of the set of feasible flow vectors, retrieving the
associated location variables by simply noting that a plant must be open whenever
some flow is allocated to it. In fact, this type of approach was used successfully by
Crainic, Gendreau and Farvolden (2000) to solve the Fixed Charge Multi-commodity
Network Design Problem, a more general problem that includes the CPLP as a spe-
cial case. It is also important to note that it is not always a good idea to restrict the
search space to feasible solutions; in many cases, allowing the search to move to
infeasible solutions is desirable, and sometimes necessary (see Section 4.4 for further
details).

Closely linked to the definition of the search space is that of the neighborhood
structure. At each iteration of LS or TS, the local transformations that can be applied
to the current solution, denoted S, define a set of neighboring solutions in the search
space, denoted N(S) (the neighborhood of S). Formally, N(S) is a subset of the search
space defined by:

N(S) = {solutions obtained by applying a single local transformation to S}.

42 M. Gendreau

In general, for any specific problem at hand, there are many more possible (and
even, attractive) neighborhood structures than search space definitions. This follows
from the fact that there may be several plausible neighborhood structures for a given
definition of the search space. This is easily illustrated on our CVRP example that has
been the object of several TS implementations. In order to simplify the discussion, we
suppose in the following that the search space is the feasible space.

Simple neighborhood structures for the CVRP involve moving at each iteration a
single customer from its current route; the selected customer is inserted in the same
route or in another route with sufficient residual capacity. An important feature of
these neighborhood structures is the way in which insertions are performed: one could
use random insertion or insertion at the best position in the target route; alternately, one
could use more complex insertion schemes that involve a partial re-optimization of the
target route, such as GENI insertions (see Gendreau et al., 1994). Before proceeding
any further it is important to stress that while we say that these neighborhood structures
involve moving a single customer, the neighborhoods they define contain all the feasible
route configurations that can be obtained from the current solution by moving any

customer and inserting it in the stated fashion. Examining the neighborhood can thus
be fairly demanding.

More complex neighborhood structures for the CVRP, such as the of
Osman (1993), are obtained by allowing simultaneously the movement of customers
to different routes and the swapping of customers between routes. In Rego and Rou-
cairol (1996), moves are defined by ejection chains that are sequences of coordinated
movements of customers from one route to another; for instance, an ejection chain of
length 3 would involve moving a customer from route to route a customer

from to route and a customer from to route Other neighborhood
structures involve the swapping of sequences of several customers between routes, as
in the Cross-exchange of Taillard et al. (1997). These types of neighborhoods have
seldom be used for the CVRP, but are common in TS heuristics for its time-windows
extension, where customers must be visited within a pre-specified time interval. We
refer the interested reader to Gendreau, Laporte and Potvin (2002) and Bräysy and
Gendreau (2001) for a more detailed discussion of TS implementations for the CVRP
and the Vehicle Routing Problem with Time-Windows.

When different definitions of the search space are considered for any given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. This can be
illustrated on our CPLP example. If the search space is defined with respect to the loca-
tion variables, neighborhood structures will usually involve the so-called “Add/Drop”

and “Swap” moves that respectively change the status of one site (i.e., either opening
a closed facility or closing an open one) and move an open facility from one site to
another (this move amounts to performing simultaneously an Add move and a Drop
move). If, however, the search space is the set of extreme points of the set of feasible
flow vectors, these moves become meaningless. One should instead consider moves
defined by the application of pivots to the linear programming formulation of the trans-
portation problem, since each pivot operation moves the current solution to an adjacent
extreme point.

The preceding discussion should have clarified a major point: choosing a search
space and a neighborhood structure is by far the most critical step in the design of any
TS heuristic. It is at this step that one must make the best use of the understanding and
knowledge he/she has of the problem at hand.

An Introduction to Tabu Search 43

3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
has just been moved from route to route one could declare tabu moving back

from to for some number of iterations (this number is called the tabu tenure

of the move). Tabus are also useful to help the search move away from previously
visited portions of the search space and thus perform more extensive exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually only
a fixed and fairly limited quantity of information is recorded. In any given context, there
are several possibilities regarding the specific information that is recorded. One could
record complete solutions, but this requires a lot of storage and makes it expensive to
check whether a potential move is tabu or not; it is therefore seldom used. The most
commonly used tabus involve recording the last few transformations performed on the
current solution and prohibiting reverse transformations (as in the example above);
others are based on key characteristics of the solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problems.
In the CVRP, one could define tabus in several ways. To continue our example where
customer has just been moved from route to route one could declare tabu
specifically moving back from to and record this in the short-term memory as
the triplet Note that this type of tabu will not constrain the search much,
but that cycling may occur if is then moved to another route and then from

to A stronger tabu would involve prohibiting moving back to (without
consideration for its current route) and be recorded as An even stronger tabu
would be to disallow moving to any other route and would simply be noted as

In the CPLP, when searching the space of location variables, tabus on Add/Drop
moves should prohibit changing the status of the affected location variable and can
be recorded by noting its index; tabus for Swap moves are more complex: they could
be declared with respect to the site where the facility was closed, to the site where
the facility was opened, to both locations (i.e., changing the status of both location
variables is tabu), or to the specific swapping operation. When searching the space of
flow variables, one can take advantage of the fact that a pivot operation is associated
with a unique pair of entering and leaving variables to define tabus; while here again
several combinations are possible, experience has shown that when dealing with pivot
neighborhood structures, tabus imposed on leaving variables (to prevent them from
coming back in the basis) are usually much more effective.

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
instance, in the CPLP, if one uses a neighborhood structure that contains both Add/Drop
and Swap moves, it might be a good idea to keep a separate tabu list for each type of
moves.

Standard tabu lists are usually implemented as circular lists of fixed length. It has
been shown, however, that fixed-length tabus cannot always prevent cycling, and some
authors have proposed varying the tabu list length during the search (Glover, 1989,
1990; Skorin-Kapov, 1990; Taillard, 1990, 1991). Another solution is to randomly

44 M. Gendreau

generate the tabu tenure of each move within some specified interval; using this
approach requires a somewhat different scheme for recording tabus that are then usu-
ally stored as tags in an array (the entries in this array will usually record the iteration
number until which a move is tabu; see Gendreau, Hertz and Laporte, 1994, for more
details).

3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attractive
moves, even when there is no danger ofcycling, or they may lead to an overall stagnation
of the searching process. It is thus necessary to use algorithmic devices that will allow
one to revoke (cancel) tabus. These are called aspiration criteria. The simplest and
most commonly used aspiration criterion (found in almost all TS implementations)
consists in allowing a move, even if it is tabu, if it results in a solution with an objective
value better than that of the current best-known solution (since the new solution has
obviously not been previously visited). Much more complicated aspiration criteria have
been proposed and successfully implemented (see, for instance, de Werra and Hertz,
1989, or Hertz and de Werra, 1991), but they are rarely used. The key rule in this
respect is that if cycling cannot occur, tabus can be disregarded.

3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function over
some domain and we apply the so-called “best improvement” version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the most
commonly used version of TS).

Notation

the current solution,

the best-known solution,

value of

the neighborhood of S,

the “admissible” subset of N(S) (i.e., non-tabu or allowed by aspiration).

Initialization

Choose (construct) an initial solution

Search

While termination criterion not satisfied do

record tabu for the current move in T (delete oldest entry if necessary);

endwhile.

Set

Select S in argmin

if then set

An Introduction to Tabu Search 45

3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are:

after a fixed number of iterations (or a fixed amount of CPU time);

after some number of iterations without an improvement in the objective function
value (the criterion used in most implementations);

when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a sequence of
phases, the duration of each phase being determined by one of the above criteria.

3.8 Probabilistic TS and Candidate Lists

In “regular” TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample of
N(S), thus reducing significantly the computational burden. Another attractive feature
of this alternative is that the added randomness can act as an anti-cycling mechanism;
this allows one to use shorter tabu lists than would be necessary if a full exploration of
the neighborhood was performed. One the negative side, it must be noted that, in that
case, one may miss excellent solutions (more on this topic in Section 7.3). Probabilities
may also be applied to activating tabu criteria.

Another way to control the number of moves examined is by means of candidate

list strategies, which provide more strategic ways of generating a useful subset of
N(S). (The probabilistic approach can be considered to be one instance of a candidate
list strategy, and may also be used to modify such a strategy.) Failure to adequately
address the issues involved in creating effective candidate lists is one of the more
conspicuous shortcomings that differentiates a naive TS implementation from one that
is more solidly grounded. Relevant designs for candidate list strategies are discussed
in Glover and Laguna (1997). We also discuss a useful type of candidate generation
approach in Section 4.4.

4 INTERMEDIATE CONCEPTS

Simple TS as described above can sometimes successfully solve difficult problems, but
in most cases, additional elements have to be included in the search strategy to make
it fully effective. We now briefly review the most important of these.

4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem “promising” in order to make sure that the best solutions in these
areas are indeed found. From time to time, one would thus stop the normal searching
process to perform an intensification phase. In general, intensification is based on some

46 M. Gendreau

intermediate-term memory, such as a recency memory, in which one records the number
of consecutive iterations that various “solution components” have been present in the
current solution without interruption. For instance, in the CPLP application, one could
record how long each site has had an open facility. A typical approach to intensification
is to restart the search from the best currently known solution and to “freeze” (fix) in it
the components that seem more attractive. To continue the CPLP example, one could
thus freeze a number of facilities in the sites that have had them for the largest number
of iterations and perform a restricted search on the other sites. Another technique that
is often used consists in changing the neighborhood structure to one allowing more
powerful or more diverse moves. In the CVRP example, one could therefore allow
more complex insertion moves or switch to an ejection chain neighborhood structure.
In the CPLP example, if Add/Drop moves were used, Swap moves could be added to
the neighborhood structure. In probabilistic TS, one could increase the sample size or
switch to searching without sampling.

Intensification is used in many TS implementations, but it is not always necessary.
This is because there are many situations where the search performed by the normal
searching process is thorough enough. There is thus no need to spend time exploring
more carefully the portions of the search space that have already been visited, and this
time can be used more effectively as we shall see right now.

4.2 Diversification

One of the main problems of all methods based on Local Search approaches, and this
includes TS in spite of the beneficial impact of tabus, is that they tend to be too “local”
(as their name implies), i.e., they tend to spend most, if not all, of their time in a
restricted portion of the search space. The negative consequence of this fact is that,
although good solutions may be obtained, one may fail to explore the most interesting
parts of the search space and thus end up with solutions that are still pretty far from the
optimal ones. Diversification is an algorithmic mechanism that tries to alleviate this
problem by forcing the search into previously unexplored areas of the search space. It
is usually based on some form of long-term memory of the search, such as a frequency

memory, in which one records the total number of iterations (since the beginning of the
search) that various “solution components” have been present in the current solution
or have been involved in the selected moves. For instance, in the CPLP application,
one could record during the number of iterations during which each site has had an
open facility. In the CVRP application, one could note how many times each customer
has been moved from its current route. In cases where it is possible to identify useful
“regions” of the search space, the frequency memory can be refined to track the number
of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart diversifica-

tion, involves forcing a few rarely used components in the current solution (or the best
known solution) and restarting the search from this point. In CPLP procedures, one
could thus open one or a few facilities at locations that have seldom had them up to that
point and resume searching from that plant configuration (one could also close facilities
at locations that have been used the most frequently). In a CVRP heuristic, customers
that have not yet been moved frequently could be forced into new routes. The second
diversification method, continuous diversification, integrates diversification consid-
erations directly into the regular searching process. This is achieved by biasing the

An Introduction to Tabu Search 47

evaluation of possible moves by adding to the objective a small term related to com-
ponent frequencies (see Soriano and Gendreau, 1996, for an extensive discussion on
these two techniques). A third way of achieving diversification is strategic oscillation

as we will see in the next subsection.
Before closing this subsection, we would like to stress that ensuring proper search

diversification is possibly the most critical issue in the design of TS heuristics. It should
be addressed with extreme care fairly early in the design phase and revisited if the results
obtained are not up to expectations.

4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space often
restricts the searching process too much and can lead to mediocre solutions. This
occurs, for example, in CVRP instances where the route capacity or duration con-
straints are too tight to allow moving customers effectively between routes. In such
cases, constraint relaxation is an attractive strategy, since it creates a larger search
space that can be explored with “simpler” neighborhood structures. Constraint relax-
ation is easily implemented by dropping selected constraints from the search space
definition and adding to the objective weighted penalties for constraint violations.
This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,

i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few iter-
ations, and decreased if all recent solutions were feasible (see, for instance, Gendreau,
Hertz and Laporte, 1994, for further details). Penalty weights can also be modified
systematically to drive the search to cross the feasibility boundary of the search space
and thus induce diversification. This technique, known as strategic oscillation, was
introduced as early as 1977 by Glover and used since in several successful TS proce-
dures. (An important early variant oscillates among alternative types of moves, hence
neighborhood structures, while another oscillates around a selected value for a critical
function.)

4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to evaluate,
a typical example being the CPLP when one searches the space of location variables.
(Remember that, in this case, computing the objective value for any potential solution
entails solving the associated transportation problem.) When this occurs, the evaluation
of moves may become prohibitive, even if sampling is used. An effective approach to
handle this issue is to evaluate neighbors using a surrogate objective, i.e., a function
that is correlated to the true objective, but is less computationally demanding, in order
to identify a (small) set of promising candidates (potential solutions achieving the best
values for the surrogate). The true objective is then computed for this small set of
candidate moves and the best one selected to become the new current solution. (See
Crainic et al., 1993, for an example of this approach.)

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas of
the search space. A typical illustration of this situation is the variant of the CVRP in
which the fleet size is not fixed, but is rather the primary objective (i.e., one is looking

48 M. Gendreau

for the minimal fleet size allowing a feasible solution). In this problem, except for
solutions where a route has only one or a few customers assigned to it, most neigh-
borhood structures will lead to the situation where all elements in the neighborhood
score equally with respect to the primary objective (i.e., all allowable moves produce
solutions with the same number of vehicles). In such a case, it is absolutely necessary
to define an auxiliary objective function to orient the search. Such a function must
measure in some way the desirable attributes of solutions. In our example, one could,
for instance, use a function that would favor solutions with routes having just a few
customers, thus increasing the likelihood that a route can be totally emptied in a subse-
quent iteration. It should be noted that coming up with an effective auxiliary objective is
not always easy and may require a lengthy trial and error process. In some other cases,
fortunately, the auxiliary objective is obvious for anyone familiar with the problem at
hand. (See Gendreau, Soriano and Salvail, 1993, for an illustration.)

5 ADVANCED TOPICS AND RECENT TRENDS IN
TABU SEARCH

The concepts and techniques described in the previous sections are sufficient to design
effective TS heuristics for many combinatorial problems. Most early TS implemen-
tations, several of which were extremely successful, relied indeed almost exclusively
on these algorithmic components. Nowadays, however, most leading edge research in
TS makes use of more advanced concepts and techniques. While it is clearly beyond
the scope of an introductory tutorial, such as this one, to review this type of advanced
material, we would like to give readers some insight into it by briefly describing some
current trends in TS research. Readers who wish to learn more about this topic should
read our survey paper (Gendreau, 2002) and some of the references provided in the
next section.

A large part of the recent research in TS deals with various techniques for making the
search more effective. These include methods for exploiting better the information that
becomes available during search and creating better starting points, as well as more
powerful neighborhood operators and parallel search strategies. (On this last topic,
see the taxonomy of Crainic, Toulouse and Gendreau, 1997, and the survey of Cung
et al., 2002.) The numerous techniques for making better use of the information are
of particular significance since they can lead to dramatic performance improvements.
Many of these rely on elite solutions (the best solutions previously encountered) or on
parts of these to create new solutions, the rationale being that “fragments” (elements)
of excellent solutions are often identified quite early in the searching process, but that
the challenge is to complete these fragments or to recombine them (Glover, 1992;
Glover and Laguna, 1993, 1997; Rochat and Taillard, 1995). Other methods, such
as the Reactive Tabu Search of Battiti and Tecchiolli (1994), attempt to find ways of
making the search move away from local optima that have already been visited.

Another important trend in TS (this is, in fact, a pervasive trend in the whole
meta-heuristics field) is hybridization, i.e., using TS in conjunction with other solu-
tion approaches such as Genetic Algorithms (Fleurent and Ferland, 1996; Crainic and
Gendreau, 1999), Lagrangean relaxation (Grünert, 2002), Constraint Programming
(Pesant and Gendreau, 1999), column generation (Crainic et al., 2000) and integer

An Introduction to Tabu Search 49

programming techniques (there is a whole chapter on this topic in Glover and Laguna,
1997).

TS research has also started moving away from its traditional application areas
(graph theory problems, scheduling, vehicle routing) to new ones: continuous opti-
mization (Rolland, 1996), multi-criteria optimization, stochastic programming, mixed
integer programming (Lokketangen and Glover, 1996; Crainic et al., 2000), real-time
decision problems (Gendreau et al., 1999), etc. These new areas confront researchers
with new challenges that, in turn, call for novel and original extensions of the method.

6 KEY REFERENCES

Readers who wish to read other introductory papers on TS can choose among several
ones. Let us mention the ones by de Werra and Hertz (1989), Hertz and de Werra
(1991), Glover and Laguna (1993), Glover, Taillard and de Werra (1993) and, in
French, by Soriano and Gendreau (1997). The book by Glover and Laguna (1997) is the
ultimate reference on TS: apart from the fundamental concepts of the method, it presents
a considerable amount of advanced material, as well as a variety of applications. It
is interesting to note that this book contains several ideas applicable to TS that yet
remain to be fully exploited. The issues of Annals of Operations Research, respectively
devoted to “Tabu Search” (Glover et al., 1993) and “Metaheuristics in Combinatorial
Optimization” (Laporte and Osman, 1996), and the books made up from selected papers
presented at the Meta-Heuristics International Conferences (MIC) are also extremely
valuable. At this time, the books for the 1995 Breckenridge conference (Osman and
Kelly, 1996), the 1997 Sophia-Antipolis one (Voss et al., 1999) and the 1999 Angra
dos Reis one (Ribeiro and Hansen, 2002) have been published. The proceedings of
MIC’2001, held in Porto, are currently available electronically on the website located
at URL:http://tew.ruca.ua.ac.be/eume/MIC2001.

7 TRICKS OF THE TRADE

7.1 Getting Started

Newcomers to TS trying to apply the method to a problem that they wish to solve are
often confused about what they need to do to come up with a successful implementation.
Basically, they do not know where to start. We believe that the following step-by-step
procedure can help a lot and provides a useful framework for getting started.

A step-by-step procedure

1.

2.

3.

4.

Read one or two good introductory papers to gain some knowledge of the
concepts and of the vocabulary.

Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

Think a lot about the problem at hand, focusing on the definition of the search

space and the neighborhood structure.

Implement a simple version based on this search space definition and this
neighborhood structure.

50 M. Gendreau

5.

6.

Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

Analyze results and adjust the procedure accordingly. It is at this point that one
should eventually introduce mechanisms for search intensification and diver-
sification or other intermediate features. Special attention should be paid to
diversification, since this is often where simple TS procedures fail.

7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs, the
following tips may prove useful:

1.

2.

3.

4.

5.

6.

If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Section 4).

Reconsider the neighborhood structure and change it if necessary. Many TS
implementations fail because the neighborhood structure is too simple. In par-
ticular, one should make sure that the chosen neighborhood structure allows for
a purposeful evaluation of possible moves (i.e., the moves that seem intuitively
to move the search in the “right” direction should be the ones that are likely to
be selected); it might also be a good idea to introduce a surrogate objective (see
Section 4) to achieve this.

Collect more statistics.

Follow the execution of the algorithm step-by-step on some reasonably sized
instances.

Reconsider diversification. As mentioned earlier, this is a critical feature in most
TS implementations.

Experiment with parameter settings. Many TS procedures are extremely sensi-
tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters
(unfortunately, it is not always obvious to determine which parameters are the
key ones in a given procedure).

7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates prob-
lems of its own that need to be carefully addressed. The most important of these is the
fact that, more often than not, the best solutions returned by probabilistic TS will not be
local optima with respect to the neighborhood structure being used. This is particularly
annoying since, in that case, better solutions can be easily obtained, sometimes even
manually. An easy way to come around this is to simply perform a local improvement
phase (using the same neighborhood operator) from the best found solution at the end
of the TS itself. One could alternately switch to TS without sampling (again from the
best found solution) for a short duration before completing the algorithm. A possibly
more effective technique is to add throughout the search an intensification step with-
out sampling; in this fashion, the best solutions available in the various regions of the

An Introduction to Tabu Search 51

search space explored by the method will be found and recorded. (Glover and Laguna,
1993, similarly proposed special aspiration criteria for allowing the search to reach
local optima at useful junctures.)

7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the development
of any algorithm. This is particularly true in the case of TS, since the number of para-
meters required by most implementations is fairly large and since the performance of
a given procedure can vary quite significantly when parameter values are modified.
The first step in any serious computational experimentation is to select a good set of
benchmark instances (either by obtaining them from other researchers or by construct-
ing them), preferably with some reasonable measure of their difficulty and with a wide
range of size and difficulty. This set should be split into two subsets, the first one being
used at the algorithmic design and parameter calibration steps, and the second reserved
for performing the final computational tests that will be reported in the paper(s) describ-
ing the heuristic under development. The reason for doing so is quite simple: when
calibrating parameters, one always run the risk of overfitting, i.e., finding parameter
values that are excellent for the instances at hand, but poor in general, because these
values provide too good a “fit” (from the algorithmic standpoint) to these instances.
Methods with several parameters should thus be calibrated on much larger sets of
instances than ones with few parameters to ensure a reasonable degree of robustness.
The calibration process itself should proceed in several stages:

1.

2.

3.

Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

Fix the value of parameters that appear to be “robust”, i.e., which do not seem
to have a significant impact on the performance of the procedure.

Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects

between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The paper by Crainic et al. (1993) provides a detailed description of the calibration
process for a fairly complex TS procedure and can used as a guideline for this purpose.

8 CONCLUSION

Tabu Search is a powerful algorithmic approach that has been applied with great success
to many difficult combinatorial problems. A particularly nice feature of TS is that, like
all approaches based on Local Search, it can quite easily handle the “dirty” complicating
constraints that are typically found in real-life applications. It is thus a really practical
approach. It is not, however, a panacea: every reviewer or editor of a scientific journal
has seen more than his/her share of failed TS heuristics. These failures stem from two
major causes: an insufficient understanding of fundamental concepts of the method (and
we hope that this tutorial will help in alleviating this shortcoming), but also, more often
than not, a crippling lack of understanding of the problem at hand. One cannot develop

52 M. Gendreau

a good TS heuristic for a problem that he/she does not know well! This is because
significant problem knowledge is absolutely required to perform the most basic steps
of the development of any TS procedure, namely the choice of a search space and of an
effective neighborhood structure. If the search space and/or the neighborhood structure
are inadequate, no amount of TS expertise will be sufficient to save the day. A last
word of caution: to be successful, all meta-heuristics need to achieve both depth and
breadth in their searching process; depth is usually not a problem for TS, which is
quite aggressive in this respect (TS heuristics generally find pretty good solutions very
early in the search), but breadth can be a critical issue. To handle this, it is extremely
important to develop an effective diversification scheme.

ACKNOWLEDGEMENTS

The author is grateful to the Canadian Natural Sciences and Engineering Council and
the Fonds FCAR of the Province of Quebec for their financial support. The author also
wishes to thank Fred Glover for his insightful comments on an earlier version of this
chapter.

REFERENCES

Battiti, R. and Tecchiolli, G. (1994) The reactive tabu search. ORSA Journal on

Computing, 6, 126–140.

Bräysy, O. and Gendreau, M. (2001) Tabu search heuristics for the vehicle routing prob-
lem with time windows. Report STF42 A01022, SINTEF Applied Mathematics,
Oslo, Norway. Forthcoming in TOP.

Crainic, T.G. and Gendreau, M. (1999). Towards an evolutionary method—cooperative
multi-thread parallel tabu search heuristic Hybrid. In S. Voss, S. Martello,
I.H. Osman and C. Roucairol (Eds.), Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization, Kluwer Academic Publishers, pp. 331–344.

Crainic, T.G., Gendreau, M., and Farvolden, J.M. (2000) Simplex-based tabu search for
the multicommodity capacitated fixed charge network design problem. INFORMS

Journal on Computing, 12, 223–236.

Crainic, T.G., Gendreau, M., Soriano, P., and Toulouse, M. (1993) A tabu search proce-
dure for multicommodity location/allocation with balancing requirements. Annals

of Operations Research, 41, 359–383.

Crainic, T.G., Toulouse, M., and Gendreau, M. (1997) Toward a taxonomy of parallel
tabu search heuristics. INFORMS Journal on Computing, 9, 61–72.

Cung, V.-D., Martins, S.L., Ribeiro, C.C., and Roucairol, C. (2002) Strategies for the
parallel implementation of metaheuristics. In C.C. Ribeiro and P. Hansen (Eds.),
Essays and Surveys in Metaheuristics, Kluwer Academic Publishers, pp. 263–308.

Fleurent, C. and Ferland, J.A. (1996) Genetic and hybrid algorithms for graph
colouring. Annals of Operations Research, 63, 437–461.

Gendreau, M. (2002) Recent advances in tabu search. In C.C. Ribeiro and P.
Hansen (eds.), Essays and Surveys in Metaheuristics, Kluwer Academic Publishers,
pp. 369–377.

An Introduction to Tabu Search 53

Gendreau, M., Guertin, F., Potvin, J.-Y. and Taillard, É.D. (1999) Paralle tabu
search for real-time vehicle routing and dispatching. Transportation Science, 33,
381-390.

Gendreau, M., Hertz, A., and Laporte, G. (1994) A tabu search heuristic for the vehicle
routing problem. Management Science, 40, 1276–1290.

Gendreau, M., Laporte, G. and Potvin, J.-Y. (2002) Metaheuristics for the capaci-
tated VRP. In P. Toth and D. Vigo (Eds.), The Vehicle Routing Problem, SIAM
Monographs on Discrete Mathematics and Applications, pp. 129-154.

Gendreau, M., Soriano, P. and Salvail, L. (1993) Solving the maximum clique problem
using a tabu search approach. Annals of Operations Research, 41, 385–403.

Glover, F. (1977) Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8, 156–166.

Glover, F. (1986) Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13, 533–549.

Glover, F. (1989) Tabu Search—Part I. ORSA Journal on Computing, 1, 190–206.

Glover, F. (1990) Tabu Search—Part II. ORSA Journal on Computing, 2, 4–32.

Glover, F. (1992) Ejection chains, reference structures and alternating path methods for
traveling salesman problems. University of Colorado. Shortened version published
in Discrete Applied Mathematics, 65, 223–253, 1996.

Glover, F. and Laguna, M. (1993) Tabu search. In C.R. Reeves (Ed.), Modern Heuristic

Techniques for Combinatorial Problems, Blackwell, pp. 70–150.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers,
Norwell, MA.

Glover, F., Laguna, M., Taillard, É., and de Werra, D. (Eds.) (1993) Tabu search. Annals

of Operations Research, 41, J.C. Baltzer Science Publishers, Basel, Switzerland.

Glover, F., Taillard, É. and de Werra, D. (1993) A user's guide to tabu search. Annals

of Operations Research, 41, 3–28.

Grünert, T. (2002) Lagrangean tabu search. In C.C. Ribeiro and P. Hansen (Eds.)
Essays and Surveys in Metaheuristics, Kluwer Academic Publishers, pp. 379–397.

Hertz, A. and de Werra, D. (1991) The tabu search metaheuristic: how we used it.
Annals of Mathematics and Artificial Intelligence, 1, 111–121.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI.

Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science, 220, 671–680.

Laporte, G. and Osman, I.H. (Eds.) (1996) Metaheuristics in combinatorial optimiza-
tion. Annals of Operations Research, 63, J.C. Baltzer Science Publishers, Basel,
Switzerland.

Lokketangen, A. and Glover, F. (1996) Probabilistic move selection in tabu search for
0/1 mixed integer programming problems. In I.H. Osman and J.P. Kelly (Eds.), Meta-

Heuristics: Theory and Applications, Kluwer Academic Publishers, pp. 467–488.

Osman, I.H. (1993) Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41, 421–451.

54 M. Gendreau

Osman, I.H. and Kelly, J.P. (Eds.) (1996) Meta-Heuristics: Theory and Applications,

Kluwer Academic Publishers, Norwell, MA.

Pesant, G. and Gendreau, M. (1999) A constraint programming framework for local
search methods. Journal of Heuristics, 5, 255–280.

Rego, C. and Roucairol, C. (1996) A parallel tabu search algorithm using ejection
chains for the vehicle routing problem. In I.H. Osman and J.P. Kelly (Eds.), Meta-

Heuristics: Theory and Applications, Kluwer Academic Publishers, pp. 661–675.

Ribeiro, C.C. and Hansen, P. (Eds.) (2002) Essays and Surveys in Metaheuristics,

Kluwer Academic Publishers, Norwell, MA.

Rochat, Y. and Taillard, É.D. (1995) Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1, 147–167.

Rolland, E. (1996) A tabu search method for constrained real-number search: applica-
tions to portfolio selection. Working Paper, The Gary Anderson Graduate School of
Management, University of California, Riverside.

Skorin-Kapov, J. (1990) Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2, 33–45.

Soriano, P. and Gendreau, M. (1996) Diversification strategies in tabu search algo-
rithms for the maximum clique problems. Annals of Operations Research, 63,
189–207.

Soriano, P. and Gendreau, M. (1997) Fondements et applications des méthodes de
recherche avec tabous. RAIRO (Recherche opérationnelle), 31, 133–159 (in French).

Taillard, É. (1990) Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research, 47, 65–74.

Taillard, É. (1991) Robust taboo search for the quadratic assignment problem. Parallel

Computing, 17, 443–455.

Taillard, É.D., Badeau, P., Gendreau, M. Guertin, F. and Potvin, J.-Y. (1997)
A tabu search heuristic for the vehicle routing problem with soft time windows.
Transportation Science, 31, 170–186.

Voss, S., Martello, S., Osman, I.H. and Roucairol, C. (Eds.) (1999) Meta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization, Kluwer
Academic Publishers, Norwell, MA.

de Werra, D. and Hertz, A. (1989) Tabu search techniques: a tutorial and an application
to neural networks. OR Spektrum, 11, 131–141.

Chapter 3

GENETIC ALGORITHMS

Colin Reeves
School of Mathematical and Information Sciences

Coventry University

Priory St

Coventry CV1 5FB

E-mail: C. Reeves@conventry. ac.uk

http://www.mis.coventry.ac.uk/~colinr/

Part A: Background

1 INTRODUCTION

The term genetic algorithm, almost universally abbreviated nowadays to GA, was first
used by John Holland [1], whose book Adaptation in Natural and Aritificial Systems

of 1975 was instrumental in creating what is now a flourishing field of research and
application that goes much wider than the original GA. Many people now use the
term evolutionary computing or evolutionary algorithms (EAs), in order to cover the
developments of the last 10 years. However, in the context of metaheuristics, it is
probably fair to say that GAs in their original form encapsulate most of what one needs
to know.

Holland’s influence in the development of the topic has been very important, but
several other scientists with different backgrounds were also involved in developing
similar ideas. In 1960s Germany, Ingo Rechenberg [2] and Hans-Paul Schwefel [3]
developed the idea of the Evolutionsstrategie (in English, evolution strategy), while—
also in the 1960s—Bremermann, Fogel and others in the USA implemented their idea
for what they called evolutionary programming. The common thread in these ideas
was the use of mutation and selection—the concepts at the core of the neo-Darwinian
theory of evolution. Although some promising results were obtained, evolutionary
computing did not really take off until the 1980s. Not the least important reason for
this was that the techniques needed a great deal of computational power. Neverthe-
less, the work of these early pioneers is fascinating to read in the light of our current
knowledge; David Fogel (son of one of the early pioneers) has documented some of
this work in [4].

1975 was a pivotal year in the development of genetic algorithms. It was in that year
that Holland’s book was published, but perhaps more relevantly for those interested in
metaheuristics, that year also saw the completion of a doctoral thesis by one of Holland’s
graduate students, Ken DeJong [5]. Other students of Holland’s had completed theses

56 C. Reeves

in this area before, but this was the first to provide a thorough treatment of the GA’s
capabilities in optimization.

A series of further studies followed, the first conference on the nascent subject
was convened in 1985, and another graduate student of Holland’s, David Goldberg,
produced first an award-winning doctoral thesis on his application to gas pipeline
optimization, and then, in 1989, an influential book [6]—Genetic Algorithms in

Search, Optimization, and Machine Learning. This was the final catalyst in set-
ting off a sustained development of GA theory and applications that is still growing
rapidly.

Optimization has a fairly small place in Holland’s work on adaptive systems, yet the
majority of research on GAs tends to assume this is their purpose. DeJong, who initiated
this interest in optimization, has cautioned that this emphasis may be misplaced in a
paper [7] in which he contends that GAs are not really function optimizers, and that
this is in some ways incidental to the main theme of adaptation. Nevertheless, using
GAs for optimization is very popular, and frequently successful in real applications,
and to those interested in metaheuristics, it will undoubtedly be the viewpoint that is
most useful.

Unlike the earlier evolutionary algorithms, which focused on mutation and could
be considered as straightforward developments of hill-climbing methods, Holland’s
GA had an extra ingredient—the idea of recombination. It is interesting in this regard
to compare some of the ideas being put forward in the 1960s in the field of operational

research (OR).
OR workers had by that time begun to develop techniques that seemed able to

provide ‘good’ solutions, even if the quality was not provably optimal (or even near-
optimal). Such methods became known as heuristics. A popular technique, which
remains at the heart of many of the metaheuristics described in this handbook, was
that of neighbourhood search, which has been used to attack a vast range of combina-
torial optimization problems. The basic idea is to explore ‘neighbours’ of an existing
solution—these being defined as solutions obtainable by a specified operation on the
base solution.

One of the most influential papers in this context was that published by Lin [8], who
found excellent solutions to the traveling salesman problem by investigating neighbour-
hoods formed by breaking any 3 links of a tour and re-connecting them. Empirically,
Lin found that these ‘3-optimal’ solutions were of excellent quality—in the case of the
(rather small) problems he investigated, often close to the global optimum. However,
he also made another interesting observation, and suggested a way of exploiting it.
While starting with different initial permutations gave different 3-optimal solutions,
these 3-optimal solutions were observed to have a lot of features (links) in common.
Lin therefore suggested that search should be concentrated on those links about which
there was not a consensus, leaving the common characteristics of the solutions alone.
This was not a GA as Holland was developing it, but there are clear resonances. Much
later, after GAs had become more widely known, Lin’s ideas were re-discovered as
‘multi-parent recombination’ and ‘consensus operators’.

Other OR research of the same era took up these ideas. Roberts and Flores [9]
(apparently independently) used a similar approach to Lin’s for the TSP, while Nugent
et al. [10] applied this basic idea for the quadratic assignment problem. However, the
general principle was not adopted into OR methodology, and relatively little was done
to exploit the idea until GAs came on the OR scene in the 1990s.

Genetic Algorithms 57

2 BASIC CONCEPTS

Assume we have a discrete search space and a function

The general problem is to find

where the function

It is usually desirable that c should be a bijection. (The important property of a bijection
is that it has an inverse, i.e., there is a unique vector x for every string s, and a unique
string s for every vector x.) In some cases the nature of this mapping itself creates
difficulties for a GA in solving optimization problems, as discussed in [11].

In using this device, Holland’s ideas are clearly distinct from the similar method-
ology developed by Rechenberg [2] and Schwefel [3], who preferred to work with the
original decision variables directly. Both Holland’s and Goldberg’s books claim that
representing the variables by binary strings (i.e.,) is in some sense ‘opti-
mal’, and although this idea has been challenged, it is still often convenient from a

Here x is a vector of decision variables, and f is the objective function. We assume
here that the problem is one of minimization, but the modifications necessary for a
maximization problem are nearly always obvious. Such a problem is commonly called
a discrete or combinatorial optimization problems (COP).

One of the distinctive features of the GA approach is to allow the separation of
the representation of the problem from the actual variables in which it was origi-
nally formulated. In line with biological usage of the terms, it has become customary
to distinguish the ‘genotype’—the encoded representation of the variables, from the
‘phenotype’—the set of variables themselves. That is, the vector x is represented
by a string s , of length l, made up of symbols drawn from an alphabet , using
a mapping

In practice, we may need to use a search space

to reflect the fact that some strings in the image of under c may represent invalid
solutions to the original problem. (This is a potential source of difficulty for GAs
in combinatorial optimization—a topic that is covered in [11].) The string length l

depends on the dimensions of both and and the elements of the string correspond
to ‘genes’, and the values those genes can take to ‘alleles’. This is often designated
as the genotype–phenotype mapping. Thus the optimization problem becomes one of
finding

58 C. Reeves

mathematical standpoint to consider the binary case. Certainly, much of the theoretical
work in GAs tends to make this assumption. In applications, many representations are
possible—some of the alternatives that can be used in particular COPs are discussed
in [11].

The original motivation for the GA approach was a biological analogy. In the selec-
tive breeding of plants or animals, for example, offspring are sought that have certain
desirable characteristics—characteristics that are determined at the genetic level by the
way the parents’ chromosomes combine. In the case of GAs, a population of strings is
used, and these strings are often referred to in the GA literature as chromosomes. The
recombination of strings is carried out using simple analogies of genetic crossover and
mutation, and the search is guided by the results of evaluating the objective function
f for each string in the population. Based on this evaluation, strings that have higher
fitness (i.e., represent better solutions) can be identified, and these are given more
opportunity to breed. It is also relevant to point out here that fitness is not necessarily to
be identified simply with the composition f(c(s)); more generally, fitness is h(f(c(s)))
where isa monotonic function.

Perhaps the most fundamental characteristic of genetic algorithms is that their use
of populations of many strings. Here again, the German school of ES initially did not
use populations, and focussed almost exclusively on ‘mutation’ operators which are
generally closer in concept to the types of operator used in neighbourhood search and
its extensions. Holland also used mutation, but in his scheme it is generally treated as
subordinate to crossover. Thus, in Holland’s GA, instead of the search moving from
point to point as in NS approaches, the whole set of strings undergoes ‘reproduction’
in order to generate a new population.

DeJong’s work established that population-based GAs using crossover and mutation
operators could successfully deal with optimization problems of several different types,
and in the years since this work was published, the application of GAs to COPs has
grown almost exponentially.

These operators and some developments of them are described more fully in part B.
At this point, however, it might be helpful to provide a very basic introduction.
Crossover is a matter of replacing some of the genes in one parent by correspond-
ing genes of the other. An example of one-point crossover would be the following.
Given the parents P1 and P2, with crossover point 3 (indicated by X), the offspring will
be the pair 01 and 02:

The other common operator is mutation, in which a subset of genes is chosen
randomly and the allele value of the chosen genes is changed. In the case of binary
strings, this simply means complementing the chosen bits. For example, the string
01 above, with genes 3 and 5 mutated, would become 1 0 0 1 1 0 1 . A simple
template for the operation of a genetic algorithm is shown in Figure 3.1. The individual
parts of this very general formulation will be discussed in detail in Part B.

Genetic Algorithms 59

3 WHY DOES IT WORK?

Exactly how and why GAs work is still hotly debated. There are various schools of
thought, and none can be said to provide a definitive answer. A comprehensive survey
will be available shortly in [12]. Meanwhile, the following is a brief guide to the main
concepts that have been used.

3.1 The ‘traditional’ view

Holland’s explanation of why it is advantageous to search the space rather than
hinges on three main ideas. Central to this understanding is the concept of a schema.

A schema is a subset of the space in which all the strings share a particular set of
defined values. This can be represented by using the alphabet ; in the binary case,
1 * * 1, for example, represents the subset of the 4-dimensional hypercube
in which both the first and last genes take the value 1, i.e., the strings {1 0 0 1, 1
0 1 1, 1 1 0 1, 1 1 1 1}.

The first of Holland’s ideas is that of intrinsic (or implicit) parallelism—the notion
that information on many schemata can be processed in parallel. Under certain con-
ditions that depend on population size and schema characteristics, Holland estimated
that a population of size M contains information on schemata. However, these
schemata cannot actually be processed in parallel, because independent estimates of
their fitness cannot be obtained in general [13].

The second concept is expressed by the so-called Schema Theorem, in which
Holland showed that if there are N(S, t) instances of a given schema S in the pop-
ulation at time t, then at the next time step (following reproduction), the expected

60 C. Reeves

number of instances in the new population can be bounded by

where is the fitness of schema is the average fitness of the population, and
is a term which reflects the potential for genetic operators to destroy instances

of schema S.

By failing to appreciate the stochastic and dynamic nature of this relationship,
somewhat extravagant conclusions have been drawn from this theorem, expressed in
the frequently made statement that good schemata will receive exponentially increasing
numbers of trials in subsequent generations. However, it is clear that the Schema
Theorem is a result in expectation only, and then only for one generation. Thus, any
attempt to extrapolate this result for more than one generation is doomed to failure
because the terms are then no longer independent of what is happening in the rest of
the population. Also, given a finite population, it is clear that any exponential increase
cannot last very long.

Holland also attempted to model schema processing (or hyperplane competitions)
by means of an analogy to stochastic two-armed bandit problems. This is a well-
known statistical problem: we are given two ‘levers’ which if pulled give ‘payoff’
values according to different probability distributions. The problem is to use the results
of previous pulls in order to maximize the overall future expected payoff. In [1] it is
argued that a GA approximates an ‘optimal’ strategy which allocates an (exponentially)
increasing number of trials to the observed better lever; this is then used to contend
for the supposed efficiency of a GA in distinguishing between competing schemata or
hyperplanes.

Early accounts of GAs suggested quite strongly that in a GA we had thus discov-
ered an algorithm that used the best available search strategy to solve not merely one,
but many hyperplane competitions at once: the ‘only case where combinatorial explo-
sion works in our favour’. Unfortunately, Wolpert and Macready’s ‘No-Free-Lunch’
Theorem (NFLT) [14] has rather destroyed such dreams.1

In fact, intrinsic parallelism turns out to be of strictly limited application; it merely
describes the number of schemata that are likely to be present in some numbers given
certain assumptions about string length, population size and (most importantly) the
way in which the population has been generated—and the last assumption is unlikely
to be true except at a very early stage of the search. Even then, only in very unusual
circumstances—that of orthogonal populations [13]—could the hyperplane competi-
tions actually be processed in parallel; normally, the competitions are not independent.
The two-armed bandit analogy also fails in at least two ways: first, Macready and
Wolpert [15] have recently argued that there is no reason to believe that the strategy
described by Holland as approximated by a GA is a optimal one. They also believe
there is in any case a flaw in Holland’s mathematics.

This is not to say that the Schema Theorem in particular, or the idea of a schema
in general, is useless, but that what it says is of limited and mainly short-term value—
principally, that certain schemata are likely to increase their presence in the next

1The NFLT, put simply, says that on the average, nothing—ant colonies, GAs, simulated annealing, tabu
search, etc.—is better than random search. Success comes from adapting the technique to the problem at

hand.

Genetic Algorithms 61

population, and that those schemata will be on the average fitter, and less resistant
to destruction by crossover and mutation, than those that do not.

This brings us to the third assumption implicit in the implementation of a GA—that
the re-combination of small pieces of the genotype (good schemata)into bigger pieces
is indeed a sensible method of finding optimal solutions. Goldberg [6] calls this the
building-block hypothesis (BBH).There is certainly some negative evidence, in that
problems constructed to contain misleading building-blocks may indeed be hard for a
GA to solve. The failure of the BBH is often invoked as a explanation when a GA fails
to solve particular COPs.

However, the properties of these problems are not usually such that they are uniquely
difficult for GAs. Holland himself, with two other co-workers, looked for positive
evidence in favour of the building-block hypothesis [16] and found the results rather
problematical: functions constructed precisely to provide a ‘royal road’ made up of
building blocks of increasing size and fitness turned out to be much more efficiently
solved by ‘non-genetic’ methods.

3.2 Other Approaches

By writing his theorem in the form of a lower bound, Holland was able to make a state-
ment about schema S that is independent of what happens to other schemata. However,
in practice what happens to schema S will influence the survival (or otherwise) of other
schemata, and what happens to other schemata will affect what happens to S as is made
plain by the exact models of Vose [17] and Whitley [18].

Markov chain theory [17,18] has been applied to GAs [19,20] to gain a better under-
standing of the GA as a whole. However, while the results are fascinating in illuminating
some nuances of GA behaviour, the computational requirements are formidable for all
but the smallest of problems, as shown by Delong et al. [21], or Rees and Koehler [22],
for example.

Shapiro et al. [23] first examined GAs from a statistical mechanics perspective,
and there is a growing literature on this topic. Peck and Dhawan [24] have linked GAs
to global randomized search methods. But one of the difficulties in analysing GAs
is that there is not a single generic GA, the behaviour of which will characterize the
class of algorithms that it represents. In practice, there is a vast number of ways of
implementing a GA, as will be seen in the discussion in Part B, and what works in one
case may not work in another. Some workers have therefore tried to look for ways of
predicting algorithm performance for particular problem classes.

Reeves and Wright [13] summarize a perspective based on relating GAs to statistical
methods of experimental design, which draws upon the biological concept of epistasis.

This expresses the idea that the expression of a chromosome is not merely a sum of
the effects of its individual alleles, but that the alleles located in some genes influence
the expression of the alleles in others. From a mathematical viewpoint, epistasis is
equivalent to the existence of interactions in the fitness function. If we knew the extent
of these non-linearities, we might be able to choose an appropriate algorithm. Unfor-
tunately, as is explained in [25], it is unlikely that this approach will be successful,
although the literature surrounding the question of epistasis has produced some useful
insights into GAs.

Several authors [26–28] have pointed out connections between GAs and neighbour-
hood search methods, and this has led to a considerable literature on the analysis of

62 C. Reeves

problem landscapes. The concept of a landscape has been used informally for many
years, but recent work [29] has put the idea on a rigorous mathematical foundation
which is still being explored. Some of its uses in the context of GAs is described
in [30]. It appears that this way of thinking about algorithms has great potential for
unifying different metaheuristics and increasing our understanding of them.

4 APPLICATIONS AND SOURCES

There are numerous examples of the successful application of GAs to combinatorial
optimization problems. Books such as those by Davis [31] and Chambers [32,33] are
useful in displaying the range of problems to which GAs have been applied. In a chap-
ter such as this, it is impossible to give an exhaustive survey of relevant applications
of GAs, but [11] lists some of the more useful and accessible references that should
be of interest to people who are experimenting with metaheuristics. However, because
of the enormous growth in reported applications of GAs, this list is inevitably incom-
plete, as well as somewhat dated already. For a time, Alander attempted to maintain
a comprehensive bibliography: an early version of this is included in [33], while an
updated one was provided in [34]. However, this is one area where the phenonemon
of exponential growth is indubitable, and the sheer number of papers published in the
last 5 years seem to have overwhelmed this enterprise.

For more information on applications, and on GAs in general, the reader has several
useful books to choose from: the early ones by Holland, Goldberg and Michalewicz
[1,6,35] tend to be over-committed to the schema-processing point of view, but they
are all still excellent sources of information. Reeves [36] also reflects the state of the
theory at the time the book was written, although it covers other heuristic methods too.
More recently, Mitchell [37] and Falkenauer [38] demonstrate a more careful approach
to schemata, and Bäck [39] covers the wider field of evolutionary algorithms. All are
worth consulting. For a rigorous theoretical study, there is the book by Vose [40],
which deals mainly with the Markov chain and dynamical systems approach, while the
forthcoming text [12] will survey in some detail several other perspectives on GAs.

There are now also many conferences on GAs and related topics—too many to list
in detail. The proceedings of the original biennial series of International Conferences

on Genetic Algorithms [41–47], which is still of considerable historical interest,2 has
become an annual event (GECCO), while the IEEE has established an alternative series
under the title of the Congress on Evolutionary Computation. In Europe, there are two
biennial series of somewhat wider scope: the Parallel Problem-Solving from Nature

series [48–53], and the International Conference on Artificial Neural Networks and

Genetic Algorithms [54–57]. For the theoretically minded, there is a biennial workshop
to consider—the Foundations of Genetic Algorithms [58–63].

There are also many journals now publishing GA-related research. The major
GA journals are Evolutionary Computation (MIT Press) and IEEE Transactions

on Evolutionary Computation (IEEE); other theoretical articles appear in journals
related to AI or to complex systems. Most OR journals—INFORMS Journal on

Computing, Computers and OR, Journal of the OR Society, European Journal

2 Apart from the intrinsic worth of these papers, it is well worth checking to see if someone has tried your
bright new idea already.

Genetic Algorithms 63

of OR etc.—have frequent papers on GAs, mainly applications. There are news-
groups on the internet (comp.ai.genetic) and the moderated news digest at
GA-List-Request@aic.nrl.navy.mil.

Part B: Guidelines

The basic principles of a GA were shown in Figure 3.1, but as usual, the details are all
important. The various stages involved in implementing a GA will now be described.

5 INITIAL POPULATION

The major questions to consider are firstly the size of the population, and secondly
the method by which the individuals are chosen. The size of the population has been
approached from several theoretical points of view, although the underlying idea is
always of a trade-off between efficiency and effectiveness. Intuitively, it would seem
that there should be some ‘optimal’ value for a given string length, on the grounds that
too small a population would not allow sufficient room for exploring the search space
effectively, while too large a population would so impair the efficiency of the method
that no solution could be expected in a reasonable amount of time. Goldberg [64, 65]
was probably the first to attempt to answer this question, using the idea of schemata,
as outlined in the next chapter. Unfortunately, from this viewpoint, it appeared that
the population size should increase as an exponential function of the string length.
Experimental evidence [66,67] suggested that populations of the size proposed by
Goldberg’s theory are not necessary.

A slightly different question that we could ask is regarding a minimum population
size for a meaningful search to take place. In Reeves [68], the initial principle was
adopted that, at the very least, every point in the search space should be reachable from
the initial population by crossover only. This requirement can only be satisfied if there
is at least one instance of every allele at each locus in the whole population of strings.
On the assumption that the initial population is generated by a random sample with
replacement (which is a conservative assumption in this context), the probability that
at least one allele is present at each locus can be found. For binary strings this is easily
seen to be

from which we can calculate that, for example, a population of size 17 is enough to
ensure that the required probability exceeds 99.9% for strings of length 50. For q-ary

alphabets, the calculation is somewhat less straightforward, but expressions are given
in [68] that can be converted numerically into graphs for specified confidence levels.
The results of this work suggested that a population size of would be sufficient
to cover the search space.

Finally, as to how the population is chosen, it is nearly always assumed that initial-
ization should be random. Rees and Koehler [22], using a model-based approach that
draws on the theoretical work of Vose [17], have demonstrated that sampling without
replacement is preferable in the context of very small populations. More generally,
it is obvious that randomly chosen points do not necessarily cover the search space

64 C. Reeves

uniformly, and there may be advantages in terms of coverage if we use more sophisti-
cated statistical methods, especially for non-binary alphabets. One such simple idea is
a generalization of the Latin hypercube which can be illustrated as follows.

Suppose each gene has 5 alleles, labelled We choose the population size
to be a multiple of 5, say m, and the alleles in each ‘column’ are generated as an
independent random permutation of which is then taken modulo 5.
Figure 3.2 shows an example for a population of size 10. To obtain search space
coverage at this level with simple random initialization would need a much larger
population.

Another point to mention here is the possibility of ‘seeding’ the initial population
with known good solutions. Some reports (e.g. in [69,70]) have found that including
a high-quality solution, obtained from another heuristic technique, can help a GA find
better solutions rather more quickly than it can from a random start. However, there is
also the possibility of inducing premature convergence [71,72].

6 TERMINATION

Unlike simple neighbourhood search methods that terminate when a local optimum
is reached, GAs are stochastic search methods that could in principle run for ever. In
practice, a termination criterion is needed; common approaches are to set a limit on the
umber of fitness evaluations or the computer clock time, or to track the population’s
diversity and stop when this falls below a preset threshold. The meaning of diversity
in the latter case is not always obvious, and it could relate either to the genotype or the
phenotype, or even, conceivably, to the fitnesses, but the most common way to measure
it is by genotype statistics. For example, we could decide to terminate a run if at every
locus the proportion of one particular allele rose above 90%.

7 CROSSOVER CONDITION

Given the stress on recombination in Holland’s original work, it might be thought that
crossover should always be used, but in fact there is no reason to suppose that it has

Genetic Algorithms 65

to be so. Further, while we could follow a strategy of crossover-AND-mutation to
generate new offspring, it is also possible to use crossover-OR-mutation. There are
many examples of both in the literature. The first strategy initially tries to carry out
crossover, then attempts mutation on the off spring (either one or both). It is conceivable
that in some cases nothing actually happens at all with this strategy—the offspring are
simply clones of the parents. Others always do something, either crossover of mutation,
but not both. (Even then, cloning is still possible with crossover if the parents are too
alike.)

The mechanism for implementing such choices is customarily a randomized rule,
whereby the operation is carried out if a pseudo-random uniform deviate exceeds a
threshold value. In the case of crossover, this is often called the crossover rate, often
denoted by the symbol For mutation, we have a choice between describing the
number of mutations per string, or per bit; bit-wise mutation, at a rate denoted by is
more common.

In the -OR- case, there is the further possibility of modifying the relative proportions
of crossover and mutation as the search progresses. Davis [31] has argued that different
rates are appropriate at different times: high crossover at the start, high mutation as
the population converges. He has further suggested that the operator proportions could
be adapted online, in accordance with their track record in finding new high-quality
chromosomes.

8 SELECTION

The basic idea of selection is that it should be related to fitness, and the original scheme
for its implementation is commonly known as the roulette-wheel method. It uses a
probability distribution for selection in which the selection probability of a given string
is proportional to its fitness. Figure 3.3 provides a simple example of roulette-wheel
selection (RWS). Pseudo-random numbers are used one at a time to choose strings for
parenthood. For example, in Figure 3.3, the number 0.13 would select string 1, the
number 0.68 would select string 4.

66 C. Reeves

Finding the appropriate number for a given pseudo-random number r requires
searching an array for values that bracket r—this can be done in time for a
population of size M. However, RWS has a high stochastic variability, and the actual
number of times that chromosome C is selected in any generation may be very
different from its expected value For this reason, sampling without replacement
may be used, to ensure that at least the integral part of is achieved, with fractions
being allocated using random sampling.

In practice, Baker’s [73] stochastic universal selection (SUS) is a particularly effec-
tive way of realizing this outcome. Instead of a single choice at each stage, we imagine
that the roulette wheel has an equally spaced multi-armed spinner. Spinning the wheel
produces simultaneously the values for all the chromosomes in the population.
From the viewpoint of statistical sampling theory, this corresponds to systematic sam-
pling [74]. Experimental work by Hancock [75] clearly demonstrates the superiority
of this approach, although much published work on applications of GAs still appears
to rely on the basic roulette-wheel method.3

An associated problem is that of finding a suitable measure of fitness for the
members of the population. Simply using the objective function values f (x) is rarely
sufficient, because the scale on which f (x) is measured is important. (For example,
values of 10 and 20 are much more clearly distinguished than 1010 and 1020.) Further,
if the objective is minimization rather than maximization, a transformation is clearly
required.

Some sort of scaling is thus usually applied, and Goldberg [6] gives a simple algo-
rithm to deal with both minimization and maximization. The method is cumbersome,
however, and it needs continual re-scaling as the search progresses. Two alternatives
provide more elegant solutions.

8.1 Ranking

Ranking the chromosomes in fitness order loses some information, but there is no
need for re-scaling, and selection algorithm is simpler and more efficient. Suppose the
probability of selecting the string that is ranked kth in the population is denoted by
P[k]. In the case of linear ranking, we assume that

where and are constants. The requirement that P[k] be a probability distribution
gives us one condition:

which leaves us free to choose the other parameter in a way that tunes the selection

pressure. This term is loosely used in many papers and articles on GAs. Here, we mean
the following.

3 Note that SUS does not necessarily reduce the total of random numbers needed. Having generated a
multiset of size M as our ‘mating pool’, we still have to use random numbers to decide which pairs mate
together, whereas in RWS we can simply pair them in the order generated.

Genetic Algorithms 67

Definition 3.1. Selection pressure

In the case of linear ranking, we interpret the average as meaning the median string,

so that

(This assumes the population size is odd—however, the analysis holds mutatis mutandis

for the case of an even number.) Some simple algebra soon establishes that

which implies that With this framework, it is easy to see that the cumulative

probability distribution can be stated in terms of the sum of an arithmetic progression,

so that finding the appropriate k for a given pseudo-random number r is simply a

matter of solving a quadratic equation for k, which can be done simply in O(1) time.

The formula is

Other functions can be used besides linear ranking [75,76] but the above scheme is
sufficiently flexible for most applications.

8.2 Tournament Selection

The other alternative to strict fitness-proportional selection is tournament selection in
which a set of chromosomes is chosen and compared, the best one being selected for
parenthood. This approach has similar properties to linear ranking for It is easy
to see that the best string will be selected every time it is compared, while the median
string will be chosen with probability Thus the selection pressure is given by

which for is similar to linear ranking when
One potential advantage of tournament selection over all other forms is that it only

needs a preference ordering between pairs or groups of strings, and it can thus cope
with situations where there is no formal objective function at all—in other words, it
can deal with a purely subjective objective function!

However, we should point out again that tournament selection is also subject to
arbitrary stochastic effects in the same way as roulette-wheel selection—there is no
guarantee that every string will appear in a given cycle. Indeed, using sampling with
replacement there is a probability of approximately that a given string
will not appear at all. One way of coping with this, at the expense of a little extra
computation, is to use a variance reduction technique from simulation theory. Saliby
[77] distinguishes between the set effect and the sequence effect in drawing items from
a finite population. In applying his ideas here, we know that we need items to be drawn
M times, so we simply construct random permutations4 of the numbers
the indices of the individuals in the population. These are concatenated into one long

4 There is a simple algorithm for doing this efficiently—see Nijenhuis and Wilf [78], e.g., or look at the
Stony Brook Algorithm Repository [79]

68 C. Reeves

sequence which is then chopped up into M pieces, each containing the indices of the
individuals to be used in the consecutive tournaments. If M is not an exact multiple of

there is the small chance of some distortion where the permutations join, but this is
a relatively minor problem.

9 CROSSOVER

Crossover is simply a matter of replacing some of the genes in one parent by the
corresponding genes of the other. Suppose we have 2 strings a and b, each consisting
of 6 variables, i.e.

which represent two possible solutions to a problem. (Note that we have chosen here
to leave the alphabet unspecified, to emphasize that binary representation is not a
critical aspect of GAs.) One-point crossover (1X) has been described earlier; two-point

crossover (denoted by 2X), is very similar. Two crosspoints are chosen at random from
the numbers and a new solution produced by combining the pieces of the
the original ‘parents’. For instance, if the crosspoints were 2 and 4, the ‘offspring’
solutions would be

A similar prescription can be given for m-point crossover where m > 1.
An early and thorough investigation of multi-point crossovers is that by Eshelman

et al. [80], who examined the biasing effect of traditional one-point crossover, and
considered a range of alternatives. Their central argument is that two sources of bias
exist to be exploited in a genetic algorithm: positional bias, and distributional bias.
Simple crossover has considerable positional bias, in that it relies on the building-block
hypothesis, and if this is invalid, the bias may prevent the production of good solutions.

On the other hand, 1X has no distributional bias, in that the crossover point is
chosen randomly using the uniform distribution. But this lack of bias is not necessarily
a good thing, as it limits the exchange of information between the parents. In [80],
the possibilities of changing these biases, in particular by using multi-point crossover,
were investigated and empirical evidence strongly supported the suspicion that one-
point crossover is not the best option. In fact, the evidence was somewhat ambiguous,
but seemed to point to an 8-point crossover operator as the best overall, in terms of the
number of function evaluations needed to reach the global optimum.

Another obvious alternative, which removes any bias, is to make the crossover
process completely random—the so-called uniform crossover. This can be seen most
easily by observing that the crossover operator itself can be written as a binary string
or mask—in fact, when implementing crossover in a computer algorithm, this is the
obvious way to do it. For example, the mask

represents the 2-point crossover used above, where a 1 means that the alleles are taken
from the first parent, while a 0 means they come from the second.

1 1 0 0 1 1

and

and

Genetic Algorithms 69

By generating the pattern of 0s and 1s stochastically (using a Bernoulli distribution)
we thus get uniform crossover (UX), which might generate a mask such as

1 0 1 0 0 1

which implies that the 1st, 3rd and 6th alleles are taken from the first parent, the others
from the second. This idea was first used by Syswerda [81], who implicitly assumed
that the Bernoulli parameter p = 0.5. Of course, this is not necessary: we can bias UX

towards one or other of the parents by choosing p appropriately.
DeJong and Spears [82] produced a theoretical analysis that was able to characterize

the amount of disruption introduced by a given crossover operator exactly. In particular,
the amount of disruption in UX can be tuned by choosing different values of p.

Of course, there are also many practical considerations that influence the imple-
mentation of crossover. How often do we apply it? Some always do, others use a
stochastic approach, applying crossover with a probability Do we generate one
offspring or two? In many cases there are natural ‘twin’ offspring resulting, but in more
sophisticated problems it may be that only one offspring arises. When we choose only
one from two, how do we do it? In accordance with the stochastic nature of the GA, we
may well decide to choose either of the offspring at random. Alternatively, we could
bias the decision by making use of some other property such as the fitness of the new
individuals, or the loss (or gain) in diversity that results in choosing one rather than the
other.

Booker [83] reported significant gains from using an adaptive crossover rate: the
rate was varied according to a characteristic called percent involvement. This is simply
the percentage of the current population that is producing offspring—too small a value
is associated with loss of diversity and premature convergence.

9.1 Non-linear Crossover

In cases of non-linear encodings, crossover has to be reinterpreted. One of the most
frequently occulting problems is where the solution space is the space of permutations

of the numbers 1, . . . , l—well-known examples of this include many scheduling
problems, and the famous travelling salesman problem (TSP).

For instance, the simple-minded application of 1X in the following case produces
an infeasible solution:

P1 1 6 3 4 5 2 01 1 6 1 2 6 5
X

P2 4 3 1 2 6 5 02 4 3 3 4 5 2

If this represents a TSP, the first offspring visits cities 1 and 6 twice, and never gets
to cities 3 or 4. A moment’s thought is enough to realize that this type of behaviour
will be the rule, not an exception. Clearly we need to think of something rather smarter
if we are to be able to solve such problems.

One of the first ideas for such problems was the PMX (partially mapped crossover)
operator [84]. Two crossover points are chosen uniformly at random between 1 and l.
The section between these points defines an interchange mapping. Thus, in the example

70 C. Reeves

above, PMX might proceed as follows:

P1 1 6 3 4 5 2 01 3 5 1 2 6 4
X Y

P2 4 3 1 2 6 5 02 2 1 3 4 5 6

Here the crossover points X and Y define an interchange mapping

on their respective strings, which means that the cut blocks have been swapped and
now appear in different contexts from before. Another possibility is to apply a binary
mask, as in linear crossover, but with a different meaning. Such a mask, generated as
with UX say, might be the following

1 0 1 0 0 1

which is applied to the parents in turn. First the components corresponding to 1s are
copied from one parent, and then those that correspond to 0s are taken in the order
they appear from the second parent in order to fill the gaps. Thus the above example
generates the following pairs of strings:

10 MUTATION

Firstly, we note that in the case when crossover-OR-mutation is used, we must first
decide whether any mutation is carried out at all. Assuming that it is, the concept of
mutation is even simpler than crossover, and again, this can easily be represented as a
bit-string. We generate a mask such as

using a Bernoulli distribution at each locus—with a small value of p in this case. (The
above example would then imply that the 2nd and 6th genes are assigned new allele
values.) However, there are different ways of implementing this simple idea that can
make a substantial difference to the performance of a GA. The naive idea would be
to draw a random number for every gene in the string and compare it to but this is
potentially expensive in terms of computation if the strings are long and the population
is large. An efficient alternative is to draw a random variate from a Poisson distribution
with parameter where is the average number of mutations per chromosome. A
common value for is 1—in other words, if l is the string length, the (bit-wise)
mutation rate is which as early as 1964 [85] was shown to be in some sense
an ‘optimal’ mutation rate. Having decided that there are (say) m mutations, we draw
m random numbers (without replacement) uniformly distributed between 1 and l in
order to specify the loci where mutation is to take place.

In the case of binary strings, mutation simply means complementing the chosen
bit(s). More generally, when there are several possible allele values for each gene, if

0 1 0 0 0 1

Genetic Algorithms 71

we decide to change a particular allele, we must provide some means of deciding what
its new value should be. This could be a random choice, but if (as in some cases) there
is some ordinal relation between allele values, it may be more sensible to restrict the
choice to alleles that are close to the current value, or at least to bias the probability
distribution in their favour.

It is often suggested that mutation has a somewhat secondary function, that of
helping to preserve a reasonable level of population diversity—an insurance policy
which enables the process to escape from sub-optimal regions of the solution space, but
not all authors agree. Proponents of evolutionary programming, for example, consider
crossover to be an irrelevance, and mutation plays the major role [86]. Perhaps it is
best to say that the balance between crossover and mutation is often a problem-specific
one, and definite guidelines are hard to give.

However, several authors have suggested some type of adaptive mutation: for exam-
ple, Fogarty [87] experimented with different mutation rates at different loci. Reeves
[69] varied the mutation probability according to the diversity in the population (mea-
sured in terms of the coefficient of variation of fitnesses). More sophisticated procedures
are possible, and anecdotal evidence suggests that many authors use some sort of
diversity maintenance policy.

11 NEW POPULATION

Holland’s original GA assumed a generational approach: selection, recombination
and mutation were applied to a population of M chromosomes until a new set of
M individuals had been generated. This set then became the new population. From an
optimization viewpoint this seems an odd thing to do—we may have spent considerable
effort obtaining a good solution, only to run the risk of throwing it away and thus
preventing it from taking part in further reproduction. For this reason, De Jong [5]
introduced the concepts of élitism and population overlaps. His ideas are simple—an
élitist strategy ensures the survival of the best individual so far by preserving it and
replacing only the remaining (M – 1) members of the population with new strings.
Overlapping populations take this a stage further by replacing only a fraction G (the
generation gap) of the population at each generation. Finally, taking this to its logical
conclusion produces the so-called steady-state or incremental strategies, in which only
one new chromosome (or sometimes a pair) is generated at each stage. Davis [31] gives
a good general introduction to this type of GA.

Slightly different strategies are commonly used in the ES community, which tradi-
tionally designates them either In the first case, offspring are
generated from parents, and the best of these offspring are chosen to start the next
generation. For the + strategy, offspring are generated and the best individualsare
chosen from the combined set of parents and offspring.

In the case of incremental reproduction it is also necessary to select members of
the population for deletion. Some GAs have assumed that parents are replaced by their
children. Many implementations, such as Whitley’s GENITOR [76], delete the worst
member of the population. Goldberg and Deb [88] have pointed out that this exerts a
very strong selective pressure on the search, which may need fairly large populations
and high mutation rates to prevent a rapid loss of diversity. A milder prescription is to
delete one of the worst P% of the population (for example, Reeves [69] used P = 50,

72 C. Reeves

i.e., selection from those worse than the median). This is easily implemented when
rank-based selection is used. Yet another approach is to base deletion on the age of the
strings.

11.1 Diversity Maintenance

As hinted above, one of the keys to good performance (in nature as well as in GAs) is
to maintain the diversity of the population as long as possible. The effect of selection
is to reduce diversity, and some methods can reduce diversity very quickly. This can be
mitigated by having larger populations, or by having greater mutation rates, but there
are also other techniques that are often employed.

A popular approach, commonly linked with steady-state or incremental GAs, is to
use a ‘no-duplicates’ policy [31]. This means that the offspring are not allowed into the
population if they are merely clones of existing individuals. The downside, of course,
is the need to compare each current individual with the new candidate, which adds to
the computational effort needed—an important consideration with large populations.
(In principle, some sort of ‘hashing’ approach could be used to speed this process up,
but whether this was used in [31] is not clear.)

We can of course take steps to reduce the chance of cloning before offspring are
generated. For instance, with 1X, the two strings

1 1 0 1 0 0 1
1 1 0 0 0 1 0

will generate only clones if the crossover point is any of the first three positions. Booker
[83] suggested that before applying crossover, we should examine the selected parents
to find suitable crossover points. This entails computing an ‘exclusive-OR’ (XOR)
between the parents, so that only positions between the outermost 1s of the XOR string
(the ‘reduced surrogate’) should be considered as crossover points. Thus in the example
above, the XOR string is

0 0 0 1 0 1 1

so that, as previously stated, only the last 3 crossover points will give rise to a different
string.

12 REPRESENTATION

As remarked in part A, the focus in this handbook is on using GAs as optimizers in a
search space, given a suitable encoding and fitness function. We now consider how the
search space might be constructed in some generic cases.

12.1 Binary Problems

In some problems a binary encoding might arise naturally. Consider the operational
research problem known as the knapsack problem, stated as follows.

Example 3.1 (The 0–1 knapsack problem). A set of n items is available to be packed

into a knapsack with capacity C units. Item i has value and uses up units of capacity.

Genetic Algorithms 73

Determine the subset I of items which should be packed in order to maximize

such that

If we define

the knapsack problem can be re-formulated as an integer program:

from which it is clear that we can define a solution as a binary string of length n. In
this case there is thus no distinction between genotype and phenotype.

However, such problems are not necessarily easy to solve with a GA. In this case,
the presence of constraints is likely to cause difficulties—two feasible parents may not
produce feasible offspring, unless special crossover operators are constructed. In fact,
such problems as these are really subset selection problems, which are best tackled by
other means [89], despite the seductiveness of the binary encoding. It is now widely
recognised that ‘natural’ binary encodings nearly always bring substantial problems
for simple GAs.

12.2 Discrete (but not Binary) Problems

There are cases in which a discrete alphabet of higher cardinality than 2 might be
appropriate. The rotor stacking problem, as originally described by McKee and Reed
[90], is a good example.

Example 3.2. A set of n rotors is available, each of which has k holes drilled in it.

The rotors have to be assembled into a unit by stacking them and bolting them together,

as in Figure 1.4. Because the rotors are not perfectly flat, stacking them in different

orientations will lead to assemblies with different characteristics in terms of deviations

from true symmetry, with the consequent effect (in operation) that the assembled unit

will wobble as it spins. The objective is to find which of all the possible combinations

of orientations produces the least deviation.

In this case a k-ary coding is natural. A solution is represented by a string of length n,

each gene corresponding to a rotor and the alleles, drawn from {1,. . . , k}, representing
the orientation (relative to a fixed datum) of the holes. Thus, the string (1322) represents
a solution to a 4-rotor problem where hole 1 of the first rotor is aligned with hole 3 of
the second and hole 2 of the third and fourth. Of course, it would be possible to encode
the alleles as binary strings, but there seems little point in so doing—particularly if k

74 C. Reeves

is not a power of 2, as there will then be some binary strings that do not correspond to
any actual orientation.

This seems very straightforward, but there is a subtle point here that could be
overlooked. The assignment of labels to the holes is arbitrary, and this creates the
problem of ‘competing conventions’ as it has been called.5 For example, given a
natural order for labelling each rotor, the string (3211) represents the same solution as
(1322). This can be alleviated in this case by fixing the labeling for one rotor, so that a
solution can be encoded by a string of length (n – 1).

As far as the operators are concerned, standard crossovers can be used here, but
mutation needs careful consideration, as outlined above in Section 10.

12.3 Permutation Problems

There are also some problems where the ‘obvious’ choice of representation is defined,
not over a set, but over a permutation. The TSP is one of many problems for which this
is true. As another example, consider the permutation flowshop sequencing problem
(PFSP).

Example 3.3. Suppose we have n jobs to be processed on m machines, where the

processing time for job i on machine j is given by p(i, j). For a job permutation

we calculate the completion times as follows:

The PFSP is then to find a permutation in the set of all permutations such that

(Several performance measures are possible; common ones are the maximum or

mean completion time.)

Here the natural encoding (although not the only one) is simply the permutation
of the jobs as used to calculate the completion times. So the solution (1462537), for
example, simply means that job 1 is first on each machine, then job 4, job 6, etc.

5This phenomenon is a common one whenever the coding function c(·) is not injective. It has been
observed in problems ranging from optimizing neural nets to the TSP. Radcliffe, who calls it ‘degeneracy’
[91] has presented the most thorough analysis of this problem and how to treat it.

Genetic Algorithms 75

Unfortunately, the standard crossover operators patently fail to preserve the per-
mutation except in very fortunate circumstances, as discussed in Section 9.1. Some
solutions to this problem were outlined there; more comprehensive discussion of possi-
ble methods of attack are contained in [92,93], while [69,94] describe some approaches
of particular relevance to the PFSP.

12.4 Non-binary Problems

In many cases the natural variables for the problem are not binary, but integer or real-
valued. In such cases a transformation to a binary string is required first. (Note that this is
a different situation from the rotor-stacking example, where the integers were merely
labels: here the values are assumed to be meaningful as numbers.) While the main
thrust of metaheuristics research and application is directed to discrete optimization, it
is perhaps appropriate to mention these other problems here.

Example 3.4. It is required to maximize

To use the conventional form of genetic algorithm here, we would use a string
of 5 binary digits with the standard binary to integer mapping, i.e., (0, 0, 0, 0, 0) =
0,..., (1, 1, 1, 1, 1) = 31. Of course, in practice we could solve such a problem easily
without recourse to encoding the decision variable in this way, but it illustrates neatly
the sort of optimization problem to which GAs are often applied. Such problems assume
firstly that we know the domain of each of our decision variables, and secondly that we
have some idea of the precision with which we need to specify our eventual solution.
Given these two ingredients, we can determine the number of bits needed for each
decision variable, and concatenate them to form the chromosome. However, problems
involving continuous variables can more easily be handled within the ES framework.

13 RANDOM NUMBERS

As GAs are stochastic in nature, it is clear that a reliable random number source is
very important. Most computer systems have built-in rand()functions, and that is the
usual method of generating random numbers. Not all random number generators are
reliable, however, as Ross [95] has pointed out, and it is a good idea to use one that has
been thoroughly tested, such as those described in the Numerical Recipes series [96].

14 CONCLUSIONS

While this exposition has covered the basic principles of GAs, the number of variations
that have been suggested is enormous. Probably everybody’s GA is unique! Many vari-
ations in population size, in initialization methods, in fitness definition, in selection and
replacement strategies, in crossover and mutation are obviously possible. Some have
added information such as age, or artificial tags, to chromosomes; others have allowed

over the search space the solution x* is required to

be an integer in the range [0, 31].

76 C. Reeves

varying population sizes, or induced the formation of multiple populations in ‘niches’.
It is in the nature of GAs that parallel processing can often be used to advantage, and
here again, there are many possibilities, ranging from simple parallelization of func-
tion evaluations in a generational GA, to very sophisticated implementations that add
a spatial aspect to the algorithm.

The GA community has yet to reach a consensus on any of these things, and in
the light of the NFLT, this is perhaps not surprising. However, some ideas do emerge
as a reasonable set of recommendations. From a practitioner’s viewpoint, Levine [72]
made the following observations:

1.

2.

3.

4.

5.

Not everyone will agree with this particular list, and there is a conflict inherent in the
first two points, since SUS functions best in a generational setting. Broadly speaking,
however, it is one with which many researchers could be comfortable. Two other points
could be added:

6.

7.

Make diversity maintenance a priority.

Don’t be afraid to run the GA several times.

Why this last point? Statements are frequently made that GAs can find global
optima. Well, they can—but in practice there are many other ‘attractors’ to which they
may converge, and these may be some distance from global optimality, so it makes
sense to explore several alternatives.

In conclusion, this chapter has presented a brief survey of the history, theory and
issues of implementation relating to one of the most popular metaheuristics. It is hoped
that sufficient guidance has been given for newcomers to the field, while also perhaps
suggesting new avenues to explore for those who have been acquainted with GAs for
some time.

BIBLIOGRAPHY

[1]

[2]

[3]

J.H. Holland (1975) Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, Michigan; re-issued by MIT Press (1992).

I. Rechenberg (1973) Evolutions strategic: Optimierung technischer Systeme nach

Prinzipen der biologischen Evolution, Frommmann-Holzboog Verlag, Stuttgart
(2nd edition 1993).

H.-P. Schwefel (1977) Numerische Optimierung von Computer-modellen mittels

der Evolutionsstrategie, Birkhäuser Verlag, Basel. (English edition: Numerical

Optimization of Computer Models, John Wiley & Sons, Chichester, 1981.)

A steady-state (or incremental) approach is generally more effective and efficient
than a generational method.

Don’t use simple roulette wheel selection. Tournament selection or SUS is better.

Don’t use one-point crossover. UX or 2X should be preferred.

Make use of an adaptive mutation rate—one that is fixed throughout the search
(even at 1/l) is too inflexible.

Hybridize wherever possible; don’t use a GA as a black box, but make use of
any problem-specific information that you have.

Genetic Algorithms 77

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D.B. Fogel (1998) Evolutionary Computation: The Fossil Record, IEEE Press,
Piscataway, NJ.

K.A. De Jong (1975) An analysis of the behavior of a class of genetic adaptive

systems, Doctoral dissertation, University of Michigan, Ann Arbor, Michigan.

D.E. Goldberg (1989) Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, Massachusetts.

K.A. De Jong (1993) Genetic algorithms are NOT function optimizers. In
D. Whitley (ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San
Mateo, CA, pp. 5–18.

S. Lin (1965) Computer solutions of the traveling salesman problem. Bell Systems

Tech. J., 44, 2245–2269.

S.M. Roberts and B. Flores (1966) An engineering approach to the travelling
salesman problem. Man. Sci., 13, 269–288.

C.E. Nugent, T.E. Vollman and J.E. Ruml (1968) An experimental comparison
of techniques for the assignment of facilities to locations. Operations Research,

16, 150–173.

C.R. Reeves (1997) Genetic algorithms for the Operations Researcher. INFORMS

Journal on Computing, 9, 231–250.

C.R. Reeves and J.E. Rowe (2001) Genetic Algorithms: Principles and Perspec-

tives, Kluwer, Norwell, MA.

C.R. Reeves and C.C. Wright (1999) Genetic algorithms and the design of
experiments. In L.D. Davis, K. DeJong, M.D. Vose and L.D. Whitley (eds.),
Evolutionary Algorithms: IMA Volumes in Mathematics and its Applications,

Vol. 111. Springer-Verlag, New York, pp. 207–226.

D.H. Wolpert and W.G. Macready (1997) No free lunch theorems for optimization.
IEEE Trans. Ev. Comp, 1, 67–82.

W.G. Macready and D.H. Wolpert (1996) On 2-armed Gaussian Bandits and

Optimization. Technical Report SFI-TR-96-03-009, Santa Fe Institute, Santa Fe,
New Mexico.

M. Mitchell, J.H. Holland and S. Forrest (1994) When will a genetic algorithm
outperform hill climbing? In J.D. Cowan, G. Tesauro and J. Alspector (eds.),
Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San
Mateo, CA.

M.D. Vose (1993) Modeling simple genetic algorithms. In L.D. Whitley (ed.),
Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo, CA, 63–73.

D. Whitley (1993) An executable model of a simple genetic algorithm. In L.D.
Whitley (ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San
Mateo, CA, 45–62.

M.D. Vose (1994) A closer look at mutation in genetic algorithms. Annals of

Maths and AI, 10, 423–434.

M.D. Vose and A.H. Wright (1995) Stability of vertex fixed points and applica-
tions. In D. Whitley and M. Vose (eds.), Foundations of Genetic Algorithms 3.

Morgan Kaufmann, San Mateo, CA, 103–113.

78 C. Reeves

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

K.A. De Jong, W.M. Spears and D.F. Gordon (1995) Using Markov chains to
analyze GAFOs. In D. Whitley and M. Vose (eds.), Foundations of Genetic

Algorithms 3, Morgan Kaufmann, San Mateo, CA, 115–137.

J. Rees and G.J. Koehler (1999) An investigation of GA performance results for
different cardinality alphabets. In L.D. Davis, K. DeJong, M.D. Vose and L.D.
Whitley (eds.), Evolutionary Algorithms: IMA Volumes in Mathematics and its
Applications, Vol. 111. Springer-Verlag, New York, 191–206.

J.L. Shapiro, A. Prügel-Bennett and M. Rattray (1994) A statistical mechanics
formulation of the dynamics of genetic algorithms. Lecture Notes in Computer

Science, Vol. 865. Springer-Verlag, Berlin, pp. 17–27.

C.C. Peck and A.P. Dhawan (1995) Genetic algorithms as global random search
methods: An alternative perspective. Evolutionary Computation, 3, 39–80.

C.R. Reeves (1999) Predictive measures for problem difficulty. In: Proceedings

of 1999 Congress on Evolutionary Computation, IEEE Press, pp. 736–743.

C.R. Reeves (1994) Genetic algorithms and neighbourhood search. In
T.C. Fogarty (ed.), Evolutionary Computing: AISB Workshop, Leeds, UK, April

1994; Selected Papers. Springer-Verlag, Berlin.

T.C. Jones (1995) Evolutionary Algorithms, Fitness Landscapes and Search,

Doctoral dissertation, University of New Mexico, Albuquerque, NM.

J.C. Culberson (1995) Mutation-crossover isomorphisms and the construction of
discriminating functions. Evolutionary Computation, 2, 279–311.

P.F. Stadler and G.P. Wagner (1998) Algebraic theory of recombination spaces.
Evolutionary Computation, 5, 241–275.

C.R. Reeves (2000) Fitness landscapes and evolutionary algorithms. In C. Fonlupt,
J.-K. Hao, E. Lutton, E. Ronald and M. Schoenauer (eds.), Artificial Evolution:

4th European Conference; Selected Papers. Springer-Verlag, Berlin, pp. 3–20.

L. Davis (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York.

L. Chambers (ed.) (1995) Practical Handbook of Genetic Algorithms: Applica-

tions, Volume I, CRC Press, Boca Raton, Florida.

L. Chambers (ed.) (1995) Practical Handbook of Genetic Algorithms: New

Frontiers, Volume II, CRC Press, Boca Raton, Florida.

J.T. Alander (1996) An Indexed Bibliography of Genetic Algorithms. In
J.T. Alander (ed.), Proceedings of the 2nd Nordic Workshop on Genetic Algo-

rithms and their Applications. University of Vaasa Press, Vaasa, Finland,
pp. 293–350.

Z. Michalewicz (1996) Genetic Algorithms + Data Structures = Evolution

Programs (3rd edition), Springer-Verlag, Berlin.

C.R. Reeves (ed.) (1993) Modern Heuristic Techniques for Combinatorial Prob-

lems, Blackwell Scientific Publications, Oxford, UK; re-issued by McGraw-Hill,
London, UK (1995).

M. Mitchell (1996) An Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA.

Genetic Algorithms 79

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

E. Falkenauer(1998) Genetic Algorithms and Grouping Problems, John Wiley &
Sons, Chichester, UK.

Th. Bäck (1996) Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University
Press, Oxford.

M.D. Vose (1999) The Simple Genetic Algorithm: Foundations and Theory, MIT
Press, Cambridge, MA.

J.J. Grefenstette (ed.) (1985) Proc. of an International Conference on Genetic

Algorithms and their applications. Lawrence Erlbaum Associates, Hillsdale, NJ.

J.J. Grefenstette (ed.) (1987) Proceedings of the 2nd International Conference on

Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, NJ.

J.D. Schaffer (ed.) (1989) Proceedings of 3rd International Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, CA.

R.K. Belew and L.B. Booker (eds.) (1991) Proceedings of 4th International

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.

S. Forrest (ed.) (1993) Proceedings of 5th International Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, CA.

L.J. Eshelman (ed.) (1995) Proceedings of 6th International Conference on

Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.

Th. Bäck (ed.) (1997) Proceedings of 7th International Conference on Genetic

Algorithms, Morgan Kaufmann, San Francisco, CA.

H.-P. Schwefel and R. Manner (eds.) (1991) Parallel Problem-Solving from

Nature, Springer-Verlag, Berlin.

R. Männer andB. Manderick (eds.) (1992) Parallel Problem-Solving from Nature,

2, Elsevier Science Publishers, Amsterdam.

Y. Davidor, H.-P. Schwefel and R. Manner (eds.) (1994) Parallel Problem-Solving

from Nature, 3, Springer-Verlag, Berlin.

H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel (eds.) (1996) Parallel

Problem-Solving from Nature, 4, Springer-Verlag, Berlin.

A.E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (eds.) Parallel Problem-

Solving from Nature, 5, Springer-Verlag, Berlin.

M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo and
H.-P. Schwefel (eds.) (2000) Parallel Problem-Solving from Nature, 6, Springer-
Verlag, Berlin.

R.F. Albrecht, C.R. Reeves and N.C. Steele (eds.) (1993) Proceedings of the

International Conference on Artificial Neural Networks and Genetic Algorithms,

Springer-Verlag, Vienna.

D.W. Pearson, N.C. Steele and R.F. Albrecht (eds.) (1995) Proceedings of the 2nd

International Conference on Artificial Neural Networks and Genetic Algorithms,

Springer-Verlag, Vienna.

G.D. Smith, N.C. Steele and R.F. Albrecht (eds.) (1997) Proceedings of the 3rd

International Conference on Artificial Neural Networks and Genetic Algorithms,

Springer-Verlag, Vienna.

80 C. Reeves

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

A. Dobnikar, N.C. Steele, D.W. Pearson and R.F. Albrecht (eds.) (1999) Pro-

ceedings of the 4th International Conference on Artificial Neural Networks and

Genetic Algorithms, Springer-Verlag, Vienna.

G.J.E. Rawlins (ed.) (1991) Foundations of Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA.

L.D. Whitley (ed.) (1993) Foundations of Genetic Algorithms 2, Morgan
Kaufmann, San Mateo, CA.

D. Whitley and M. Vose (eds.) (1995) Foundations of Genetic Algorithms 3,

Morgan Kaufmann, San Mateo, CA.

R.K. Belew and M.D. Vose (eds.) (1997) Foundations of Genetic Algorithms 4,

Morgan Kaufmann, San Francisco, CA.

W. Banzhaf and C.R. Reeves (eds.) (1999) Foundations of Genetic Algorithms 5,

Morgan Kaufmann, San Francisco, CA.

W. Martin and W. Spears (eds.) (2001) Foundations of Genetic Algorithms 6,

Morgan Kaufmann, San Francisco, CA.

D.E. Goldberg (1985) Optimal initial population size for binary-coded genetic

algorithms. TCGA Report 85001, University of Alabama, Tuscaloosa.

D.E. Goldberg (1989) Sizing populations for serial and parallel genetic algo-
rithms. In [43], 70–79.

J.J. Grefenstette (1986) Optimization of control parameters for genetic algorithms.
IEEE-SMC, SMC-16, 122–128.

J.D. Schaffer, R.A. Caruana, L.J. Eshelman and R. Das (1989) A study of control
parameters affecting online performance of genetic algorithms for function opti-
mization. In J.D. Schaffer (ed.), Proceedings of 3rd International Conference on

Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, pp. 51–60.

C.R. Reeves (1993) Using genetic algorithms with small populations. In S. Forrest
(ed.) Proceedings of 5th International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, pp. 92–99.

C.R. Reeves (1995) A genetic algorithm for flowshop sequencing. Computers &

Operations Research, 22, 5–13.

R.K. Ahuja and J.B. Orlin (1997) Developing fitter GAs. INFORMS Journal on

Computing, 9, 251–253.

A. Kapsalis, G.D. Smith and V.J. Rayward-Smith (1993) Solving the graphical
steiner tree problem using genetic algorithms. Journal of Operational Research

Society, 44, 397–106.

D. Levine (1997) GAs: A practitioner’s view. INFORMS Journal on Computing,

9, 256–257.

J.E. Baker (1987) Reducing bias and inefficiency in the selection algorithm.
In J.J. Grefenstette (ed.), Proceedings of the 2nd International Conference

on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, New Jersey,
14–21.

S.L. Lohr (1999) Sampling: Design and Analysis, Duxbury Press, Pacific
Grove, CA.

Genetic Algorithms 81

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

P.J.B. Hancock (1994) An empirical comparison of selection methods in evo-
lutionary algorithms. In T.C. Fogarty (ed.), Evolutionary Computing: AISB

Workshop, Leeds, UK, April 1994; Selected Papers. Springer-Verlag, Berlin,
pp. 80–94.

D. Whitley (1989) The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In J.D. Schaffer (ed.), Proceedings

of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, Los
Altos, CA, pp. 116–121.

E. Saliby (1990) Descriptive sampling: A better approach to Monte Carlo
simulation. Journal of Operational Research Society, 41, 1133–1142.

A. Nijenhuis and H.S. Wilf (1978) Combinatorial Algorithms for Computers and

Calculators. Academic Press, New York.

S.S. Skiena (2000) The Stony Brook Algorithm Repository, http://www.es.

sunysb.edu/algorith/index.html

L.J. Eshelman, R.A. Caruana and J.D. Schaffer (1989) Biases in the crossover
landscape. In [43], 10–19.

G. Syswerda (1989) Uniform crossover in genetic algorithms. In [43], 2–9.

K. A. De Jong and W.M. Spears (1992) A formal analysis of the role of multi-point
crossover in genetic algorithms. Annals of Maths. and AI, 5, 1–26.

L.B. Booker (1987) Improving search in genetic algorithms. In L. Davis (ed.),
Genetic Algorithms and Simulated Annealing, Morgan Kauffmann, Los Altos,
CA, pp. 61–73.

D.E. Goldberg and R. Lingle (1985) Alleles, loci and the traveling salesman
problem. In J.J. Grefenstette (ed.), Proceedings of an International Conference

on Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, pp. 154–159.

H.J. Bremermann, J. Rogson and S. Salaff (1964) Global properties of evolu-
tion processes. In H.H. Pattee (ed.), Natural Automata and Useful Simulations,

pp. 3–42.

D.B. Fogel (1999) An overview of evolutionary programming. In L.D. Davis,
K. DeJong, M.D. Vose and L.D. Whitley (eds.), Evolutionary Algorithms:

IMA Volumes in Mathematics and its Applications, Vol. 111. Springer-Verlag,
New York, pp. 89–109.

T.C. Fogarty (1989) Varying the probability of mutation in the genetic algorithm.
In J.D. Schaffer (ed.), Proceedings of 3rd International Conference on Genetic

Algorithms. Morgan Kaufmann, Los Altos, CA, 104–109.

D.E. Goldberg and K. Deb (1991) A comparative analysis of selection schemes
used in genetic algorithms. In G.J.E. Rawlins (ed.), Foundations of Genetic

Algorithms. Morgan Kaufmann, San Mateo, CA.

N.J. Radcliffe and F.A.W. George (1993) A study in set recombination. In S. For-
rest (ed.), Proceedings of 5th International Conference on Genetic Algorithms.

Morgan Kaufmann, San Mateo, CA, 23–30.

S. McKee and M.B. Reed (1987) An algorithm for the alignment of gas turbine
components in aircraft. IMA J Mathematics in Management, 1, 133–144.

82 C. Reeves

[91]

[92]

[93]

[94]

[95]

[96]

N.J. Radcliffe and P. Surry (1995) Formae and the variance of fittness. In
D. Whitley and M. Vose (eds.), Foundations of Genetic Algorithms 3. Morgan
Kaufmann, San Mateo, CA, pp. 51–72.

B.R. Fox and M.B. McMahon (1991) Genetic operators for sequencing problems.
In G.J.E. Rawlins (ed.), Foundations of Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 284–300.

P.W. Poon and J.N. Carter (1995) Genetic algorithm crossover operators for
ordering applications. Computers & Operations Research, 22, 135–147.

C.R. Reeves and T. Yamada (1998) Genetic algorithms, path relinking and the
flowshop sequencing problem. Evolutionary Computation, 6, 45–60.

P. Ross (1997) srandom() anomaly. Genetic Algorithms Digest, http://www.aic.

nrl.navy.mil/galist/ 11:23.

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992) Numeri-

cal Recipes in C: The Art of Scientific Computing, Cambridge University Press,
Cambridge, UK.

Chapter 4

GENETIC PROGRAMMING:
AUTOMATIC SYNTHESIS OF TOPOLOGIES
AND NUMERICAL PARAMETERS

John R. Koza

1 INTRODUCTION

Many mathematical algorithms are capable of solving problems by producing optimal
(or near-optimal) numerical values for a prespecified set of parameters. However, for
many practical problems, one cannot begin a search for the set of numerical values
until one first ascertains the number of numerical values that one is seeking.

In fact, many practical problems of design and optimization entail first discovering
an entire graphical structure (i.e., a topology). After the topology is identified, optimal
(or near-optimal) numerical values can be sought for the elements of the structure.

For example, if one is seeking an analog electrical circuit whose behavior satis-
fies certain prespecified high-level design goals, one must first ascertain the circuit’s
topology and then discover the numerical value of each electrical component in the
circuit.

Specifically, the topology of an electrical circuit comprises

the total number of electrical components, in the circuit,

the type of each component (e.g., resistor, capacitor, transistor) at each location
in the circuit, and

a list of all the connections between the leads of the components.

The sizing of a circuit consists of the component value(s) for each component of
the circuit that requires a component value.

The automatic synthesis of the topology and sizing of analog electrical circuits is
a vexatious problem. As Aaserud and Nielsen (1995) noted

[M]ost … analog circuits are still handcrafted by the experts or so-called
‘zahs’ of analog design. The design process is characterized by a com-
bination of experience and intuition and requires a thorough knowledge
of the process characteristics and the detailed specifications of the actual
product.

Analog circuit design is known to be a knowledge-intensive, multi-
phase, iterative task, which usually stretches over a significant period of

84 J.R. Koza

time and is performed by designers with a large portfolio of skills. It is
therefore considered by many to be a form of art rather than a science.

The purpose of a controller is to force, in a meritorious way, the actual response
of a system (conventionally called the plant) to match a desired response (called the
reference signal) (Dorf and Bishop, 1998). Controllers are typically composed of signal
processing blocks, such as integrators, differentiators, leads, lags, delays, gains, adders,
inverters, subtractors, and multipliers.

A similarly vexatious situation arises if one is seeking the design of a controller
whose behavior satisfies certain prespecified high-level design goals.

The topology of a controller comprises

the total number of signal processing blocks in the controller,

the type of each block (e.g., integrator, differentiator, lead, lag, delay, gain, adder,
inverter, subtractor, and multiplier),

the connections between the inputs and output of each block in the controller and
the external input and external output points of the controller.

The tuning (sizing) of a controller consists of the parameter values associated with
each signal processing block.

A parallel situation arises in connection with networks of chemical reactions
(metabolic pathways).

The concentrations of substrates, products, and intermediate substances partici-
pating in a network of chemical reactions are modeled by non-linear continuous-time
differential equations, including various first-order rate laws, second-order rate laws,
power laws, and the Michaelis–Menten equations (Voit, 2000). The concentrations of
catalysts (e.g., enzymes) control the rates of many chemical reactions in living things.

The topology of a network of chemical reactions comprises

the total number of reactions,

the number of substrates consumed by each reaction,

the number of products produced by each reaction,

the pathways supplying the substrates (either from external sources or other
reactions in the network) to each reaction,

the pathways dispersing each reaction’s products (either to other reactions or
external outputs), and

an identification of whether a particular enzyme acts as a catalyst.

The sizing for a network of chemical reactions consists of all the numerical values
associated with the network (e.g., the rates of each reaction).

A similarly vexatious situation arises if one is seeking the design of an antenna
whose behavior satisfies certain prespecified high-level design goals.

While it might seem difficult or impossible to automatically create both the topology
and numerical parameters for a complex structure merely from a high-level statement
of the structure’s design goals, recent work has demonstrated that genetic programming
can automatically create complex structures that exhibit prespecified behavior in fields
where the structure’s behavior is modeled by differential equations (both linear and
non-linear) or by other equations (e.g., Maxwell’s equations).

Genetic Programming

In this chapter, we will demonstrate that a biologically motivated algorithm (genetic
programming) can automatically synthesize both a graphical structure (the topology)
and a set of optimal or near-optimal numerical values for each element of

analog electrical circuits (Section 3),

controllers (Section 4),

antennas (Section 5), and

networks of chemical reactions (metabolic pathways) (Section 6).

2 GENETIC PROGRAMMING

Genetic programming progressively breeds a population of computer programs over
a series of generations by starting with a primordial ooze of thousands of randomly
created computer programs and using the Darwinian principle of natural selection,
recombination (crossover), mutation, gene duplication, gene deletion, and certain
mechanisms of developmental biology.

Genetic programming breeds computer programs to solve problems by executing
the following three steps:

(1)

(2)

Generate an initial population of compositions (typically random) of the functions
and terminals of the problem.

Iteratively perform the following substeps (referred to herein as a generation) on
the population of programs until the termination criterion has been satisfied:
(A)

(B)

Execute each program in the population and assign it a fitness value using
the fitness measure.

Create a new population of programs by applying the following operations.
The operations are applied to program(s) selected from the population with
a probability based on fitness (with reselection allowed).

(i)

(ii)

(iii)

(iv)

Reproduction: Copy the selected program to the new population.

Crossover: Create a new offspring program for the new population by
recombining randomly chosen parts of two selected programs.

Mutation: Create one new offspring program for the new popula-
tion by randomly mutating a randomly chosen part of the selected
program.

Architecture-altering operations: Select an architecture-altering oper-
ation from the available repertoire of such operations and create one
new offspring program for the new population by applying the selected
architecture-altering operation to the selected program.

(3) Designate the individual program that is identified by result designation (e.g., the
best-so-far individual) as the result of the run of genetic programming. This result
may be a solution (or an approximate solution) to the problem.

Genetic programming is described in the book Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selection (Koza, 1992; Koza and Rice,
1992), the book Genetic Programming II: Automatic Discovery of Reusable Programs

(Koza, 1994a, 1994b), and the book Genetic Programming III: Darwinian Invention

85

86 J.R. Koza

and Problem Solving (Koza, Bennett, Andre, and Keane, 1999; Koza, Bennett, Andre,
Keane, and Brave, 1999).

Genetic programming is an extension of the genetic algorithm (Holland 1975) in
which the population being bred consists of computer programs.

Genetic programming starts with an initial population of randomly generated com-
puter programs composed of the given primitive functions and terminals. The programs
in the population are, in general, of different sizes and shapes. The creation of the ini-
tial random population is a blind random search of the space of computer programs
composed of the problem’s available functions and terminals.

On each generation of a run of genetic programming, each individual in the pop-
ulation of programs is evaluated as to its fitness in solving the problem at hand. The
programs in generation 0 of a run almost always have exceedingly poor fitness for
non-trivial problems of interest. Nonetheless, some individuals in a population will
turn out to be somewhat more fit than others. These differences in performance are
then exploited so as to direct the search into promising areas of the search space. The
Darwinian principle of reproduction and survival of the fittest is used to probabilisti-
cally select, on the basis of fitness, individuals from the population to participate in
various operations. A small percentage (e.g., 9%) of the selected individuals are repro-
duced (copied) from one generation to the next. A very small percentage (e.g., 1%)
of the selected individuals are mutated in a random way. Mutation can be viewed as
an undirected local search mechanism. The vast majority of the selected individuals
(e.g., 90%) participate in the genetic operation of crossover (sexual recombination) in
which two offspring programs are created by recombining genetic material from two
parents.

The creation of the initial random population and the creation of offspring by the
genetic operations are all performed so as to create syntactically valid, executable
programs. After the genetic operations are performed on the current generation of
the population, the population of offspring (i.e., the new generation) replaces the old
generation. The tasks of measuring fitness, Darwinian selection, and genetic operations
are then iteratively repeated over many generations. The computer program resulting
from this simulated evolutionary process can be the solution to a given problem or
a sequence of instructions for constructing the solution.

Probabilistic steps are pervasive in genetic programming. Probability is involved
in the creation the individuals in the initial population, the selection of individuals to
participate in the genetic operations (e.g., reproduction, crossover, and mutation), and
the selection of crossover and mutation points within parental programs.

The dynamic variability of the size and shape of the computer programs that are
created during the run is an important feature of genetic programming. It is often
difficult and unnatural to try to specify or restrict the size and shape of the eventual
solution in advance.

The individual programs that are evolved by genetic programming are typically
multi-branch programs consisting of one or more result-producing branches and zero,
one, or more automatically defined functions (subroutines).

The architecture of such a multi-branch program involves

(1)

(2)

the total number of automatically defined functions,

the number of arguments (if any) possessed by each automatically defined
function, and

Genetic Programming 87

(3) if there is more than one automatically defined function in a program, the nature
of the hierarchical references (including recursive references), if any, allowed
among the automatically defined functions.

Architecture-altering operations enable genetic programming to automatically
determine the number of automatically defined functions, the number of arguments
that each possesses, and the nature of the hierarchical references, if any, among such
automatically defined functions.

Additional information on genetic programming can be found in books such as
Banzhaf, Nordin, Keller, and Francone, 1998; books in the series on genetic program-
ming from Kluwer Academic Publishers such as Langdon, 1998; Ryan, 1999; Wong
and Leung, 2000; in edited collections of papers such as the Advances in Genetic

Programming series of books from the MIT Press (Kinnear, 1994; Angeline and
Kinnear, 1996; Spector et al., 1999); in the proceedings of the Genetic Program-
ming Conference held between 1996 and 1998 (Koza et al., 1996, 1997, 1998); in the
proceedings of the annual Genetic and Evolutionary Computation Conference (combin-
ing the annual Genetic Programming Conference and the International Conference on
Genetic Algorithms) held starting in 1999 (Banzhaf et al., 1999; Whitley et al., 2000);
in the proceedings of the annual Euro-GP conferences held starting in 1998 (Banzhaf
et al., 1998; Poli et al., 1999; Poli et al., 2000); at web sites such as www.genetic-

programming.org; and in the Genetic Programming and Evolvable Machines journal
(from Kluwer Academic Publishers).

3 AUTOMATIC SYNTHESIS OF
ANALOG ELECTRICAL CIRCUITS

Genetic programming is capable of automatically creating both the topology and sizing
(component values) for analog electrical circuits composed of transistors, capacitors,
resistors, and other components merely by specifying the circuit’s behavior.

This automatic synthesis of circuits is performed by genetic programming even
though there is no general mathematical method (prior to genetic programming) for
creating (synthesizing) both the topology and sizing (component values) of analog elec-
trical circuits from the circuit’s desired (or observed) behavior (Aaserud and Nielsen,
1995; Koza et al., 1999).

For purposes of illustration, we discuss

a lowpass filter circuits using a fitness measure based on the frequency-domain
behavior of circuits, and

a computational circuit employing transistors and using a fitness measure based
on the time-domain behavior of circuits.

3.1.1 Lowpass Filter Circuit

A simple filter is a one-input, one-output electronic circuit that receives a signal as its
input and passes the frequency components of the incoming signal that lie in a specified
range (called the passband) while suppressing the frequency components that lie in all
other frequency ranges (the stopband).

A lowpass filter passes all frequencies below a certain specified frequency, but stops
all higher frequencies.

88 J.R. Koza

Figure 4.1 shows the frequency domain behavior of an illustrative lowpass filter in
which the boundary of the passband is at 1,000 Hz and the boundary of the stopband
is 2,000 Hz. The horizontal axis represents the frequency of the incoming signal and
ranges over five decades of frequencies between 1 and 100,000 Hz on a logarithmic
scale. The vertical axis represents the peak voltage of the output and ranges between 0
to 1 V on a linear scale. This figure shows that when the input to the circuit consists of
a sinusoidal signal with any frequency from 1 to 1,000 Hz, the output is a sinusoidal
signal with an amplitude of a full 1 V. This figure also shows that when the input to the
circuit consists of a sinusoidal signal with any frequency from 2,000 to 100,000 Hz, the
amplitude of the output is essentially 0 V. The region between 1,000 and 2,000 Hz is
a transition region where the voltage varies between 1 V (at 1,000 Hz) and essentially
0 V (at 2,000 Hz).

Genetic programming is capable of automatically creating both the topology and
sizing (component values) for lowpass filters (and other filter circuits, such as high-
pass filters, bandpass filters, bandstop filters, and filters with multiple passbands and
stopbands).

A filter circuit may be evolved using a fitness measure based on frequency domain
behavior. In particular, the fitness of an individual circuit is the sum, over 101 values
of frequency between 1 and 100,000 Hz (equally space on a logarithmic scale), of the
absolute value of the difference between the individual circuit’s output voltage and the
ideal voltage for an ideal lowpass filter for that frequency (i.e., the voltages shown in
Figure 4.1).

For example, one run of genetic programming synthesized the lowpass filter circuit
of Figure 4.2.

The evolved circuit of Figure 4.2 is what is now called a cascade (ladder) of
identical sections (Koza et al., 1999, chapter 25). The evolved circuit has the
recognizable topology of the circuit for which George Campbell of American Tele-
phone and Telegraph received U.S. patent 1,227,113 in 1917. Claim 2 of Campbell’s

Genetic Programming 89

patent covered,

An electric wave filter consisting of a connecting line of negligible attenu-
ation composed of a plurality of sections, each section including a capacity
element and an inductance element, one of said elements of each section
being in series with the line and the other in shunt across the line, said capac-
ity and inductance elements having precomputed values dependent upon
the upper limiting frequency and the lower limiting frequency of a range of
frequencies it is desired to transmit without attenuation, the values of said
capacity and inductance elements being so proportioned that the structure
transmits with practically negligible attenuation sinusoidal currents of all
frequencies lying between said two limiting frequencies, while attenuating
and approximately extinguishing currents of neighboring frequencies lying
outside of said limiting frequencies.

In addition to possessing the topology of the Campbell filter, the numerical values
of all the components in the evolved circuit closely approximate the numerical values
taught in Campbell’s 1917 patent.

Another run of genetic programming synthesized the lowpass filter circuit of
Figure 4.3. As before, this circuit was evolved using the previously described fitness
measure based on frequency domain behavior.

This evolved circuit differs from the Campbell filter in that its final section consists
of both a capacitor and inductor. This filter is an improvement over the Campbell filter
because its final section confers certain performance advantages on the circuit. This
circuit is equivalent to what is called a cascade of three symmetric T-sections and
an M-derived half section (Koza et al., 1999, chapter 25). Otto Zobel of American
Telephone and Telegraph Company invented and received a patent for an “M-derived
half section” used in conjunction with one or more “constant K” sections. Again, the

90 J.R. Koza

numerical values of all the components in this evolved circuit closely approximate the
numerical values taught in Zobel’s 1925 patent.

Seven circuits created using genetic programming infringe on previously issued
patents (Koza et al., 1999). Others duplicate the functionality of previously patented
inventions in novel ways.

In both of the foregoing examples, genetic programming automatically created both
the topology and sizing (component values) of the entire filler circuit by using a fitness
measure expressed in terms of the signal observed at the single output point (the probe
point labeled VOUT in the figures).

3.1.2 Squaring Computational Circuit

Because filters discriminate on incoming signals based on frequency, the lowpass filter
circuit was automatically synthesized using a fitness measure based on the behavior
of the circuit in the frequency domain. However, for many circuits, it is appropriate to
synthesize the circuit using a fitness measure based on the behavior of the circuit in the
time domain.

An analog electrical circuit whose output is a well-known mathematical function
(e.g., square, square root) is called a computational circuit.

Figure 4.4 shows a squaring circuit composed of transistors, capacitors, and resistors
that was automatically synthesized using a fitness measure based on the behavior of
the circuit in the time domain (Mydlowec and Koza, 2000).

This circuit was evolved using a fitness measure based on time-varying input signals.
In particular, fitness was the sum, taken at certain sampled times for four different time-
varying input signals, of the absolute value of the difference between the individual
circuit’s output voltage and the desired output voltage (i.e., the square of the voltage
of the input signal at the particular sampled time).

Genetic Programming 91

The four input signals were structured to provide a representative mixture of input
values. All of the input signals produce outputs that are well within the range of voltages
that can be handled by transistors (i.e., below 4 V). For example, one of the input signals
is a rising ramp whose value remains at 0 up to 0.2s and then rises to 2 V between
0.2 and 1.0s. Figure 4.5 shows the output voltage produced by the evolved circuit for
the rising ramp input superimposed on the (virtually indistinguishable) correct output
voltage for the squaring function. As can be seen, as soon as the input signal becomes
non-zero, the output is a parabolic-shaped curve representing the square of the incoming
voltage.

4 AUTOMATIC SYNTHESIS OF CONTROLLERS

Genetic programming is capable of automatically creating both the topology and
sizing (tuning) for controllers composed of time-domain blocks (such as integra-
tors, differentiators, multipliers, adders, delays, gains, leads, and lags) merely by
specifying the controller’s effect on the to-be-controlled plant (Keane et al., 2000;
Koza et al., 1999a,b, 2000a–d; Yu et al., 2000). This automatic synthesis of controllers
from data is performed by genetic programming even though there is no general
mathematical method for creating both the topology and sizing for controllers from
a high-level statement of the design goals for the controller.

In the PID type of controller, the controller’s output is the sum of proportional (P),
integrative (I), and derivative (D) terms based on the difference between the plant’s
output and the reference signal. Albert Callender and Allan Stevenson of Imperial
Chemical Limited of Northwich, England received U.S. Patent 2,175,985 in 1939 for
the PI and PID controller.

Claim 1 of Callender and Stevenson (1939) covers what is now called the PI
controller,

A system for the automatic control of a variable characteristic comprising
means proportionally responsive to deviations of the characteristic from a
desired value, compensating means for adjusting the value of the charac-
teristic, and electrical means associated with and actuated by responsive
variations in said responsive means, for operating the compensating means

92 J.R. Koza

to correct such deviations in conformity with the sum of the extent of the
deviation and the summation of the deviation.

Claim 3 of Callender and Stevenson (1939) covers what is now called the PID
controller,

A system as set forth in claim 1 in which said operation is additionally
controlled in conformity with the rate of such deviation.

The vast majority of automatic controllers used by industry are of the PI or PID type.
However, it is generally recognized by leading practitioners in the field of control that
PI and PID controllers are not ideal (Astrom and Hagglund, 1995; Boyd and Barratt,
1991).

There is no preexisting general-purpose analytic method (prior to genetic pro-
gramming) for automatically creating both the topology and tuning of a controller
for arbitrary linear and non-linear plants that can simultaneously optimize prespecified
performance metrics. The performance metrics used in the field of control include,
among others,

minimizing the time required to bring the plant output to the desired value (as
measured by, say, the integral of the time-weighted absolute error),

satisfying time-domain constraints (involving, say, overshoot and disturbance
rejection),

satisfying frequency domain constraints (e.g., bandwidth), and

satisfying additional constraints, such as limiting the magnitude of the control
variable or the plant’s internal state variables.

We employ a problem involving control of a two-lag plant (described by Dorf and
Bishop 1998, p. 707) to illustrate the automatic synthesis of controllers by means of
genetic programming. The problem entails synthesizing the design of both the topology
and parameter values for a controller for a two-lag plant such that plant output reaches
the level of the reference signal so as to minimize the integral of the time-weighted
absolute error, such that the overshoot in response to a step input is less than 2%, and
such that the controller is robust in the face of significant variation in the plant’s internal
gain, K , and the plant’s time constant,

Genetic programming routinely creates PI and PID controllers infringing on the
1942 of Callender and Stevenson patent during intermediate generations of runs of
genetic programming on controller problems. However, the PID controller is not the
best possible controller for this (and many) problems.

Figure 4.6 shows the block diagram for the best-of-run controller evolved during
one run of this problem. In this figure, R(s) is the reference signal; Y(s) is the plant
output; and U(s) is the controller’s output (control variable). This evolved controller
is 2.42 times better than the Dorf and Bishop (1998) controller as measured by the
criterion used by Dorf and Bishop. In addition, this evolved controller has only 56%
of the rise time in response to the reference input, has only 32% of the settling time,
and is 8.97 times better in terms of suppressing the effects of disturbance at the plant
input.

This genetically evolved controller differs from a conventional PID controller in that
it employs a second derivative processing block. Specifically, after applying standard
manipulations to the block diagram of this evolved controller, the transfer function for

Genetic Programming 93

the best-of-run controller can be expressed as a transfer function for a pre-filter and a
transfer function for a compensator. The transfer function for the pre-filter,
for the best-of-run individual from generation 32 is

The transfer function for the compensator, is

The term (in conjunction with the s in the denominator) indicates a second
derivative. Thus, the compensator consists of a second derivative in addition to propor-
tional, integrative, and derivative functions. As it happens, Harry Jones of The Brown
Instrument Company of Philadelphia received U.S. Patent 2,282,726 for this kind of
controller topology in 1942.

Claim 38 of the Jones patent (Jones, 1942) states,

In a control system, an electrical network, means to adjust said network in
response to changes in a variable condition to be controlled, control means
responsive to network adjustments to control said condition, reset means
including a reactance in said network adapted following an adjustment of
said network by said first means to initiate an additional network adjustment
in the same sense, and rate control means included in said network adapted
to control the effect of the first mentioned adjustment in accordance with
the second or higher derivative of the magnitude of the condition with
respect to time.

Note that the human user of genetic programming did not preordain, prior to the
run (i.e., as part of the preparatory steps for genetic programming), that a second
derivative should be used in the controller (or, from that matter, even that a P, I, or D
block should be used). Genetic programming automatically discovered that the second
derivative element (along with the P, I, and D elements) were useful in producing a good
controller for this particular problem. That is, necessity was the mother of invention.

94 J.R. Koza

Similarly, the human who initiated this run of genetic programming did not preor-
dain any particular topological arrangement of proportional, integrative, derivative,
second derivative, or other functions within the automatically created controller.
Instead, genetic programming automatically created a controller for the given plant
without the benefit of user-supplied information concerning the total number of process-
ing blocks to be employed in the controller, the type of each processing block, the
topological interconnections between the blocks, the values of parameters for the
blocks, or the existence of internal feedback (none in this instance) within the controller.

5 AUTOMATIC SYNTHESIS OF ANTENNAS

An antenna is a device for receiving or transmitting electromagnetic waves. An antenna
may receive an electromagnetic wave and transform it into a signal on a transmission
line. Alternately, an antenna may transform a signal from a transmission line into an
electromagnetic wave that is then propagated in free space.

Maxwell’s equations govern the electromagnetic waves generated and received by
antennas. The behavior and characteristics of many antennas can be determined by
simulation. For example, the Numerical Electromagnetics Code (NEC) is a method-
of-moments (MoM) simulator for wire antennas that was developed at the Lawrence
Livermore National Laboratory (Burke, 1992).

The task of analyzing the characteristics of a given antenna is difficult. The task of
synthesizing the design of an antenna with specified characteristics typically calls for
considerable creativity on the part of the antenna engineer (Balanis, 1982; Stutzman
and Thiele, 1998; Linden, 1997).

Genetic programming is capable of discovering both the topological and numerical
aspects of a satisfactory antenna design from a high-level specification of the antenna’s
behavior. In one particular problem (Comisky et al., 2000), genetic programming
automatically discovered the design for a satisfactory antenna composed of wires for
maximizing gain in a preferred direction over a specified range of frequencies, hav-
ing a reasonable value of voltage standing wave ratio when the antenna is fed by a
transmission line with a specified characteristic impedance, and fitting into a specified
bounding rectangle. The design that genetic programming discovered included

(1)

(2)

(3)

(4)

(5)

the number of directors in the antenna,

the number of reflectors,

the fact that the driven element, the directors, and the reflector are all single
straight wires,

the fact that the driven element, the directors, and the reflector are all arranged
in parallel,

the fact that the energy source (via the transmission line) is connected only to
the driven element—i.e., the directors and reflectors are parasitically coupled.

The last three of the above characteristics discovered by genetic programming are
the defining characteristics of an inventive design conceived in the early years of the
field of antenna design (Uda, 1926, 1927; Yagi, 1928). Figure 4.7 shows the antenna
created by genetic programming. It is an example of what is now called a Yagi-Uda
antenna. It is approximately the same length as the conventional Yagi-Uda antenna

Genetic Programming 95

that a human designer might develop in order to satisfy this problem’s requirements
(concerning gain).

6 AUTOMATIC SYNTHESIS OF METABOLIC PATHWAYS

A living cell can be viewed as a dynamical system in which a large number of different
substances react continuously and non-linearly with one another. In order to understand
the behavior of a continuous non-linear dynamical system with numerous interacting
parts, it is usually insufficient to study behavior of each part in isolation. Instead, the
behavior must usually be analyzed as a whole (Tomita et al., 1999; Voit, 2000).

Biochemists and others have historically determined the topology and sizing of
networks of chemical reactions, such as metabolic pathways, through meticulous study
of particular networks of interest. However, vast amounts of time-domain data are now
becoming available concerning the concentration of biologically important chemicals in
living organisms (McAdams and Shapiro, 1995; Loomis and Sternberg, 1995; Arkin
et al., 1997; Yuh et al., 1998; Laing et al., 1998; D’haeseleer et al., 1999). Such
data include both gene expression data (obtained from microarrays) and data on the
concentration of substances participating in metabolic pathways.

The question arises as to whether it is possible to start with observed time-domain
concentrations of final product substance(s) and automatically create both the topology
of the network of chemical reactions and the sizing of the network. In other words,
is it possible to automate the process of reverse engineering a network of chemical
reactions from data?

Intuitively, it might seem difficult or impossible to automatically infer both the
topology and numerical parameters for a complex network from observed data.
However, such intuition may be misleading.

Our approach to the problem of automatically creating both the topology and sizing
of a network of chemical reactions involves

establishing a representation for chemical networks involving symbolic expres-
sions (S-expressions) and program trees that are composed of functions and
terminals and that can be progressively bred (and improved) by genetic
programming,

converting each individual program tree in the population into an analog electrical
circuit representing a network of chemical reactions,

obtaining the behavior of the individual network of chemical reactions by
simulating the corresponding electrical circuit,

(1)

(2)

(3)

96 J.R. Koza

(4)

(5)

defining a fitness measure that measures how well the behavior of an individual
network matches the observed time-domain data concerning concentrations of
product substances, and

using the fitness measure to enable genetic programming to breed a population
of improving program trees.

6.1 Phospholipid Cycle

The best-of-run individual (Figure 4.8) appears in generation 225. Its fitness is almost
zero (0.054). This closely matches the observed data for all data points. In addition to
having the same topology as the correct metabolic pathway, the rate constants of three
of the four reactions of this network match the correct rates (to three significant digits).
The fourth rate is within less than 2% of the correct rate (i.e., the rate of EC 3.1.3.21
is 1.17 compared with 1.19 for the correct network).

Figure 4.9 shows the electrical circuit for the best-of-run individual from genera-
tion 225.

In the best-of-run network, the rate of the two-substrate, one-product reaction cat-
alyzed by Triacylglycerol lipase (EC 3.1.1.3) (found at the very bottom of Figures 4.8
and 4.9) that produces the final product diacyl-glycerol (C00165) is given by

Note that genetic programming has correctly determined that the reaction that pro-
duces the network’s final product diacyl-glycerol (C00165) has two substrates and
one product; it has correctly identified enzyme EC3.1.1.3 as the catalyst for this final
reaction; it has correctly determined the rate of this final reaction as 1.45; and it has
correctly identified the externally supplied substance, fatty acid (C00162), as one of
the two substrates for this final reaction.

Of course, genetic programming has no way of knowing that biochemists call the
intermediate substance (INT_2) by the name Monoacyl-glycerol (C01885). It has,

Genetic Programming 97

however, correctly determined that an intermediate substance is needed as one of the
two substrates of the network’s final reaction and that this intermediate substance
should, in turn, be produced by a particular other reaction (described next).

The rate of the two-substrate, one-product reaction catalyzed by Acylglycerol lipase
(EC3.1.1.23) that produces intermediate substance INT_2 is

Again, genetic programming has correctly determined that the reaction that pro-
duces the intermediate substance (INT_2) has two substrates and one product; it has
correctly identified enzyme EC3.1.1.23 as the catalyst for this reaction; it has correctly
determined the rate of this reaction as 1.95; it has correctly identified two externally
supplied substance, fatty acid (C00162) and glycerol (C00116), as the two substrates
for this reaction.

The rate of the two-substrate, one-product reaction catalyzed by Glycerol kinase
(EC2.7.1.30) that produces intermediate substance INT_1 in the internal loop is

Note that the numerical rate constant of 1.17 in the above equation is within less than
2% of the correct rate of 1.19.

Here again, genetic programming has correctly determined that the reaction that
produces the intermediate substance (INT_1) has two substrates and one product; it has
correctly identified enzyme EC2.7.1.30 as the catalyst for this reaction; it has almost

98 J.R. Koza

correctly determined the rate of this reaction to be 1.17 (whereas the correct rate is
1.19); it has correctly identified two externally supplied substance, glycerol (C00116)
and the cofactor ATP (C00002), as the two substrates for this reaction.

Genetic programming has no way of knowing that biochemists call the intermediate
substance (INT_1) by the name sn-Glycerol-3-Phosphate (C00093). Genetic program-
ming has, however, correctly determined that an intermediate substance is needed as the
single substrate of the reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21) and
that this intermediate substance should, in turn, be produced by the reaction catalyzed
by Glycerol kinase (EC2.7.1.30).

The rate of supply and consumption of cofactor ATP (C00002) is

The rate of supply and consumption of fatty acid (C00162) is

The rate of supply, consumption, and production of glycerol (C00116) is

Again, note that the numerical rate constant of 1.17 in the above equation is slightly
different from the correct rate.

Notice the internal feedback loop in which C00116 is both consumed and produced.
In summary, driven only by the time-domain concentration values of the final

product C00165 (diacyl-glycerol), genetic programming created the entire metabolic
pathway, including

topological features such as the internal feedback loop,

topological features such as a bifurcation point where one substance is distributed
to two different reactions,

topological features such as an accumulation point where one substance is
accumulated from two sources, and

numerical rates (sizing) for all reactions.

Notice that genetic programming created the entire metabolic pathway, includ-
ing topological features (such as the internal feedback loop, the bifurcation point,
and the accumulation point) and all numerical rate parameter values (sizing) of the
metabolic pathway. Genetic programming also determined that two intermediate sub-
stances (INT_1 and INT_2) would be used. Genetic programming did this using only
the time-domain concentration values of the final product C00165 (diacyl-glycerol).

Both the topology and sizing of the metabolic pathway were created by using 270
time-domain values of the final product. This example (and the one below) demonstrate

Genetic Programming 99

the principle that it is possible to reverse engineer a metabolic pathway from observed
data concerning the concentration values of its final output.

For additional details, see Koza et al., 2000.

6.2 Synthesis and Degradation of Ketone Bodies

We proceed in the same way to automatically create a metabolic pathway for the
synthesis and degradation of ketone bodies.

The best-of-run network appears in generation 97 (Figure 4.10). It has a fitness
of 0.000 and scores 270 hits. This individual has the same topology as the correct
metabolic pathway and the same rates (to three significant digits) for each of the three
reactions.

In summary, driven only by the time-domain concentration values of Acetoacetate
(the final product), the evolutionary process of genetic programming created the entire
metabolic pathway, including

topological features such as the internal feedback loop,

topological features such as a bifurcation point where one substance is distributed
to two different reactions,

topological features such as an accumulation point where one substance is
accumulated from two sources, and

numerical rates (sizing) for all reactions.

7 CONCLUSIONS

This chapter has demonstrated that a biologically motivated algorithm (genetic pro-
gramming) is capable of automatically synthesizing both the topology of complex

100 J.R. Koza

graphical structures and optimal or near-optimal numerical values for all elements of
the structure possessing parameters.

REFERENCES

Aaserud, O. and Nielsen, I. Ring (1995) Trends in current analog design: A panel
debate. Analog Integrated Circuits and Signal Processing, 7(1), 5–9.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (Eds.) (1996) Advances in Genetic

Programming 2. The MIT Press, Cambridge, MA.

Arkin, Adam, Shen, Peidong and Ross, John (1997) A test case of correlation metric
construction of a reaction pathway from measurements. Science, 277, 1275–1279.

Astrom, Karl J. and Hagglund, Tore (1995) PID Controllers: Theory, Design, and

Tuning, 2nd edition. Instrument Society of America, Research Triangle Park, NC.

Balanis, Constantine A. (1982) Antenna Theory: Analysis and Design. John Wiley,
New York, NY.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A.E., Garzon, Max H., Honavar, Vasant,
Jakiela, Mark and Smith, Robert E. (Eds.) (1999) GECCO-99: Proceedings of the

Genetic and Evolutionary Computation Conference, July 13–17, 1999, Orlando,

Florida USA. Morgan Kaufmann, San Francisco, CA.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E. and Francone, Frank D. (1998)
Genetic Programming—An Introduction. Morgan Kaufmann and Heidelberg:
dpunkt, San Francisco, CA.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc and Fogarty, Terence C. (1998).
Genetic Programming: First European Workshop. EuroGP’98. Paris, France, April

1998 Proceedings. Paris, France. April 1998. Lecture Notes in Computer Science.

Vol. 1391. Springer-Verlag, Berlin, Germany.

Bennett, Forrest H. III, Koza, John R., Shipman, James and Stiffelman, Oscar (1999)
Building a parallel computer system for $18,000 that performs a half peta-flop per
day. In: Banzhaf, Wolfgang, Daida, Jason, Eiben, A.E., Garzon, Max H., Honavar,
Vasant, Jakiela, Mark and Smith, Robert E. (Eds.) (1999) GECCO-99: Proceed-

ings of the Genetic and Evolutionary Computation Conference, July 13–17, 1999,

Orlando, Florida USA. Morgan Kaufmann, San Francisco, CA, pp. 1484–1490.

Boyd, S.P. and Barratt, C.H. (1991) Linear Controller Design: Limits of Performance.

Prentice Hall, Englewood Cliffs, NJ.

Burke, Gerald J. (1992) Numerical Electromagnetics Code—NEC-4: Method of

Moments—User’s Manual. Lawrence Livermore National Laboratory report
UCRL-MA-109338. Lawrence Livermore National Laboratory, Livermore, CA.

Callender, Albert and Stevenson, Allan Brown (1939) Automatic Control of Variable

Physical Characteristics. United States Patent 2,175,985. Filed February 17, 1936
in United States. Filed February 13, 1935 in Great Britain. Issued October 10, 1939
in United States.

Campbell, George A. (1917) Electric Wave Filter. Filed July 15, 1915. U.S. Patent
1,227,113. Issued May 22.

Genetic Programming 101

Comisky, William, Yu, Jessen, and Koza, John (2000) Automatic synthesis of a wire
antenna using genetic programming. Late Breaking Papers at the 2000 Genetic and

Evolutionary Computation Conference, Las Vegas, Nevada, pp. 179–186.

D’haeseleer, Patrik, Wen, Xiling, Fuhrman, Stefanie and Somogyi, Roland (1999)
Linear modeling of mRNA expression levels during CNS development and injury. In
Altman, Russ B. Dunker, A. Keith, Hunter, Lawrence, Klein, Teri E. and Lauderdale,
Kevin (Eds.), Pacific Symposium on Biocomputing ’99. World Scientific, Singapore
pp. 41–52.

Dorf, Richard C. and Bishop, Robert H. (1998) Modern Control Systems, 8th edition.
Addison-Wesley, Menlo Park, CA.

Holland, John H. Adaptation in Natural and Artificial Systems: An Introductory Analy-

sis with Applications to Biology, Control, and Artificial Intelligence. University of
Michigan Press, Ann Arbor, MI 1975. 2nd edition. The MIT Press, Cambridge, MA.

Jones, Harry S. (1942) Control Apparatus. United States Patent 2,282,726. Filed
October 25, 1939. Issued May 12.

Keane, Martin A., Yu, Jessen and Koza, John R. (2000) Automatic synthesis of
both the topology and tuning of a common parameterized controller for two fam-
ilies of plants using genetic programming. In: Whitley, Darrell, Goldberg, David,
Cantu-Paz, Erick, Spector, Lee, Parmee, Ian and Beyer, Hans-Georg (Eds.),
GECCO-2000: Proceedings of the Genetic and Evolutionary Computation Con-

ference, July 10–12, 2000, Las Vegas, Nevada. Morgan Kaufmann Publishers, San
Francisco, pp. 496–504.

Kinnear, Kenneth E. Jr. (Ed.) (1994) Advances in Genetic Programming. MIT Press,
Cambridge, MA.

Koza, John R. (1992) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA.

Koza, John R. (1994a) Genetic Programming II: Automatic Discovery of Reusable

Programs. Cambridge, MA: MIT Press.

Koza, John R. (1994b) Genetic Programming II Videotape: The Next Generation.

MIT Press, Cambridge, MA.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi and
Riolo, Rick (Eds.) (1998) Genetic Programming 1998: Proceedings of the Third

Annual Conference. Morgan Kaufmann, San Francisco, CA.

Koza, John R., Bennett III, Forrest H., Andre, David and Keane, Martin A. (1999a)
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann, San Francisco, CA.

Koza, John R., Bennett III, Forrest H., Andre, David, Keane, Martin A. and Brave
Scott (1999b) Genetic Programming III Videotape: Human-Competitive Machine

Intelligence. Morgan Kaufmann, San Francisco, CA.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max,
Iba, Hitoshi and Riolo, Rick L. (Eds.), Genetic Programming 1997: Proceedings

of the Second Annual Conference, July 13–16, 1997, Stanford University. Morgan
Kaufmann, San Francisco, CA.

102 J.R. Koza

Koza, John R., Goldberg, David E., Fogel, David B. and Riolo, Rick L. (Eds) (1996)
Genetic Programming 1996: Proceedings of the First Annual Conference, July

28–31, 1996, Stanford University. MIT Press, Cambridge, MA.

Koza, John R., Keane, Martin A., Bennett, Forrest H. III, Yu, Jessen, Mydlowec,
William and Stiffelman, Oscar (1999c) Automatic creation of both the topology and
parameters for a robust controller by means of genetic programming. Proceedings of

the 1999 IEEE International Symposium on Intelligent Control, Intelligent Systems,

and Semiotics. IEEE, Piscataway, NJ, pp. 344–352.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett, Forrest H. III and Mydlowec,
William (2000a) Automatic creation of human-competitive programs and controllers
by means of genetic programming. Genetic Programming and Evolvable Machines,

(1), 121–164.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett, Forrest H. III, Mydlowec,
William and Stiffelman, Oscar (1999d) Automatic synthesis of both the topology
and parameters for a robust controller for a non-minimal phase plant and a three-lag
plant by means of genetic programming. Proceedings of 1999 IEEE Conference on

Decision and Control, pp. 5292–5300.

Koza, John R., Keane, Martin A., Yu, Jessen, Mydlowec, William and Bennett, Forrest
H. III (2000b) Automatic synthesis of both the topology and parameters for a con-
troller for a three-lag plant with a five-second delay using genetic programming.
In: Cagnoni, Stafano et al. (Eds) Real-World Applications of Evolutionary Com-

puting. EvoWorkshops 2000. EvoIASP, Evo SCONDI, EvoTel, EvoSTIM, EvoRob,

and EvoFlight, Edinburgh, Scotland, UK, April 2000 Proceedings. Lecture Notes

in Computer Science, Vol. 1803. Springer-Verlag, Berlin, Germany, pp. 168–177.
ISBN 3-540-67353-9.

Koza, John R., Keane, Martin A., Yu, Jessen, Mydlowec, William and Bennett,
Forrest H III. (2000c) Automatic synthesis of both the control law and parameters for
a controller for a three-lag plant with five-second delay using genetic programming
and simulation techniques. In: Proceedings of the 2000 American Control Confer-

ence, Chicago, Illinois, June 28–30, 2000. American Automatic Control Council,
Evanston, IL, pp. 453–459.

Koza, John R., Mydlowec, William, Lanza, Guido, Yu, Jessen and Keane, Martin
A. (2000d) Reverse Engineering and Automatic Synthesis of Metabolic Pathways

from Observed Data Using Genetic Programming. Stanford Medical Informatics
Technical Report SMI-2000-0851.

Koza, John R. and Rice, James P. (1992) Genetic Programming: The Movie. MIT
Press, Cambridge, MA.

Koza, John R., Yu, Jessen, Keane, Martin A. and Mydlowec, William (2000e)
Evolution of a controller with a free variable using genetic programming. In:
Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin,
Peter, and Fogarty, Terence C. (Eds), Genetic Programming: European Conference,

EuroGP 2000, Edinburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes

in Computer Science, Vol. 1802. Springer-Verlag, Berlin, Germany, pp. 91–105.
ISBN 3-540-67339-3.

Genetic Programming 103

Laing, Shoudan, Fuhrman, Stefanie and Somogyi, Roland (1998) REVEAL: A gen-
eral reverse engineering algorithm for inference of genetic network architecture.
In: Altman, Russ B. Dunker, A. Keith, Hunter, Lawrence and Klein, Teri E.
(Eds), Pacific Symposium on Biocomputing ’98, World Scientific, Singapore,
pp. 18–29.

Langdon, William B. (1998) Genetic Programming and Data Structures: Genetic

Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer.

Linden, Derek S. (1997) Automated Design and Optimization of Wire Antennas

Using Genetic Algorithms. Ph.D. thesis. Department of Electrical Engineering and
Computer Science. Massachusetts Institute of Technology.

Loomis, William F. and Sternberg, Paul W. (1995) Genetic networks. Science, 269,
649.

McAdams, Harley H. and Shapiro, Lucy (1995) Circuit simulation of genetic networks.
Science, 269, 650–656.

Mittenthal, Jay E., Ao Yuan, Bertrand Clarke, and Scheeline, Alexander (1998)
Designing metabolism: Alternative connectivities for the pentose phosphate path-
way. Bulletin of Mathematical Biology, 60, 815–856.

Mydlowec, William and Koza, John (2000) Use of time-domain simulations in auto-
matic synthesis of computational circuits using genetic programming. Late Breaking

Papers at the 2000 Genetic and Evolutionary Computation Conference, Las Vegas,

Nevada, pp. 187–197.

Poli, Riccardo, Nordin, Peter, Langdon, William B. and Fogarty, Terence C. (1999)
Genetic Programming: Second European Workshop. EuroGP’99. Proceedings.

Lecture Notes in Computer Science, Vol. 1598. Springer-Verlag, Berlin, Germany.

Quarles, Thomas, Newton, A.R., Pederson, D.O. and Sangiovanni-Vincentelli, A.
(1994) SPICE 3 Version 3F5 User’s Manual. Department of Electrical Engineering
and Computer Science, University of California. Berkeley, CA.

Sterling, Thomas L., Salmon, John and Becker, Donald J., and Savarese, Daniel F.
(1999) How to Build a Beowulf: A Guide to Implementation and Application of PC

Clusters. MIT Press, Cambridge, MA.

Stutzman, Warren L. and Thiele, Gary A. (1998) Antenna Theory and Design, 2nd
edition. John Wiley, New York, NY.

Tomita, Masaru, Hashimoto, Kenta, Takahashi, Kouichi, Shimizu, Thomas Simon,
Matsuzaki, Yuri, Miyoshi, Fumihiko, Saito, Kanako, Tanida, Sakura, Yugi, Kat-
suyuki, Venter, J. Craig, Hutchison and Clyde A. III (1999) E-CELL: Software
environment for whole cell simulation. Bioinformatics, 15(1), 72–84.

Uda, S. (1926) Wireless beam of short electric waves. Journal of the IEE (Japan),

March 273–282.

Uda, S. (1927) Wireless beam of short electric waves. Journal of the IEE (Japan),

March, 1209–1219.

Voit, Eberhard O. (2000) Computational Analysis of Biochemical Systems, Cambridge
University Press, Cambridge.

104 J.R. Koza

Webb, Edwin C. (1992) Enzyme Nomenclature 1992: Recommendations of the

Nomenclature Committee of the International Union of Biochemistry and Molecular

Biology. Academic Press, San Diego, CA.

Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian,
and Beyer, Hans-Georg (Eds) (2000) GECCO-2000: Proceedings of the Genetic

and Evolutionary Computation Conference, July 10–12, 2000, Las Vegas, Nevada.

Morgan Kaufmann Publishers, San Francisco.

Wong, Man Leung and Leung, Kwong Sak (2000) Data Mining Using Grammar Based

Genetic Programming and Applications. Kluwer Academic Publishers, Amsterdam.
ISBN: 0-7923-7746-X.

Yagi, H. (1928) Beam transmission of ultra short waves. Proceedings of the IRE, 26,
714–741.

Yu, Jessen, Keane, Martin A. and Koza, John R. (2000) Automatic design of both
topology and tuning of a common parameterized controller for two families of
plants using genetic programming. In: Proceedings of Eleventh IEEE International

Symposium on Computer-Aided Control System Design (CACSD) Conference and

Ninth IEEE International Conference on Control Applications (CCA) Conference,

Anchorage, Alaska, September 25–27, 2000 (in press).

Yuh, Chiou-Hwa, Bolouri, Hamid and Davidson, Eric H. (1998) Genomic cis-
regulatory logic: experimental and computational analysis of a sea urchin gene.
Science, 279, 1896–1902.

Zobel, Otto Julius (1925) Wave Filter. Filed January 15, 1921. U.S. Patent 1,538,964.
Issued May 26.

Chapter 5

A GENTLE INTRODUCTION TO
MEMETIC ALGORITHMS

Pablo Moscato
Grupo de Engenharia de Computação em Sistemas Complexos,

Departamento de Engenharia de Computação e Automação Industrial,

Faculdade de Engenharia Eletrónica e de Computação, Universidade Estadual de Campinas,

C.P. 6101, Campinas, SP, CEP 13083-970, Brazil

E-mail: moscato@densis.fee.unicamp.br

Carlos Cotta
Departamento de Lenguajes y Ciencias de la Computación,

Escuela Técnica Superior de Ingeniería Informática, Universidad de Málaga,

Complejo Tecnológico (3.2.49), Campus de Teatinos,

29071-Málaga, Spain

E-mail: ccottap@lcc.uma.es

1 INTRODUCTION AND HISTORICAL NOTES

The generic denomination of ‘Memetic Algorithms’ (MAs) is used to encompass a broad
class of metaheuristics (i.e., general purpose methods aimed to guide an underlying
heuristic). The method is based on a population of agents and proved to be of practical
success in a variety of problem domains and in particular for the approximate solution
of Optimization problems.

Unlike traditional Evolutionary Computation (EC) methods, MAs are intrinsically
concerned with exploiting all available knowledge about the problem under study.
The incorporation of problem domain knowledge is not an optional mechanism, but a
fundamental feature that characterizes MAs. This functioning philosophy is perfectly
illustrated by the term “memetic”. Coined by Dawkins [52], the word ‘meme’ denotes
an analogous to the gene in the context of cultural evolution [154]. In Dawkins’ words:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways
of making pots or of building arches. Just as genes propagate themselves in
the gene pool by leaping from body to body via sperms or eggs, so memes
propagate themselves in the meme pool by leaping from brain to brain via
a process which, in the broad sense, can be called imitation.

This characterization of a meme suggest that in cultural evolution processes,
information is not simply transmitted unaltered between individuals. In contrast, it

106 P. Moscato and C. Cotta

is processed and enhanced by the communicating parts. This enhancement is accom-
plished in MAs by incorporating heuristics, approximation algorithms, local search
techniques, specialized recombination operators, truncated exact methods, etc. In
essence, most MAs can be interpreted as a search strategy in which a population
of optimizing agents cooperate and compete [169]. The success of MAs can proba-
bly be explained as being a direct consequence of the synergy of the different search
approaches they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowl-
edge mentioned above, is also supported by strong theoretical results. As Hart and
Belew [88] initially stated and Wolpert and Macready [224] later popularized in the
so-called No-Free-Lunch Theorem, a search algorithm strictly performs in accordance
with the amount and quality of the problem knowledge they incorporate. This fact
clearly underpins the exploitation of problem knowledge intrinsic to MAs. Given that
the term hybridization [42] is commonly used to denote the process of incorporating
problem knowledge, it is not surprising that MAs are sometimes called ‘Hybrid Evolu-
tionary Algorithms’ [51] as well. One of the first algorithms to which the MA label was
assigned dates from 1988 [169], and was regarded by many as a hybrid of traditional

Genetic Algorithms (GAs) and Simulated Annealing (SA). Part of the initial motivation
was to find a way out of the limitations of both techniques on a well-studied combina-
torial optimization problem the MIN EUCLIDEAN TRAVELING SALESMAN problem (MIN

ETSP). According to the authors, the original inspiration came from computer game

tournaments [96] used to study “the evolution of cooperation” [6] (see also [164,171]
for more recent theoretical results in this field). That approach had several features
which anticipated many current algorithms in practice today. The competitive phase of
the algorithm was based on the new allocation of search points in configuration phase,
a process involving a “battle” for survival followed by the so-called “clonation”, which
has a strong similarity with the more recent “go with the winners” algorithms [4, 182].
The cooperative phase followed by local search may be better named “go-with-the-

local-winners” since the optimizing agents were arranged with a topology of a two
dimensional toroidal lattice. After initial computer experiments, an insight was derived
on the particular relevance that the “spatial” organization, when coupled with an appro-
priate set of rules, had for the overall performance of population search processes. A
few months later, Moscato and Norman discovered that they shared similar views
with other researchers [74,157] and other authors proposing “island models” for GAs.
Spacialization is now being recognized as the “catalyzer” responsible of a variety of
phenomena [163,164]. This is an important research issue, currently only understood
in a rather heuristic way. However, some proper undecidability results of have been
obtained for related problems [80] giving some hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several authors
who were also pioneering the introduction of heuristics to improve the solutions before
recombining them [73,158] (see other references and the discussion in [154]). Partic-
ularly coming from the GA field, several authors were introducing problem-domain

knowledge in a variety of ways. In [154] the denomination of ‘memetic algorithms’

was introduced for the first time. It was also suggested that cultural evolution can be
a better working metaphor for these metaheuristics to avoid “biologically constrained”

thinking that was restricting progress at that time.
Ten years later, albeit unfortunately under different names, MAs have become

an important optimization approach, with several successes in a variety of classical

Introduction to Memetic Algorithms 107

optimization problems. We aim to provide an updated and self-contained
introduction to MAs, focusing on their technical innards and formal features, but
without loosing the perspective of their practical application and open research
issues.

2 MEMETIC ALGORITHMS

Before proceeding to the description of MAs, it is necessary to provide some basic
concepts and definitions. Several notions introduced in the first subsection are strongly
related to the field of computational complexity. Nevertheless, they may be presented

in a slightly different way and pace for the sake of the subsequent development. These
basic concepts will give rise to the notions of local search and population-based search,
upon which MAs are founded. This latter class of search settles the scenario for recom-

bination, a crucial mechanism in the functioning of MAs that will be studied to some
depth. Finally, some guidelines for designing MAs will be presented.

2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational prob-

lem. A computational problem P denotes a class of algoritmically-doable tasks, and
it has an input domain set of instances denoted For each instance
there is an associated set which denotes the feasible solutions for problem
P given instance x. The set is also known as the set of acceptable or valid

solutions.
We are expected to deliver an algorithm that solves problem P; this means that

our algorithm, given instance must return at least one element y from a set
of answers (also called given solutions) that satisfies the requirements of the
problem. This is the first design issue to face. To be precise, depending on the kind of
answers expected, computational problems can be classified into different categories;
for instance:

finding all solutions in i.e., enumeration problems.

counting how many solutions exist in i.e. counting problems.

determining whether the set is empty or not, i.e., decision problems.

finding a solution in maximizing or minimizing a given function, i.e.,
optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will be
considered solved by finding a certain feasible solution, i.e. either finding an optimal

or giving an indication that no such feasible solution exists.It is thus
convenient in may situations to define a Boolean feasibility function feasible in
order to identify whether a given solution is acceptable for an instance

of a computational problem P, i.e., checking if
An algorithm is said to solve problem P if it can fulfill this condition for any given

instance This definition is certainly too broad, so a more restrictive charac-
terization for our problems of interest is necessary. This characterization is provided
by restricting ourselves to the so-called combinatorial optimization problems. These

108 P. Moscato and C. Cotta

constitute a special subclass of computational problems in which for each instance

the cardinality of is finite.

each solution has a goodness integer value obtained by
means of an associated objective function

a partial order is defined over the set of goodness values returned by
the objective function, allowing determining which of two goodness values is
preferable.

An instance of a combinatorial optimization problem P is solved by finding
the best solution i.e., finding a solution y* such that no other solution

exists if is not empty. It is very common to have defining a
total order. In this case, the best solution is the one that maximizes (or minimizes)
the objective function.

As an example of a combinatorial optimization problem consider the 0-1 MULTIPLE

KNAPSACK PROBLEM (0-1 MKP). Each instance x of this problem is defined by a vector
of profits a vector of capacities and a matrix
of capacity constraints . Intuitively, the problem
consists in selecting a set of objects so as to maximize the profit of this set without
violating the capacity constraints. If the objects are indexed with the elements of the
set the answer set for an instance x is simply the
power set of i.e., each subset of is a possible answer. Furthermore, the set
of feasible answers is composed of those subsets whose incidence vector B

verifies . Finally, the objective function is defined as
i.e., the sum of profits for all selected objects, being the goal to maximize this value.

Notice that, associated with a combinatorial optimization problem, we can define its
decisional version. To formulate the decision problem, an integer goodness value K is
considered, and instead of trying to find the best solution of instance x, we ask whether
x has a solution whose goodness is equal or better than K. In the above example, we
could ask whether a feasible solution y exists such that its associated profit is equal or
better than K.

2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization problem
the goal is finding at least one of the optimal solutions for a given instance. For this
purpose, a search algorithm must be used. Before discussing search algorithms, three
entities must be discussed. These are the search space, the neighborhood relation,

and the guiding function. It is important to consider that, for any given computational
problem, these three entities can be instantiated in several ways, giving rise to different
optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem P.

To do so, we consider a set whose elements have the following properties:

Each element represents at least one answer in

For decision problems: at least one element of that stands for a ‘Yes’
answer must be represented by one element in

Introduction to Memetic Algorithms 109

For optimization problems: at least one optimal element y* of is
represented by one element in

Each element of will be termed a configuration, being related to an answer in
by a growth function Note that the first requirement

refers to and not to i.e., some configurations in the search space may
correspond to infeasible solutions. Thus, the search algorithm may need being prepared
to deal with this fact. If these requirements have been achieved, we say that we have
a valid representation or valid formulation of the problem. For simplicity, we will
just write to refer to when x and P are clear from the context. People using
biologically-inspired metaphors like to call the genotype space and
denotes the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0–1 MKP.
Since solutions in are subsets of we can define the search space as the
set of n-dimensional binary vectors. Each vector will represent the incidence vector of
a certain subset, i.e., the growth function g is defined as

As mentioned above, many binary vectors may correspond to infeasible sets
of objects. Another possibility is defining the search space as the set of permutations
of elements in [77]. In this case, the growth function may consist of applying
a greedy construction algorithm [45], considering objects in the order provided by the
permutation. Unlike the binary search space previously mentioned, all configurations
represent feasible solutions in this case.

The role of the search space is to provide a “ground” on while the search algorithm
will act, and of course, indirectly moving in the image set Important prop-
erties of the search space that affect the dynamics of the search algorithm are related
with the accessibility relationships between the configurations. These relationships are
dependent of a neighborhood function This function assigns to each
element a set of neighboring configurations of s. The set is
called the neighborhood of s and each member is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the notation
is a simplified form of since it is clear from the context. The elements of
need not be listed explicitly. In fact, it is very usual to define them implicitly by

referring to a set of possible moves, which define transitions between configurations.
Moves are usually defined as “local” modifications of some part of s, where “locality”
refers to the fact that the move is done on a single solution to obtain another single
solution. This “locality”, is one of the key ingredients of local search, and actually it
has also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two representations
of solutions for the 0–1 MKP presented above. In the first case (binary representation),
moves can be defined as changing the values of a number of bits. If just one bit is
modified at a time, the resulting neighborhood structure is the n-dimensional binary
hypercube. In the second case (permutation representation), moves can be defined
as the interchange of two positions in the permutation. Thus, two configurations are
neighboring if, and only if, they differ in exactly two positions.

This definition of locality presented above is not necessarily related to “closeness”
under some kind of distance relationship between configurations (except in the tauto-
logical situation in which the distance between two configurations s and is defined
as the number of moves needed to reach from s). As a matter of fact, it is possible to

110 P. Moscato and C. Cotta

give common examples of very complex neighborhood definitions unrelated to intuitive
distance measures.

An important feature that must be considered when selecting the class of moves to
be used in the search algorithm is its “ergodicity ”, that is the ability, given any
to find a sequence of moves that can reach all other configuration In many
situations, this property is self-evident and no explicit demonstration is required. It is
important since even if having a valid representation (recall the definition above), it
is necessary to guarantee that a priori at least one optimal solution is reachable from
any given initial solution. Again, consider the binary representation of solutions for a
0–1 MKP instance. If moves are defined as single bit-flips, it is easily seen that any
configuration can be reached from another configuration s in exactly h moves, where
h is the Hamming distance between these configurations. This is not always the case
though.

The last entity that must be defined is the guiding function. To do so, we require
a set whose elements are termed fitness values (typically), and a partial
order (typically, but not always,). The guiding function is defined
as a function that associates to each configuration a value
that assesses the quality of the solution. The behavior of the search algorithm will be
“controlled” by these fitness values.

Notice that for optimization problems there is an obvious direct connection between
the guiding function and the objective function As a matter of fact, it is very
common to enforce this relationship to the point that both terms are usually considered
equivalent. However, this equivalence is not necessary and, in many situations, not even
desirable. For decision problems, since a solution is a ‘Yes’ or ‘No’ answer, associated
guiding functions usually take the form of distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEM, i.e., determining
whether a Boolean expression in conjunctive normal form is satisfiable. In this case,
solutions are assignments of Boolean values to variables, and the objective function

is a binary function returning 1 if the solution satisfies the Boolean expression,
and returning 0 otherwise. This objective function could be used as guiding function.
However, a much more typical choice is to use the number of satisfied clauses in
the current configuration as guiding function, i.e., the sum over
clauses indexes i of defined as for a yet unsatisfied clause i , and

if the clause i is satisfied. Hence, the goal is to maximize this number. Notice
that the guiding function is in this case the objective function of the associated
Optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also
very important in the context of constrained optimization problems, i.e., problems
for which, in general, is chosen to be a proper subset of Since
the growth function establishes a mapping from to the search algorithm
might need processing both feasible solutions (whose goodness values are well-defined)
and infeasible solutions (whose goodness values are ill-defined in general). In many
implementations of MAs for these problems, a guiding function is defined as a weighted
sum of the value of the objective function and the distance to feasibility (which accounts
for the constraints). Typically, a higher weight is assigned to the constraints, so as to
give preference to feasibility over optimality. Several other remedies to this problem
abound, including resorting to multi-objective techniques.

Introduction to Memetic Algorithms 111

The combination of a certain problem instance and the three entities defined above
induces a so-called fitness landscape [106]. Essentially, a fitness landscape can be
defined as a weighted digraph, in which the vertices are configurations of the search
space and the arcs connect neighboring configurations. The weights are the differ-
ence of the guiding function of the endpoint configurations. The search can thus be seen
as the process of “navigating” the fitness landscape using the information provided by
the guiding function. This is a very powerful metaphor; it allows interpreting in terms
of well-known topographical objects such as peaks, valleys, mesas, etc, of great util-
ity to visualize the search progress, and to grasp factors affecting the performance of
the process. In particular, the important notion of local optimum is associated to this
definition of fitness landscape. To be precise, a local optimum is a vertex of the fitness
landscape whose guiding function value is better than the values of all its neighbors.
Notice that different moves define different neighborhoods and hence different fitness
landscapes, even when the same problem instance is considered. For this reason, the
notion of local optimum is not intrinsic to a problem instance as it is, sometimes,
erroneously considered.

2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the notion of local

search algorithm. A local search algorithm starts from a configuration generated
at random or constructed by some other algorithm. Subsequently, it iterates using at each
step a transition based on the neighborhood of the current configuration. Transitions
leading to preferable (according to the partial order) configurations are accepted,
i.e., the newly generated configuration turns to be the current configuration in the
next step. Otherwise, the current configuration is kept. This process is repeated until a
certain termination criterion is met. Typical criteria are the realization of a pre-specified
number of iterations, not having found any improvement in the last m iterations, or
even more complex mechanisms based on estimating the probability of being at a local
optimum [44].

Due to these characteristics, the approach is metaphorically called “hill climbing ”.

The whole process is sketched in Figure 5.1.
The selection of the particular type of moves (also known as mutation in the context

of GAs) to use does certainly depend on the specific characteristics of the problem and
the representation chosen. There is no general advice for this, since it is a matter

112 P. Moscato and C. Cotta

of the available computer time for the whole process as well as other algorithmic
decisions that include ease of coding, etc. In some cases some moves are conspicuous,
for example it can be the change of the value of one single variable or the swap of
the values of two different variables. Sometimes the “step” may also be composed
of a chain of transitions. For instance, in relation with MAs, Radcliffe and Surry
introduced the concept of Binomial Minimal Mutation, where the number of mutations
to perform is selected according to certain binomial distribution [189]. In the context
of fitness landscapes, this is equivalent to a redefinition of the neighborhood relation,
considering two configurations as neighbors when there exists a chain of transitions
connecting them.

Local search algorithms are thus characterized by keeping a single configuration at
a time. The immediate generalization of this behavior is the simultaneous maintenance
of k, configurations. The term population-based search algorithms has been
coined to denote search techniques behaving this way.

The availability of several configurations at a time allows the use of new powerful
mechanisms for traversing the fitness landscape in addition to the standard mutation
operator. The most popular of these mechanisms, the recombination operator, will be
studied in more depth in the next section. In any case, notice that the general functioning
of population-based search techniques is very similar to the pseudocode depicted in
Figure 5.1. As a matter of fact, a population-based algorithm can be imagined as a
procedure in which we sequentially visit vertices of a hypergraph. Each vertex of
the hypergraph represents a set of configurations in i.e., a population. The
next vertex to be visited, i.e., the new population, can be established according to
the composition of the neighborhoods of the different transition mechanisms used in
the population algorithm. Despite the analogy with local search, it is widely accepted
in the scientific literature to apply the denomination ‘local’ just to one-configuration-
at-a-time search algorithms. For this reason, the term ‘local’ will be used with this
interpretation in the remainder of the article.

2.4 Recombination

As mentioned in the previous section, local search is based on the application of
a mutation operator to a single configuration. Despite the apparent simplicity of this
mechanism, “mutation-based” local search has revealed itself a very powerful mecha-
nism for obtaining good quality solutions for problems (e.g., see [62,199]).
For this reason, some researchers have tried to provide a more theoretically-solid back-
ground to this class of search. In this line, it is worth mentioning the definition of the
Polynomial Local Search class (PLS) by Johnson et al. [104]. Basically, this complexity
class comprises a problem and an associated search landscape such that we can decide
in polynomial time if we can find a better solution in the neighborhood. Unfortunately,
it is very likely that no problem is contained in class PLS, since that would
imply that [226], a conjecture usually assumed to be false. This fact has
justified the quest for additional search mechanisms to be used as stand-alone operators
or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of generalized
move operators termed recombination operators. In essence, recombination can be
defined as a process in which a set of n configurations (informally referred to
as “parents”) is manipulated to create a set of m new configurations

Introduction to Memetic Algorithms 113

(informally termed “descendants”). The creation of these descendants involves the
identification and combination of features extracted from the parents.

At this point, it is possible to consider properties of interest that can be exhibited by
recombination operators [189]. The first property, respect, represents the exploitative
side of recombination. A recombination operator is said to be respectful, regarding a
particular type of features of the configurations, if, and only if, it generates descendants
carrying all basic features common to all parents. Notice that, if all parent configura-
tions are identical, a respectful recombination operator is obliged to return the same
configuration as a descendant. This property is termed purity, and can be achieved even
when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination. A
recombination operator is said to be properly assorting if, and only if, it can generate
descendants carrying any combination of compatible features taken from the parents.
The assortment is said to be weak if it is necessary to perform several recombinations
within the offspring to achieve this effect.

Finally, transmission is a very important property that captures the intuitive rôle of
recombination. An operator is said to be transmitting if every feature exhibited by the
offspring is present in at least one of the parents. Thus, a transmitting recombination
operator combines the information present in the parents but does not introduce new
information. This latter task is usually left to the mutation operator. For this reason,
a non-transmitting recombination operator is said to introduce implicit mutation.

The three properties above suffice to describe the abstract input/output behaviour
of a recombination operator regarding some particular features. It provides a character-
ization of the possible descendants that can be produced by the operator. Nevertheless,
there exist other aspects of the functioning of recombination that must be studied. In
particular, it is interesting to consider how the construction of is approached.

First of all, a recombination operator is said to be blind if it has no other input than
i.e., it does not use any information from the problem instance. This definition

is certainly very restrictive, and hence is sometimes relaxed as to allow the recombi-
nation operator use information regarding the problem constraints (so as to construct
feasible descendants), and possibly the fitness values of configurations (so
as to bias the generation of descendants to the best parents). A typical example of a
blind recombination operator is the classical Uniform crossover [209]. This operator is
defined on search spaces i.e., strings of n symbols taken from an alphabet
The construction of the descendant is done by randomly selecting at each position one
of the symbols appearing in that position in any of the parents. This random selection
can be totally uniform or can be biased according to the fitness values of the parents as
mentioned before. Furthermore, the selection can be done so as to enforce feasibility
(e.g., consider the binary representation of solutions in the 0–1 MKP). Notice that, in
this case, the resulting operator is neither respectful nor transmitting in general.

The use of blind recombination operators has been usually justified on the grounds
of not introducing excessive bias in the search algorithm, thus preventing extremely
fast convergence to suboptimal solutions. This is questionable though. First, notice that
the behaviour of the algorithm is in fact biased by the choice of representation and the
mechanics of the particular operators. Second, there exist widely known mechanisms
(e.g., spatial isolation) to hinder these problems. Finally, it can be better to quickly
obtain a suboptimal solution and restart the algorithm than using blind operators for

114 P. Moscato and C. Cotta

a long time in pursuit of an asymptotically optimal behaviour (not even guaranteed in
most cases).

Recombination operators that use problem knowledge are commonly termed heuris-

tic or hybrid. In these operators, problem information is utilized to guide the process of
constructing the descendants. This can be done in a plethora of ways for each problem,
so it is difficult to provide a taxonomy of heuristic recombination operators. Never-
theless, there exist two main aspects into which problem knowledge can be injected:
the selection of the parental features that will be transmitted to the descendant, and the
selection of non-parental features that will be added to it. A heuristic recombination
operator can focus in one of these aspects, or in both of them simultaneously.

As an example of heuristic recombination operator focused in the first aspect,
Dynastically Optimal Recombination (DOR) [43] must be mentioned. This operator
explores the dynastic potential set (i.e., possible children) of the configurations being
recombined, so as to find the best member of this set (notice that, since configurations
in the dynastic potential are entirely composed of features taken from any of the par-
ents, this is a transmitting operator). This exploration is done using a subordinate A*
algorithm in order to minimize the cost of traversing the dynastic potential. The goal
of this operator is thus finding the best combination of parental features giving rise to a
feasible child. Hence, this operator is monotonic in the sense that any child generated
is at least as good as the best parent.

Examples of heuristic recombination operators concentrating on the selection of
non-parental features, one can cite the patching-by-forma-completion operators pro-
posed by Radcliffe and Surry [188]. These operators are based on generating an
incomplete child using a non-heuristic procedure (e.g., the operator [187]),
and then completing the child either using a local hill climbing procedure restricted to
non-specified features (locally optimal forma completion) or a global search procedure
that finds the globally best solution carrying the specified features (globally optimal

forma completion). Notice the similarity of this latter approach with DOR.
Finally, there exist some operators trying to exploit knowledge in both of the above

aspects. A distinguished example is the Edge Assembly Crossover (EAX) [162]. EAX
is a specialized operator for the TSP (both for symmetric and asymmetric instances)
in which the construction of the child comprises two-phases: the first one involves
the generation of an incomplete child via the so-called E-sets (subtours composed
of alternating edges from each parent); subsequently, these subtours are merged into
a single feasible subtours using a greedy repair algorithm. The authors of this operator
reported impressive results in terms of accuracy and speed. It has some similarities
with the recombination operator proposed in [155].

A final comment must be made in relation to the computational complexity of
recombination. It is clear that combining the features of several solutions is in general
computationally more expensive than modifying a single solution (i.e. a mutation).
Furthermore, the recombination operation will be usually invoked a large number of
times. For this reason, it is convenient (and in many situations mandatory) to keep it at
a low computational cost. A reasonable guideline is to consider an O(N log N) upper
bound for its complexity, where N is the size of the input (the set and the problem
instance x). Such limit is easily affordable for blind recombination operators, being the
term crossover a reasonable name conveying the low complexity (yet not always used
in this context) of these. However, this limit can be relatively astringent in the case
of heuristic recombination, mainly when epistasis (non-additive inter-feature influence

Introduction to Memetic Algorithms 115

on the fitness value) is involved. This admits several solutions depending upon the
particular heuristic used. For example, DOR has exponential worst case behavior, but
it can be made affordable by picking larger pieces of information from each parents (the
larger the size of these pieces of information, the lower the number of them needed to
complete the child) [46]. In any case, consider that heuristic recombination operators
provide better solutions than blind recombination operators, and hence they need not
be invoked the same number of times.

2.5 Designing a Memetic Algorithm

In light of the above considerations, it is possible to provide a general template for a
memetic algorithm. As mentioned in Section 2.3, this template is very similar to that
of a local search procedure acting on a set of configurations. This is shown
in Figure 5.2.

This template requires some explanation. First of all, the GenerateInitialPopula-
tion procedure is responsible for creating the initial set of |pop| configurations. This
can be done by simply generating |pop| random configurations or by using a more
sophisticated seeding mechanism (for instance, some constructive heuristic), by means
of which high-quality configurations are injected in the initial population [130,208].
Another possibility, the Local-Search-Engine presented in Section 2.3 could be used
as shown in Figure 5.3.

As to the TerminationCriterion function, it can be defined very similarly to the
case of Local Search, i.e., setting a limit on the total number of iterations, reaching a
maximum number of iterations without improvement, or having performed a certain
number of population restarts, etc.

The GenerateNewPopulation procedure is the core of the memetic algorithm. Essen-
tially, this procedure can be seen as a pipelined process comprising stages. Each of
these stages consists of taking configurations from the previous stage, generating

new configurations by applying an operator This pipeline is restricted to
have The whole process is sketched in Figure 5.4.

This template for the GenerateNewPopulation procedure is usually instantiated in
GAs by letting using a selection, a recombination, and a mutation operator.

116 P. Moscato and C. Cotta

Traditionally, mutation is applied after recombination, i.e., on each child generated by
the recombination operator. However, if a heuristic recombination operator is being
used, it may be more convenient to apply mutation before recombination. Since the
purpose of mutation is simply to introduce new features in the configuration pool, using
it in advance is also possible. Furthermore, the smart feature combination performed
by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let
inserting a Local-Search-Engine right after applying and (respectively

recombination and mutation). Due to the local optimization performed after mutation,
applying the latter after recombination is not as problematic as in GAs.

The UpdatePopulation procedure is used to reconstruct the current population using
the old population pop and the newly generated population newpop. Borrowing the
terminology from the evolution strategy [194,202] community, there exist two main
possibilities to carry on this reconstruction: the plus strategy and the comma strategy. In
the former, the current population is constructed taken the best popsize configurations
from pop newpop. As to the latter, the best popsize configurations are taken just

Introduction to Memetic Algorithms 117

from newpop. In this case, it is required to have |newpop | > popsize, so as to put
some selective pressure on the process (the bigger the ratio, the
stronger the pressure). Otherwise, the search would reduce to a random wandering
through .

There are a number of studies regarding appropriate choices for the UpdatePopu-
lation procedure (e.g., [9,78]). As a general guideline, the comma strategy is usually
regarded as less prone to stagnation, being the ratio a common
choice [8]. Nevertheless, this option can be somewhat computationally expensive if the
guiding function is complex and time-consuming. Another common alternative is using
a plus strategy with a low value of |newpop | , analogous to the so-called steady-state

replacement strategy in GAs [222]. This option usually provides a faster convergence
to high-quality solutions. However, care has to be taken with premature convergence to
suboptimal regions of the search space, i.e., all configurations in the population being
very similar to each other, hence hindering the exploration of other regions of .

The above consideration about premature convergence leads to the last component
of the template shown in Figure 5.2, the restarting procedure. First of all, it must be
decided whether the population has degraded or has not. To do so, it is possible to use
some measure of information diversity in the population such as Shannon’s entropy
[50]. If this measure falls below a predefined threshold, the population is considered at
a degenerate state. This threshold depends upon the representation (number of values
per variable, constraints, etc.) and hence must be determined in an ad-hoc fashion.
A different possibility is using a probabilistic approach to determine with a desired
confidence that the population has converged. For example, in [99] a Bayesian approach
is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure is
invoked. Again, this can be implemented in a number of ways. A very typical strategy
is keeping a fraction of the current population (this fraction can be as small as one
solution, the current best), and substituting the remaining configurations with newly
generated (from scratch) solutions, as shown in Figure 5.5.

118 P. Moscato and C. Cotta

The procedure shown in Figure 5.5 is also known as the random-immigrant strat-
egy [38]. A different possibility is activating a strong or heavy mutation operator in
order to drive the population away from its current location in the search space. Both
options have their advantages and disadvantages. For example, when using the random-
immigrant strategy, one has to take some caution to prevent the preserved configurations
to take over the population (this can be achieved by putting a low selective pressure, at
least in the first iterations after the restarting). As to the heavy mutation strategy, one
has to achieve a tradeoff between an excessively strong mutation that would destroy
any information contained in the current population, and a not so strong mutation that
would cause the population to converge again in a few iterations.

3 APPLICATIONS OF MEMETIC ALGORITHMS

This section will provide an overview of the numerous applications of MAs.
This overview is far from exhaustive since new applications are being developed
continuously. However, it is intended to be illustrative of the practical impact of these
optimization techniques.

3.1 Traditional Optimization Problems

Traditional Optimization problems constitute one of the most typical battlefields
of MAs. A remarkable history of successes has been reported with respect to the
application of MAs to problems such as the following: GRAPH PARTITIONING

[18,19,139,142,143], MIN NUMBER PARTITIONING [14], MAX INDEPENDENT SET [2,
90,200], BIN-PACKING [195], MIN GRAPH COLORING [39,41,60,64], SET COVERING

[11], SINGLE MACHINE SCHEDULING WITH SETUP-TIMES AND DUE-DATES [65,119,146],
PARALLEL MACHINE SCHEDULING [33,35,135,148], MIN GENERALISED ASSIGNMENT

[36], MULTIDIMENSIONAL KNAPSACK [12,45,77], NONLINEAR INTEGER PROGRAMMING

[210], QUADRATIC ASSIGNMENT [17,29,137,141,142], SET PARTITIONING [120], and
particularly on the MIN TRAVELLING SALESMAN PROBLEM [66,67,73,75,76,97,110,138,
142,156,189].

Regarding the theory of most of them can be cited as “clas-

sical” as they appeared in Karp’s notorious paper [108] on the reducibility of
combinatorial problems. Remarkably, in most of them the authors claim that they
have developed the best heuristic for the problem at hand. This is important since these
problems have been addressed with several with different approaches from the com-
binatorial optimization toolbox and almost all general-purpose algorithmic techniques
have been tested on them.

3.2 Other Combinatorial Optimization Problems

The MA paradigm is not limited to the above mentioned classical problems. There exist
additional “non-classical” combinatorial optimization problems of similar or higher
complexity in whose resolution MAs have revealed themselves as outstanding tech-
niques. As an example of these problems, one can cite partial shape matching [176],
Kauffman NK Landscapes [140], spacecraft trajectory design [48], frequency alloca-

tion [109], multiperiod network design [69], degree-constrained minimum spanning

tree problem [190], uncapacitated hub location [1], placement problems [98,115,201],

Introduction to Memetic Algorithms 119

vehicle routing [101,102], transportation problems [71,170], task allocation [86],
maintenance scheduling [25]–[27], open shop scheduling [34,63,124], flowshop

scheduling [30,159,160], project scheduling [168,177,191], warehouse scheduling

[216], production planning [57,149], timetabling [20–24,128,151,152,179,180,192],
rostering [53,153], and sport games scheduling [40].

Obviously, this list is by no means complete since its purpose is simply to document
the wide applicability of the approach for combinatorial optimization.

3.3 Machine Learning and Robotics

Machine learning and robotics are two closely related fields since the different tasks
involved in the control of robots are commonly approached using artificial neural
networks and/or classifier systems. MAs, generally cited as “genetic hybrids” have been
used in both fields, i.e., in general optimization problems related to machine learning
(e.g., the training of artificial neural networks), and in robotic applications. With respect
to the former, MAs have been applied to neural network training [100,155,212,227],
pattern recognition [3], pattern classification [113,145], and analysis of time series

[173].
As to the application of MAs to robotics, work has been done in reactive rulebase

learning in mobile agents [47], path planning [172,183,225], manipulator motion

planning [197], time optimal control [31], etc.

3.4 Electronics and Engineering

Electronics and engineering are also two fields in which these methods have been
actively used. For example, with regard to engineering problems, work has been done
in the following areas: structure optimization [228], system modeling [215], aeronautic

design [16,186], trim loss minimization [174], traffic control [205], and power plan-

ning [213]. As to practical applications in the field of electronics, the following list can
illustrate the numerous areas in which these techniques have been utilized: semicon-

ductor manufacturing [111], circuit design [83,87,220], computer aided design [13],
multilayered periodic strip grating [7], analogue network synthesis [81], and service

restoration [5].

3.5 Molecular Optimization Problems

We have selected this particular class of computational problems, involving nonlinear
optimization issues, to help the reader to identify a common trend in the literature.
Unfortunately, the authors continue referring to their technique as ‘genetic’, although
they are closer in spirit to MAs [94].

The Caltech report that gave its name to the, at that time incipient, field of MAs [154]
discussed a metaheuristic which can be viewed as a hybrid of GAs and SA developed
with M.G. Norman in 1988. In recent years, several papers applied hybrids of GAS with
SA or other methods to a variety of molecular optimization problems [10,49,54,59,68,
82,105,107,117,123,129,131,136,147,178,203,204,211,221,230,231]. Hybrid popula-
tion approaches like this can hardly be catalogued as being ‘genetic’, but this denomina-
tion has appeared in previous work by Deaven and Ho [55] and then cited by J. Maddox
in Nature [132]. Other fields of application include cluster physics [167]. Additional
work has been done in [56,92,93,184,185,221]. Other evolutionary approaches to a

120 P. Moscato and C. Cotta

variety of molecular problems can be found in: [59,89,91,134,144,193,214]. Their use
for design problems is particularly appealing [37,107,223]. They have also been applied
in protein design [58,118], probably due to energy landscape structure associated with
proteins (see the discussion in [155] and the literature review in [94]).

3.6 Other Applications

In addition to the application areas described above, MAs have been also utilized in
other fields such as, for example, medicine [84,85,217], economics [122,175], oceanog-

raphy [161], mathematics [196,218,219], imaging science and speech processing

[28,114,133,198,229], etc.
For further information about MA applications we suggest querying bibliograph-

ical databases or web browsers for the keywords ‘memetic algorithms’ and ‘hybrid

genetic algorithm’. We have tried to be illustrative rather than exhaustive, pointing out
some selected references for well-known application areas. This means that, with high
probability, many important contributions may have been inadvertently left out.

4 FUTURE DIRECTIONS

The future seems promising for MAs. This is the combination of several factors. First,
MAS (less frequently disguised under different names) are showing a remarkable record
of efficient implementations, providing very good results in practical problems. Sec-
ond, there are reasons to believe that some new attempts to do theoretical analysis can
be conducted. This includes the worst-case and average-case computational complex-
ity of recombination procedures. Third, the ubiquitous nature of distributed systems,
like networks of workstations for example, plus the inherent asynchronous parallelism
of MAs and the existence of web-conscious languages like Java; all together are an
excellent combination to develop highly portable and extendable object-oriented frame-
works allowing algorithmic reuse. These frameworks might allow the users to solve
subproblems using commercial codes or well-tested software from other users who
might be specialists in the other area. Our current work on the MemePool Project goes
in that direction. Fourth, an important and pioneering group of MAs, that of Scatter

Search, is challenging the rôle of randomization in recombination. We expect that,
as a healthy reaction, we will soon see new types of powerful MAs that blend in a
more appropriate way both exhaustive (either truncated or not) and systematic search
methods.

4.1 Lessons Learned

In 1998, Applegate, Bixby, Cook, and Chvatal established new breakthrough results
for the MIN TSP. Interestingly enough, this work supports our view that MAs will
have a central rô1e as a problem solving methodology. For instance, this research
team solved to optimality an instance of the TSP of 13,509 cities corresponding to
all U.S. cities with populations of more than 500 people.1 The approach, accord-
ing to Bixby: “… involves ideas from polyhedral combinatorics and combinatorial

optimization, integer and linear programming, computer science data structures and

1 See: http://www.crpc.rice.edu/CRPC/newsArchive/tsp.html

Introduction to Memetic Algorithms 121

algorithms, parallel computing, software engineering, numerical analysis, graph the-

ory, and more”. The solution of this instance demanded the use of three Digital
AlphaServer 4100s (with a total of 12 processors) and a cluster of 32 Pentium-II PCs.
The complete calculation took approximately three months of computer time. The code
has certainly more than 1,000 pages and is based on state-of-the-art techniques from a
wide variety of scientific fields.

The philosophy is the same of MAs, that of a synergy of different approaches.
However, due to a comment by Johnson and McGeoch ([103], p. 301), we previously
suggested that the connection with MAs might be stronger since there is an analogy with
multi-parent recombination. In a recent unpublished manuscript, “Finding Tours in the

TSP”, by the same authors (Bixby et al.), available from their web site, this suspicion
has been now confirmed. They present results on running an optimal algorithm for
solving the MIN WEIGHTED HAMILTONIAN CYCLE PROBLEM in a subgraph formed by
the union of 25 Chained Lin-Kernighan tours. The approach consistently finds the
optimal solution to the original MIN TSP instances with up to 4461 cities. They also
attempted to apply this idea to an instance with 85,900 cities (the largest instance in
TSPLIB) and from that experience they convinced themselves that it also works well
for such large instances.

Their approach can possibly be classified as the most complex MA ever built for a
given combinatorial optimization problem. One of the current challenges is to develop
simpler algorithms that achieve these impressive results.

The approach of running a local search algorithm (Chained Lin Kernighan) to
produce a collection of tours, following by the dynastical-optimal recombination
method the authors named tour merging gave a non-optimal tour of only 0.0002%
excess above the proved optimal tour for the 13,509 cities instance. We take this as
a clear proof of the benefits of the MA approach and that more work is needed in
developing good strategies for complete memetic algorithms, i.e., those that system-
atically and synergistically use randomized and deterministic methods and can prove
optimality.

4.2 Computational Complexity of Recombination Problems

An interesting new direction for theoretical research arose after the introduction of
two computational complexity classes, the PMA class (for Polynomial Merger Algo-

rithms problems) and its unconstrained analogue, the uPMA class. We note that the
dynastical optimal recombination, as it was the tour merging procedure just discussed,
can lead to solving another problem of a smaller size. To try to avoid
intractability of the new subproblem generated, we may wish to find interesting cases
with worst-case polynomial time complexity for the generated subproblem, yet help-
ful towards the primary goal of solving the original optimization problem. Having
these ideas in mind we will discuss two recently introduced computational complexity
classes.

We will define the classes PMA and uPMA by referring to three analogous algo-
rithms to the ones that define the class of Polynomial Local Search problems (PLS).
These definitions (specially for PMA) are particularly dependent on an algorithm called
k-merger, that will help to formalize the notion of recombination of a set of k given

solutions, as generally used by most MAS (as well as other population approaches).
The input of a k-merger algorithm is a set of feasible solutions, so

122 P. Moscato and C. Cotta

They can be informally called “parent” solutions and, if successful,
the k-merger delivers as output at least one feasible solution. For the uPMA class the
construction of the new solution is less restricted than for PMA. In general, recombina-
tion processes can be very complex with many side restrictions involving the detection,
the preservation or avoidance, and the feasible combination of features already present
in the parent solutions.

Definition 5.1 (Definition (uPMA)). Let x be an instance of an optimization prob-

lem P. With we denote the set of all possible outputs that the

k-merger algorithm can give if it receives as input the pair for problem P.

(Note that the set generalizes the idea of dynastic potential for more than

two parents [43]).

A recombination problem belongs to uPMA if there exist three polynomial-
time algorithms p-starter, and k-merger (where p, and k are integer
numbers such that that satisfy the following properties:

Given an input x (formally a string), the p-starter determines whether
and in this case produces a set of p different feasible solutions

Given an instance and an input (formally a string), the
determines whether this input represents a set of feasible solutions,

i.e. and in that case it computes the value of the
objective function associated to each one of them, i.e.

Given an instance and a set of k feasible solutions the
k-merger determines whether the set is a k-merger optimum, and, if it is
not, it outputs at least one feasible solution with strictly better
value of

Analogously, the PMA class is more restricted since it embodies a particular type
of recombination. For uPMA the type of recombination is implicit in the way the group
neighborhood is defined. However, the definition for PMA is still general enough to
encompasses most of the recombination procedures used in practical population-based
approaches.

Definition 5.2 (PMA). A recombination problem belongs to PMA if there exist

three polynomial-time algorithms p-starter, and k-merger (where p,

and k are integer numbers such that such that the p-starter and

satisfy the same properties required by the uPMA class but the k-merger
is constrained to be of a particular type, i.e.:

Given an instance and a set of k feasible solutions the
k-merger determines whether the set is a k-merger optimum, and, if it is not,
it does the following:
—For each it solves polynomial-time decision problems

Let D be a matrix of Boolean coefficients formed
by the output of all these decision problems, i.e.

Introduction to Memetic Algorithms 123

—It creates a set of constraints C, such that C can be partitioned in two
subsets, i.e. Each constraint is represented by a
predicate such that its associated decision problem can be solved in
polynomial-time for all Any predicate is a polynomial-time
computable function that has as input the Boolean matrix D and the instance
x. It is required that at least one predicate to be a non-constant function of
at least two different elements of

—It outputs at least one offspring, i.e., another feasible solution
with strictly better value of (i.e.

for a minimization problem, and
for a maximization

problem) subject to

where is an integer weight associated to constraint c.

Current research is being conducted to identify problems, and their associated
recombination procedures, such that membership, in either PMA or uPMA, can be
proved. It is also hoped that after some initial attempts on challenging problems
completeness and reductions for the classes can be properly defined.

4.3 Exploiting Fixed-parameter Tractability Results

An interesting new avenue of research can be established by appropriately linking
results from the theory of fixed-parameter tractability and the development of recom-
bination algorithms. This is an avenue that goes both ways. On one direction, efficient,
(i.e., polynomial-time), fixed-parameter algorithms can be used as “out of the box”

tools to create efficient recombination procedures. They can be used as dynastical opti-
mal recombination procedures or k-merger algorithms. On the opposite direction, since
MAs are typically designed to deal with large instances and scale pretty well with their
size, using both techniques together can produce complete MAs allowing to extend the
benefits of fixed-parameter tractability. From a software engineering perspective, the
combination is perfect both from code and algorithmic reuse.

A parameterized problem can be generally viewed as a problem that has as input
two components, i.e., a pair The former is generally an instance (i.e.,)
of some other decision problem P and the latter is some numerical aspect of the
former (generally a positive integer assumed) that constitutes a parameter. For
a maximization (resp. minimization) problem P, the induced language is
the parameterized language consisting of all pairs where and O P T (x)
k (resp.). If there exists an algorithm solving in time

where |x | is a measure of the instancesize, f(k) an arbitrary function
depending on k only, and a constant independent of k or n, the parameterized problem
is said to be fixed-parameter tractable and the language recognition problem belongs
to the computational complexity class FPT.

124 P. Moscato and C. Cotta

To illustrate on this topic, we can discuss one of the most emblematic FPT problems:

VERTEX COVER (fiXED PARAMETER, DECISION VERSION)
Instance: A graph G(V, E).
Parameter: A positive integer k.

Question: Is there a set such that for every edge at least u or
is a member of and

In general, efficient FPT algorithms are based on the techniques of reduction to a

problem kernel and bounded search trees. To understand the techniques, the reader may
check a method by Chen, Kanj, and Yia [32]. This method can solve the parameterized
version of vertex cover in time However, using this method together
with the speed-up method proposed by Neidermeier and Rossmanith [166], the problem
can be solved in i.e., linear in n.

The definition of the FPT class allows f (k) to grow arbitrarily fast. For the
parameterized version of PLANAR DOMINATING SET the best known algorithm has

but for other problems, like VERTEX COVER this situation is not that dra-
matic. In addition, the new general method to improve FPT algorithms that run on
time (where p and q are polynomials and is a small constant) has
been developed by Niedermeier and Rossmanith [166]. Their method interleaves the
reduction to a problem kernel and bounded search methods. If it is the case that is
the size of the bounded search tree and q(k) is the size of the problem kernel, the new
technique is able to get rid of the q(k) factor allowing the algorithm to be
Another problem that belongs to the FPT class is:

HITTING SET FOR SIZE THREE SETS (fiXED PARAMETER, DECISION VERSION)

Instance: A collection C of subsets of size three of a finite set S.

Parameter: A positive integer k.

Question: Is there a subset with which allows contain at least
one element from each subset in C ?

It can be seen as a generalization of the VERTEX COVER problem for hypergraphs,
where there is an hyperedge between three vertices (instead of only two as in VERTEX

COVER), and the task is to find a minimal subset of vertices covering all edges. Recently,
Niedermeier and Rossmanith have presented an algorithm that solves this problem in
time [165]. We leave as an exercise to the reader the task of finding
recombination operators that take advantage of this algorithm. We also leave as an
exercise the following, “is it possible to use the) to construct a k-merger

algorithm for the optimization problem MIN 3-HITTING SET that satisfies the criteria

required by the PMA and uPMA definitions?”

4.4 Addition of negative knowledge

During the past five years, the addition of problem-dependent knowledge to enhance
population-based approaches received a renewed interest among MAs researchers [2,
12,19,70,82,189,204]. Earlier papers had emphasized the relevance [79,125,154,207]
of this issue, as well as Lawrence Davis from his numerous writings, also supported this
idea when there was still not such a consensus, and many researchers were skeptical
about their central role.

Introduction to Memetic Algorithms 125

However, as many other things, the addition of problem-dependent, and instance-
dependent knowledge can be addressed in different ways. Today, it is reasonable to
continue finding new ways to incorporate negative knowledge in MAs. It is also chal-
lenging to find ways of extracting (or we may better say induce), “negative knowledge”
from the current population of solutions. We quote M. Minsky [150]:

We tend to think of knowledge in positive terms – and of experts as people
who know what to do. But a ‘negative’ way to seem competent is, simply,
never to make mistakes.

This is what heuristics do best, reducing the computational effort by radically
changing the search space, so certainly there is no paradox here. Most heuristics,
however, have a “positive bias”. For instance, in [181] we can read:

The strategy developed by Lin [126] for the TSP is to obtain several local
optima and then identify edges that are common to all of them. These are
then fixed, thus reducing the time to find more local optima. This idea is
developed further in [72,127].

Curiously enough, although this strategy has been around for more than three
decades it is hardly accepted by some researchers regardless all empirical evidence
of the benefits of MAs that exploit, by using recombination, the correlation of highly
evolved solutions [15,112,142,154,155,157].

Already recognized by R. Hofmann in 1993, there is a certain curious asymmetry
in this strategy. We tend to think of common edges as pieces of “positive” information
to be passed on between generations. However, after a few generations of an MA, a
highly evolved (yet still diverse) population, might consistently avoid certain edges.
What is the population of agents “suggesting” about these edges ? For instance, given
an edge, we can define two tours as being equivalent if they both contain the edge, but
also they can be defined equivalent if both do not. Hofmann recognized this duality and
came with the denomination of negative edge formae for the latter induced equivalence
class, that describes the set of tours that do not share this particular edge (see [95],
p. 35).

At this point it is important to distinguish knowledge from belief. Formally, knowl-
edge is generally defined as a true belief, for instance “agent a knows if a believes

and is true”. So a way of adding knowledge to the agents is to actually to attempt
to prove things the agents believe.

For instance, if we are trying to solve an Euclidean 2-dimensional instance of the
MIN TSP, it is always the case that the optimal tour must not have two crossing edges.
This is a true fact that can be proven with a theorem. Since 2-opt moves can efficiently
remove crossing edges with the aid of associate data structures and range queries, all
agents in an MAs generally have it incorporated in their local search methods. However,
it is also the case that other predicates, involving more than two edges, can be proved
in all circumstances for the optimal tour (i.e., a predicate that is always true for all
instances under consideration), yet not efficient associated local search methods have
been found. This said, we envision that given an optimization with only one objective
function, we might use methods from multi-objective MAs, using as auxiliary objective
functions the number of violations of over a set of properties that the optimal solution
should have. Research in this direction is also under way.

126 P. Moscato and C. Cotta

4.5 Guided Memetic Algorithms

In [181] we can read:

As is common with heuristics, one can also argue for exactly the opposite
idea. Once such common features are detected, they are forbidden rather
than fixed. This justification is the following: If we fear that the global
optimum is escaping us, this could be because our heuristic is “fooled” by
this tempting features. Forbidding them could finally put us on the right
track towards the global optimum. This is called denial in [206].

We also envision that future generations of MAs will work in at least two levels
and two time scales. During the short-time scale, a set of agents would be searching in
the search space associated to the problem. This is what most MAs do today. However,
a long-time scale would adapt the algorithms associated with the agents. Here we
encompass all of them, the individual search strategies, the recombination operators,
etc. For instance, an MA that uses guided local search for an adaptive strategy has
been proposed in [97]. Recombination operators with different(rebel, obsequent, and
conciliator behaviors) were introduced in [14]. We think that these new promising
directions need to be investigated, providing adaptive recombination mechanisms that
take information of the progress of the current population. Moreover, it is intriguing the
idea of using a combination of deterministic search procedures with a stochastic MA.
The combination of both would help to systematically explore sub-regions of the search
space and guarantee a coverage that currently is only left to some random procedure
that aim to diversify the search (like the so-called heavy mutation procedures).

4.6 Modal Logics for MAs and Belief Search

As a logical consequence of the possible directions that MAs can take, it is rea-
sonable to affirm that more complex schemes evolving solutions, agents, as well
as representations, will soon be implemented. Some theoretical computer science
researchers dismiss heuristics and metaheuristics since they are not coordinated as
a formal paradigm. However, their achievements are well-recognized. From [121]:

Explaining and predicting the impressive empirical success of some of
these algorithms is one of the most challenging frontiers of the theory of
computation today.

This comment is even more relevant for MAs since they generally present even better
results than single-agent methods. Though metaheuristics are extremely powerful in
practice, we agree that one problem with the current trend of applied research is that it
allows the introduction of increasingly more complex heuristics, unfortunately most of
the time parameterized by ad-hoc numbers. Moreover, some metaheuristics, like some
ant-systems implementations, can basically be viewed as particular types of MAs. This
is the case if you allow the “ants” to use branch-and-bound or local search methods. In
addition, these methods for distributed recombination of information (or beliefs) have
some points in common with blackboard systems [61], as it has been recognized in the
past yet it is hardly being mentioned in the current metaheuristics literature.

To illustrate how Belief Search can work in an MA setting, we will use an illustrative
example. Let’s assume that the formula has the following meaning “agent i

believes with strength (at least) a that is true ”, such that the strength values a are

Introduction to Memetic Algorithms 127

restricted to be rational numbers in [0,1]. Let’s also suppose we accept as an axiom
that from being true we can deduce for all i. Now let’s suppose that our agents
are trying to solve a MIN TSP and that the particular instance being considered is
Euclidean and two-dimensional. Let represent the proposition “edge is present

in the optimum tour” and let be true if edges and cross each other, and false
otherwise. It can be proved that for such type of instances “if edges and cross

each other, then and can not both be present in the optimal tour”. Then we can
assume that this is known by all agents, and by the previous axiom we can deduce that
agent 2 now believes Now let’s suppose that agent 1 believes,
with strength 0.4, that “either edge or but not both, is present in the optimal

tour”. We will represent this as We will not enter into the discussion of how
that agent reached that belief and we take it as a fact. Now let us suppose that another
agent believes, at a level 0.7 that then we write Note
that this kind of assumption confuses our common sense, since in general we do not
see any relationship between the fact that two edges cross and that we can deduce that
as a consequence one of them should be present in the optimum tour. However, note
that agent 3 believes in this relationship (at a 0.7 level) for a particular pair of edges

and Now, what can we say about the distributed belief of this group of three
agents ? How can we recombine this information ?

According to a multi-agent epistemic logic recently introduced by Boldrin
and Saffiotti, the opinions shared by different a set of n agents can be recombined in
a distributed belief. Using we can deduce The distributed belief about
proposition is stronger than any individual belief about it, and is even stronger than
what you would get if any agent would believe the three facts.

4.7 The MemePool Project: Our Meeting Place for

Algorithm and Knowledge Reuse

As we have said before, we believe that these different research directions can blend
together and make an outstanding contribution when used in combination.

One interesting example of these new MAs, is a recent work by Lamma et al. [116]
applied to the field of diagnosing digital circuits. In their approach, they differentiate
between genes and “memes”. The latter group codes for the agents beliefs and assump-
tions. Using a logic-based technique, they modify the memes according on how the
present beliefs are contradicted by integrity constraints that express observations and
laws. Each agent keeps a population of chromosomes and finds a solution to the belief
revision problem by means of a genetic algorithm. A Lamarckian operator is used to
modify a chromosome using belief revision directed mutations, oriented by tracing
logical derivations. As a consequence, a chromosome will satisfy a larger number
of constraints. The evolution provided by the Darwinian operators, allow agents to
improve the chromosomes by gaining on the experience of other agents. Central to
this approach is the Lamarckian operator appropriately called Learn. It takes a chro-
mosome and produces a revised chromosome as output. To achieve that, it eliminates
some derivation paths that reach to contradictions.

Surprisingly enough (and here we remark the first possibility of using the theory of
fixed-parameter tractability), the learning is achieved by finding a hitting set which is
not necessarily minimal. The authors make clear this point by saying that: “a hitting

set generated from these support sets is not necessarily a contradiction removal set

P. Moscato and C. Cotta128

and therefore is not a solution to the belief revision problem.” The authors might not
be aware of the exact algorithm for MIN 3-HITTING SET. They might be
able to use it, but that is anecdotal at the moment. What it is important to remark is that
algorithms like this one might be used out-of-the-box if a proper, world-wide based,
algorithmic framework were created.

On the other hand, we remarked how results of logic programming and belief
revision may help the current status of metaheuristics. The current situation where
everybody comes with new names for the same basic techniques, and most contributions
are just the addition of new parameters to guide the search, is a futile research direction.
It may be possible, that belief search guided MAs can be a valid tool to help systematize
the scenario. In particular, if the discussion is based on which multi-agent logic performs
better rather than which parameters work better for specific problems or instances.
Towards that end, we hope to convince researchers in logic programming to start to
address these issues, challenging them with the task of guiding MAs for large-scale
combinatorial optimization. The MemePool Project2 seems to be a good scenario for
such an interdisciplinary and international enterprise. Whether it will work or not relies
more on our ability to work cooperatively more than anything else.

BIBLIOGRAPHY

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

2
http://www.densis.fee.unicamp.br/~moscato/memepool.html

H.S. Abdinnour (1998) A hybrid heuristic for the uncapacitated hub location
problem. European Journal of Operational Research, 106(2–3), 489–99.

C.C. Aggarwal, J.B. Orlin and R.P. Tai (1997) Optimized crossover for the
independent set problem. Operations Research, 45(2), 226–234.

J. Aguilar and A. Colmenares (1998) Resolution of pattern recognition prob-
lems using a hybrid genetic/random neural network learning algorithm. Pattern

Analysis and Applications, 1(1), 52–61.

D. Aldous and U. Vazirani (1994) “Go with the winners” algorithms. In: Pro-

ceedings of the 35th Annual Symposium on Foundations of Computer Science.

IEEE, Los Alamitos, CA, pp. 492–501.

A. Augugliaro, L. Dusonchet and E. Riva-Sanseverino (1998) Service restoration
in compensated distribution networks using a hybrid genetic algorithm. Electric

Power Systems Research, 46(1), 59–66.

R. Axelrod and W.D. Hamilton (1981) The evolution of cooperation. Science,

211(4489), 1390–1396.

K. Aygun, D.S. Weile and E. Michielssen (1997) Design of multilayered periodic
strip gratings by genetic algorithms. Microwave and Optical Technology Letters,

14(2), 81–85.

T. Bäck and F. Hoffmeister (1991) Adaptive search by evolutionary algorithms.
In: W. Ebeling, M. Peschel and W. Weidlich (eds.), Models of Selforganization

in Complex Systems, number 64 in Mathematical Research, Akademie-Verlag,
pp. 17–21.

Th. Bäck (1996) Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York.

Introduction to Memetic Algorithms 129

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M.J. Bayley, G. Jones, P. Willett and M.P. Williamson (1998) Genfold: A genetic
algorithm for folding protein structures using NMR restraints. Protein Science,

7(2), 491–499.

J. Beasley and P.C. Chu (1996) A genetic algorithm for the set covering problem.
European Journal of Operational Research, 94(2), 393–404.

J. Beasley and P.C. Chu (1998) A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4, 63–86.

B. Becker and R. Drechsler (1994) Ofdd based minimization of fixed polar-
ity Reed-Muller expressions using hybrid genetic algorithms. In: Proceedings

IEEE International Conference on Computer Design: VLSI in Computers and

Processor. IEEE, Los Alamitos, CA, pp. 106–110.

R. Berretta and P. Moscato (1999) The number partitioning problem: An open
challenge for evolutionary computation? In: D. Corne, M. Dorigo and F. Glover
(eds.), New Ideas in Optimization. McGraw-Hill, pp. 261–278.

K.D. Boese (1995) Cost versus Distance in the Traveling Salesman Problem.
Technical Report TR-950018, UCLA CS Department.

A.H.W. Bos (1998) Aircraft conceptual design by genetic/gradient-guided opti-
mization. Engineering Applications of Artificial Intelligence, 11(3), 377–382.

D. Brown, C. Huntley and A. Spillane (1989) A parallel genetic heuristic for
the quadratic assignment problem. In: J. Schaffer (ed.), Proceedings of the

Third International Conference on Genetic Algorithms. Morgan Kaufmann,
pp. 406–415.

T.N. Bui and B.R. Moon (1996) Genetic algorithm and graph partitioning. IEEE

Transactions on Computers, 45(7), 841–855.

T.N. Bui and B.R. Moon (1998) GRCA: A hybrid genetic algorithm for cir-
cuit ratio-cut partitioning. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 17(3), 193–204.

E.K. Burke, D.G. Elliman and R.F. Weare (1995) A hybrid genetic algorithm for
highly constrained timetabling problems. In: Proceedings of the Sixth Interna-

tional Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco,
CA, pp. 605–610.

E.K. Burke, K.S. Jackson, J.H. Kingston and R.F. Weare (1997) Automated
timetabling: The state of the art. The Computer Journal, 40(9), 565–571.

E.K. Burke and J.P. Newall (1997) A phased evolutionary approach
for the timetable problem: An initial study. In: Proceedings of

the ICONIP/ANZIIS/ANNES ‘97 Conference. Springer-Verlag, Dunedin,
New Zealand, pp. 1038–1041.

E.K. Burke, J.P. Newall and R.F. Weare (1996) A memetic algorithm for uni-
versity exam timetabling. In: E.K. Burke and P. Ross (eds.), The Practice and

Theory of Automated Timetabling, volume 1153 of Lecture Notes in Computer

Science. Springer-Verlag, pp. 241–250.

E.K. Burke, J.P. Newall and R.F. Weare (1998) Initialisation strategies and
diversity in evolutionary timetabling. Evolutionary Computation, 6(1), 81–103.

130 P. Moscato and C. Cotta

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

E.K. Burke and A.J. Smith (1997) A memetic algorithm for the mainte-
nance scheduling problem. In: Proceedings of the ICONIP/ANZIIS/ANNES ‘97

Conference. Springer-Verlag, Dunedin, New Zealand, pp. 469–472.

E.K. Burke and A.J. Smith (1999) A memetic algorithm to schedule grid main-
tenance. In: Proceedings of the International Conference on Computational

Intelligence for Modelling Control and Automation, Vienna: Evolutionary Com-

putation and Fuzzy Logic for Intelligent Control, Knowledge Acquisition and

Information Retrieval. IOS Press 1999, pp. 122–127.

E.K. Burke and A.J. Smith (1999) A multi-stage approach for the thermal gen-
erator maintenance scheduling problem. In: Proceedings of the 1999 Congress

on Evolutionary Computation. IEEE, Washington D.C., pp. 1085–1092.

S. Cadieux, N. Tanizaki and T. Okamura (1997) Time efficient and robust
3-D brain image centering and realignment using hybrid genetic algorithm. In:
Proceedings of the 36th SICE Annual Conference. IEEE, pp. 1279–1284.

J. Carrizo, F.G. Tinetti and P. Moscato (1992) A computational ecology for
the quadratic assignment problem. In: Proceedings of the 21st Meeting on

Informatics and Operations Research. Buenos Aires, SADIO.

S. Cavalieri and P. Gaiardelli (1998) Hybrid genetic algorithms for a multiple-
objective scheduling problem. Journal of Intelligent Manufacturing, 9(4),
361–367.

N. Chaiyaratana and A.M.S. Zalzala (1999) Hybridisation of neural networks
and genetic algorithms for time-optimal control. In: Proceedings of the 1999

Congress on Evolutionary Computation. IEEE, Washington D.C., pp. 389–396.

Jianer Chen, lyad A. Kanj and Weijia Jia (1999) Vertex cover: further obser-
vations and further improvements. In: Proceedings of the 25th International

Worksh. Graph-Theoretic Concepts in Computer Science, number 1665 in
Lecture Notes in Computer Science. Springer-Verlag, pp. 313–324.

R. Cheng and M. Gen (1996) Parallel machine scheduling problems using
memetic algorithms. In: 1996 IEEE International Conference on Systems, Man

and Cybernetics. Information Intelligence and Systems, Vol. 4. IEEE, New York,
NY, pp. 2665–2670.

R. Cheng, M. Gen and Y. Tsujimura (1999) A tutorial survey of job-shop schedul-
ing problems using genetic algorithms, ii. hybrid genetic search strategies.
Computers & Industrial Engineering, 37(1–2), 51–55.

R.W. Cheng and M. Gen (1997) Parallel machine scheduling problems using
memetic algorithms. Computers & Industrial Engineering, 33(3–4), 761–764.

P.C. Chu and J. Beasley (1997) A genetic algorithm for the generalised
assignment problem. Computers & Operations Research, 24, 17–23.

D.E. Clark and D.R. Westhead (1996) Evolutionary algorithms in computer-
aided molecular design. Journal of Computer-aided Molecular Design, 10(4),
337–358.

H.G. Cobb and J.J. Grefenstette (1993) Genetic algorithms for tracking chang-
ing environments. In: S. Forrest (ed.), Proceedings of the Fifth International

Introduction to Memetic Algorithms 131

Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA,
pp. 529–530.

P.E. Coll, G.A. Durán and P. Moscato (1999) On worst-case and comparative
analysis as design principles for efficient recombination operators: A graph
coloring case study. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in

Optimization. McGraw-Hill, pp. 279–294.

D. Costa (1995) An evolutionary tabu search algorithm and the NHL scheduling
problem. INFOR, 33(3), 161–178.

D. Costa, N. Dubuis and A. Hertz (1995) Embedding of a sequential procedure
within an evolutionary algorithm for coloring problems in graphs. Journal of

Heuristics, 1(1), 105–128.

C. Cotta (1998) A study of hybridisation techniques and their application to the
design of evolutionary algorithms. AI Communications, 11(3–4), 223–224.

C. Cotta, E. Alba and J.M. Troya (1998) Utilising dynastically optimal form
a recombination in hybrid genetic algorithms. In: A.E. Eiben, Th. Bäck,
M. Schoenauer and H.-P. Schwefel (eds.), Parallel Problem Solving From Nature

V, volume 1498 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
pp. 305–314.

C. Cotta, E. Alba and J.M. Troya (1999) Stochastic reverse hillclimbing and
iterated local search. In: Proceedings of the 1999 Congress on Evolutionary

Computation. IEEE, Washington D.C., pp. 1558–1565.

C. Cotta and J.M. Troya (1998) A hybrid genetic algorithm for the 0–1 multiple
knapsack problem. In: G.D. Smith, N.C. Steele and R.F. Albrecht (eds.), Artifi-

cial Neural Nets and Genetic Algorithms 3. Springer-Verlag, Wien New York,
pp. 251–255.

C. Cotta and J.M. Troya (2000) On the influence of the representation granularity
in heuristic forma recombination. In: J. Carroll, E. Damiani, H. Haddad and
D. Oppenheim (eds.), ACM Symposium on Applied Computing 2000. ACM
Press, pp. 433–439.

C. Cotta and J.M. Troya (2000) Using a hybrid evolutionary A* approach for
learning reactive behaviors. In: S. Cagnoni et al. (eds.), Real-World Applica-

tions of Evolutionary Computation, volume 1803 of Lecture Notes in Computer

Science. Springer-Verlag, Edinburgh, pp. 347–356.

T. Crain, R. Bishop, W. Fowler and K. Rock (1999) Optimal interplane-
tary trajectory design via hybrid genetic algorithm/recursive quadratic program
search. In: Ninth AAS/AIAA Space Flight Mechanics Meeting. Breckenridge
CO, pp. 99–133.

T. Dandekar and P. Argos (1996) Identifying the tertiary fold of small pro-
teins with different topologies from sequence and secondary structure using the
genetic algorithm and extended criteria specific for strand regions. Journal of

Molecular Biology, 256(3), 645–660.

Y. Davidor and O. Ben-Kiki (1992) The interplay among the genetic algorithm
operators: Information theory tools used in a holistic way. In: R. Männer and
B. Manderick (eds.), Parallel Problem Solving From Nature II. Elsevier Science
Publishers B.V., Amsterdam, pp. 75–84.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

132 P. Moscato and C. Cotta

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

L. Davis (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold
Computer Library, New York.

R. Dawkins (1976) The Selfish Gene. Clarendon Press, Oxford.

P. de Causmaecker, G. van den Berghe and E.K. Burke (1999) Using tabu search
as a local heuristic in a memetic algorithm for the nurse rostering problem. In:
Proceedings of the Thirteenth Conference on Quantitative Methods for Decision

Making, pages abstract only, poster presentation. Brussels, Belgium.

P.A. de Souza, R. Garg and V.K. Garg (1998) Automation of the analysis of
Mossbauer spectra. Hyperfine Interactions, 112(1–4), 275–278.

D.M. Deaven and K.O. Ho (1995) Molecular-geometry optimization with a
genetic algorithm. Physical Review Letters, 75(2), 288–291.

D.M. Deaven, N. Tit, J.R. Morris and K.M. Ho (1996) Structural optimization
of Lennard-Jones clusters by a genetic algorithm. Chemical Physics Letters,

256(1–2), 195–200.

N. Dellaert and J. Jeunet (2000) Solving large unconstrained multilevel lot-sizing
problems using a hybrid genetic algorithm. International Journal of Production

Research, 38(5), 1083–1099.

J.R. Desjarlais and T.M. Handel (1995) New strategies in protein design. Current

Opinion in Biotechnology, 6(4), 460–466.

R. Doll and M.A. VanHove (1996) Global optimization in LEED structure
determination using genetic algorithms. Surface Science, 355(1–3), L393–L398.

R. Dorne and J.K. Hao (1998) A new genetic local search algorithm for graph
coloring. In: A.E. Eiben, Th. Bäck, M. Schoenauer and H.-P. Schwefel (eds.),
Parallel Problem Solving From Nature V, volume 1498 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, pp. 745–754.

R. Englemore and T. Morgan (eds.) (1988) Blackboard Systems. Addison-
Wesley.

C. Ersoy and S.S. Panwar (1993) Topological design of interconnected
LAN/MAN networks. IEEE Journal on Selected Areas in Communications,

11(8), 1172–1182.

J. Fang and Y. Xi (1997) A rolling horizon job shop rescheduling strategy in
the dynamic environment. International Journal of Advanced Manufacturing

Technology, 13(3), 227–232.

C. Fleurent and J.A. Ferland (1997) Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63, 437–461.

P.M. França, A.S. Mendes and P. Moscato (1999) Memetic algorithms to min-
imize tardiness on a single machine with sequence-dependent setup times.
In: Proceedings of the 5th International Conference of the Decision Sciences

Institute, Athens, Greece, pp. 1708–1710.

B. Freisleben and P. Merz (1996) A genetic local search algorithm for solving
symmetric and asymmetric traveling salesman problems. In: Proceedings of the

1996 IEEE International Conference on Evolutionary Computation, Nagoya,

Japan. IEEE Press, pp. 616–621.

Introduction to Memetic Algorithms 133

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

B. Freisleben and P. Merz (1996) New genetic local search operators for the
traveling salesman problem. In: H.-M. Voigt, W. Ebeling, I. Rechenberg and
H.-P. Schwefel (eds.), Parallel Problem Solving from Nature IV, volume 1141
of Lecture Notes in Computer Science. Springer, pp. 890-900.

R.T. Fu, K. Esfarjani, Y. Hashi, J. Wu, X. Sun and Y. Kawazoe (1997) Surface
reconstruction of Si (001) by genetic algorithm and simulated annealing method.
Science Reports of The Research Institutes Tohoku University Series A-Physics

Chemistry and Metallurgy, 44(1), 77–81.

B.L. Garcia, P. Mahey and L.J. LeBlanc (1998) Iterative improvement methods
for a multiperiod network design problem. European Journal of Operational

Research, 110(1), 150–165.

M. Gen and R. Cheng (1997) Genetic Algorithms and Engineering Design.

Wiley Series in Engineering Design and Automation. John Wiley & Sons (Sd).

M. Gen, K. Ida and L. Yinzhen (1998) Bicriteria transportation problem
by hybrid genetic algorithm. Computers & Industrial Engineering, 35(1–2),
363–366.

A.J. Goldstein and A.B. Lesk (1975) Common feature techniques for discrete
optimization. Comp. Sci. Tech. Report 27, Bell. Tel. Labs, March.

M. Gorges-Schleuter (1989) ASPARAGOS: An asynchronous parallel genetic
optimization strategy. In: J. David Schaffer (ed.), Proceedings of the Third

International Conference on Genetic Algorithms. Morgan Kaufmann Publishers,
pp. 422–427.

M. Gorges-Schleuter (1991) Explicit parallelism of genetic algorithms through
population structures. In: H.-P. Schwefel and R. Manner (eds.), Parallel Problem

Solving from Nature. Springer-Verlag, pp. 150–159.

M. Gorges-Schleuter (1991) Genetic Algorithms and Population Structures—A

Massively Parallel Algorithm. PhD thesis, University of Dortmund, Germany.

M. Gorges-Schleuter (1997) Asparagos96 and the Traveling Salesman Problem.
In: T. Baeck, Z. Michalewicz and X. Yao (eds.), Proceedings of the 1997 IEEE

International Conference on Evolutionary Computation. Indianapolis, USA.

IEEE Press, pp. 171–174.

J. Gottlieb (2000) Permutation-based evolutionary algorithms for multidi-
mensional knapsack problems. In: J. Carroll, E. Damiani, H. Haddad and
D. Oppenheim (eds.), ACM Symposium on Applied Computing 2000. ACM
Press, pp. 408–114.

J. Gottlieb and T. Kruse (2000) Selection in evolutionary algorithms for the
traveling salesman problem. In: J. Carroll, E. Damiani, H. Haddad and
D. Oppenheim (eds.), ACM Symposium on Applied Computing 2000. ACM
Press, pp. 415–421.

J. J. Grefenstette (1987) Incorporating Problem Specific Knowledge into Genetic
Algorithms. In: L. Davis (ed.), Genetic Algorithms and Simulated Anneal-

ing, Research Notes in Artificial Intelligence. Morgan Kaufmann Publishers,
pp. 42–60.

134 P. Moscato and C. Cotta

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

P. Grim (1997) The undecidability of the spatialized prisoner’s dilemma. Theory

and Decision, 42(1), 53–80.

J.B. Grimbleby (1999) Hybrid genetic algorithms for analogue network synthe-
sis. In: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE,
Washington D.C., pp. 1781–1787.

J.R. Gunn (1997) Sampling protein conformations using segment libraries and
a genetic algorithm. Journal of Chemical Physics, 106(10), 4270–4281.

M. Guotian and L. Changhong (1999) Optimal design of the broadband stepped
impedance transformer based on the hybrid genetic algorithm. Journal of Xidian

University, 26(1), 8–12.

O.C.L. Haas, K.J. Burnham and J.A. Mills (1998) Optimization of beam orien-
tation in radiotherapy using planar geometry. Physics in Medicine and Biology,

43(8), 2179–2193.

O.C.L. Haas, K.J. Burnham, J.A. Mills, C.R. Reeves and M.H. Fisher (1996)
Hybrid genetic algorithms applied to beam orientation in radiotherapy. In: Fourth

European Congress on Intelligent Techniques and Soft Computing Proceedings,

Vol. 3. Verlag Mainz, Aachen, Germany, pp. 2050–2055.

A.B. Hadj-Alouane, J.C. Bean and K.G. Murty (1999) A hybrid
genetic/optimization algorithm for a task allocation problem. Journal of

Scheduling, 2(4).

S.P. Harris and E.G. Ifeachor (1998) Automatic design of frequency sampling
filters by hybrid genetic algorithm techniques. IEEE Transactions on Signal

Processing, 46(12), 3304–3314.

W.E. Hart and R.K. Belew (1991) Optimizing an arbitrary function is hard for
the genetic algorithm. In: R.K. Belew and L.B. Booker (eds.), Proceedings of

the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo CA, pp. 190–195.

B. Hartke (1993) Global geometry optimization of clusters using genetic
algorithms. Journal of Physical Chemistry, 97(39), 9973–9976.

M. Hifi (1997) A genetic algorithm-based heuristic for solving the weighted max-
imum independent set and some equivalent problems. Journal of the Operational

Research Society, 48(6), 612–622.

R. Hirsch and C.C. Mullergoymann (1995) Fitting of diffusion-coefficients in
a 3-compartment sustained-release drug formulation using a genetic algorithm.
International Journal of Pharmaceutics, 120(2), 229–234.

K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z. Y. Lu, C.Z. Wang, J.G. Wacker, J.L. Fye
and M.F. Jarrold (1998) Structures of medium-sized silicon clusters. Nature,

392(6676), 582–585.

S. Hobday and R. Smith (1997) Optimisation of carbon cluster geometry using
a genetic algorithm. Journal of The Chemical Society-Faraday Transactions,

93(22), 3919–3926.

R.J.W. Hodgson (2000) Memetic algorithms and the molecular geometry opti-
mization problem. In: Proceedings of the 2000 Congress on Evolutionary

Computation. IEEE Service Center, Piscataway, NJ, pp. 625–632.

Introduction to Memetic Algorithms 135

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Reimar Hofmann (1993) Examinations on the algebra of genetic algorithms.
Master’s thesis, Technische Universität München, Institut fü Informatik.

D.R. Hofstadter (1983) Computer tournaments of the prisoners-dilemma suggest
how cooperation evolves. Scientific American, 248(5), 16–23.

D. Holstein and P. Muscat (1999) Memetic algorithms using guided local
search: A case study. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas

in Optimization. McGraw-Hill, pp. 235–244.

E. Hopper and B. Turton (1999) A genetic algorithm for a 2d industrial packing
problem. Computers & Industrial Engineering, 37(1–2), 375–378.

M. Hulin (1997) An optimal stop criterion for genetic algorithms: A bayesian
approach. In: Th. Bäck (ed.), Proceedings of the Seventh International

Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA,
pp. 135–143.

T. Ichimura and Y. Kuriyama (1998) Learning of neural networks with paral-
lel hybrid ga using a royal road function. In: 1998 IEEE International Joint

Conference on Neural Networks, Vol. 2, IEEE, New York, NY, pp. 1131–1136.

J. Berger, M. Salois and R. Begin (1998) A hybrid genetic algorithm for the
vehicle routing problem with time windows. In: R.E. Mercer and E. Neufeld
(eds.), Advances in Artificial Intelligence. 12th Biennial Conference of the Cana-

dian Society for Computational Studies of Intelligence. Springer-Verlag, Berlin,
pp. 114–127.

W.R. Jih and Y.J. Hsu (1999) Dynamic vehicle routing using hybrid genetic
algorithms. In: Proceedings of the 1999 Congress on Evolutionary Computation.

IEEE, Washington D.C., pp. 453–458.

D.S. Johnson and L.A. McGeoch (1997) The traveling salesman problem: A case
study. In: E.H.L. Aarts and J.K. Lenstra (eds,), Local Search in Combinatorial

Optimization. Wiley, Chichester, pp. 215–310.

D.S. Johnson, C.H. Papadimitriou and M. Yannakakis (1988) How easy is local
search? Journal of Computers and System Sciences, 37, 79–100.

G. Jones, P. Willett, R.C. Glen, A.R. Leach and R. Taylor (1997) Development
and validation of a genetic algorithm for flexible docking. Journal of Molecular

Biology, 267(3), 727–748.

T.C. Jones (1995) Evolutionary Algorithms, Fitness Landscapes and Search.

PhD thesis, University of New Mexico.

B.M. Kariuki, H. Serrano-Gonzalez, R.L. Johnston and K.D.M. Harris (1997)
The application of a genetic algorithm for solving crystal structures from powder
diffraction data. Chemical Physics Letters, 280(3–4), 189–195.

R.M. Karp (1972) Reducibility among combinatorial problems. In: R.E. Miller
and J.W. Thatcher (eds.), Complexity of Computer Computations. Plenum,
New York NY, pp. 85–103.

I.E. Kassotakis, M.E. Markaki and A.V. Vasilakos (2000) A hybrid genetic
approach for channel reuse in multiple access telecommunication networks.
IEEE Journal on Selected Areas in Communications, 18(2), 234–243.

136 P. Moscato and C. Cotta

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

K. Katayama, H. Hirabayashi and H. Narihisa (1998) Performance analysis
for crossover operators of genetic algorithm. Transactions of the Institute of

Electronics, Information and Communication Engineers, J81D-I(6), 639–650.

T.S. Kim and G.S. May (1999) Intelligent control of via formation by photosen-
sitive BCB for MCM-L/D applications. IEEE Transactions on Semiconductor

Manufacturing, 12, 503–515.

S. Kirkpatrick and G. Toulouse (1985) Configuration space analysis of traveling
salesman problems. J. Physique, 46, 1277–1292.

K. Krishna and M. Narasimha-Murty (1999) Genetic k-means algorithm. IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29(3),
433–439.

K. Krishna, K.R. Ramakrishnan and M.A.L. Thathachar (1997) Vector quanti-
zation using genetic k-means algorithm for image compression. In: 1997 Inter-

national Conference on Information, Communications and Signal Processing,

Vol. 3, IEEE, New York, NY, pp. 1585–1587.

R.M. Krzanowski and J. Raper (1999) Hybrid genetic algorithm for transmitter
location in wireless networks. Computers, Environment and Urban Systems,

23(5), 359–382.

E. Lamma, L.M. Pereira and F. Riguzzi (2000) Multi-agent logic aided lamarck-
ian learning. Technical Report DEIS-LIA-00-004, Dipartimento di Elettronica,
Informatica e Sistemistica, University of Bologna (Italy), LIA Series no. 44
(submitted for publication).

E. Landree, C. Collazo-Davila and L.D. Marks (1997) Multi-solution genetic
algorithm approach to surface structure determination using direct methods.
Acta Crystallographica Section B—Structural Science, 53, 916–922.

G.A. Lazar, J.R. Desjarlais and T.M. Handel (1997) De novo design of the
hydrophobic core of ubiquitin. Protein Science, 6(6), 1167–1178.

C.Y. Lee (1994) Genetic algorithms for single machine job scheduling with
common due date and symmetric penalties. Journal of the Operations Research

Society of Japan, 37(2), 83–95.

D. Levine (1996) A parallel genetic algorithm for the set partitioning problem.
In: I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory & Applications.

Kluwer Academic Publishers, pp. 23–35.

H.R. Lewis and C.H. Papadimitriou (1998) Elements of the Theory of Compu-

tation. Prentice-Hall, Inc., Upper Saddle River, New Jersey.

F. Li, R. Morgan and D. Williams (1996) Economic environmental dispatch
made easy with hybrid genetic algorithms. In: Proceedings of the International

Conference on Electrical Engineering, Vol. 2. Int. Acad. Publishers, Beijing,
China, pp. 965–969.

L.P. Li, T.A. Darden, S.J. Freedman, B.C. Furie, B. Furie, J.D. Baleja, H. Smith,
R.G. Hiskey and L.G. Pedersen (1997) Refinement of the NMR solution struc-
ture of the gamma-carboxyglutamic acid domain of coagulation factor IX using
molecular dynamics simulation with initial Ca2+ positions determined by a
genetic algorithm. Biochemistry, 36(8), 2132–2138.

Introduction to Memetic Algorithms 137

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

C.F. Liaw (2000) A hybrid genetic algorithm for the open shop scheduling
problem. European Journal of Oprational Research, 124(1), 28–42.

G.E. Liepins and M.R. Hilliard (1987) Greedy Genetics. In: J.J. Grefenstette
(ed.), Proceedings of the Second International Conference on Genetic Algo-

rithms and their Applications. Lawrence Erlbaum Associates, Cambridge, MA,
pp. 90–99.

S. Lin (1965) Computer solutions of the traveling salesman problem. Bell System

Technical Journal, 10, 2245–2269.

S. Lin and B. Kernighan (1973) An Effective Heuristic Algorithm for the
Traveling Salesman Problem. Operations Research, 21, 498–516.

S.E. Ling (1992) Integrating genetic algorithms with a prolog assignment pro-
gram as a hybrid solution for a polytechnic timetable problem. In: Parallel

Problem Solving from Nature II. Elsevier Science Publisher B.V., pp. 321–329.

D.M. Lorber and B.K. Shoichet (1998) Flexible ligand docking using confor-
mational ensembles. Protein Science, 7(4), 938–950.

S.J, Louis, X. Yin and Z.Y. Yuan (1999) Multiple vehicle routing with time
windows using genetic algorithms. In: Proceedings of the 1999 Congress on

Evolutionary Computation. Washington D.C., pp. 1804–1808. IEEE Neural Net-
work Council—Evolutionary Programming Society—Institution of Electrical
Engineers.

A.L. MacKay (1995) Generalized crystallography. THEOCHEM-Journal of

Molecular Structure, 336(2–3), 293–303.

J. Maddox (1995) Genetics helping molecular-dynamics. Nature, 376(6537),
209–209.

K.E. Mathias and L.D. Whitley (1994) Noisy function evaluation and the delta
coding algorithm. In: Proceedings of the SPIE—The International Society for

Optical Engineering, pp. 53–64.

A.C.W. May and M.S. Johnson (1994) Protein-structure comparisons using a
combination of a genetic algorithm, dynamic-programming and least-squares
minimization. Protein Engineering, 7(4), 475–485.

A.S. Mendes, F.M. Muller, P.M. França and P. Moscato (1999) Comparing meta-
heuristic approaches for parallel machine scheduling problems with sequence-
dependent setup times. In: Proceedings of the 15th International Conference on

CAD/CAM Robotics & Factories of the Future, Aguas de Lindoia, Brazil.

L.D. Merkle, G.B. Lament, G.H. Jr. Gates and R. Pachter (1996) Hybrid
genetic algorithms for minimization of a polypeptide specific energy model.
In: Proceedings of 1996 IEEE International Conference on Evolutionary

Computation. IEEE, New York, NY, pp. 396–400.

P. Merz and B. Freisleben (1997) A Genetic Local Search Approach to the
Quadratic Assignment Problem. In: T. Bäck (ed.), Proceedings of the Sev-

enth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 465–172.

138 P. Moscato and C. Cotta

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

P. Merz and B. Freisleben (1997) Genetic local search for the TSP: new results.
In: Proceedings of the 1997 IEEE International Conference on Evolutionary

Computation. IEEE Press, pp. 159–164.

P. Merz and B. Freisleben (1998) Memetic algorithms and the fitness landscape
of the graph bi-partitioning problem. In: A.E. Eiben, T. Back, M. Schoenauer
and H.-P. Schwefel (eds.), Parallel Problem Solving from Nature V, volume 1498
of Lecture Notes in Computer Science. Springer-Verlag, pp. 765–774.

P. Merz and B. Freisleben (1998) On the effectiveness of evolutionary search in
high-dimensional NK-landscapes. In: Proceedings of the 1998 IEEE Interna-

tional Conference on Evolutionary Computation. IEEE Press, pp. 741–745.

P. Merz and B. Freisleben (1999) A comparion of Memetic Algorithms, Tabu
Search, and ant colonies for the quadratic assignment problem. In: Proceedings

of the 1999 Congress on Evolutionary Computation. Washington D.C. IEEE
Service Center, Piscataway, NJ, pp. 2063–2070.

P. Merz and B. Freisleben (1999) Fitness landscapes and memetic algorithm
design. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization.

McGraw-Hill, pp. 245–260.

P. Merz and B. Freisleben (2000) Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning. Evolutionary Computation, 8(1),
61–91.

J.C. Meza, R.S. Judson, T.R. Faulkner and A.M. Treasurywala (1996) A com-
parison of a direct search method and a genetic algorithm for conformational
searching. Journal of Computational Chemistry, 17(9), 1142–1151.

M. Mignotte, C. Collet, P. Pérez and P. Bouthemy (2000) Hybrid genetic opti-
mization and statistical model based approach for the classification of shadow
shapes in sonar imagery. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(2), 129–141.

D.M. Miller, H.C. Chen, J. Matson and Q. Liu (1999) A hybrid genetic algorithm
for the single machine scheduling problem. Journal of Heuristics, 5(4), 437–454.

S.T. Miller, J.M. Hogle and D.J. Filman (1996) A genetic algorithm for the
ab initio phasing of icosahedral viruses. Acta Crystallographica Section D—
Biological Crystallography, 52, 235–251.

L. Min and W. Cheng (1998) Identical parallel machine scheduling problem
for minimizing the makespan using genetic algorithm combined with simulated
annealing. Chinese Journal of Electronics, 7(4), 317–321.

X.G. Ming and K.L. Mak (2000) A hybrid hopfield network–genetic algorithm
approach to optimal process plan selection. International Journal of Production

Research, 38(8), 1823–1839.

M. Minsky (1994) Negative expertise. International Journal of Expert Systems,

7(1), 13–19.

A. Monfroglio (1996) Hybrid genetic algorithms for timetabling. International

Journal of Intelligent Systems, 11(8), 477–523.

A. Monfroglio (1996) Timetabling through constrained heuristic search and
genetic algorithms. Software—Practice and Experience, 26(3), 251–279.

Introduction to Memetic Algorithms 139

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

A. Montfroglio (1996) Hybrid genetic algorithms for a rostering problem.
Software—Practice and Experience, 26(7), 851–862.

P. Moscato (1989) On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithms. Technical Report Caltech Concur-
rent Computation Program, Report 826, California Institute of Technology,
Pasadena, California, USA.

P. Moscato (1993) An introduction to population approaches for optimiza-
tion and hierarchical objective functions: the role of tabu search. Annals of

Operations Research, 41(1–4), 85–121.

P. Moscato and M.G. Norman (1992) A Memetic Approach for the Traveling
Salesman Problem Implementation of a Computational Ecology for Combi-
natorial Optimization on Message-Passing Systems. In: M. Valero, E. Onate,
M. Jane, J.L. Larriba and B. Suarez (eds.), Parallel Computing and Transputer

Applications. IOS Press, Amsterdam, pp. 177–186.

H. Mühlenbein (1991) Evolution in time and space—the parallel genetic algo-
rithm. In: Gregory J.E. Rawlins (ed.), Foundations of Genetic Algorithms.

Morgan Kaufmann Publishers, pp. 316–337.

H. Mühlenbein M. Gorges-Schleuter and O. Krämer (1988) Evolution Algo-
rithms in Combinatorial Optimization. Parallel Computing, 7, 65–88.

T. Murata and H. Ishibuchi (1994) Performance evaluation of genetic algorithms
for flowshop scheduling problems. In: Proceedings of the First IEEE Conference

on Evolutionary Computation, Vol. 2. IEEE, New York, NY, pp. 812–817.

T. Murata, H. Ishibuchi and H. Tanaka (1996) Genetic algorithms for flowshop
scheduling problems. Computers & Industrial Engineering, 30(4), 1061-1071.

M. Musil, M.J. Wilmut and N.R. Chapman (1999) A hybrid simplex genetic
algorithm for estimating geoacoustic parameters using matched-field inversion.
IEEE Journal of Oceanic Engineering, 24(3), 358–369.

Y. Nagata and Sh. Kobayashi (1997) Edge assembly crossover: a high-power
genetic algorithm for the traveling salesman problem. In: Th. Bäck (ed.), Pro-

ceedings of the Seventh International Conference on Genetic Algorithms, East

Lansing, EUA. Morgan Kaufmann, San Mateo, CA, pp. 450–457.

M. Nakamaru, H. Matsuda and Y. Iwasa (1998) The evolution of social
interaction in lattice models. Sociological Theory and Methods, 12(2), 149–162.

M. Nakamaru, H. Nogami and Y. Iwasa (1998) Score-dependent fertility model
for the evolution of cooperation in a lattice. Journal of Theoretical Biology,

194(1), 101–124.

R. Niedermeier and P. Rossmanith (2000) An efficient fixed parameter algo-
rithm for 3-hitting set. Technical Report WSI-99-18, Universität Tübingen,
Wilhelm-Schickard-Institut für Informatik, 1999. Technical Report, Revised
version accepted in Journal of Discrete Algorithms, August.

R. Niedermeier and P. Rossmanith (2000) A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73, 125–129.

140 P. Moscato and C. Cotta

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

J.A. Niesse and H.R. Mayne (1996) Global geometry optimization of atomic
clusters using a modified genetic algorithm in space-fixed coordinates. Journal

of Chemical Physics, 105(11), 4700–1706.

A.L. Nordstrom and S. Tufekci (1994) A genetic algorithm for the talent
scheduling problem. Computers & Operations-Research, 21(8), 927–940.

M.G. Norman and P. Moscato (1991) A competitive and cooperative approach
to complex combinatorial search. Technical Report Caltech Concurrent Com-
putation Program, Report. 790, California Institute of Technology, Pasadena,
California, USA, 1989. expanded version published at the Proceedings of the

20th Informatics and Operations Research Meeting, Buenos Aires (20th JAIIO),
August pp. 3.15–3.29.

A.G.N. Novaes, J.E.S. De-Cursi and O.D. Graciolli (2000) A continuous
approach to the design of physical distribution systems. Computers & Operations

Research, 27(9), 877–893.

M.A. Nowak and K. Sigmund (1998) Evolution of indirect reciprocity by image
scoring. Nature, 393(6685), 573–577.

P. Osmera (1995) Hybrid and distributed genetic algorithms for motion control.
In: V. Chundy and E. Kurekova (eds.), Proceedings of the Fourth International

Symposium on Measurement and Control in Robotics, pp. 297–300.

R. Ostermark (1999) A neuro-genetic algorithm for heteroskedastic time-series
processes: empirical tests on global asset returns. Soft Computing, 3(4), 206–
220.

R. Ostermark (1999) Solving a nonlinear non-convex trim loss problem with a
genetic hybrid algorithm. Computers & Operations Research, 26(6), 623–635.

R. Ostermark (1999) Solving irregular econometric and mathematical optimiza-
tion problems with a genetic hybrid algorithm. Computational Economics, 13(2),
103–115.

E. Ozcan and C.K. Mohan (1998) Steady state memetic algorithm for partial
shape matching. In: V.W. Porto, N. Saravanan and D. Waagen (eds.), Evolu-

tionary Programming VII, volume 1447 of Lecture Notes in Computer Science.

Springer, Berlin, pp. 527–236.

L. Ozdamar (1999) A genetic algorithm approach to a general category project
scheduling problem. IEEE Transactions on Systems, Man and Cybernetics,

Part C (Applications and Reviews), 29(1), 44–59.

M.N. Pacey, X.Z. Wang, S.J. Haake and E.A. Patterson (1999) The application of
evolutionary and maximum entropy algorithms to photoelastic spectral analysis.
Experimental Mechanics, 39(4), 265–273.

B. Paechter, A. Cumming, M.G. Norman and H. Luchian Extensions to a
Memetic timetabling system. In: E.K. Burke and P. Ross (eds.), The Prac-

tice and Theory of Automated Timetabling, volume 1153 of Lecture Notes in

Computer Science. Springer Verlag, pp. 251–265.

B. Paechter, R.C. Rankin and A. Cumming (1998) Improving a lecture
timetabling system for university wide use. In: E.K. Burke and M. Carter (eds.),

Introduction to Memetic Algorithms 141

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

The Practice and Theory of Automated Timetabling II, volume 1408 of Lecture

Notes in Computer Science. Springer Verlag, pp. 156–165.

C.H. Papadimitriou and K. Steiglitz (1982) Combinatorial Optimization:

Algorithms and Complexity. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

M. Peinado and T. Lengauer (1997) Parallel “go with the winners algorithms”
in the LogP Model. In: IEEE Computer Society Press (ed.), Proceedings of the

11th International Parallel Processing Symposium. Los Alamitos, California,
pp. 656–664.

O.K. Pratihar, K. Deb and A. Ghosh (1999) Fuzzy-genetic algorithms and mobile
robot navigation among static obstacles. In: Proceedings of the 1999 Congress

on Evolutionary Computation. IEEE, Washington D.C., pp. 327–334.

N. Pucello, M. Rosati, G. D’Agostino, F. Pisacane, V. Rosato and M. Celino
(1997) Search of molecular ground state via genetic algorithm: Implementation
on a hybrid SIMD-MIMD platform. International Journal of Modern Physics

C. 8(2), 239–252.

W.J. Pullan (1997) Structure prediction of benzene clusters using a genetic
algorithm. Journal of Chemical Information and Computer Sciences, 37(6),
1189–1193.

D. Quagliarella and A. Vicini (1998) Hybrid genetic algorithms as tools for
complex optimisation problems. In: P. Blonda, M. Castellano and A. Petrosino
(eds.), New Trends in Fuzzy Logic II. Proceedings of the Second Italian Workshop

on Fuzzy Logic. World Scientific, Singapore, pp. 300–307.

N.J. Radcliffe (1994) The algebra of genetic algorithms. Annals of Mathematics

and Artificial Intelligence, 10, 339–384.

N.J. Radcliffe and P.D. Surry (1994) Fitness Variance of Formae and Perfor-
mance Prediction. In: L.D. Whitley and M.D. Vose (eds.), Proceedings of the

Third Workshop on Foundations of Genetic Algorithms. Morgan Kaufmann,
San Francisco, pp. 51–72.

N.J. Radcliffe and P.D. Surry (1994) Formal Memetic Algorithms. In: T. Fogarty
(ed.), Evolutionary Computing: AISB Workshop, volume 865 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, pp. 1–16.

G.R. Raidl and B.A. Julstron (2000) A weighted coding in a genetic algo-
rithm for the degree-constrained minimum spanning tree problem. In: J. Carroll,
E. Damiani, H. Haddad and D. Oppenheim (eds.), ACM Symposium on Applied

Computing 2000. ACM Press, pp. 440^t45.

E. Ramat, G. Venturini, C. Lente and M. Slimane (1997) Solving the multiple
resource constrained project scheduling problem with a hybrid genetic algo-
rithm. In: Th. Bäck (ed.), Proceedings of the Seventh International Conference

on Genetic Algorithms. Morgan Kaufmann, San Francisco CA, pp. 489–496.

R.C. Rankin (1996) Automatic timetabling in practice. In: Practice and The-

ory of Automated Timetabling. First International Conference. Selected Papers.

Springer-Verlag, Berlin, pp. 266–279.

M.L. Raymer, P.C. Sanschagrin, W.F. Punch, S. Venkataraman, E.D. Goodman
and L.A. Kuhn (1997) Predicting conserved water-mediated and polar ligand

142 P. Moscato and C. Cotta

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

interactions in proteins using a k-nearest-neighbors genetic algorithm. Journal

of Molecular Biology, 265(4), 445–464.

I. Rechenberg (1973) Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag,
Stuttgart.

C. Reeves (1996) Hybrid genetic algorithms for bin-packing and related
problems. Annals of Operations Research, 63, 371–396.

C. Reich (2000) Simulation if imprecise ordinary differential equations
using evolutionary algorithms. In: J. Carroll, E. Damiani, H. Haddad and
D. Oppenheim (eds.), ACM Symposium on Applied Computing 2000. ACM
Press, pp. 428–432.

M. A. Ridao, J. Riquelme, E.F. Camacho and M. Toro (1998) An evolutionary and
local search algorithm for planning two manipulators motion. In: A.P. Del Pobil,
J. Mira and M. Ali (eds.), Tasks and Methods in Applied Artificial Intelligence,

volume 1416 of Lecture Notes in Computer Science, Springer-Verlag, Berlin
Heidelberg, pp. 105–114.

C.F. Ruff, S.W. Hughes and D.J. Hawkes (1999) Volume estimation from sparse
planar images using deformable models. Image and Vision Computing, 17(8),
559–565.

S.M. Sait and H. Youssef (2000) VLSI Design Automation: Theory and Practice.

McGraw-Hill Book Co. (copublished by IEEE), Europe.

A. Sakamoto, X.Z. Liu and T. Shimamoto (1997) A genetic approach for
maximum independent set problems. IEICE Transactions on Fundamentals of

Electronics Communications and Computer Sciences, E80A(3), 551–556.

V. Schnecke and O. Vornberger (1997) Hybrid genetic algorithms for constrained
placement problems. IEEE Transactions on Evolutionary Computation, 1(4),
266–277.

H.-P. Schwefel (1984) Evolution strategies: a family of non-linear optimization
techniques based on imitating some principles of natural evolution. Annals of

Operations Research, 1, 165–167.

K. Shankland, W.I.F. David and T. Csoka (1997) Crystal structure determination
from powder diffraction data by the application of a genetic algorithm. Zeitschrift

Fur Kristallographie, 212(8), 550–552.

K. Shankland, W.I.F. David T. Csoka and L. McBride (1998) Structure solu-
tion of ibuprofen from powder diffraction data by the application of a genetic
algorithm combined with prior conformational analysis. International Journal

of Pharmaceutics, 165(1), 117–126.

D. Srinivasan, R.L. Cheu, Y.P. Poh and A.K.C. Ng (2000) Development of
an intelligent technique for traffic network incident detection. Engineering

Applications of Artificial Intelligence, 13(3), 311–322.

K. Steiglitz and P. Weiner (1968) Some improved algorithms for computer solu-
tion of the traveling salesman problem. In: Proceedings of the Sixth Allerton

Conference on Circuit and System Theory. Urbana, Illinois, pp. 814–821.

Introduction to Memetic Algorithms 143

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

J.Y. Suh and Dirk Van Gucht (1987) Incorporating heuristic information into
genetic search. In: J.J. Grefenstette (ed.), Proceedings of the Second Inter-

national Conference on Genetic Algorithms and their Applications, Lawrence
Erlbaum Associates. Cambridge, MA, pp. 100–107.

P.D. Surry and N.J. Radcliffe (1996) Inoculation to initialise evolutionary search.
In: T.C. Fogarty (ed.), Evolutionary Computing: AISB Workshop, number 1143
in Lecture Notes in Computer Science. Springer-Verlag, pp. 269–285.

G. Syswerda (1989) Uniform crossover in genetic algorithms. In: J.D. Schaffer
(ed.), Proceedings of the Third International Conference on Genetic Algorithms.

Morgan Kaufmann, San Mateo, CA, pp. 2–9.

T. Taguchi, T. Yokota and M. Gen (1998) Reliability optimal design problem with
interval coefficients using hybrid genetic algorithms. Computers & Industrial

Engineering, 35(1–2), 373–376.

K.Y. Tam and R.G. Compton (1995) GAMATCH—a genetic algorithm-based
program for indexing crystal faces. Journal of Applied Crystallography, 28,
640–645.

A.P. Topchy, O.A. Lebedko and V.V. Miagkikh (1996) Fast learning in multi-
layered networks by means of hybrid evolutionary and gradient algorithms. In:
Proceedings of International Conference on Evolutionary Computation and its

Applications, pp. 390–398.

A.J. Urdaneta, J.F. Gómez, E. Sorrentino, L. Flores and R. Díaz (1999) A hybrid
genetic algorithm for optimal reactive power planning based upon successive
linear programming. IEEE Transactions on Power Systems, 14(4), 1292–1298.

A.H.C. vanKampen, C.S. Strom and L.M.C Buydens (1996) Legalization,
penalty and repair functions for constraint handling in the genetic algorithm
methodology. Chemometrics and Intelligent Laboratory Systems, 34(1), 55–68.

L. Wang and J. Yen (1999) Extracting fuzzy rules for system modeling using a
hybrid of genetic algorithms and kalman filter. Fuzzy Sets and Systems, 101(3),
353–362.

J.P. Watson, S. Rana, L.D. Whitley and A.E. Howe (1999) The impact of
approximate evaluation on the performance of search algorithms for warehouse
scheduling. Journal of Scheduling, 2(2), 79–98.

R. Wehrens, C. Lucasius, L. Buydens and G. Kateman (1993) HIPS, A
hybrid self-adapting expert system for nuclear magnetic resonance spectrum
interpretation using genetic algorithms. Analytica Chimica ACTA, 277(2),
313–324.

P. Wei and L.X. Cheng (1999) A hybrid genetic algorithm for function
optimization. Journal of Soft ware, 10(8), 819–823.

X. Wei and F. Kangling (2000) A hybrid genetic algorithm for global solution
of nondifferentiable nonlinear function. Control Theory & Applications, 17(2),
180–183.

D.S. Weile and E. Michielssen (1999) Design of doubly periodic filter and
polarizer structures using a hybridized genetic algorithm. Radio Science, 34(1),
51–63.

144 P. Moscato and C. Cotta

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

R.P. White, J.A. Niesse and H.R. Mayne (1998) A study of genetic algo-
rithm approaches to global geometry optimization of aromatic hydrocarbon
microclusters. Journal of Chemical Physics, 108(5), 2208–2218.

D. Whitley (1987) Using reproductive evaluation to improve genetic search and
heuristic discovery. In: J.J. Grefenstette (ed.), Proceedings of the Second Inter-

national Conference on Genetic Algorithms and their Applications. Lawrence
Erlbaum Associates, Cambridge, MA, pp. 108–115.

P. Willett (1995) Genetic algorithms in molecular recognition and design. Trends

in Biotechnology, 13(12), 516–521.

D.H. Wolpert and W.G. Macready (1997) No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

J. Xiao and L. Zhang (1997) Adaptive evolutionary planner/navigator for mobile
robots. IEEE Transactions on Evolutionary Computation, 1(1), 18–28.

M. Yannakakis (1997) Computational complexity. In: E.H.L. Aarts and
J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. Wiley,
Chichester, pp. 19–55.

X. Yao (1993) Evolutionary artificial neural networks. International Journal of

Neural Systems, 4(3), 203–222.

I.C. Yeh (1999) Hybrid genetic algorithms for optimization of truss structures.
Computer Aided Civil and Infrastructure Engineering, 14(3), 199–206.

M. Yoneyama, H. Komori and S. Nakamura (1999) Estimation of impulse
response of vocal tract using hybrid genetic algorithm—a case of only glottal
source. Journal of the Acoustical Society of Japan, 55(12), 821–830.

C.R. Zacharias, M.R. Lemes and A.D. Pino (1998) Combining genetic algo-
rithm and simulated annealing: a molecular geometry optimization study.
THEOCHEM—Journal of Molecular Structure, 430(29–39).

M. Zwick, B. Lovell and J. Marsh (1996) Global optimization studies on the 1–d
phase problem. International Journal of General Systems, 25(1), 47–59.

VARIABLE NEIGHBORHOOD SEARCH

Pierre Hansen
GERAD and Ecole des Hautes Etudes Commerciales

3000 ch. de la Cote-Sainte-Catherine

Montréal H3T 2A7,

Canada

E-mail: pierreh@crt.umontreal.ca

Nenad
Mathematical Institute,

Serbian Academy of Science

Kneza Mihajla 35

11000 Belgrade,

Yugoslavia

E-mail: nenad@mi.sanu.ac.yu

Abstract Variable neighborhood search (VNS) is a recent metaheuristic for solving combina-
torial and global optimization problems whose basic idea is systematic change of neighborhood
within a local search. In this survey paper we present basic rules of VNS and some of its exten-
sions. Moreover, applications are briefly summarized. They comprise heuristic solution of a
variety of optimization problems, ways to accelerate exact algorithms and to analyze heuristic
solution processes, as well as computer-assisted discovery of conjectures in graph theory.

Résumé La Recherche à voisinage variable (RVV) est une métaheuristique récente pour la réso-
lution de problèmes d’optimisation combinatoire et globale, dont l’idée de base est le changement
systématique de voisinage au sein d’une recherche locale. Dans ce chaptre, nous présentons
les règles de base de RVV et de certaines de ses extensions. De plus, des applications sont
brièvement résumées. Elles comprennent la résolution approchée d’un ensemble de problèmes
d’optimisation, des manières d’accélerer les algorithmes exacts et d’analyser le processus de
résolution des heuristiques ainsi qu’un système automatique de découverte de conjectures en
théorie des graphes.

S, X, x and f are solution space, feasible set, feasible solution and real valued function,
respectively. If S is a finite but large set a combinatorial optimization problem is defined.

1 INTRODUCTION

An optimization problem may be formulated as follows:

Chapter 6

If we talk about continuous optimization. Most optimization problems are
NP-hard and heuristic (suboptimal) solution methods are needed to solve them (at least
for large instances or as an initial solution for some exact procedure).

Metaheuristics, or general frameworks for building heuristics to solve problem (1),
are usually based upon a basic idea, or analogy. Then, they are developed, extended in
various directions and possibly hybridised. The resulting heuristics often get compli-
cated, and use many parameters. This may enhance their efficiency but obscures the
reasons of their success.

Variable Neighborhood Search (VNS for short), a metaheuristic proposed just a
few years ago [110,112], is based upon a simple principle: systematic change of neigh-
borhood within the search. Its development has been rapid, with several dozen papers
already published or to appear. Many extensions have been made, mainly to allow
solution of large problem instances. In most of them, an effort has been made to keep
the simplicity of the basic scheme.

In this paper, we survey these developments. The basic rules of VNS methods
are recalled in the next section. Extensions are considered in Section 3 and Hybrids in
Section 4. Applications are reviewed in Section 5, devoted to heuristic solution of com-
binatorial and global optimization problems, and Sections 6–8, which cover innovative
uses, i.e., tools for analysis of the solution process of standard heuristics, acceleration
of column generation procedures, and computer-assisted discovery in graph theory.

Desirable properties of metaheuristics are listed in Section 9 together with brief
conclusions.

Let us denote with a finite set of pre-selected neighborhood
structures, and with the set of solutions in the kth neighborhood of x. (Most local
search heuristics use only one neighborhood structure, i.e.,) Neighborhoods

may be induced from one or more metric (or quasi-metric) functions introduced
into a solution space S. An optimal solution (or global minimum) is a feasible
solution where a minimum of (1) is reached. We call a local minimum of (1)
with respect to (w.r.t. for short), if there is no solution such
that Metaheuristics (based on local search procedures) try to continue
the search by other means after finding the first local minimum. VNS is based on three
simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessary so with

another;

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood

structures.

Fact 3 For many problems local minima w.r.t. one or several are relatively close

to each other.

This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. This may for instance be several variables
with the same value in both. However, it is usually not known which ones are such. An
organized study of the neighborhood of this local optimum is therefore in order, until
a better one is found.

2 BASIC SCHEMES

146 P. Hansen and N.

In order to solve (1) by using several neighborhoods, facts 1–3 can be used in three
different ways: (i) deterministic; (ii) stochastic; (iii) both deterministic and stochastic.

(i) The Variable neighborhood descent (VND) method is obtained if change of
neighborhoods is performed in a deterministic way and its steps are presented on
Figure 6.1.

Most local search heuristics use in their descents a single or sometimes two neigh-
borhoods Note that the final solution should be a local minimum w.r.t. all

neighborhoods, and thus chances to reach a global one are larger than by using a
single structure. Beside this sequential order of neighborhood structures in VND above,
one can develop a nested strategy. Assume e.g. that then a possible nested
strategy is: perform VND from Figure 6.1 for the first two neighborhoods, in each point

that belongs to the third Such an approach is applied in [9,16,81].
(ii) The Reduced VNS (RVNS) method is obtained if random points are selected

from without being followed by descent, and its steps are presented on
Figure 6.2.

RVNS is useful for very large instances for which local search is costly. It is observed
that the best value for the parameter is often 2. In addition, the maximum number
of iterations between two improvements is usually used as stopping condition. RVNS is
akin to a Monte-Carlo method, but more systematic (see [114] where results obtained by
RVNS were 30% better than those of the Monte-Carlo method in solving a continuous
min–max problem). When applied to the p-Median problem, RVNS gave equally good
solutions as the Fast Interchange heuristic of [136] in 20–40 times less time [84].

Variable Neighborhood Search 147

148 P. Hansen and N.

(iii) The Basic VNS (VNS) method [112] combines deterministic and stochastic
changes of neighborhood. Its steps are given on Figure 6.3.

The stopping condition may be e.g. maximum CPU time allowed, maximum number
of iterations, or maximum number of iterations between two improvements. Often
successive neighborhoods will be nested. Observe that point is generated at
random in step 2a in order to avoid cycling, which might occur if any deterministic rule
was used. Note also that the Local search step (2b) may be replaced by VND. Using
this VNS/VND approach led to the most successful applications recently reported (see
e.g. [3,16,24–29,81,124,125]).

3 EXTENSIONS

Several easy ways to extend the basic VNS are now discussed. The basic VNS is
a descent, first improvement method with randomization. Without much additional
effort it could be transformed into a descent-ascent method: in Step 2c set also

with some probability even if the solution is worse than the incumbent (or best
solution found so far). It could also be changed into a best improvement method:
make a move to the best neighborhood among all of them. Other variants
of the basic VNS could be to find solution in Step 2a as the best among b (a
parameter) randomly generated solutions from the kth neighborhood, or to introduce

and two parameters that control the change of neighborhood process: in the
previous algorithm instead of set and instead of set

While the basic VNS is clearly useful for approximate solution of many combi-
natorial and global optimization problems, it remains difficult or long to solve very
large instances. As often, size of problems considered is limited in practice by the
tools available to solve them more than by the needs of potential users of these
tools. Hence, improvements appear to be highly desirable. Moreover, when heuris-
tics are applied to really large instances their strengths and weaknesses become clearly
apparent. Three improvements of the basic VNS for solving large instances are now
considered.

Variable Neighborhood Search 149

(iv) The Variable Neighborhood Decomposition Search (VNDS) method [84]
extends the basic VNS into a two-level VNS scheme based upon decomposition of the
problem. Its steps are presented on Figure 6.4.

Note that the only difference between the basic VNS and VNDS is in step 2b:
instead of applying some local search method in the whole solution space (starting
from in VNDS we solve at each iteration a subproblem in some subspace

with When the local search used in this step is also VNS, the
two-level VNS-scheme arises.

VNDS can be viewed as embedding the classical successive approximation scheme
(which has been used in combinatorial optimization at least since the sixties, see,
e.g., [66]) in the VNS framework. Other simpler applications of this technique, where
the size of the subproblems to be optimized at the lower level is fixed, are Large
neighborhood search [128] and POPMUSIC [131].

(v) The Skewed VNS (SVNS) method [74], a second extension, addresses the
problem of exploring valleys far from the incumbent solution. Indeed, once the best
solution in a large region has been found it is necessary to go quite far to obtain
an improved one. Solutions drawn at random in far-away neighborhoods may differ
substantially from the incumbent and VNS can then degenerate, to some extent, into the
Multistart heuristic (in which descents are made iteratively from solutions generated at
random and which is known not to be very efficient). So some compensation fordistance
from the incumbent must be made and a scheme called Skewed VNS is proposed for
that purpose. Its steps are presented in Figure 6.5.

SVNS makes use of a function to measure distance between the incumbent
solution x and the local optimum found The distance used to define the as in the
above examples, could be used also for this purpose. The parameter must be chosen in
order to accept exploring valleys far from x when is larger than f(x) but not too
much (otherwise one will always leave x). A good value is to be found experimentally
in each case. Moreover, in order to avoid frequent moves from x to a close solution one
may take a large value for when is small. More sophisticated choices for a
function could be made through some learning process.

(vi) Parallel VNS (PVNS) methods are a third extension. Several ways for paral-
lelizing VNS have recently been proposed [32,106] in solving the p-Median problem.

150 P. Hansen and

In [106] three of them are tested: (i) parallelize local search; (ii) augment the num-
ber of solutions drawn from the current neighborhood and do local search in parallel
from each of them and (iii) do the same as (ii) but updating the information about the
best solution found. The second version gave the best results. It is shown in [32] that
assigning different neighborhoods to each processor and interrupting their work as soon
as an improved solution is found gives very good results: best known solutions have
been found on several large instances taken from TSP-LIB [122]. Three Parallel VNS
strategies are also suggested for solving the Traveling purchaser problem in [116].

4 HYBRIDS

As change of neighborhood in the search for good solutions to (1) is a simple and a
very powerful tool, several authors have added such a feature to other metaheuristics
than VNS.

In this section we review the resulting Hybrids at a general level; more details
concerning specific applications are given in the next section.

(i) VNS and Tabu search Tabu search ([62,63,72]) is a metaheuristic that has a
huge number of applications (see, e.g., [64]). It explores different types of memories
in the search, i.e., recency based (short-term), frequency based, long-term memories
etc. Usually it uses one neighborhood structure and, with respect to that structure,
performs descent and ascent moves building a trajectory. In principle, there are two
ways of making hybrids of VNS and TS: use TS within VNS or use VNS within TS.
Recently four reports on hybrids of the first kind and two on hybrids of the second kind
have been proposed.

For solving the Route-median problem, TS is used instead of Local search within
VNS (step 2b of Figure 6.3) in [126] (the resulting method is called VNTS), while
in [20], in solving the Nurse rostering problem, in each among several neighborhoods
simple descent or TS are used alternatively. A Multi-level TS is proposed in [97]
for solving the Continuous min–max problem, where each level represents a ball of
different size in the vicinity of the current solution, i.e., different neighborhoods, and a
tabu list is constructed for each level. Reactive variable neighborhood descent (ReVND)

is proposed in [14] for solving the Vehicle routing problem with time windows. In
repeating a sequence of four proposed local searches, the information on unsuccessful
pairs of edges is memorized so that in the next repetition those pairs are not considered.
In that way the size of each neighborhood is reduced.

Note that nested VND can easily be used in a TS framework since cycling can
be avoided by controlling only one neighborhood. In solving the Multisource Weber
problem, several heuristics that use nested VND within TS are proposed in [16]. Moves
are considered as ‘tabu’ regarding the relocation neighborhood only, while for each
solution of that neighborhood reallocation and alternate moves are used in a sequence.
It is also observed in [37] that the same Tabu list can be used for several different
neighborhoods used sequentially (i.e., Or-opts and interchanges) for solving problems
where the solution is stored as a permutation of its attributes or variables. This makes
possible a hybrid of TS and VND, i.e., VND can be used within TS.

(ii) VNS and GRASP GRASP is a two phase metaheuristic [48]. In the first
phase solutions are constructed using a greedy randomized procedure and in the second,
solutions are improved by some local search or enumerative method. A natural way of
hybridizing GRASP and VNS is to use VNS in the second phase of GRASP. Such an
approach has been performed in solving the Steiner tree problem in graphs [108,125],
the Phylogeny problem [3], the Prize-collecting Steiner tree problem [24], the Traveling
purchaser problem [116] and the Max-Cut problem [49]. The results reported show
improvements of the GRASP/VNS hybrid over the pure GRASP.

(iii) VNS and Constraint programming In the last few years, Constraint pro-
gramming (CP) has attracted high attention among experts from many areas because
of its potential for solving hard real-life problems. A constraint is a logical relation
among several variables, each taking a value in a given domain. The important fea-
ture of constraints is their declarative manner, i.e., they specify what relationship must
hold without specifying a computational procedure to enforce it. One aim of CP is to
solve problems by stating constraints and finding solutions satisfying all these con-
straints. It has been noted that local search techniques can successfully be used in CP
(see, e.g., [118,119,128]). In [57], two operators have been suggested and used in a
local descent (VND), within Large neighborhood search (LNS) and CP framework for
solving the Vehicle routing problem with time windows (VRPTW). They are called
LNS-GENI and SMART (SMAll RouTing). The idea of LNS [128], which can be
seen as a general decomposition heuristic, is first to ‘destroy’ the current solution by
removing a given number of solution attributes and then rebuilt it in the best possi-
ble way by solving smaller problems. Both phases are problem dependent, but some
general rules are recommended in [128]. In [12], in order to minimize the total travel
costs of VRPTW, destruction of the solution is performed in a more systematic way:
it starts from k = 2 attributes, then 3, etc.; once the improvement in rebuilding phase
is obtained, k = 2 is set again. This version is very close to VNDS. A simpler version
of LNS (called LNS/CP/GR) is suggested in [105] for solving a Valued Constraint

satisfaction problem (VCSP). In VCSP the penalty (a valuation) must be paid for each
unsatisfied variable. Then the objective is to find values of variables such that the sum
of penalties is minimum. In rebuilding the solution, authors use a greedy procedure.
However, in future work, they could include VNS, which has been done recently by
other authors. In [107] so-called VNS/LDS + CP heuristic is proposed and tested on
the Frequency assignment problem.

Variable Neighborhood Search 151

In this section and the three following ones, we review applications of VNS, the number
of which has rapidly increased since 1997, when the first paper on VNS was published.
We begin with traditional ones, i.e., finding good solutions to combinatorial and global
optimization problems, that is near optimal ones or possibly optimal ones but without
a proof of optimality. These applications are grouped by field and within each field
papers are considered chronologically.

We shall consider here Traveling salesman problem (TSP), Vehicle routing problem
(VRP), Arc routing problem (ARP) and some of their extensions that have been solved
by VNS.

Traveling salesman problem Given n cities with intercity distances, the traveling
salesman problem (TSP) is to find a minimum cost tour x (i.e., a permutation of the
cities which minimizes the sum of the n distances between adjacent cities in the tour).
It is a classical NP-hard problem.

A heuristic for the Euclidean TSP called GENIUS was developed in [59]. It is a
sophisticated insertion followed by local deletion/insertion and correction procedure.
The size of the neighborhood in GENIUS depends on a parameter p (the number of
cities already in the tour closest to the city that is considered for possible deletion or
insertion). We immediately get a set of neighborhood structures for VNS by denoting
with all tours obtained by deletion/insertion with parameter value p. Details can
be found in [112] where results on the same type of test problems as reported in [59]
are given. VNS gives a 0.75% average improvement over GENIUS within a similar
CPU time. Moreover, improvements are obtained for all problem sizes.

Probably the most popular heuristic for solving TSP is 2-opt, where in turn two
links between cities in the current tour x are removed and these cities reconnected by
adding links in the only other way which gives a tour. Since 2-opt is a local search
descent heuristic, it stops in a local minimum. In [78] the basic VNS rules using
2-opt (or a quicker variant, in which only the shortest edges are used) as local search
routine, are applied. Average results for random Euclidean problems over 100 trials
for n = 100,...,500 and 10 trials for n = 600,..., 1000 are reported. Average
improvements in value of 2.73% and 4.43% over the classical 2-opt heuristic within a
similar computing time are obtained by these two versions respectively.

In [19] a new local search heuristic, the so-called k-hyperopt is proposed. Then a
VND heuristic uses 2-opt, 2-hyperopt and 3-hyperopt neighborhoods in descent, while
a VNS heuristic uses k-hyperopt for shaking and 2-hyperopt for a local search. The
new methods are compared with Iterated local search and Multistart 2-opt. Results are
reported on standard test instances. It appears that tours obtained are comparable with
iterated Lin-Kernighan [103] in terms of tour quality, but CPU time is larger.

In a work in progress [58], a similar VND heuristic is applied within two different
decomposition schemes, i.e., VNDS: on the one hand subproblems corresponding to k

successive points on the current tour are selected and re-optimized; on the other hand
the same is done but with the k closest points from a randomly chosen one. It appears
that the second decomposition gives the best results.

152 P. Hansen and

5 FINDING GOOD SOLUTIONS

5.1 Traveling Salesman and Vehicle Routing Problems

Traveling salesman problem with back-hauls The GENIUS heuristic [59] was
applied to the TSP with back-hauls in [60]. In this problem customers (or cities) are
divided into three disjoint sets: depot, line-haul and back-haul customers. Starting from
the depot, a tour must be designed such that all line-haul customers are visited before
all back-haul customers. This time VNS gives a 0.40% average improvement over
GENIUS with a 30% increase in computing time [112]. Improvements are obtained
for all problem sizes.

Route-median problem Given a set of cities with inter-cities distances, the
Route-Median problem consists in choosing a subset of cities that are included in
a cycle and allocating the remaining ones each to the closest chosen city in order to
minimize the length of the route with an upper bound on the sum of the distances from
the cities not in the route to the cities to which they are assigned. An exact branch
and cut solution method has been proposed in [101]. A metaheuristic approach that
combines VNS and TS and uses several neighborhood structures is proposed in [126].

Vehicle routing problem with time windows The Vehicle routing problem
(VRP) consists in designing least cost routes from one depot to a given set of cus-
tomers. The routes must be designed in such a way that each customer is visited only
once by exactly one vehicle. There are usually capacity constraints on the load that can
be carried by a vehicle, and each customer has a known demand. The time window
variant to the problem (VRPTW) imposes the additional constraint that each customer
must be visited within a given time interval.

Four methods for solving VRPTW have recently been proposed that include VNS
ideas as well. In [57] two operators which make use of Constraint programming and
local search to explore their neighborhood are proposed. These operators are combined
in a VND framework. Computational results show that this method is comparable with
other heuristics, often producing better solutions in terms of distance traveled. Another
heuristic [14], in its third phase, uses four neighborhoods in descent. In addition, not-
improving neighborhood solutions are memorized, so that in the next pass they are
not visited. The resulting method is called Reactive VND (ReVND). The obvious fact
that a local minimum w.r.t. one objective is not necessary so for another, can also
be a powerful tool for escaping from the local minima trap. This has been explored
in [14]. In the second phase the objective is minimum number of vehicles, in the
third (where ReVNS is proposed) the objective is to minimize the total travel distance,
and in the last phase a new objective function is defined that considers both criteria
with given weights. Results are reported on standard data sets. It appears that the
proposed procedure outperforms other recent heuristics for VRPTW, and that four
new best known solutions are found. In [30] the same idea is used (i.e., escape from
the local minima trap by changing both the neighborhood structure and the objective
function), but with different local searches and in a different way: the classical k-opt
exchanges improve the solution (for) in terms of number of vehicles and then
another objective is considered. Beside the two objectives mentioned above, two other
functions are used as well. No parameter tuning is required and no random choice is
made. The algorithm has been tested on benchmark problems with favorable results,
when compared with those obtained by most recent heuristics. In the most recent paper
for solving VRTPTW [12], the idea of changing both the objective function and the
neighborhoods within the search is explored further, and probably the best results to
date on Solomon’s benchmark instances are reported. The heuristic has two phases. In
the first one, five neighborhood structures (2-opt, Or-opt, relocation, interchange and

Variable Neighborhood Search 153

cross-over) and three objective functions (number of routes, maximum of the sum-of-
squares route sizes, minimum of minimal delay) are considered. All five neighborhoods
are not used as in VND (not in a sequential nor nested way), i.e., a single one among
them is chosen at random and explored for all three objectives. The resulting procedure
uses the Simulated annealing framework. In the second phase the authors implement
a modified Large neighborhood search (LNS) [128] heuristic (minimizing the total
distance traveled) which, according to them, make it very close to VNS.

Vehicle routing problem with backhauls (VRPB) In this problem the vehicles
are not only required to deliver goods to (linehaul) customer, but also to pick up
goods at (backhaul) customers locations. In [33] Reactive tabu search (RTS) and VND
are developed and compared on some VRP test instances from the literature with
different percentage of linehaul customers (50%, 66% and 80%). VND uses insertion
and interchange moves in descent. It appears that RTS and VND are 1.8% and 5.3%
above known optimal value.

Arc routing problem In Arc routing problems the aim is to determine a least
cost traversal of all edges or arcs of a graph, subject to some side constraints. In the
Capacitated arc routing problem (CARP) edges have a non-negative weight and each
edge with a positive weight must be traversed by exactly one of several vehicles starting
and ending their trip at a depot, subject to the constraint that total weight of all edges
serviced by a vehicle cannot exceed its capacity. In [61] the VNS heuristic developed
in [109] for the undirected CARP was compared with a Tabu search heuristic [87].
The conclusions are as follows: (i) on small test instances TS and VNS
perform similarly (the deviation from optimality is identical and computing times are
about 20% smaller for VNS); (ii) on larger test instances VNS is better than TS in terms
of solution quality, but also faster (average deviation from optimality and computing
times on the 270 instances were 0.71% and 349.81 s for TS and 0.54% and 42.50s for
VNS).

Linear ordering problem Given a squared n × n matrix D, the Linear order-
ing problem (LOP) consists in finding permutations of rows and columns of D such
that the sum of all elements above the main diagonal is maximum. LOP has a large
number of applications such as triangulation of input-output matrices, archaeological
seriation, scheduling etc. In [65], a basic VNS heuristic for solving LOP is proposed.
Neighborhoods are derived by k row interchanges, and local searches performed using
the same neighborhood as in the TS approach from [102]. The outer loop of the basic
VNS has not been used, i.e., the procedure stops the first time all neighborhoods
were explored. It is shown, on the same 49 test instances, that both TS and VNS (
is set to 10) have similar performance: TS is slightly better in terms of the solution
quality (number of optimal solutions found by TS was 47 and 44 for VNS); VNS is
faster (average time was 0.93 seconds for TS and 0.87 for VNS).

Traveling purchaser problem (TPP) can be seen as an extension of TSP. Given
a set of m items to be purchased at n markets, the cost of item k at market j (k =

1,.., m, j = 1,..,n) and inter-market travel costs the problem is to purchase all m
products by visiting a subset of the markets in a tour (starting from the source j = 0),
such that the total travel and purchase costs are minimized. This problem includes many
well-known NP-hard problems such as uncapacitated facility location, set covering and
group Steiner tree problems as its special cases [121].

Several constructive heuristics for the TSP are adapted in the initial solution building
(within GRASP) and several neighborhoods are used for local search (within VND) for

154 P. Hansen and

 p-Median problem Given a set L of m potential locations for p facilities and a set U
of given locations for n users, the p-Median problem (PM) is to locate simultaneously
the p facilities in order to minimize the total transportation distance (or cost) from users
to facilities, each user being served by the closest facility. Solutions of PM are thus
characterized by 0–1 vectors x with p components among |L| equal to 1 indicating
where facilities are located.

There are several papers that use VMS for solving the PM problem. In the first
one [77], the basic VNS is applied and extensive statistical analysis of various strategies
performed. Neighborhood structures are defined by moving facilities
and correspond to sets of 0–1 vectors at Hamming distance from x.

The descent heuristic used is 1–interchange, with the efficient Fast Interchange (FI)
computational scheme [136]. Results of a comparison of heuristics for OR-Lib and
some TSP-Lib problems are reported. It appears that VNS outperforms other heuristics.
In order to solve larger PM problem instances, in [84] both RVNS and VNDS are
applied. Subproblems with increasing number of users (that are solved by VNS) are
obtained by merging the sets of users (or market areas) associated with k (k = 1, . . . , p)
medians. Results on 1400, 3038 and 5934 users instances from the TSP library show
VNDS improves notably upon VNS in less computing time, and gives much better
results than FI, in the same time that FI takes for a single descent. Moreover, Reduced
VNS (RVNS), which does not use a descent phase, gives results similar to those of
FI in much less computing time. Two versions of Parallel VNS for PM are proposed
in [32,106] (see Section 3).

Multisource Weber problem The multisource Weber (MW) problem (also
known as continuous location-allocation problem) is the continuous counterpart of
PM: instead of locating the p facilities at some locations of L, they can be located
anywhere in the plane. An early application of VNS to MW is given in [17]. Several
other ones are discussed at length in [16]. It appears that the choice of neighborhoods
is crucial. Reassignment of customers to facilities a few at a time is a poor choice, as
it entails only marginal changes in the solutions considered. Much better results are
obtained when the facilities themselves are moved. As they may be located anywhere
in the plane target locations are needed. An easy and efficient choice is locations of
customers where there is no facility as yet. Using this neighborhood structure, several
basic TS and VNS heuristics were developed and an extensive empirical study car-
ried out to evaluate various heuristics—old, recent, and new—in a unified setting. The
different methods (i.e., Genetic search, three Tabu search variants, four VNS variants
etc.) were compared on the basis of equivalent CPU times. Results of this study indicate
that VNS can be effectively used to obtain superior solutions. For instance on a series
of 20 problems with 1060 users the average error (by comparison with best known
solution) is of 0.02% only for the best VNS, while it can rise to more than 20% for

Variable Neighborhood Search 155

5.2 Location and Clustering Problems

solving TPP in [116,129]. Among many possible variants that have been investigated
in the sequential implementation are two from each class of heuristic (GRASP, VNS,
Hybrid GRASP/VNS and TS [135]) on 16 random test instances with 50–150 markets
and items. Each heuristic was restarted 5 times and average results reported. Among
8 sequential codes the GRASP/VNS hybrid had the best performance, while among 5
parallel methods, VNS was the best in average.

some well-known heuristics of the literature. Average error for a Genetic algorithm
was 1.27% and for the best TS 0.13%.

Minimum-sum-of-squares clustering problem Given a set of n points in Euclid-
ean q-dimensional space, the minimum sum-of-squares clustering problem (MSSC)
is to partition this set into classes, or clusters, such that the sum of squared distances
between entities and the centroids of their clusters is minimum. Among many heuristics
for MSSC, the k-Means local search heuristic [93] is the most popular. It is an inter-
change heuristic, where points are reassigned to another cluster than their own, one at a
time, until a local optimum is reached. Another popular heuristic, called H-Means [2],
selects an initial partition, computes the centroids of its clusters, then reassigns entities
to the closest centroid and iterates until stability. A new local search heuristic, called
J-Means is proposed in [81]: centroids are relocated at some of the given points, which
do not yet coincide with one of them. Results of a comparison of k-Means, H-Means,
H + K-Means (where H-Means and k-Means are applied in sequence) and two ver-
sions of VNS are given in [81]. VNS–1 is an extension of k-Means and gives slightly
better results than H + K -Means; VNS–2 which extends J -Means proves to be the
best heuristic.

Fuzzy clustering problem The Fuzzy clustering problem (FCP) is an important
one in pattern recognition. It consists in assigning (allocating) a set of patterns (or
entities) to a given number of clusters such that each of them belongs to one or more
clusters with different degrees of membership. The objective is to minimize the sum of
squared distances to the centroids, weighted by the degrees of membership. The fuzzy
clustering problem was initially formulated in [42] as a mathematical programming
problem and later generalized in [13]. The most popular heuristic for solving FCP is
the so-called Fuzzy C-means (F-CM) method [23]. It alternatively finds membership
matrices and centroids until there is no more improvement in the objective function
value. A new descent local search heuristic called Fuzzy J-means (F-JM) is proposed
in [9] where the neighborhood is defined by all possible centroid-to-entity relocations
(see also [16,81]). This ‘integer’ solution is then moved to a continuous one by an
alternate step, i.e., by finding centroids with given memberships. Fuzzy VNS rules are
applied as well (F-JM is used as local search subroutine).

p-Center problem The p-Center problem consists in locating p facilities and
assigning clients to them in order to minimize the maximum distance between a client
and the facility to which he (or she) is allocated (i.e., the closest facility). This model is
used for example in locating fire stations or ambulances, where the distance from the
facilities to their farthest allocated client should be minimum. In [111] basic VNS and
Tabu search (e.g., the so-called Chain substitution Tabu Search, [113]) heuristics are
presented. Both methods use the 1-interchange (or vertex substitution) neighborhood
structure. It is shown how this neighborhood can be used even more efficiently than
for solving the p-Median problem. Based on the same computing time, comparison
between the Multistart 1-interchange, the Chain interchange TS (with one and two Tabu
lists) and VNS are reported on standard test problems from the literature. It appears
that both TS and VNS outperform the Multistart approach and give similar results with
a slight edge in favor of VNS for the larger instances.

Quadratic assignment problem The Quadratic Assignment Problem can be
described as follows: Given two n × n matrices A and B, find a permutation
minimizing the sum of the A parameter free basic VNS (is set to n)
is suggested in [130], where two new methods based on Fast Ant systems (FANT)

156 P. Hansen and

and Genetic-Descent hybrid (GDH) are also proposed. All three methods use the same
simple descent local search procedure. On a series of structured instances from the
literature, results of good quality for all three methods are reported, i.e., the average
errors with respect to the best known solutions are 0.185%, 0.167% and 0.184% for
FANT, GDH and VNS respectively with time necessary for 1,000 calls to the improving
procedure of FANT. Best results, i.e., 0.104% error were obtained with the previous
Hybrid Ant system (HAS-QAP) of [56].

Balanced MBA student teams problem In some schools and universities, stu-
dents from the same grade must sometimes be divided into several teams within a
classroom in such a way that each team provides a good representation of the class-
room population. A problem is to form these teams and to measure the quality of their
balance. In [39] mathematical models are proposed that take into account the attributes
assigned to the students. Two different ways of measuring the balance among teams
are proposed: min–sum and min–max models. Two formulations are considered and
both exact and heuristic solution methods are developed. The exact method consists
in solving a Set Partitioning problem based on the enumeration of all possible teams.
In order to solve large problem instances, both VNS and VNDS heuristics are also
developed. In the basic VNS, interchange of student pairs is used
for the perturbation of an incumbent solution. The local search is performed within

and an initial solution is obtained by using a random partition. Since the gap was
larger than 1% on a 65 student instance with 19 attributes and 13 teams, VNDS was
tested as well. The use of this extended VNS scheme led to obtain results of better
quality (0.48% larger than optimum) in moderate time (29 s for VNDS versus 872 s for
the exact method).

Simple plant location problem The well-known simple plant location problem
(SPLP) is to locate facilities among a given set of cities in order to minimize the sum
of set-up costs and distribution cost from the facilities to a given set of users, whose
demand must be satisfied. The case where all fixed-costs are equal and the number of
facilities is fixed is the p-Median problem. In work in progress, VNS heuristics for
the p-median are extended to the SPLP. In addition to interchange moves, opening
and closing of facilities are considered and a VNDS similar to that one suggested
in [84] developed. Moreover, complementary slackness conditions are exploited to
find a bound on the error through solution of a reduced dual problem. In this way
solution within 0.04% of optimality could be obtained for problems with up to 15,000
users (see Table 6.1).

One-dimensional bin-packing problem (BPP) Packing items into boxes or bins
is a task that occurs frequently in distribution and production. BPP is the simplest bin-
packing problem: given a number of items i = 1 , . . . , n of integer sizes what is the
minimum number of bins, each having the same integer capacity c, necessary to pack
all items.

In developing the basic VNS for BPP, usual neighborhood structures are used in [52]:
add, drop and interchange (swap) of items between bins. By using sophisticated data
structure, neighborhoods considered are significantly reduced. In an intensified shaking
step an item is selected at random and its best position (w.r.t. add/drop/swap restricted
neighborhood) found; to get that belongs to this step is repeated k times. Local
search uses the same neighborhoods. In addition, since a characteristic of the BPP is
existence of large plateaus (many different configurations, in terms of assignment of
items to bins, correspond to the same number of bins), an auxiliary objective function is

Variable Neighborhood Search 157

158 P. Hansen and

Variable Neighborhood Search 159

introduced, i.e., maximization of the sum of squared slacks of the bins. Initial solutions
for VNS are obtained by modification of an existing one (called MBS’), which already
produces good solutions. When tested on 1370 benchmark instances from two sources,
VNS proved capable of achieving the optimal solution for 1329 of them, and could find
for 4 instances solutions better than the best known ones. According to the authors,
this is a remarkable performance when set against other methods. For example, when
compared with the Tabu search heuristic from [127] on 1210 hardest test instances, it
appears that in 1010, 1125 and 1170 instances the best solutions are found by MBS’,
TS and MBS’ + VNS respectively.

5.3 Graphs and Networks

Let G = (V, E) be a connected (un)directed graph with vertex set V and edge set E.

Solution of many optimization problems on G correspond to some subset of vertices
or subset of edges that satisfies certain conditions. A usual way

to supply a solution space with some metric, and thus make possible development of
VNS heuristics, is to define a distance function as the cardinality of the (symmetric)
difference between any two solutions and or and i.e., node-based or
edge-based neighborhoods:

where denotes the symmetric difference operator. In the applications of VNS
that follow, or or both metrics are used for inducing different neighborhood
structures

Oil pipeline design problem Brimberg et al. [15] consider a given set of offshore
platforms and on-shore wells, producing known (or estimated) amounts of oil, to be
connected to a port. Connections may take place directly between platforms, well sites
and the port or may go though connection points at given locations. The configuration
of the network and sizes of pipes used must be chosen in order to minimize construction
costs. This problem is expressed as a mixed integer program, and solved both heuris-
tically by Tabu search and VNS methods and exactly by a branch-and-bound method.
Tests are made with data from the South Gabon oil field and randomly-generated
problems. VNS gives best solutions and TS is close.

Phylogeny problem The phylogeny (or evolutionary tree) problem, in its simplest
form, can be formulated as follows: given A, an n × m 0–1 matrix, construct a tree
with minimum number of ‘evolutionary’ steps, that satisfies the following conditions:
(i) each node of the tree corresponds to an n-dimensional 0–1 vector, where vectors
given by rows of A should be associated to leaves; (ii) degrees of all nodes that are not
leaves are equal to three; (iii) two nodes are connected by an edge if their corresponding
vectors differ in only one variable. The trees that satisfies (i)–(iii) and the criterion used
are called phylogeny and parsimony respectively. The leaves of an evolutionary tree
represent groups of species, populations of distinct species, etc. (denoted by taxons
as well), while interior nodes represent hypothetical (unknown) ancestors. In [3] a
VND method that uses three neighborhoods is developed, and compared with the best

160 P. Hansen and

among three local searches used alone. It appears that VND is much faster and gives
solutions with better quality. In the same paper, the authors developed and compared
three metaheuristic approaches to the phylogeny problem: GRASP (with the best local
search among three for the second phase, hybrid GRASP with VND and VNS. The
method developed as VNS use the same three neighborhoods for Shaking as for VND

and does therefore not use the full potential of VNS. Nevertheless
it gives the best results. Comparative results on eight test problems are summarized in
Table 6.2 (taken from [3]).

Maximum clique problem Let G = (V, E) denote a graph with vertex set V =

and edge set A set of vertices is a
clique if any two of them are adjacent. A clique C is maximum if it has the largest
possible number of vertices. Finding the maximum clique is a classical problem in
applied graph theory. A basic VNS heuristic that combines greedy with the simplicial
vertex test in its descent step is proposed and tested on standard test problems from
the literature in [85]. Despite its simplicity, the proposed heuristic outperforms most of
the well-known approximate solution methods. One exception is the recent Reactive
Local Search (RLS) heuristic [7] which obtains results of equal quality in a quite
different way.

Steiner tree problem on graphs Given a graph G = (V, E), nonnegative weights
associated with the edges (i, j) of E and a subset of terminal nodes, the

Steiner problem (SPG) is to find a minimum weighted subtree of G which spans all
terminal nodes. The solution X and corresponding tree are called Steiner nodes and
Steiner minimum tree respectively. Application can be found in many areas, such as
telecommunication network design, computational biology, VLSI design, etc. (see,
e.g., [90] for a survey).

In [108] and later in [125], two types of neighborhoods, i.e., node-based (N) (2) and
path-based (P) [134], are successfully used for solving SPG as in VND. For example,
the average % of improvement over a constructive initial solution on 454 instances
was 10.24% for the N–P order, while only P local search led to a 2.59% improvement.
Computing time for both heuristics was the same. This N–P procedure is used within
parallel GRASP in [108] and improved by Path relinking in [125], but no attempt was
made to develop a full VNS, which could be an interesting task for future work.

Degree-constrained minimum spanning tree problem (DCMST) consists in
finding a minimum spanning tree such that the degree of each vertex of the tree is less
than or equal to a given integer for all i. Note that for the problem becomes
the Hamiltonian path problem. In [124] three neighborhood structures based on the
k-edge exchange operator, k = 1,2,3 (or k-elementary tree transformations) are used
in developing local search procedures within a VND heuristic. This procedure is then

embedded into a VNS as a local search, where again k-edge exchange moves are used
for perturbation (shaking) with parameter VNS stops the first time

has been explored without improvement. VNS and VND are then extensively
compared with known methods from the literature, i.e., a genetic search, problem space
search heuristics and simulated annealing, on four different sets of randomly generated
problems: CRD, SYM, STR and SHRD. VND and VNS were better and much faster on
almost all test instances. Some observations from their empirical study are as follows:
(i) VND alone succeeded in finding optimal solutions for all problems already solved
exactly (in the STR class) in less than one second of processing time, while the best
among three other heuristics, i.e., the problem space search heuristic, found suboptimal
solutions within up to 300 s; (ii) on SHRD class of instances, VND reduced the average
relative error of Local search (with a single neighborhood k = 1) from 4.79% to 0.27%
with a very small increase in computing time; (iii) for the same series of instances, VNS
found 23 out of 24 best solutions; (iv) for instances CRD and SYM, VNS got optimal
solution on 69 out of 70 instances; (v) VNS found optimal or best known solutions
for all instances of class STR; it improved the average best solution values found by
GA-F [99] for 35 out of the 45 pairs of instances considered. Some of the results that
compare GA-F and VNS on STR instances are given in Table 6.3 (a part of Table 5.7
from [124]).

Max-cut problem Given an undirected graph G = (V,E) and weights on
the edges the Max-cut problem is to find a subset of vertices S

that maximizes the sum of the edge weights in the cut This problem has wide
applications including VLSI design. Three heuristics for solving Max-cut are developed
and compared in [49]: GRASP, basic VNS and a hybrid of GRASP and VNS (G-VNS).

Variable Neighborhood Search 161

Solutions are represented as binary |V |-vectors and neighborhood structures for VNS
are induced from the Hamming distance introduced into the solution space. Local search
is performed in the neighborhood with distance 1. G-VNS uses VNS in the local search
phase of GRASP. Results on 4 instances from the literature are reported. Preliminary
computational results indicate VNS is a robust heuristic for Max-Cut. Indeed VNS is
not very sensitive to the choice of initial solution, and thus, G-VNS did not perform
better than VNS for the same number of iterations.

Cable layout problem Given the plan of buildings, the location of the equipment
and a structure of cable supports of fixed capacities, cables of all kind have to be
routed (voltage, communication, etc.). The Cable layout problem (CLP) consists in
finding the design of cables that minimize the total cost, such that numerous technical
requirements are met. If the cost of a cable is a linear function of its length, then the
CLP can be considered as a capacitated multi-path problem. This property is used
in [31] to decompose the problem, and then a VNDS heuristic is proposed. Each sub-
problem consists in solving several min-cost multi-paths problems. Graphs with up to
1,000 nodes are randomly generated with up to 4% edge density (which is close to real
problems) in order to compare VNDS with a previously suggested TS based heuristic
[86]. Solutions obtained by VNDS were belter than TS in 15 out of 16 instances,
in much less computing times. Moreover, for larger instances, it is shown (from the
dual bounds obtained from Lagrangian relaxation), that the duality gap is always less
than 1%.

k-Cardinality tree problem Given an undirected weighted graph G = (V, E)

with vertex set V, edge set E and weights associated to V or to E, the Minimum

weighted k-Cardinality tree problem (k-CARD for short) consists of finding a subtree
of G with exactly k edges whose sum of weights is minimum. There are two versions
of this problem: vertex-weighted and edge-weighted, if weights are associated to V

or to E respectively. The k-CARD problem is strongly NP-hard [51]. However, if
G is a tree then it is polynomially solvable [51]. In [115] two VNS methods for the
edge-weighted k-CARD problem, are proposed: the basic VNS (denoted by VNS-1)
and VNS that uses VND as a local search (VNS-2). In VNS-1 the solution space (i.e.
the set of all trees with k edges) is supplied with a distance function based on edge
difference between any two trees and all neighborhood structures are induced from it.
Since the minimal weighted k-cardinality tree is a spanning tree on any subgraph of
G with k + 1 vertices, the solution space may be reduced to the set of all spanning
trees and the set of spanning trees may be supplied with another metric, i.e., as the
cardinality of the difference of their vertex sets. In developing their VND method for
k-CARD, the authors use three neighborhood structures.

The first two neighborhoods are induced by edge distance, and the third one is
induced by a vertex distance. In Table 6.4 comparative results of VNS heuristics, two
Tabu search methods (TS-1 and TS-2 for short) and the Dynamic-Dijkstra-Path (DDP
for short) constructive heuristic are given. (In [45] it is shown that DDP has the best
performance when compared with several others constructive heuristics). TS-1 is an
implementation of Chain interchange TS rules suggested in [113] and the second TS
(denoted by TS-2) is taken from [104].

Test instances include random graphs with 500, 1000, 1500 and 2000 vertices,
where degree of each node is set to 20 (see [104] for details). In Table 6.4 average
results on 10 random instances for each n and k are reported. Large problem instances
could not be solved by DDP and TS-2 in reasonable time and for that reason we did

162 P. Hansen and

not report on them in Table 6.4. It appears that VNS-2 performs best in average for all
but one sizes of problems.

Prize-collecting Steiner tree problem on graphs Given a graph G = (V, E),
nonnegative weights associated with the edges (i, j) of E and a nonnegative
prizes associated with the vertices i of V, the Prize-collecting Steiner tree problem

(PCSTP), is to find a subtree of G which minimizes the sum of the weights of its
edges, plus the prizes of vertices not spanned. If the subset of vertices X to be spanned
is known, we have the Steiner tree problem. PCSTP has an important application in
design telecommunication of local access networks. In [24], among other heuristics,
VNS has been proposed for PCSTP. In the solution space, represented by all spanning
trees with cardinality k = 1,2,..., |V |, the neighborhood of T(X) is defined as a set
of spanning trees having one different vertex or The
k

th ordered neighborhood is also defined by vertex deletions or additions. Each tree
considered is always transformed into another tree by a so-called peeling algorithm,
which iteratively eliminates leaves whose weights are larger than corresponding prizes.
The basic VNS developed is used as a post-optimization procedure, i.e., it starts with
a solution obtained by a known constructive (2-approximation primal-dual) algorithm
(denoted with GW) plus iterative improvement with two types of perturbations (It.
Impr.) plus local search with path-relinking (LS + PR). Summary results from [24] on
three known classes of hard instances are given in Table 6.5. It appears that in each
class, VNS improved the best known solution for three instances.

Variable Neighborhood Search 163

164 P. Hansen and

5.4 Scheduling

Single machine scheduling problems Given a set of n jobs that has to be processed
without any interruption on a single machine, which can only process one job at a
time, several NP-hard versions of Single machine scheduling problem that differ in
objective function are solved by VND and VNS in [10]. Since the solution can be
represented as a permutation of jobs, three neighborhoods of different cardinalities
are used within VND, i.e., 1-opt (or transpose), insert (or Or-opt) and interchange
neighborhoods have cardinalities n – 1 , or n(n – 1)/2, respectively. They
are used in sequence, without return to the smallest one after improvement (as in the
basic VND). It appears, from extensive computations, that VND significantly improves
solutions compared with those obtained by single neighborhood local searches in small
additional computing time.

Another interesting observation is that ordering 1-opt, Or-opt, interchange is better
than 1-opt, interchange, Or-opt, despite the fact that the cardinality of the Or-opt
neighborhood is larger than that of the interchange one.

Nurse rostering problems (NRP) consist of assigning varying shift types to
hospital personnel with different skills and work regulations, over a certain planning
period.

Typical shift types are Morning, Day and Night shift. There are many constraints
in the NRP which are divided (in [20]) into hard (which can never be violated and
expressed in the set of constraints) and soft (which are preferably not violated). The
objective is to minimize the number of violated soft constraints. The commercial nurse
rostering package Plane, which is implemented in many Belgian hospitals, makes use
of Tabu search [18]. For the same problem VNS is applied in [20], where several
neighborhoods are constructed in order to especially satisfy some of the constraints.
It appears that VND enables the system to find schedules which are hidden for single
neighborhood heuristics. Moreover, the authors conclude that “it is often more bene-
ficial to apply simple descent heuristics with [a] variety of neighborhoods than to use
sophisticated heuristics which are blind for large parts of the search space”.

Multiprocessor scheduling problem with communication delays This problem
consists in finding a static schedule of an arbitrary task graph onto a homogeneous mul-
tiprocessor system, such that the makespan (i.e., the time when all tasks are finished)
is minimum. The task graph contains a precedence relation as well as communica-
tion delays (or data transferring time) between tasks if they are executed on different
processors. The multiprocessor architecture is assumed to contain identical processors
with a given distance matrix (i.e., the number of processors along the shortest path)
between each two processors [35]. For solving this NP-hard problem [133], a basic

VNS heuristic is developed in [36], where a k-swap neighborhood structure is used
for shaking and a reduced 1-swap for local search. It is compared with Multistart
local search (MLS), Tabu search (TS) [36] and Genetic algorithms [1] (PSGA). Initial
solutions for all methods are obtained by modification of the well-known constructive
heuristic critical path (CP). Starting from it a swap local search is run (LS). Two types
of task graphs are generated: (i) with known optimal solution on the 2-dimensional
hypercube (i.e. with 4 processors) and given density as proposed in [100]; (ii) with
given density 0.2, 0.4, 0.5, 0.6 and 0.8. It appears that for both types of random test
instances VNS performs best.

Resource-constrained scheduling problem (RCPSP) is concerned with n non-
preemptive activities and m renewable resources. Given the availability of each resource

processing time for each activity j in time units amount of resource k

needed for activity j, during and for each activity j a sets of immediate
predecessors or a set of immediate successors find for each activity j its start
time such that the makespan of the project is minimum.

Since the RCPSP is an important and difficult NP-hard problem, a considerable
amount of research on it has appeared in the literature (for a recent survey see, e.g., [21]).
In [53], a VNS heuristic is developed for the RCPSP. The solution is represented as a
feasible sequence of activities (that respect precedence conditions), and in order to find
makespan, an additional procedure is used. The disadvantage of such a representation
is that the same schedule could be obtained from several permutations. Neighborhood
for a local search is defined as a sequence of feasible 1-opt (or transpose) moves, i.e., an
activity is inserted between its two closest ones (to the left and to the right) in the current
permutation until all left activities are from or right activities from In addition,
this neighborhood is reduced by a parameter which defines the maximum number of
such 1-opt moves. These moves allow an efficient updating of the objective function.
In order to derive a solution from the same sequence of moves is repeated k times.
In the Shaking step, k (instead of one, as in the basic VNS) solutions are generated
and the best among them is used as an initial solution for the Local search. Very good
results by VNS are reported on 4 classes of problems from the literature: J30 (480
instances), J60 (480), J90 (480), J120 (600). Some average comparative results, given
in Table 6.6, include GA as well, which was identified in [96] as the most effective.

Capacitated lot-sizing problem with setup times (CLSP-ST) The trend towards
just-in-time manufacturing has led to a drastic reduction of setup times in many man-
ufacturing processes. Given are a fixed costs for producing item i in period t

(i = 1,..,n;t = 1,..,T), variable costs (per unit production cost and per unit inventory
holding cost in period t), the demand for each item in each period and the amount of
each resource available. In the CLSP-ST it is required to determine the lot sizes of
each item in each time period, such that the total cost is minimized and the capacity
constraints satisfied.

Variable Neighborhood Search 165

P. Hansen and

Weighted Max-SAT problem The satisfiability problem, in clausal form, consists
in determining if a given set of m clauses (all in disjunctive or all in conjunctive form)
built upon n logical variables has a solution or not [55]. The maximum satisfiabil-
ity problem consists in finding a solution satisfying the largest possible number of
clauses. In the weighted maximum satisfiability problem (WMAXSAT) [123] positive
weights are assigned to the clauses and a solution maximizing the sum of weights
of satisfied clauses is sought. Results of comparative experiments with VNS and TS
heuristics on instances having 500 variables, 4500 clauses and 3 variables per clause,
in direct or complemented form, are given in Table 6.8 [74]. It appears that using a
restricted neighborhood consisting of a few directions of steepest descent or mildest
ascent in the Shaking step does not improve results, but using this idea in conjunction
with SVNS improves notably upon results of basic VNS and also upon those of a TS
heuristic.

Learning Bayesian networks Let us consider a set of random variables V =

and a set of parameters which together specify a joint probability dis-
tribution over the random variables. Bayesian networks (BNs), also known as Belief or
Causal networks, are knowledge representation tools able to manage the dependence
and independence relationships among the random variables [117]. BN is represented
by a directed acyclic graph (dag). Once the BN is specified, it constitutes an efficient
device to perform inference tasks. The problem is to develop automatic methods for

5.5 Artificial Intelligence

Very few papers address the CLSP-ST. Usually Lagrangian relaxation with sub-
gradient optimization is employed to calculate a lower bound and different heuristics
are developed in attempt to find good feasible solutions. In[88], beside Lagrangian
relaxation, a new smoothing heuristic (SM) followed by a VNS is suggested. In the
Shaking step, the k setups corresponding to k smallest additional costs are switched off
(and the corresponding transshipment problem is solved), while SM is used again as a
local search within VNS. Only one loop of the basic VNS is applied with
i.e., the first time k reaches 7, the procedure stops. All tests were carried out on a subset
of the 751 benchmark test instances. Five methods were tested, two known and three
new: TTM [132], DBKZ [40], M-DBKZ (modification of DBKZ), SM and SM+VNS.
It appears that, among 492 hardest problem instances, SM and SM+VNS improve 437
and 447 solutions, being 13 and 10 times worse, respectively. In Table 6.7 comparative
aggregate results w.r.t. TTM on 492 hardest problem instances are reported.

166

building BNs capable of learning directly from given data
containing m instances of V), as an alternative or a complement to the method of
eliciting opinions from experts. This NP-hard problem is receiving increasing atten-
tion in Artificial intelligence. In [22] the current dag (solution) is represented by a
permutation of n variables. The quality of an ordering is measured by the so-called
scoring metric, f, i.e., a function, defined for dags and a search in the space
of dags compatible with performed. Then the basic VNS scheme (called VNS based
on ordering, VNSO for short) is applied. The set of neighborhood structures is defined
by k–interchange moves in and local search performed for k = 1. VNSO has been
successfully compared with two other methods from the literature.

Bilinear programming problem Structured global optimization problems, while
having several and often many local optima, possess some particular structure which
may be exploited in heuristics or exact algorithms. One such problem, of consider-
able generality, is the bilinear programming problem (BLP) with bilinear constraints.
This problem has three sets of variables, x, y and z, with cardinalities and
respectively. When all variables of y are fixed it becomes a linear program in x and z.

When all variables of z are fixed it becomes a linear program in x and y. This property
suggests the well-known Alternate heuristic:

1. Initialization: Choose values of variables of z (or y);

2. LP-1: solve the linear program in (x, y) (or in (x, z));

3. LP-2: For y (or z) found in the previous step, solve the linear program in (x, z)
(or in(x , y)) ;

4. If stability is not reached (within a given tolerance) return to 2.

Obviously this algorithm may be used in a Multistart framework. To apply VNS one may
observe that neighborhoods of a solution (x, y, z) are easy to define. They
correspond to k pivots of the linear program in (x, y) or in (x, z), for
One can then apply the basic VNS of Figure 3 in a straightforward way. The local search
routine is the alternate heuristic described above. Results on randomly generated test
problems are presented in Table 6.9 from [6]. It appears that VNS improves in almost
all cases and sometimes very substantially upon the solution provided by the Multistart
Alternate heuristic.

Variable Neighborhood Search 167

5.6 Continuous Optimization

168 P. Hansen and

Pooling problem The pooling problem, which is fundamental to the the petro-
leum industry, describes a situation where products possessing different attribute
qualities are mixed together in a series of pools in such a way that the attribute qualities
of the blended products of the end pools must satisfy given requirements. It is well
known that the pooling problem can be modeled through bilinear programming. A sim-
ple alternating procedure and a VNS heuristic are developed to solve large instances,
and compared with the well-known method of successive linear programming[6]. This
is an application of BBLP above.

Continuous Min–Max problem The so-called multi-level Tabu search (MLTS)
heuristic has been proposed in [97] for solving a continuous min–max optimization
problem (in with m periodic functions) of spread spectrum radar polyphase code
design problem [43]. Improvements obtained with the basic VNS in both solution qual-
ity and computing time on the same set of test problems are reported in [114] and [82].
Different neighborhoods are derived from the Euclidean distance. A random point is
selected from such neighborhoods in the Shaking step; then the gradient (feasible direc-
tion) local search with a given step size is performed on the functions that are active
(functions that have a maximum value in the current point); this step is repeated until
the number of active functions in the current point is equal to n (with some tolerance).
It appears that VNS outperforms MLTS on all test instances.

6 UNDERSTANDING HEURISTICS AND METAHEURISTICS

The advent of metaheuristics has led, for a large variety of problems, to the design of
heuristics with a much improved empirical performance, without however that theoret-
ical reasons for such improvements be clearly understood. First steps towards a better
understanding are to study the topography of local optima, and valleys or mountains,
for given classes of problems, as well as the trajectories followed by the heuristics and
the resulting phases of improvement or deterioration. We next describe two new tools,

When applying VNS, the descent from the randomly selected solution can lead back
to the local optimum x around which the current neighborhoods are centered, or to
another local optimum the value of which can be better or not than that of x. It is
thus natural to study the probabilities of these three outcomes as a function of distance
from x to It is also worthwhile to observe whether is closer to x than (which
may be interpreted as belonging to the same large valley, with local rugosities in
relief) or not (which may be viewed as indicating a new large valley has been found).
Mountain profiles give such information on the basis of 1000 ascents from points in
each successive neighborhood. Examples of such profiles for the weighted maximum

satisfiability problem are given in Figure 6.6, from [74].
Profiles appear to vary considerably with the quality of the local optimum x: when

it is bad it suffices to go a little away from x to obtain, with high probability, a better
local optimum. When it is good, or very good, one must go quite far to find a new large
valley and, moreover, the probability of finding a solution better than the incumbent
is then low. This illustrates a weakness of the basic VNS scheme, already mentioned
above: it tends to degenerate into Multistart when the distance from x to becomes
large. The solution, also presented above, is to resort to the SVNS scheme.

Variable Neighborhood Search 169

6.1 Mountain or Valley Profiles

i.e., mountain (or valley) profiles and distance-to-target visualization which have been
found helpful in deriving better heuristics or variants of basic schemes for VNS. We
then turn to the study of an unexpected phenomenon, i.e., that when selecting moves in
a heuristic first improvement can be better than best improvement. Finding the reason
why this is so does not lead directly to a competitive heuristic for the problem under
study, i.e., the traveling salesman problem, but does pinpoint a potential defect of many
heuristics.

When designing heuristics for well studied classes of problems, small to medium size
instances for which the optimal solution is known are often available. Such instances
are used to find how often the optimal solution is reached, or what is the average
percentage of error of the heuristic. But much more information can be obtained if
the optimal solutions themselves are considered, and not only their values. In ongoing
work on a VNS approach to the Traveling salesman problem [58] a distance-to-target

visualization tool has been developed. This tool presents on screen the optimal solution
for the training instance under study, the current solution and the symmetric difference
between these two solutions. This indicates how much improvement is to be made and
where. Moreover, a routine allows also the representation of the difference of solutions
at an iteration of the heuristic and at the next. Finally, as representations of solutions
for large instances may be hard to read, and many problems, in particular Euclidean
ones, allow for a natural decomposition, a focusing routine allows representations of
the above-mentioned information for chosen subproblems, e.g., in some region of the
plane.

Visualizing successive steps in VND and VNS show their strengths and weaknesses,
e.g., that after 2-opt is applied within VNS for the TSP much work remains to be done.
Suggestions for further neighborhoods to use may then be obtained from a careful study
of remaining differences between solution and target.

It is well known that many combinatorial optimization problems such as the p-median
or the Multisource Weber problem [41], the clustering or partitioning problem with
various objectives [44,73], the air-crew scheduling problem [38], etc. can be solved
by combining column generation with integer programming. As the optimal solution

6.2 Distance-to-target Visualization

170 P. Hansen and

7 IMPROVING EXACT ALGORITHMS

6.3 First versus Best Improvement

In addition to using the visualization tools described above, one can proceed to a step-
by-step evaluation of the work done by a VNS or other heuristic. Moreover, variants at
each of these steps can be studied. Detailed information, which would not be apparent
from the global performance of the heuristic, can then be gathered. It can lead to the
discovery of unexpected phenomena and the insight provided by their explanation can
in turn lead to principles for building better heuristics. A typical case is the observation
that when applying the 2-opt heuristic to the TSP [79], selecting at each iteration the first
improvement, i.e., the first exchange of two edges which reduces the objective function
value gives better results than selecting the best improvement, i.e., the exchange of two
edges which reduces most the objective function (beginning from a randomly chosen
solution). An explanation, corroborated by further detailed analysis, is easily obtained:
if the best exchange is chosen, two edges of small but not necessarily very small
length are introduced in the tour and are difficult to remove at later iterations; if a
first improvement is chosen, due to ranking of edges by order of increasing lengths, a
very small edge and an average length edge are introduced in the tour and the latter is
easy to remove at a later iteration. Systematic study of such phenomena in a variety
of heuristics could lead to many improvements.

of the linear relaxation is often highly degenerate, convergence may be slow and even
when it is found many iterations may be needed to prove that it is indeed optimal. The
dual of the column generation procedure is the outer approximation method of [95].
Slow convergence comes from the generation of many hyper-planes far from the cone
vertexed at the optimal dual solution. One would therefore want to estimate this last
solution and focus the generation procedure by penalizing hyperplanes far from it. If
extracting the optimal dual solution is difficult, then the current dual values can be used
to stabilize the generation procedure instead of focusing it.

Consider a primal problem P and its dual D, solved by column generation:

Variable Neighborhood Search 171

In [41] a stabilization scheme is proposed which remains entirely within the linear
programming column generation framework. It merges a perturbation and an exact
penalty method.

A primal problem and its dual are defined as follows:

In the primal and are vectors of slack and surplus variables with upper bounds
 and respectively. These variables are penalized in the objective function by

vectors When applying column generation, after finding no more column
with negative reduced cost, the parameters and are updated following problem-
specific rules.

For this stabilized column generation scheme to work well, good estimates of the
optimal dual variables should be obtained at the outset. Ways to find heuristically ranges
for these dual variables by sensitivity analysis are sketched in [41] for a few problems.
For the p-Median problem this led to exact solution of instances with over 3000 users
versus 900 in the literature; for its counterpart in the plane, i.e., the Multisource Weber
problem ([75,98]) it led to exact solution of instances with over 1000 users versus
30 in the literature. For the minimum sum-of-squares clustering problem combining
stabilized column generation, with the ACCPM interior point method, hyperbolic 0-1
programming quadratic 0-1 programming and VNS in several steps [44] led to exact

solution of problems with up to 150 entities, including the famous 150 iris example
of [50].

The AutoGraphiX system Recall that a graph invariant is a variable defined on the
family of all graphs (or on an appropriate sub-family) and the value of which does not
depend on the numbering of vertices or edges. Numerous problems in graph theory can
be viewed, or involve, optimization of invariants on a possibly constrained family of
graphs. Therefore, VNS can be used for approximate solution of such problems. This
led to the development of the AutoGraphiX (AGX) system and to a series of papers,
next reviewed, on its principles and applications.

As explained in [29], AGX uses the basic schemes of both VNS and VND. The
descent is done by first drawing a graph G at random (with a given number of vertices
and edges), computing its value for the invariant under study and then examining the
effect on this value of bringing some elementary change to G: removal or addition of
an edge, displacement of an edge, detour, i.e., replacement of an edge between two
vertices by a path of length 2 joining them through some non-adjacent vertex, and so
on. Neighborhoods so defined are ranked from the smallest to the largest. The best
move is determined in each of them in turn and if it improves the value of the invariant
studied the corresponding change is made in G. After a local optimum has been found,
neighborhoods are defined using the Hamming distance, i.e., by considering removal
or addition of edges to G, and VNS is applied. The only parameter is the maximum
number of edges to be removed or added.

AGX can be applied to the following problems: (a) find a graph satisfying given
constraints; (b) find optimal or near optimal values for an invariant subject to con-
straints; (c) refute a conjecture; (d) suggest a conjecture (or sharpen one); (e) suggest a
proof. For instance, three conjectures of the system Graffiti [46,47] are refuted in [29],
several strengthened and one of these proved, for the particular case of trees, exploiting
knowledge of moves needed to find local optima.

Automated conjecture finding Study of a set of extremal or near-extremal graphs
G obtained with AGX taking the numbers n of vertices and m of edges as parameters
often suggests conjectures. Moreover, there can be corroborated or refuted by perform-
ing various changes interactively. However, it would be preferable to have an entirely
automated system. Three ways to automate conjecture finding are outlined in [28]: (a) a
numerical method, which exploits the mathematics of Principal Component Analysis
in order to find a basis of affine relations between graph invariants; (b) a geometric
method which consists in finding the convex hull of the points representing extremal
or near-extremal graphs in invariants space, with a ‘gift-wrapping’ algorithm. Hyper-
planes of this convex hull correspond to conjectures; (c) a geometric approach, which
consists in recognizing the families of graphs to which belong the extremal ones and
using known relations between graph invariants in those families to find new relations.

Chemical graph theory. 1. Energy The energy E is defined in
chemical graph theory as the sum of absolute values of the eigenvalues of the adja-
cency matrix [68]. It has been extensively studied by chemists and mathematicians.
As explained in [25] AGX led to the discovery of several simple, but as yet unknown

172 P. Hansen and

8 COMPUTER-AIDED DISCOVERY IN GRAPH THEORY

which were easily proved.
Chemical graph theory. 2. index The index [120] and its gen-

eralization are probably the most studied invariants of Chemical graph theory. Assign
to each edge of a graph G a weight equal to the inverse of the geometric mean of the
degrees of its vertices. Then, the index of G is the sum of all such weights.
AGX was used to find extremal trees for this index [27]. Maximum values are obtained
by paths and minimal ones by two kinds of caterpillars and one of modified caterpillars
with an appended 4-star. This last result was proved by an original way of using linear
programming. Indeed, variables are associated with the numbers of edges with given
degrees of end vertices (in chemical graphs these degrees are bounded by 4). This proof
technique has already been used in three other papers of Chemical graph theory.

In [5] are presented several bounds on the index of chemical trees in terms
of this index for general trees and of the ramification index, which is the sum for all
vertices of the excess of their degree over 2. Use of AGX [76] leads to correct some of
these results and obtain much strengthened and best possible versions of the others.

Chemical graph theory. 3. Polyenes with maximum HOMO–LUMO gap

Using AGX, [54] a study was made of fully conjugated acyclic systems with maxi-
mum HOMO-LUMO gap. In the simplest Hückel model, this property of the eigenvalue
spectrum of the adjacency matrix of the corresponding chemical tree corresponds to
reactivity. AGX gives for all even n a ’comb’, i.e., a path on n/2 vertices to each of
which is appended a single pendant edge. From this, the conjecture that the maximum
gap tends to when n goes to infinity can be deduced.

Trees with maximum index Trees are bipartite and hence bicolorable, say in
black and white. Color-constrained trees have given numbers of black and white ver-
tices. In [34] AGX is used to study color-constrained trees with extremal index, or
largest eigenvalue of the adjacency matrix. Six conjectures are obtained, five of which
are proved.

Applying the numerical method for automated conjecture finding to the extremal
trees found gave the conjecture

relations, including the following:

Variable Neighborhood Search 173

and

where is the stability number, the number of pendant vertices, D the diameter and
r the radius of the tree. It is unlikely that a conjecture with so many invariants would
be obtained without computer aid.

Trees with palindromic Hosaya polynomial The Hosaya (or distance) polyno-
mial of a graph is defined by

where and (k = 3,. . . , D) is the number of pairs of vertices at
distance k. It was conjectured in [67] and [69] that there is no tree with a palindromic
Hosaya polynomial, i.e., such that and so on. AGX refuted this
conjecture [26]. All counter-examples have D even. This case is easier to satisfy than

that where D is odd. Indeed, in the former case, there is a free coefficient in the center,
and in the latter not. Then, define the distance to the palindrome condition as

AGX gives for all n = 10 to n = 50 trees with (and higher values, due
to border effects for The conjecture

Heuristics are an essential tool in applied optimization, and for many large and often
messy problems encountered in practice the only applicable one. Their main aim is to
provide, in reasonable time, near-optimal solutions to constrained or unconstrained
optimization problems. Moreover, they may also be very useful within complex
exact algorithms, to accelerate many steps. Finally, they are an important building
block in optimization-based knowledge discovery systems. Optimization problems are
ubiquitous in Operations Research and its applications to numerous fields. Artificial
intelligence tends to focus more on constraint satisfaction problems. Heuristics then
seek a feasible solution. Both types of problems are less different than might appear at
first view as Constraint satisfaction problems can be expressed as optimization problems
in a variety of ways, e.g., as minimization of a sum of artificial variables representing
constraint violations.

While traditional heuristics, such as, e.g., simple descent methods, are blocked
in the first local optimum found, this is not the case for heuristics built within the
metaheuristics paradigms. All of them provide methods, deterministic or stochastic,
for getting out of poor local optima. As such local optima often differ considerably in
value from the global optimum, particularly if there are many, the practical impact of
metaheuristics has been immense. In contrast to this success, the theory of metaheuris-
tics is lagging. While good heuristics are often obtained, with some ingenuity and a

appears to be hard to prove.
Graffiti 105 The transmission of distance of a vertex of a graph G is the sum

of distances from that vertex to all others. Conjecture 105 of Graffiti [47] is that in
all trees the range of degrees does not exceed the range of transmission of distances.
In [4] AGX is used to get hints on how to prove this conjecture and study variants of
it. Minimizing range of transmission minus range of degrees always gives stars. It is
then easy to prove that the conjecture holds with equality for stars only. Moreover, one
gets the conjectures: (a) if T is not a star then range of transmission minus range of
degree is at least and (b) if T has maximum degree then range of
transmission minus range of degree is not less than n – 3D – 1.

These results are easily proved, and, with a little more work, the extremal graphs
characterized.

These examples illustrate the help the VNS-based system AGX can bring to
discovery in graph theory. Many further ones are given in the cited papers.

174 P. Hansen and

9 CONCLUSIONS

lot of parameter setting, the reason(s) why they work as well as they do are largely
unknown. In this respect, the situation is even worse for hybrids. So, some reflection on
desirable properties of metaheuristics, which would guarantee both their practical and
theoretical interest, may be in order. A tentative list of such properties is the following:

(i) Simplicity: the metaheuristic should be based on a simple and clear principle,
which should be largely applicable;

(ii) Precision: steps of the metaheuristic should be formulated in precise mathe-
matical terms, independent from the possible physical or biological analogy
which was an initial source of inspiration. Meaningless statements (e.g.,
“kicking the function”) or overly vague ones (e.g., “choosing a point based
on the history of the search”) should be avoided;

(iii) Coherence: all steps of heuristics for particular problems should follow
naturally from the metaheuristic’s principle;

(iv) Efficiency: heuristics for particular problems should provide optimal or near-
optimal solutions for all or at least most realistic instances. Preferably, they
should find optimal solutions for most problems of benchmarks for which
such solutions are known, when available;

(v) Effectiveness: heuristics for particular problems should take moderate com-
puting time to provide optimal or near-optimal solutions;

(vi) Robustness: performance of heuristics should be consistent over a variety of
instances, i.e., not just fine-tuned to some training set and less good elsewhere;

(vii) User-friendliness: heuristics should be clearly expressed, easy to understand
and, most important, easy to use. This implies they should have as few
parameters as possible and ideally none;

(viii) Innovation: preferably, the metaheuristic’s principle and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
applications.

Variable Neighborhood Search (VNS) is a recent metaheuristic which strives to
obtain the qualities listed above. It is based on a simple and relatively unexplored
principle: systematic change of neighborhood during the search. (Note that precise
rules for such change are crucial; several authors have proposed on occasion to combine
different types of moves, or neighborhoods, within the same heuristic, without however
doing so systematically, nor that being the main idea of their heuristics.)

Reviewing the eight desirable properties of metaheuristics, it appears that VNS
possesses them to a large degree. Indeed, its principle is simple and all steps of the basic
and extended schemes rely upon it. Moreover, they are state in precise mathematical
terms. VNS has proved efficient in solving the problems of several benchmarks with
optimal or very close to optimal results, and within moderate (or at least reasonable)
computing times. Moreover, its performance appears to be robust, its basic principles
are easy to apply, and very easy to use, parameters being kept to a minimum and
sometimes absent. Simplicity is probably its main feature. Indeed, VNS gets as good
or better results than most other metaheuristics on many problems and in a much simpler
way. This explains its potential for innovation already illustrated by several new type of
applications: analysis of moves and their selection for the TSP, stabilized or focussed
column generation and the computer-aided scientific discovery program AGX.

Variable Neighborhood Search 175

Metaheuristics are a fairly young research field, with many new ideas and frequent
recourse to intuition rather than deduction. Attempts at organizing this field are numer-
ous, but as the main concepts are rarely precisely defined and there are as yet very
few significant theorems, no framework has gained general acceptance. Rather, each
metaheuristic has its own viewpoint and ability to explain many heuristics in its own
vocabulary as well as to absorb ideas from the whole field (notably under the form of
hybrids). Moreover, priority claims tend to proliferate. They are often based on such
vague evidence that they are hard to evaluate.

Focusing for instance, on descent methods or memory structures corresponds to
different viewpoints and metaheuristics. The closest one to VNS appears to be Iterated
local search (ILS) ([11,91,92]). At the price of completely forgetting VNS’s main
idea—systematic change of neighborhood—one can squeeze it into the ILS framework.
Conversely, one could view ILS heuristics as either badly defined (as the crucial step
of perturbation of local optima is often not specified or described by some vague
metaphor) or particular cases of VNS, with usually a single neighborhood. This would
be equally arbitrary. It appears that the babelian character of research in metaheuristics
is a, hopefully temporary, mild evil. While it lasts, clear-cut successes on particular
problems will be probably more important to evaluate metaheuristics than lengthy
controversies. Finally, when considering the eight desirable qualities listed above, we
believe that comparative efficiency should not have the dominant, sometimes exclusive
role, it gets in many papers. The aim of research should be insight, not competition. In
our view other qualities of heuristics and metaheuristics than efficiency can be more
important in the long run, particularly, simplicity, precision, coherence and above all,
innovation.

[1] I. Ahmad and M. Dhodhi (1996) Multiprocessor scheduling in a genetic
paradigm. Parallel Computing 22, 395–406.

[2] M.R. Anderberg (1973) Cluster Analysis for Application. Academic Press,
New York.

[3] A. Andreatta and C. Ribeiro. Heuristics for the phylogeny problem. Journal of

Heuristics (to appear).

[4] M. Aouchiche, G. Caporossi and P. Hansen (2001) Variable neighborhood search
for extremal graphs. 8. Variations on Graffiti 105, Congressus Numeratium (to
appear).

[5] O. Araujo and J.A. de la Penã (1998) Some bounds on the connectivity index of
a chemical graph. Journal of Chemical Information and Computer Science, 38,
827–831.

[6] C. Audet, J. Brimberg, P. Hansen and N. (2000) Pooling problem:
alternate formulation and solution methods. Les Cahiers du GERAD G-2000 23.

[7] R. Battiti and M. Protasi (2001) Reactive local search for the maximum clique
problem. Algorithmica, 29(4), 610–637.

[8] J.E. Beasley (1985) A note on solving large p-median problems. European

Journal of Operational Research, 21, 270–273.

176 P. Hansen and

REFERENCES

[9] N. Belacel, N. and P. Hansen. Fuzzy J-Means: A new heuristic for
Fuzzy clustering. Pattern Recognition (to appear).

[10] M. den Basten and T. Stutzle (2001) Neighborhoods revisited: Investigation into
the effectiveness of Variable neighborhood descent for scheduling, MIC’2001,
Porto, pp. 545–549.

[11] M. den Basten, T. Stutzle and M. Dorigo (2001) Design of iterated local search,
EvoSTIM2001, 2nd EW on Scheduling and Timetabling, Lecture Notes CS (to
appear).

[12] R. Bent and P. Van Hentenryck (2001) A two stage hybrid local search for
the vehicle routing problem with time windows, Technical report, CS-01-06,
Department of Computer Science, Brown University.

[13] J.C. Bezdek (1981) Pattern Recognition with Fuzzy Objective Function Algo-

rithm. Plenum, New York.

[14] O. Braysy (2000) Local Search and Variable Neighborhood Search Algorithms

for the Vehicle Routing with Time Windows. Acta Wasaensia 87, Universitas
Wasaenis, Vaasa.

[15] J. Brimberg, P. Hansen, K.-W. Lih, N. and M. Breton (2000) An oil
pipeline design problem. Les Cahiers du GERAD G-2000-73, Montréal, Canada.

[16] J. Brimberg, P. Hansen, N. and É. Taillard (2000) Improvements and
comparison of heuristics for solving the Multisource Weber problem. Operation

Research, 48(3), 444–60.

[17] J. Brimberg and N. (1996) A Variable neighborhood algorithm
for solving the continuous location-allocation problem. Studies in Location

Analysis, 10, 1–12.

[18] E.K. Burke, De Causmaecker and G.V. Berghe (1999) A hybrid tabu search
algorithm for the nurse rostering problem. Lecture notes in AI, 1585, 187–194.

[19] E.K. Burke, P. Cowling and R. Keuthen (1999) Effective local and guided
Variable neighborhood search methods for the asymmetric traveling salesman
problem, in the Proceedings of the Evo Workshops, Springer, Lecture Notes in
Computer Science, pp. 203–212.

[20] E. Burke, P. De Causmaecker, S. and G.V. Berghe (2001) Variable
neighborhood search for nurse rostering problem, MIC’2001, Porto, pp. 755–
760.

[21] P. Brucker, A. Drexl, R. Mohring, K. Neumann and E. Pesch (1999) Resource-
constrained project scheduling: notation, classification, models and methods,
European Journal of Operational Research, 112, 3–41.

[22] L.M. de Campos and J.M. Puerta (2001) Stochastic local search algorithms for
linear belief networks: searching in the space of orderings. In: S. Benferhat and
P. Besnard (eds.), ESCQARU 2001, Lecture Notes in AI 2143. Springer-Verlag,
Berlin Heidelberg, pp. 228–239.

[23] R.L. Canon, J.C. Bezdek and J.V. Dave (1986) Efficient implementation of the
fuzzy C-means clustering algorithm. IEEE Transactions on Pattern Recognition

Machine Intelligence, 8(2), 248–255.

Variable Neighborhood Search 177

[24] S. Canuto, M. Resende and C. Ribeiro, Local search with perturbations for the
prize-collecting Steiner tree problem in graphs, Networks (to appear).

[25] G. Caporossi, D. I. Gutman and P. Hansen (1999) Variable neigh-
borhood search for extremal graphs. 2. Finding graphs with extremal energy.
Journal of Chemical Information Computer Science, 39, 984–996.

[26] G. Caporossi, A.A. Dobrynin, I. Gutman and P. Hansen (1999) Trees with
palindromic Hosoya polynomials. Graph Theory Notes of New York, 37, 10–16.

[27] G. Caporossi, I. Gutman and P. Hansen (1999) Variable neighborhood search for
extremal graphs. 4. Chemical trees with extremal connectivity index. Computers

and Chemistry, 23, 469–477.

[28] G. Caporossi and P. Hansen (1999) Finding relations in polynomial time. In:
Proceedings of the XVI International Joint Conference on Artificial Intelligence,

pp. 780–785.

[29] G. Caporossi and P. Hansen (2000) Variable neighborhood search for extremal
graphs. 1. The AutoGraphiX system. Discrete Mathematics, 212, 29–44.

[30] R. Cordone, R.W. Calvo (2001) A Heuristic for the Vehicle routing problem
with time windows. Journal of Heuristics, 7(2), 107–129.

[31] M.-C. Costa, F.-R. Monclar and M. Zrikem (2001) Variable neighborhood search
for the optimization of cable layout problem. MIC’2001, Porto, pp. 749–753.

[32] T.Crainic,M. Gendreau, P. Hansen, N.Hoeb and N. (2001) Parallel
Variable neighborhood search for the p-Median. MIC’2001, Porto, July 16–21,
pp. 595–599.

[33] J. Crispim and J. Brandao (2001) Reactive Tabu search and variable neighbor-
hood descent applied to the vehicle routing problem with backhauls. MIC’2001,
Porto, pp. 631–636.

[34] D. S. G. Caporossi and P. Hansen (2001) Variable neigh-
borhood search for extremal graphs. 3. On the largest eigenvalue of color-
constrained trees. Linear and Multi-linear Algebra (in press).

[35] T. (2000) Scheduling heuristic for dense task graphs. Yugoslav

Journal of Operational Research, 10, 113–136.

[36] T. P. Hansen and N. (2001) Variable neighborhood
search for multiprocessor scheduling with communication delays. MIC’2001,
Porto, pp. 737–741.

[37] T. P. Hansen and N. (2001) Heuristic methods for
multiprocessor scheduling with communication delays (in preparation).

[38] G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux and F. Soumis
(1997) Crew pairing at air France. European Journal of Operational Research

97, 245–259.

[39] J. Desrosiers, N. and D.Villeneuve (2001) Design of balanced MBA
student teams. MIC’2001, Porto, July 16–21, pp. 281–285.

[40] M. Diaby, H.C. Bahl, M.H. Karwan and S. Zionts (1992) Capacitated lot-sizing
and scheduling by Lagrangian relaxation. European Journal of Operational

Research, 59, 444–58.

178 P. Hansen and N.

[41] O. du Merle, D. Villeneuve, J. Desrosiers and P. Hansen (1992) Stabilized
column generation. Discrete Mathematics, 194, 229–237.

[42] J.C. Dunn (1974) A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.

[43] M.L. and Z. S. (1990) A method of a spread-spectrum
radar polyphase code design. IEEE Journal on Selected areas in Communica-

tions, 8(5), 743–749.

[44] O.du Merle, P. Hansen, B.Jaumard and N. (2000) An interior point
algorithm for Minimum sum-of-squares clustering. SIAM Journal Scientific

Computing, 21, 1485–1505.

[45] M. Ehrgott, J. Freitag, H. Hamacher, and F. Maffioli (1997), Heuristics for the
k-cardinality tree and subgraph problems. Asia-Pacific Journal of Operational

Research, 14, 87–114.

[46] S. Fajtlowicz (1988) On conjectures of Graffiti. Discrete Mathematics, 72, 113–
118.

[47] S. Fajtlowicz (2000) Written on the wall. Version 09-2000 (regularly updated
file accessible via e-mail from clarson@math.uh.edu).

[48] T. Feo and M. Resende (1995) Greedy randomized adaptive search. Journal of
Global Optimization, 6, 109–133.

[49] P. Festa, P. Pardalos, M. Resende and C. Ribeiro (2001), GRASP and VNS for
Max-cut, Proceedings of MIC’2001, pp. 371–376.

[50] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics VII part II: 179–188.

[51] M. Fischetti, H. Hamacher, K. Jornsten and F. Maffioli (1994) Weighted
k-cardinality trees: complexity and polyhedral structure. Networks, 24, 11–21.

[52] K. Fleszar and K.S. Hindi (2001) New heuristics for one-dimensional bin-
packing. Computing and Operational Research (to appear).

[53] K. Fleszar and K.S. Hindi (2001) Solving the resource-constrained project
scheduling problem by a variable neighborhood search. European Journal of

Operational Research (accepted s.t. revision).

[54] P. Fowler, P. Hansen, G. Caporossi and A. Sondini (2001) Polyenes with maxi-
mum HOMO-LUMO gap. (Variable Neighborhood Search for extremal graphs
7.). Les Cahiers du GERAD, Montréal, Canada, 2001, Chemical Physics Letters

(to appear).

[55] M.R. Garey and D.S. Johnson (1978) Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, New York.

[56] L.M. Gambardela, E. Taillard and M. Dorigo (1999) Ant colonies for the
quadratic assignment problem. Journal of Operational Research Society, 50,
167–176.

[57] M. Gendreau, G. Pesant and L,-M. Rousseau. Using constraint based operators
with variable neighborhood search to solve the vehicle routing problem with
time windows. Journal of Heuristics (to appear).

Variable Neighborhood Search 179

[58] M. Gendreau, P. Hansen, M. Labbé and N. (2001) Variable
neighborhood search for the traveling salesman problem (in preparation).

[59] M. Gendreau, A. Hertz and G. Laporte (1992) New Insertion and postoptimiza-
tion procedures for the Traveling salesman problem. Operations Research, 40,
1086–1094.

[60] M. Gendreau, A. Hertz and G. Laporte (1996), The traveling salesman problem
with back-hauls, Computers Operational Research, 23, 501–508.

[61] G. Ghiani, A. Hertz and G. Laporte (2000) Recent algorithmic advances for arc
routing problems. Les Cahiers du GERAD G-2000-40, Montreal, Canada.

[62] F. Glover (1989) Tabu search—Part I. ORSA J. Computing, 1, 190–206.

[63] F. Glover (1990) Tabu search—Part II. ORSA J. Computing, 2, 4–32.

[64] F. Glover and M. Laguna (1997) Tabu Search. Kluwer, Boston.

[65] C.G. Gonzales and D.P. Brito (2001) A Variable neighborhood search for solving
the linear ordering problem, MIC’2001, Porto, pp. 181–185.

[66] R.E. Griffith & R.A. Stewart (1961) A nonlinear programming technique for
the optimization of continuous processing systems. Management Science, 7,
379–392.

[67] I. Gutman (1993) A Contribution to the study of palindromic graphs. Graph

Theory Notes of New York, XXIV:6, New York Academy of Science, pp. 51–56.

[68] I. Gutman and O.E. Polansky (1986) Mathematical Concepts in Organic

Chemistry, Springer Berlin.

[69] I. Gutman, E. Estrada and O. Ivanciuc (1999) Some properties of the Wiener
polynomial of trees. Graph Theory Notes of New York, XXXVI:1, New York
Academy of Sciences, pp. 7–13.

[70] I. Gutman and O. (2000) Molecules with smallest connectivity index.
Match, 41, 57–70.

[71] I. Gutman, O. G. Caporossi and P. Hansen (1999) Alkanes with small
and large connectivity index. Chemical Physics Letters, 306, 366–372.

[72] P. Hansen and B. Jaumard (1990) Algorithms for the maximum satisfiability
problem. Computing, 44, 279–303.

[73] P. Hansen and B. Jaumard (1997) Cluster analysis and mathematical program-
ming. Mathematical Programming, 79, 191–215.

[74] P. Hansen, B. Jaumard, N. and A. Parreira (2000) Variable neigh-
borhood search for Weighted maximum satisfiability problem. Les Cahiers du

GERAD G-2000-62, Montréal, Canada.

[75] P. Hansen, S. Krau and O. du Merle. Stabilized column generation algorithm for
the multisource Weber problem (in preparation).

[76] P. Hansen and H. Melot. Variable neighborhood search for extremal graphs.
6. Analyzing bounds on the connectivity index, Les Cahiers du GERAD

(forthcoming).

[77] P. Hansen and N. (1997) Variable neighborhood search for the
p-Median. Location Science, 5, 207–226.

180 P. Hansen and N.

[78] P. Hansen and N. (1999) An introduction to variable neighborhood
search. In: S. Voss et al. (eds.), Metaheuristics, Advances and Trends in Local

Search Paradigms for Optimization. Kluwer, Dordrecht, pp. 433–458.

[79] P. Hansen and N. (1999) First improvement may be better than best
improvement: An empirical study. Les Cahiers du GERAD G-99-40, Montreal,
Canada.

[80] P. Hansen and N. (2001) Variable neighborhood search: Principles
and applications. European Journal of Operational Research, 130, 449–467.

[81] P. Hansen and N. (2001) J-Means: A new local search heuristic for
minimum sum-of-squares clustering. Pattern Recognition, 34, 405–413.

[82] P. Hansen and N. (2001) Industrial applications of the variable
neighborhood search metaheuristics. In: G. Zaccour (eds.), Decisions & Con-

trol in Management Science. Kluwer Academic Publishers, Boston/Dordrecht/
London, pp. 261–274.

[83] P. Hansen and N. (2001) Developments of variable neighborhood
search. In: C. Ribeiro, P. Hansen (eds.), Essays and Surveys in Metaheuristics.

Kluwer Academic Publishers, Boston/Dordrecht/London, pp. 415–440.

[84] P. Hansen, N. and D. Perez-Brito (2001) Variable neighborhood
decomposition search. Journal of Heuristics, 7(4) 335–350.

[85] P. Hansen, N. and D. (2001) Variable neighborhood
search for the Maximum clique. Les Cahiers du GERAD G-2001–25, Montreal,
Canada.

[86] A. Hertz, M-C. Costa and M. Mitaz (1999) Bounds and heuristics for the shortest
capacitated path problem, MIC’99, Rio de Janeiro.

[87] A. Hertz G. Laporte and M. Mittaz (2000) A Tabu search heuristic for the
Capacitated arc routing problem. Operations Research, 48, 129–135.

[88] K.S. Hindi, K. Fleszar and C. Charalambous (2001) An effective heuristic for the
CLSP with setup times. European Journal of Operational Research (accepted
s.t. revision).

[89] C.-T. Hsieh, C.-C. Chin and K.-M. Shen (1998) Generalized fuzzy Kohonen
clustering networks, IEICE Trans. Fundamentals, V. E81-A (10).

[90] F.K. Hwang, D.S. Richards and P. Winter (1992) The Steiner Tree Problem.

North-Holland, Amsterdam.

[91] T. Ibaraki, M. Kubo, T. Masuda, T. Uno and M. Yagiura (2001) Effective local
search algorithms for the vehicle routing problem with general time windows,
MIC’2001, Porto, pp. 293–297.

[92] S. Imahori, M. Yagiura and T. Ibaraki (2001) Local search heuristics for the
rectangle packing problem with general spatial costs, MIC’2001, Porto, pp.
471–476.

[93] R.C. Jancey (1996) Multidimensional group analysis. Australian Journal of

Botany, 14, 127–130.

[94] Johnson D. and Trick M. (eds.), (1996) Cliques, coloring and satisfiabil-
ity: Second DIMACS implementation challenge. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 26.

Variable Neighborhood Search 181

[95] J.E. Kelley (1960) The cutting-plane method for solving convex programs.
Journal of the SIAM, 8, 703–712.

[96] R. Kolish and S. Hartman (1999) Heuristic algorithms for solving the resource-
constrained project scheduling problem: classification and computational
analysis, Project Scheduling: Recent Models, Algorithms and Applications,

Kluwer.

[97] and (1999) Tabu
search methodology in global optimization. Computers & Mathematics with

Applications, 37, 125–133.

[98] S. Krau (1997) Extensions du problems de Weber, PhD thèse, École Polytech-
nique de Montréal.

[99] M. Krishnamoorthy, A.T. Ernst and Y.M. Sharaiha (1998) Comparison of
algorithms for the degree constrained spanning trees, Proceedings of Interna-
tional Conference on Optimisation Techniques and Applications (Perth, Western
Australia, 1998), L. Caccetta, et al. (eds.), Curtin University of Technology,
pp. 859–866.

[100] Y.-K. Kwok and I. Ahmad (1997) Efficient scheduling of arbitrary task graphs
to multiprocessors using a parallel genetic algorithm. Journal of Parallel and

Distributed Computing, 47, 58–77.

[101] M. Labbé, G. Laporte, I. Rodriques and J. Salazar (1999) Median cycle problems.
SMG Report, Université Libre de Bruxelles, Belgium, (http://smg.ulb.ac.be).

[102] M. Laguna, R. Martin and V. Campos (1999) Intensification and diversification
with elite tabu search solutions for the linear ordering problem. Computers &

Operational Research, 26, 1217–1230.

[103] S. Lin and B.W. Kernighan (1973) An effective heuristic for the traveling
salesman problem. Operational Research, 21, 498–516.

[104] K. Jörnsten and A. Lokketangen (1997) Tabu search for weighted k-cardinality
trees. Asia-Pacific Journal of Operational Research, 14(2): 9–26.

[105] L. Lobjois, M. Lemaitre and G. Verfaille (2001) Large neighborhood search
using constraint propagation and greedy reconstruction for valued CSP resolu-
tion. Research report ONERA, Toulouse, France.

[106] EG. Lopez, B.M. Batista, J.A. Moreno Pérez and J.M. Moreno Vega (2000)
The parallel variable neighborhood search for the p-median problem. Research
Report, University of La Laguna, Spain. Journal of Heuristics, (to appear).

[107] S. Loudin and P. Boizumault (2001) VNS/LDS + CP: A hybrid method for
constraint optimization in anytime contexts, MIC’2001, Porto, pp. 761–765.

[108] S.L. Martins, M.G.C. Resende, C.C. Ribeiro and P. Pardalos (2000) A paral-
lel GRASP for the Steiner tree problem in graphs using a hybrid local search
strategy. Journal of Global Optimization, 17, 267–283.

[109] M. Mittaz. Problèmes de cheminements optimaux dans des réseaux avec con-
traintes associées aux arcs. PhD thesis, Department of Mathematics, École
Polytechnique Fédérate de Lausanne, Switzerland.

182 P. Hansen and N.

[110] N. (1995) A Variable neighborhood algorithm—a new metaheuristic
for combinatorial optimization. Abstracts of papers presented at Optimization
Days, Montréal, p. 112.

[111] N. M. Labbé and P. Hansen (2001) Solving the p-center problem
by Tabu search and Variable neighborhood search Networks (to appear).

[112] N. and P. Hansen (1997) Variable neighborhood search. Computers

Operations Research, 24, 1097–1100.

[113] N. J.P. Moreno, and J. Moreno-Vega (1996) A Chain-interchange
heuristic method. Yugoslav Journal of Operational Research, 6, 41–54.

[114] N. J. V. and M. (2000)
Solving Spread spectrum radar polyphase code design problem by Tabu search
and Variable neighborhood search. SMG Report, R-00-09, Universite libre
Bruxelles, Belgium. European Journal of Operational Research (to appear).

[115] N. and D. (2001) Variable neighborhood search for the
k-cardinality tree, MIC’2001, Porto, pp. 749–753.

[116] L.S. Ochi, M.B. Silva and L. Drummond (2001) Metaheuristics based on
GRASP and VNS for solving Traveling purchaser problem, MIC’2001, Porto,
pp. 489–494.

[117] J. Pearl (1998) Probabilistic Reasoning in Intelligent Systems. Morgan and
Kaufman.

[118] G. Pesant and M. Gendreau (1996) A View of local search in Constraint pro-
gramming, principles and practice of Constraint Programming, Lecture Notes

in Computer Science, volume 1118. Springer-Verlag, pp. 353–366.

[119] G. Pesant and M. Gendreau (1999) A Constraint programming framework for
Local search methods. Journal of Heuristics, 5, 255–279.

[120] M. (1975) On characterization of molecular branching. Journal of the

American Chemical Society, 97, 6609–6615.

[121] R. Ravi and F.S. Salman (1999) Approximation algorithms for the traveling
purchaser problem and its variants in network design, Lecture Notes in Computer

Science, volume 1643. Springer, pp. 29–40.

[122] G. Reinelt (1991) TSLIB – A Traveling salesman library. ORSA Journal of

Computing, 3, 376–384.

[123] M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos (1997) Approximate solution
of Weighted max-sat problems using GRASP, In: Dingzhu Du et al. (eds.),
Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 35, American Mathematical
Society, Providence, Rhode Island.

[124] C. Ribeiro and C.Souza (2001) Variable neighborhood descent for the degree-
constrained minimum spanning tree problem. Discrete Applied Mathematics (to
appear).

[125] C. Ribeiro, E. Uchoa and R. Werneck (2001) A hybrid GRASP with pertur-
bations for the Steiner problem in graphs. Technical report, Computer Science
Department, Catholic University of Rio de Janeiro.

Variable Neighborhood Search 183

[126] I. Rodriguez, M. Moreno-Vega and J. Moreno-Perez (1999) Heuristics for
Routing-median problems. SMG Report, Université Libre de Bruxelles,
Belgium.

[127] A. Scholl, R. Klein and C. Jurgens (1997) BISON: A fast hybrid procedure
for exactly solving the one-dimensional bin packing problem. Computers &

Operational Research, 24, 627–645.

[128] P. Shaw (1998) Using constraint programming and local search methods to
solve vehicle routing problems. In: Principles and Practice of Constraint

Programming (CP’98), pp. 417–431.

[129] M.B. Silva, L. Drummond and L.S. Ochi (2000) Variable neighborhood search
for the Traveling purchacer problem, 27th Int. Conf. on Comp. Indust.
Engineering.

[130] E. Taillard and L. Gambardella (1999) Adaptive memories for the quadratic
assignment problem. Technical report I-87-97, IDSIA, Lugano, Switzerland.

[131] E. Taillard and S. Voss. POPMUSIC—Partial optimization metaheuris-
tic under special intensification conditions. In: C. Ribeiro, P. Hansen
(eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers,
Boston/Dordrecht/London, pp. 613–630.

[132] W. Trigeiro, J. Thomas and J. McClain (1989) Capacitated lot-sizing with setup
times. Management Science, 35, 353–366.

[133] J. D. Ullman (1975) NP-complete scheduling problems. Journal of Computing

System Sciences 10(3), 384–393.

[134] M.G.A. Verhoeven, M.E.M. Severens and E.H.L. Aarts (1996) Local search for
Steiner trees in graphs. In: V.J. Rayward-Smith et al. (eds.), Modern Heuristic

Search Methods. John Wiley and Sons, pp. 117–129.

[135] S. Voss (1996) Dynamic Tabu search strategies for the traveling purchaser
problem. Annals of Operational Research 63, 253–275.

[136] R. Whittaker (1983) A fast algorithm for the greedy interchange for large-scale
clustering and median location problems. INFOR, 21, 95–108.

[137] N. Zufferey, C. Avanthay and A. Hertz. Variable neighborhood search for graph
colouring (submitted).

184 P. Hansen and N.

Chapter 7

GUIDED LOCAL SEARCH

Christos Voudouris
Research Department, BTexact Technologies,

BT plc, Orion Building, mlb1/pp12,

Marthlesham Heath, Ipswich, IP5 3RE,

UK

E-mail: chris.voudouris@bt.com

Edward P. K. Tsang
Department of Computer Science,

Univeristy of Essex, Wivenhoe Park,

Colchester, CO4 3SQ, UK

E-mail: edward@essex.ac.uk

Abstract The combinatorial explosion problem prevents complete algorithms from solving
many real-life combinatorial optimization problems. In many situations, heuristic search methods
are needed. This chapter describes the principles of Guided Local Search (GLS) and Fast Local
Search (FLS) and surveys their applications. GLS is a penalty-based meta-heuristic algorithm
that sits on top of other local search algorithms, with the aim to improve their efficiency and
robustness. FLS is a way of reducing the size of the neighborhood so as to improve the efficiency
of local search. The chapter also provides guidance for implementing and using GLS and FLS.
Four problems, representative of general application categories, are examined with detailed
information provided on how to build a GLS-based method in each case.

Keywords: Heuristic Search, Meta-Heuristics, Penalty-based Methods, Guided Local Search,
Tabu Search, Constraint Satisfaction

1 INTRODUCTION

Many practical problems are NP-hard in nature, which means complete, constructive
search is unlikely to satisfy our computational demand. For example, suppose we have
to schedule 30 jobs to 10 machines, satisfying various production constraints. The
search space has 1030 leaf nodes. Let us assume that we use a very clever backtracking
algorithm that explores only one in every 1010 leaf nodes. Let us generously assume
that our implementation examines 1010 nodes per second (with today’s hardware, even
the most naïve backtracking algorithm should be expected to examine only 105 nodes
per second). This still leaves us with approximately 300 years to solve the problem, in
the worst case. Many real life problems cannot be realistically and reliably be solved by
complete search. This motivates the development of local search, or heuristic methods.

C. Voudouris and E.P.K. Tsang

In this paper, we describe GLS, a general meta-heuristic algorithm and its applica-
tions. GLS sits on top of other heuristic methods with the aim to improve their efficiency
or robustness. GLS has been applied to a non-trivial number of problems, and found
to be efficient and effective. It is relatively simple to implement and apply, with few
parameters to tune.

The rest of this chapter will be divided into two parts: the first part describes the GLS
and surveys its applications. The second part provides guidelines on how to implement
and use GLS in practical applications.

Part I: Survey of Guided Local Search

2 BACKGROUND

Local search (LS) is the basis of most heuristic search methods. It searches in the
space of candidate solutions, such as the assignment of one machine to each job in
the above example. The solution representation issue is significant, though it is not the
subject of our discussion here. Starting from a (possibly randomly generated) candidate
solution, LS moves to a “neighbor” that is “better” than the current candidate solution
according to the objective function. LS stops when all neighbors are inferior to the
current solution.

LS can find good solutions very quickly. However, it can be trapped in local
optima—positions in the search space that are better than all their neighbors, but not
necessarily representing the best possible solution (the global optimum). To improve
the effectiveness of LS, various techniques have been introduced over the years. Sim-
ulated Annealing (SA), Tabu Search (TS) and Guided Local Search (GLS) all attempt
to help LS escape local optimum. This chapter focuses on GLS.

GLS is a meta-heuristic algorithm generalized and extended from a neural-network
based method called GENET (Wang and Tsang, 1991, 1994; Davenport et al., 1994;
Tsang et al., 1999). GLS was inspired by ideas from the area of Search Theory on how
to distribute the searching effort (e.g. see Koopman, 1957; Stone, 1983). GENET is a
weighted method for constraint satisfaction. Though originated from neural networks,
GENET resembles the min-conflict heuristic repair method by Minton et al. (1992).

The principles of GLS can be summarized as follows. As a meta-heuristic method,
GLS sits on top of LS algorithms. To apply GLS, one defines a set of features for the
candidate solutions. When LS is trapped in local optima, certain features are selected
and penalized. LS searches using the objective function as this is augmented by the
accumulated penalties. The novelty of GLS is in the way that it selects features to
penalize. GLS effectively distributes the search effort in the search space, favoring
areas where promise is shown.

3 GUIDED LOCAL SEARCH

As mentioned earlier, GLS augments the given objective function with penalties. To
apply GLS, one needs to define features for the problem. For example, in the travelling
salesman problem, a feature could be “whether the candidate tour travels immediately

from city A to city B” . GLS associates a cost and a penalty to each feature. The costs can

186

Guided Local Search 187

often be defined by taking the terms and their coefficients from the objective function.
For example, in the travelling salesman problem, the cost of the above feature can
simply be the distance between cities A and B. The penalties are initialized to 0 and
will only be increased when the local search reaches a local optimum. Given an objective
function g that maps every candidate solution s to a numerical value, GLS defines a
function h that will be used by LS (replacing g):

where s is a candidate solution, is a parameter to the GLS algorithm, i ranges over
the features, is the penalty for feature (all are initialized to 0) and is an
indication of whether s exhibits feature i:

Sitting on top of local search algorithms, GLS helps them to escape local optima
in the following way. Whenever the local search algorithm settles in a local optimum,
GLS augments the cost function by adding penalties to selected features. The novelty of
GLS is mainly in the way that it selects features to penalize. The intention is to penalize
“unfavorable features” or features that “matter most” when a local search settles in a
local optimum. The feature that has high cost affects the overall cost more. Another
factor that should be considered is the current penalty value of that feature. The utility
of penalizing feature i, under a local optimum is defined as follows:

where is the cost and is the current penalty value of feature i. In other words,
if a feature is not exhibited in the local optimum (indicated by), then the utility of
penalizing it is 0. The higher the cost of this feature (the greater), the greater the
utility of penalizing it. Besides, the more times that it has been penalized (the greater

), the lower the utility of penalizing it again. In a local optimum, the feature with the
greatest util value will be penalized. When a feature is penalized, its penalty value is
always increased by 1. The scaling of the penalty is adjusted by .

By taking cost and the current penalty into consideration in selecting the feature to
penalize, GLS focuses its search effort on more promising areas of the search space:
areas that contain candidate solutions that exhibit “good features”, i.e. features involv-
ing lower cost. On the other hand, penalties help to prevent the search from directing
all effort to any particular region of the search space. Following is the general GLS
procedure (a more detailed pseudo-code for GLS will be given in Section 7.1):

Procedure GLS (L, g, I, c)
/* g is an objective function; L is a LS strategy; I and c are

arrays of features and their costs; is a scaling number)

1. Generate a starting candidate solution randomly or

heuristically;

2. Initialize all the penalty values to 0;

188 C. Voudouris and E.P.K. Tsang

3. Repeat the following until a termination condition

(e.g. a maximum number of iterations or time limit)

has been reached:

3.1. Perform local search (using L) according to the

function h (which is g plus the penalty values,

as defined in Eq. 1 above) until a local optimum

LM has been reached;

3.2. For each feature i which is exhibited in LM

compute

3.3. Penalize every feature i such that is

maximum:

4. Return the best candidate solution found so far

according to the objective function g.

End of Procedure GLS

Naturally the choice of the features, their costs and the setting of may affect
the efficiency of a search. Experience shows that the features and their costs normally
come directly from the objective function. In many problems, the performance of GLS
is not too sensitive to the value . This means one does not require too much effort to
apply GLS to a new problem. In certain problems, one needs expertise in selecting the
features and the parameter. Current research aims to reduce the sensitivity of the
parameter (Mills and Tsang, 2000b).

4 FAST LOCAL SEARCH

One factor which affects the efficiency ofa local search algorithm is the size of the neigh-
borhood. If too many neighbours are considered, then the search could be very costly.
This is especially true if the search takes many steps to reach a local optima, and/or
each evaluation of the objective function requires a significant amount of computation.
Bentley (1992) presented the approximate 2-Opt method to reduce the neighborhood of
2-Opt in the TSP. We have generalised this method to a method called Fast Local Search

(FLS). The principle is to, guided by heuristics, ignore neighbors that are unlikely to
lead to improving moves in order to enhance the efficiency of a search.

The neighborhood choosen for the problem is broken down into a number of small
sub-neighborhoods and an activation bit is attached to each one of them. The idea is to
scan continuously the sub-neighborhoods in a given order, searching only those with the
activation bit set to 1. These sub-neighborhoods are called active sub-neighborhoods.
Sub-neighborhoods with the bit set to 0 are called inactive sub-neighborhoods and they
are not being searched. The neighborhood search process does not restart whenever
we find a better solution but it continues with the next sub-neighborhood in the given
order. This order may be static or dynamic (i.e., change as a result of the moves
performed).

Initially, all sub-neighborhoods are active. If a sub-neighborhood is examined and
does not contain any improving moves then it becomes inactive. Otherwise, it remains
active and the improving move found is performed. Depending on the move performed,
a number of other sub-neighborhoods are also activated. In particular, we activate all
the sub-neighborhoods where we expect other improving moves to occur as a result

Guided Local Search 189

of the move just performed. As the solution improves the process dies out with fewer
and fewer sub-neighborhoods being active until all the sub-neighborhood bits turn to 0.
The solution formed up to that point is returned as an approximate local optimum.

The overall procedure could be many times faster than conventional local search.
The bit setting scheme encourages chains of moves that improve specific parts of the
overall solution. As the solution becomes locally better the process is settling down,
examining fewer moves and saving enormous amounts of time which would otherwise
be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions,
when they are combined with GLS they become very powerful optimization tools.
Combining GLS with FLS is straightforward. The key idea is to associate features to
sub-neighborhoods. The associations to be made are such that for each feature we know
which sub-neighborhoods contain moves that have an immediate effect upon the state
of the feature (i.e. moves that remove the feature from the solution).

By reducing the size of the neighbourhood, one may significantly reduce the amount
ofcomputation involved in each local search iterations. The hope is to enable more local
search iterations in a fixed amount of time. The danger of ignoring certain neighbours is
that some improvements may be missed. The hope is that the gain out-weighs the loss.

5 GLS AND OTHER METAHEURISTICS

GLS is closely related to other heuristic and meta-heuristic methods. Recently, Choi
et al. (forthcoming) show the relationship between GENET (GLS’s predecesor) and
the Lagrangean Method. In this section, we shall discuss the relationship between GLS
and Tabu Search (TS), Genetic Algorithms (GA).

5.1 GLS and Tabu Search

GLS is closely related to Tabu Search (TS). For example, penalties in GLS can be seen
as soft taboos in TS that guide LS away from local minima. There are many ways to
adopt TS ideas in GLS. For example, taboo lists and aspiration ideas have been used
in later versions of GLS. Penalties augment the original objective function. They help
the local search to escape local optimum. However, if too many penalties are built up
during the search, the local search could be misguided. Resembling the taboo lists idea,
a limited number of penalties are used when GLS is applied to the quadratic assignment
problem. When the list is full, old penalties will be overwritten (Voudouris and Tsang,
1998).

In our current work, aspiration (inspired by TS) is used to favor promising moves.
Details of this work will be presented in another occasion (Mills and Tsang, 2000b).

5.2 GLS and Genetic Algorithms

As a meta-heuristic method, GLS can also sit on top of genetic algorithms (GA)
(Holland, 1975; Goldberg, 1989). This has been demonstrated in Guided Genetic
Algorithm (GGA) (Lau and Tsang, 1997 1998; Lau, 1999).

GGA is a hybrid of GA and GLS. It is designed to extend the domain of both GA
and GLS. One major objective is to further improve the robustness of GLS. It can
be seen as a GA with GLS to bring it out of local optimum: if no progress has been

C. Voudouris and E.P.K. Tsang190

made after a specific of iterations (this number is a parameter to GGA), GLS modifies
the fitness function (which is the objective function) by means of penalties, using the
criteria defined in equation (3). GA will then use the modified fitness function in future
generations. The penalties are also used to bias crossover and mutation in GA – genes
that contribute more to the penalties are made more susceptive to changes by these two
GA operators. This allows GGA to be more focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLS’s from different
starting points running in parallel, exchanging material in a GA manner. The difference
is that only one set of penalties is used in GGA whereas parallel GLS’s could have used
one independent set of penalties per run. Besides, learning in GGA is more selective
than parallel GLS: the updating of penalties is only based on the best chromosome
found at the point of penalization.

6 APPLICATIONS

GLS, FLS and their descendents have been applied to a non-trivial number of problems
and achieved world-class results.

6.1 Radio Link Frequency Assignment Problem

In the radio link frequency assignment problem (RLFAP), the task is to assign available
frequencies to communication channels satisfying constraints that prevent interference
(Bouju et al., 1995). In some RLFAPs, the goal is to minimize the number of frequencies
used. Bouju et al. (1995) is an early work that applied GENET to radio length frequency
assignment. For the CALMA set of benchmark problems, which has been widely
used, GLS+FLS reported the best results compared to all work published previously
(Voudouris and Tsang, 1996). In the NATO Symposium on RLFAP in Denmark, 1998,
GGA was demonstrated to improve the robustness of GLS (Lau and Tsang, 1998). In
the same symposium, new and significantly improved results by GLS were reported
(Voudouris and Tsang, 1998). GLS and GGA hold some of the best results in the
CALMA set of benchmark problems.

6.2 Workforce Scheduling Problem

In the workforce scheduling problem (WSP) (Azarmi and Abdul-Hameed, 1995),
the task is to assign technicians from various bases to serve the jobs, which may
include customer requests and repairs, at various locations. Customer requirements
and working hours restrict the times that certain jobs can be served by certain tech-
nicians. The objective is to minimize a function that takes into account the travelling
cost, overtime cost and unserved jobs. In the WFS, GLS+FLS holds the best-published
results in the benchmark problem available to the authors (Tsang and Voudouris, 1997).

6.3 Travelling Salesman Problem

The most significant results of GLS and FLS are probably in their application to the
travelling salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a specialized
algorithm for TSP that has long been perceived as the champion of this problem (Lin
and Kernighan, 1973; Martin and Otto, 1996). We tested GLS+FLS+2Opt against

Guided Local Search 191

LK (Voudouris and Tsang, 1999) in a set of benchmark problems from the public TSP
library (Reinelt, 1991). Given the same amount of time (we tested 5 and 30 cpu min
on a DEC Alpha 3000/600), GLS+FLS+2Opt found better results than LK in aver-
age. GLS+FLS+2Opt also out-performed Simulated Annealing (Johnson, 1990), Tabu
Search (Knox, 1994) and Genetic Algorithm (Freisleben and Merz, 1996) implemen-
tations reported on the TSP. One must be cautious when interpreting such empirical
results as they could be affected by many factors, including implementation issues.
But given that the TSP is an extensively studied problem, it takes something special
for an algorithm to out-perform the champions under any reasonable measure (“find

me the best results within a given amount of time” must be a realistic requirement). It
must be emphasized that LK is specialized for TSP but GLS and FLS are much simpler
general-purpose algorithms.

GLS hybrids have also been proposed for the TSP including the combination
of GLS with Memetic Algorithms (Holstein and Moscato, 1999) and also with the,
dynamic-programming based, Dynasearch technique with some encouraging prelimi-
nary results reported (Congram and Potts, 1999). Finally, Padron and Balaguer (2000)
have applied GLS to the related Rural Postman Problem (RPP).

6.4 Function Optimization

GLS has also been applied to general function optimization problems to illustrate that
artificial features can be defined for problems in which the objective function suggests
no obvious features. Results show that, as expected, GLS spreads its search effort
across solution candidates depending on their quality (as measured by the objective
function). Besides, GLS consistently found solutions in a landscape with many local
sub-optimals (Voudouris, 1998).

6.5 Satisfiability and Max-SAT problem

Given a set of propositions in conjunctive normal form, the Satisfiability (SAT) problem
is to determine whether the propositions can all be satisfied. The MAX-SAT problem
is a SAT problem in which each clause is given a weight. The task is to minimize the
total weight of the violated clauses. In other words, the weighted MAX-SAT problem
is an optimization problem. Many researchers believe that many problems, including
scheduling and planning can be formulated as SAT and MAX-SAT problems, hence
these problems have received significant attention in recent years, e.g., see Gent et al.
(2000).

GLSSAT, an extension of GLS, was applied to both the SAT and weighted MAX-
SAT problem (Mills and Tsang, 2000a). On a set SAT problems from DIMACS,
GLSSAT produced results comparable to those produced by WalkSAT (Selman and
Kautz, 1993), a variation of GSAT (Selman et al., 1992), which was specifically
designed for the SAT problem.

On a popular set of benchmark weighted MAX-SAT problems, GLSSAT produced
better or comparable solutions, more frequently than state-of-the-art algorithms, includ-
ing DLM (Shang and Wah, 1998), WalkSAT (Selman and Kautz, 1993) and GRASP
(Resende and Feo, 1996).

192 C. Voudouris and E.P.K. Tsang

6.6 Generalized Assignment Problem

The Generalized Assignment Problem is a generic problem in which the task is to
assign agents to jobs. Each job can only be handled by one agent, and each agent
has a finite resource capacity that limits the number of jobs that it can be assigned.
Assigning different agents to different jobs bear different utilities. On the other hand,
different agents will consume different amounts of resources when doing the same job.
In a set of benchmark problems, GGA found results as good as those produced by a
state-of-the-art algorithm (which was also a GA algorithm) by Chu and Beasley (1997),
with improved robustness (Lau and Tsang, 1998).

6.7 Processor Configuration Problem

In the Processors Configuration Problem, one is given a set of processors, each of
which with a fixed number of connections. In connecting the processors, one objective
is to minimize the maximum distances between processors. Another possible objective
is to minimize the average distance between pairs of processors (Chalmers, 1994).
In applying GGA to the Processors Configuration Problem, representation was a key
issue. To avoid generating illegal configurations, only mutation is used. GGA found
configurations with shorter average communication distance than those found by other
algorithms reported previously (Lau and Tsang, 1997, 1998).

6.8 Vehicle Routing Problem

In a vehicle routing problem, one is given a set of vehicles, each with its specific
capacity and availability, and a set of customers to serve, each with specific weight
and/or time demand on the vehicles. The vehicles are grouped in one or more depots.
Both the depots and the customers are geographically distributed. The task is to serve
the customers using the vehicles, satisfying time and capacity constraints. This is
a practical problem. Like many practical problems, it is NP-hard.

Kilby et al. (1999, 2000) applied GLS vehicle routing problems and achieved out-
standing results. As a result, their work were incorporated in Dispatcher, a commercial
package developed by ILOG (http://www.ilog.fr/html/products/) (Backer et al., 2000).

6.9 Constrained Logic Programming

Lee and Tam (1995) and Stuckey and Tam (1998) embedded GENET in logic pro-
gramming languages in order to enhance programming efficiency. In these logic
programming implementations, unification is replaced by constraint satisfaction. This
enhances efficiency and extends applicability of logic programming.

6.10 Other Applications of GENET and GLS

We have also applied GLS and FLS to a variety of other problems, including the
Maximum Channel Assignment problem, a Bandwidth Packing problem variant, graph
colouring, car sequencing problem. GLS and FLS have also been successfully applied
to the 3-D Bin Packing Problem by Faroe et al. (1999). Other applications of GENET
include rail traffic control (Jose and Boyce, 1997).

Guided Local Search 193

Part II: Practical Guidelines for Using Guided Local Search

7 IMPLEMENTING GUIDED LOCAL SEARCH

As explained in previous sections, a local search procedure for the particular problem
is required. Guided Local Search is repeatedly using this procedure to optimize the
augmented objective function of the problem. The augmented objective function is
modified each time a local minimum is reached by increasing the penalties of one or
more of the features present in the local minimum. These features are selected by using
the utility function (3) described in Section 3. The pseudo-codes for implementing a
Guided Local Search method and a Guided Fast Local Search method are presented
and explained in the sections below.

7.1 Pseudo-code for Guided Local Search

The pseudo-code for the Guided Local Search procedure is the following:

procedure GuidedLocalSeach(p, g, M)
begin

ConstructionMethod(p);
/* set all penalties to 0 */
for until M do

/* define the augmented objective function */

*
while StoppingCriterion do
begin

ImprovementMethod
/* compute the utility of features */
for until M do

/* penalize features with maximum utility */
for each i such that is maximum do

k k+1;
end

s* best solution found with respect to objective
function g;

return s*;
end

where p: problem, g: objective function, h: augmented objective function, lambda
parameter, indicator function offeature cost of feature i, M: number of features,

penalty of feature i, ConstructionMethod(p): method for constructing a initial
solution for problem p, and method for improving solution

according to the augmented objective function h.

194 C. Voudouris and E.P.K. Tsang

7.2 Guidelines for Implementing the GLS Pseudo-code

To understand the pseudo-code, let us explain first the methods for constructing a
solution and improving a solution, which are contained in there and they are both
prerequisites in order to build a GLS algorithm.

7.2.1 Construction Method

As with other meta-heuristics, Guided Local Search requires a construction method
to generate an initial (starting) solution for the problem. In the pseudo-code, this is
denoted by ConstructionMethod. This method can be generating a random solution or
a heuristic solution based on some known technique for constructing solutions for the
particular problem. Guided Local Search is not very sensitive to the starting solution
given that sufficient time is allocated to the algorithm to explore the search space of
the problem.

7.2.2 Improvement Method

A method for improving the solution is also required. In the pseudo-code, this is denoted
by ImprovementMethod. This method can be a simple local search algorithm or a more
sophisticated one such as Variable Neighborhood Search (Hansen and Mladenovic,
1999), Variable Depth Search (Lin and Kernighan, 1973), Ejection Chains (Glover and
Laguna, 1997) or combinations of local search methods with exact search algorithms
(Pesant and Gendreau, 1999).

It is not essential for the improvement method to generate high quality local minima.
Experiments with GLS and various TSP heuristics reported in (Voudouris and Tsang,
1999) have shown that high quality local minima take time to produce, resulting in less
intervention by GLS in the overall allocated search time. This may sometimes lead to
inferior results compared to a simple but more computationally efficient improvement
method.

Note also that the improvement method is using the augmented objective function
instead of the original one.

7.2.3 Indicator Functions and Feature Penalization

Given that a construction and an improvement method are available for the problem,
the rest of the pseudo-code is straightforward to apply. The penalties of features are ini-
tialized to zero and they are incremented for features that maximize the utility formula,
after each call to the improvement method.

The indicator functions for the features rarely need to be implemented. Look-
ing at the values of the decision variables can directly identify the features present in
a local minimum. When this is not possible, data structures with constant time dele-
tion/addition operations (e.g. based on double-linked lists) can incrementally maintain
the set of features present in the working solution avoiding the need for an expensive
computation when GLS reaches a local minimum.

The selection of features to penalize can be efficiently implemented by using the
same loop for computing the utility formula for features present in the local minimum
(the rest can be ignored) and also placing features with maximum utility in a vector.
With a second loop, the features with maximum utility contained in this vector have
their penalties incremented by one.

Guided Local Search 195

7.2.4 The Lambda Parameter

The lambda parameter is the only parameter to the GLS method (at least in its basic
version) and in general, it is instance dependent. Fortunately, for several problems, it
has been observed that good values for lambda can be found by dividing the value of
the objective function in a local minimum with the average number of features present.
In these problems, lambda is dynamically computed after the first local minimum and
before penalties are applied to features for the first time. The user only provides an
alpha parameter, which is relatively instance independent. The recommended formula
for lambda as a function of alpha is the following:

where g is the objective function of the problem. Tuning alpha can result in lambda
values, which work for many instances of a problem class.

Another benefit from using is that, if tuned, it can be fixed in industrialized
versions of software, resulting in ready-to-use GLS algorithms for the end-user.

7.2.5 Augmented Objective Function and Move Evaluations

With regard to the objective function and the augmented objective function, the program
should keep track of the actual objective value in all operations relating to storing the
best solution or finding a new best solution. Keeping track of the value of the augmented
objective value (e.g. after adding the penalties) is not necessary since local search
methods will be looking only at the differences in the augmented objective value when
evaluating moves.

However, the move evaluation mechanism needs to be revised to work efficiently
with the augmented objective function. Normally, the move evaluation mechanism is
not directly evaluating the objective value of the new solution generated by the move.
Instead, it calculates the difference in the objective function. This difference should
be combined with the difference in the amount of penalties. This can be easily done
and has no significant impact on the time needed to evaluate a move. In particular,
we have to take into account only features that change state (being deleted or added).
The penalties of the features deleted are summed together. The same is done for the
penalties of features added. The change in the amount of penalties due to the move is
then simply given by the difference:

which then has to be multiplied by lambda and added to
Another minor improvement is to monitor the actual objective value not only for

the solutions accepted by local search but also for those evaluated. Since local search
is using the augmented objective function, a move that generates a new best solution
may be missed. From our experience, this modification does not improve significantly
the performance of the algorithm although it can be proved useful when GLS is used
to find new best-known solutions to hard benchmark instances.

196 C. Voudouris and E.P.K. Tsang

7.2.6 Stopping Criterion

There are many choices possible for the StoppingCritetion. Since GLS is not trapped in
local minima, there is no obvious point when to stop the algorithm. Like in other meta-
heuristics, we usually resort to a measure related to the length of the search process.
For example, we may choose to set a limit on the number of moves performed, the
number of moves evaluated, or the CPU time spend by the algorithm. If a lower bound
is known, we can utilize it as a stopping criterion by setting the excess above the lower
bound that we require to be achieved. Criteria can also be combined to allow for a more
flexible way to stop the GLS method.

In the next section, we look at the combination of Guided Local Search with Fast
Local Search resulting in the Guided Fast Local Search method.

8 IMPLEMENTING GUIDED FAST LOCAL SEARCH

Guided Fast Local Search (GFLS) is more sophisticated than the basic GLS algorithm
using a number of sub-neighborhoods, which are enabled/disabled during the search
process. The main advantage of GFLS lies in its ability to provide search focus after the
penalties of features are increased. This can dramatically shorten the time required by
an improvement method to re-optimize the solution each time the augmented objective
function is modified

Guided Fast Local Search has been described in Section 4 of this chapter. In the
following sections, we provide the pseudo-code for the method and also some sugges-
tions on how to achieve an efficient implementation. We first look at the pseudo-code
for Fast Local Search, which is part of the overall Guided Fast Local Search algorithm.

8.1 Pseudo-code for Fast Local Search

The pseudo-code for Fast Local Search is the following:

procedure FastLocalSeach(s,h, h , L)

begin

/* i.e. while active sub-neighborhood exists */
for until L do
begin

/* search sub-neighborhood i */
begin

Moves MovesForSubneighborhood(i) ;
for each move m in Moves do

begin

/* is the result of move m */

if then

/* minimization case is assumed here */
begin

/* spread activation */
ActivateSet

while do

if then

Guided Local Search 197

SubneighborhoodsForMove(m);

for each sub-neighborhood j

in ActivateSet do

goto ImprovingMoveFound

end

end

/* no improving move found */

end

ImprovingMoveFound:

continue;

end;

return s;

end

where s: solution, h: augmented objective function, L: number of sub-neighborhoods,
activation bit for sub-neighborhood i, MovesForSubneighborhood(i): method

which returns the set of moves contained in sub-neighborhood i, and Subneighbor-

hoodsForMove(m): method which returns the set of sub-neighborhoods to activate
when move m is performed.

8.2 Guidelines for Implementing the FLS Pseudo-code

As explained in section (4), the problem’s neighborhood is broken down into a number
of sub-neighborhoods and an activation bit is attached to each one of them. The idea is to
examine sub-neighborhoods in a given order, searching only those with the activation
bit set to 1. The neighborhood search process does not restart whenever we find a
better solution but it continues with the next sub-neighborhood in the given order. The
pseudo-code given above is flexible since it does not specify which bits are initially
switched on or off, something which is an input to the procedure. This allows the
procedure to be focused to certain sub-neighborhoods and not the whole neighborhood,
which may be a large one.

The procedure has two points that need to be customized. The first is the
breaking-down of the neighborhood into sub-neighborhoods (MovesForSubneigh-

borhood method in pseudo-code). The second is the mapping from moves to
sub-neighborhoods for spreading activation (SubneighborhoodsForMove method in
pseudo-code). Both these points are strongly dependent on the move operator used.

In general, the move operator depends on the solution representation. Fortunately,
several problems share the same solution representation which is typically based on
some well-known simple or composite combinatorial structure (e.g., selection, permu-
tation, partition, composition, path, cyclic path, tree, graph, etc.). This allows us to
use the same move operators for many different problems (e.g. 1-Opt, 2-Opt, Swaps,
Insertions, etc.).

8.2.1 Breaking Down the Neighborhood into Sub-neighborhoods

The method for mapping sub-neighborhoods to moves, which is denoted in the pseudo-
code by SubneighbourhoodToMoves, can be defined by looking at the implementation

198 C. Voudouris and E.P.K. Tsang

of a typical local search procedure for the problem. This implementation, at its core,
will usually contain a number of nested for-loops for generating all possible move
combinations. The variable in the outer-most loop in the move generation code can be
used to define the sub-neighborhoods. The moves in each sub-neighborhood will be
those generated by the inner loops for the particular sub-neighborhood index value at
the outer-most loop.

In general, the sub-neighborhoods can be overlapping. Fast local search is usually
examining limited numbers of moves compared to exhaustive neighborhood search
methods and therefore duplication of moves is not a problem. Moreover, this can be
desirable sometimes to give a greater range to each sub-neighborhood. Since not all
sub-neighborhoods are active in the same iteration, if there is no overlapping, some of
improving moves may be missed.

8.2.2 Spreading Activation When Moves are Executed

The method for spreading activation, denoted by SubneighbourhoodsForMove, returns
a set of sub-neighborhoods to activate after a move is performed. The lower bound for
this set is the sub-neighborhood where the move originated. The upper bound (although
not useful) is all the sub-neighborhoods in the problem.

A way to define this method is to look at the particular move operator used. Moves
will affect part of the solution directly or indirectly while leaving other parts unaffected.
If a sub-neighborhood contains affected parts then it needs to be activated since an
opportunity could arise there for an improving move as a result of the original move
performed.

The Fast Local Search loop is settling down in a local minimum when all the bits
of sub-neighborhoods turn to zero (i.e. no improving move can be found in any of the
sub-neighborhoods). Fast Local Search to that respect is similar to other local search
procedures. The main differences are that the method can be focused to search particular
parts of the overall neighborhood and secondly, it is working in a opportunistic way
looking at parts of the solution which are likely to contain improving moves rather than
the whole solution. In the next section, we look at Guided Fast Local Search, which
uses Fast Local Search as its improvement method.

8.3 Pseudo-code for Guided Fast Local Search

The pseudo-code for Guided Fast Local Search is given below:

procedure GuidedFastLocalSearch(p, g,
M, L)

begin

s0 ConstructionMethod(p);
/* set all penalties to 0 */
for until M do

/* set all sub-neighborhoods to the active state */
for until L do

/* define the augmented objective function */

Guided Local Search 199

while StoppingCriterion do

begin

FastLocalSearch
/* compute the utility of features */
for until M do

/* penalize features with maximum utility */
for each i such that is maximum do
begin

/* activate sub-neighborhoods related
to penalized feature i */
ActivateSet SubneighborhoodsForFeature(i);
for each sub-neighborhood j in ActivateSet do

end

end

s* best solution found with respect to objective
function g;

return s*;
end

where p: problem, g: objective function, h: augmented objective function, lambda
parameter, indicator function of feature i, cost of feature i, M: number of features,

penalty of feature i, L: number of sub-neighborhoods, : activation bit for sub-
neighborhood i, ConstructionMethod(p): method for constructing a initial solution for
problem p, the fast local search method
as depicted in section 8.1, and SubneighborhoodsForFeature(i): method which returns
the set of sub-neighborhoods to activate when feature i is penalized.

8.4 Guidelines for Implementing the GFLS Pseudo-code

This pseudo-code is similar to that of Guided Local Search explained in Section 7. All
differences relate to the manipulation of activation bits for the purpose of focusing Fast
Local Search. These bits are initialized to 1. As a result, the first call to Fast Local
Search is examining the whole neighborhood for improving moves.

Subsequent calls to Fast Local Search examine only part of the neighborhood
and in particular all the sub-neighborhoods that relate to the features penalized
by GLS.

8.4.1 Identifying Sub-neighborhoods to Activate When Features are Penalized

Identifying the sub-neighborhoods that are related to a penalized feature is the task
of SubneighborhoodsForFeature method. The role of this method is similar to that of
SubneighborhoodsForMove method in Fast Local Search (see Section 8.2.2).

The SubneighborhoodsForFeature method is usually defined based on an analysis
of the move operator. After the application of penalties, we are looking for moves which

200 C. Voudouris and E.P.K. Tsang

remove or have the potential to remove penalized features from the solution. The sub-
neighborhoods, which contain such moves, are prime candidates for activation. Specific
examples will be given later in the chapter and in the context of GLS applications.

Guided Fast Local Search is much faster than basic Guided Local Search especially
in large problem instances where repeatedly and exhaustively searching the whole
neighborhood is computationally expensive.

9 USEFUL FEATURES FOR COMMON APPLICATIONS

Apart from the necessary specialization of the algorithms explained in previous
sections, applying Guided Local Search or Guided Fast Local Search to a problem
requires identifying a suitable set of features to guide the search process. As explained
in section 3, features need to be defined in the form of indicator functions that given
a solution return 1 if the feature is present in the solution or 0 otherwise.

Features provide the heuristic search expert with quite a powerful tool since any
solution property can be potentially captured and used to guide local search. Usually,
we are looking for solution properties, which have a direct impact on the objective
function. These can be modeled as features with feature costs equal or analogous
to their contribution to the objective function value. By applying penalties to features,
GLS can guide the improvement method to avoid costly (“bad”) properties, converging
faster towards areas of the search space, which are of high quality.

Features are not necessarily specific to a particular problem and they can be used in
several problems of similar structure. Real world problems, which sometimes incorpo-
rate elements from several academic problems, can benefit from using more than one
feature-sets to guide local search to optimize better all different terms of a complex
objective function.

Below, we provide examples of features that can be deployed in the context of
various problems. The reader may find them helpful and use them in his/her own
optimization application.

9.1 Routing/Scheduling Problems

In routing/scheduling problems, one is seeking to minimize the time required by a vehi-
cle to travel between customers or for a resource to be setup from one activity to
the next. Problems in this category include the Traveling Salesman Problem, Vehicle
Routing Problem, Machine Scheduling with Sequence Dependent Set-up Times and
others.

Travel or setup times are modeled as edges in a path or graph structure commonly
used to represent the solution of these problems. The objective function (or at least part
of it) is given by the sum of lengths for the edges used by the solution.

Edges are ideal GLS features. A solution either contains an edge or not. Further-
more, each edge has a cost equal to its length. We can define a feature for each possible
edge and assign a cost to it equal to the edge length. GLS quickly identifies and penal-
izes long and costly edges guiding local search to high quality solutions, which use as
much as possible the short edges available.

Guided Local Search 201

9.2 Assignment Problems

In assignment problems, a set of items has to be assigned to another set of items (e.g.,
airplanes to flights, locations to facilities, people to work etc.). Each assignment of
item i to item j usually carries a cost and depending on the problem, a number of
constraints required to be satisfied (e.g., capacity or compatibility constraints). The
assignment of item i to item j can be seen as a solution property which is either present
in the solution or not. Since each assignment also carries a cost, this is another good
example of a feature to be used in a GLS implementation.

In some variations of the problem such as the Quadratic Assignment Problem, the
cost function is more complicated and assignments are having an indirect impact to the
cost. Even in these cases, we found the GLS can generate good results by assigning
to all features the same feature costs (e.g. equal to 1 or some other arbitrary value).
Although, GLS is not guiding the improvement method to good solutions (since this
information is difficult to extract from the objective function), it can still diversify
the search because of the penalty memory incorporated and it is capable of producing
results comparable to popular heuristic methods.

9.3 Resource Allocation Problems

Assignment problems can be used to model resource allocation applications. A spe-
cial but important case in resource allocation is when the resources available are not
sufficient to service all requests. Usually, the objective function will contain a sum of
costs for the unallocated requests, which is to be minimized. The cost incurred when
a request is unallocated will reflect the importance of the request or the revenue lost in
the particular scenario.

A possible feature to consider for these problems is whether a request is unallocated
or not. If the request is unallocated then a cost is incurred in the objective function,
which we can use as the feature cost to guide local search. The number of features in
a problem is equal to the number of requests that may be left unallocated, one for each
request. There may be hard constraints which state that certain requests should always
be allocated a resource, there is no need to define a feature for them. Problems in
this category include the Path Assignment Problem (Anderson et al., 1993), Maximum
Channel Assignment Problem (Simon, 1989), Workforce Scheduling Problem (Azarmi
and Abdul-Hameed, 1995) and others.

9.4 Constrained Optimization Problems

Constraints are very important in capturing processes and systems in the real world.
A number of combinatorial optimization problems deals with finding a solution, which
satisfies a set of constraints or, if that is not possible, minimizes the number of constraint
violations (relaxations). Constraint violations may have costs (weights) associated to
them, in which case the sum of constraint violation costs is to be minimized.

Local search usually considers the number of constraint violations (or their weighted
sum) as the objective function even in cases where the goal is to find a solution,
which satisfies all the constraints. Constraints by their nature can be easily used as
features. They can be modeled by indicator functions and they also incur a cost (i.e.,
when violated/relaxed), which can be used as their feature cost. Problems which can
benefit from this modeling include the Constraint Satisfaction and Partial Constraint

202 C. Voudouris and E.P.K. Tsang

Satisfaction Problem (Tsang, 1993), the famous SAT and its MAX-SAT variant, Graph
Coloring, various Frequency Assignment Problems (Murphey et al., 1999) and others.

The features proposed in past sections, we would see them used in case problems.
In particular, we examine the application of GLS to the following:

Traveling Salesman Problem (Routing/Scheduling category),
Quadratic Assignment Problem (Assignment Problem category),
Workforce Scheduling Problem (Resource Allocation category),
Radio Link Frequency Assignment Problem (Constraint Optimization category).

For each case problem, we provide a short problem description along with guidelines
on how to build a basic local search procedure, implement GLS and also GFLS when
applicable.

10 TRAVELING SALESMAN PROBLEM (TSP)

10.1 Problem Description

There are many variations of the Traveling Salesman Problem (TSP). In here, we
examine the classic symmetric TSP. The problem is defined by N cities and a symmetric
distance matrix which gives the distance between any two cities i and j.

The goal in TSP is to find a tour (i.e. closed path), which visits each city exactly once
and is of minimum length. A tour can be represented as a cyclic permutation on the
N cities if we interpret to be the city visited after city The cost
of a permutation is defined as:

and gives the cost function of the TSP.

10.2 Local Search

10.2.1 Solution Representation

The solution representation usually adopted for the TSP is that of a vector which
contains the order of the cities in the tour. For example, the i-th element of the vector
will contain an identifier for the i-th city to be visited. Since the solution of the TSP
is a closed path there is an edge implied from the last city in the vector to the first one
in order to close the tour. The solution space of the problem is that off all possible
permutations of the cities as represented by the vector.

10.2.2 Construction Method

A simple construction method is to generate a random tour. If the above solution
representation is adopted then all that is required is a simple procedure, which generates
a random permutation of the identifiers of the cities. More advanced TSP heuristics
can be used if we require a higher quality starting solution to be generated (Reinelt,
1994). This is useful in real time/online applications where a good tour may be needed

Guided Local Search 203

very early in the search process in case the user interrupts the algorithm. If there are no
concerns like that then a random tour generator suffices since the GLS meta-heuristic
tends to be relatively insensitive to the starting solution and capable of finding high
quality solutions even if left to run for a relatively short time.

10.2.3 Improvement Method

Most improvement methods for the TSP are based on the k-Opt moves. Using k-Opt
moves, neighboring solutions can be obtained by deleting k edges from the current tour
and reconnecting the resulting paths using k new edges. The k-Opt moves are the basis
of the three most famous local search heuristics for the TSP, namely 2-Opt (Croes,
1958), 3-Opt (Lin, 1965) and Lin-Kernighan (LK) (Lin and Kernighan, 1973).

The reader can consider using the simple 2-Opt method, which in addition to its
simplicity is very effective when combined with GLS. With 2-Opt, a neighboring
solution is obtained from the current solution by deleting two edges, reversing one of
the resulting paths and reconnecting the tour. In practical terms, this means reversing
the order of the cities in a contiguous section of the vector or its remainder depending
on which one is the shortest in length.

Computing incrementally the change in solution cost by a 2-Opt move is relatively
simple. Let us assume that edges e1, e2 are removed and edges e3, e4 are added with
lengths dl, d2, d3, d4 respectively. The change in cost is the following:

When we discuss the features used in the TSP, we will explain how this evalua-
tion mechanism is revised to account for penalty changes in the augmented objective
function.

10.3 Guided Local Search

For the TSP, a tour includes a number of edges and the solution cost (tour length) is
given by the sum of the lengths of the edges in the tour (see (6)). As mentioned in
Section 9.1, edges are ideal features for routing problems such as the TSP. First, a tour
either includes an edge or not and second, each edge incurs a cost in the objective
function equal to the edge length, as this is given by the distance matrix of
the problem. A set of features can be defined by considering all possible undirected
edges that may appear in a tour with
feature costs given by the edge lengths Each edge connecting cities i and city
j is attached a penalty initially set to 0 which is increased by GLS during search.
When implementing the GLS algorithm for the TSP, the edge penalties can be arranged
in a symmetric penalty matrix As mentioned in section 3, penalties have
to be combined with the problem’s objective function to form the augmented objective
function which is minimized by local search. We therefore need to consider the auxiliary
distance matrix:

Local search must use instead of D in move evaluations. GLS modifies P and
(through that) whenever local search reaches a local minimum.

In order to implement this, we revise the incremental move evaluation formula (7)
to take into account the edge penalties and also the lambda parameter. If p1, p2, p3, p4

204 C. Voudouris and E.P.K. Tsang

are the penalties associated to edges e1, e2, e3, and e4, respectively the revised version
of (7) is as follows:

Similarly, we can implement GLS for higher order k-Opt moves.
The edges penalized in a local minimum are selected according to the utility function

(3), which for the TSP takes the form:

where

The only parameter of GLS that requires tuning is the parameter. Alternatively,
we can tune the a parameter which is defined in Section 7.2 and it is relatively instance
independent. Experimenting with a on the TSP, we found that there is an inverse relation
between a and local search effectiveness. Not so effective local search heuristics such
as 2-Opt require higher a values compared to more effective heuristics such as 3-Opt
and LK. This is probably because the amount of penalty needed to escape from local
minima decreases as the effectiveness of the heuristic increases explaining why lower
values for a (and consequently for which is a function ofa) work better with 3-Opt and
LK. For 2-Opt, the following range for a generates high quality solutions for instances
in the TSPLIB (Reinelt, 1991).

The reader may refer to (Voudouris and Tsang, 1999) for more details on the
experimentation procedure and the full set of results.

10.4 Guided Fast Local Search

We can exploit the way local search works on the TSP to partition the neighborhood in
sub-neighborhoods as required by Guided Fast Local Search. Each city in the problem
may be seen as defining a sub-neighborhood, which contains all 2-Opt edge exchanges
removing either one of the edges adjacent to the city. For a problem with N cities, the
neighborhood is partitioned into N sub-neighborhoods, one for each city in the instance.

The sub-neighborhoods to be activated after a move is executed are those of the
cities at the ends of the edges removed or added by the move.

Finally, the sub-neighborhoods activated after penalization are those defined by
the cities at the ends of the edge(s) penalized. There is a good chance that these
sub-neighborhoods will include moves that remove the one or more of the penalized
edges.

11 QUADRATIC ASSIGNMENT PROBLEM (QAP)

11.1 Problem Description

The Quadratic Assignment Problem (QAP) is one of the most difficult problems in
combinatorial optimization. The problem can model a variety of applications but it is

Guided Local Search 205

mainly known for its use in facility location problems. In the following, we describe
the QAP in its simplest form.

Given a set N = {1,2, ..., n} and n × n matrices and the
QAP can be stated as follows:

where p is a permutation of N and is the set of all possible permutations. There are
several other equivalent formulations of the problem. In the facility location context,
each permutation represents an assignment of n facilities to n locations. More specifi-
cally, each position i in the permutation represents a location and its contents p(i) the
facility assigned to that location. The matrix A is called the distance matrix and gives
the distance between any two of the locations. The matrix B is called the flow matrix
and gives the flow of materials between any two of the facilities. For simplicity, we
only consider the Symmetric QAP case for which both the distance and flow matrices
are symmetric.

11.2 Local Search

QAP solutions can be represented by permutations to satisfy the constraint that each
facility is assigned to exactly one location. A move commonly used for the problem is
simply to exchange the contents of two permutation positions (i.e. swap the facilities
assigned to a pair of locations). A best improvement local search procedure starts with
a random permutation. In each iteration, all possible moves (i.e. swaps) are evaluated
and the best is selected and performed. The algorithm reaches a local minimum when
there is no move, which improves further the cost of the current permutation.

An efficient update scheme can be used in the QAP which allows evaluation of
moves in constant time. The scheme works only with best improvement local search.
Move values of the first neighborhood search are stored and updated each time a new
neighborhood search is performed to take into account changes from the move last
executed, see (Taillard, 1995) for details. Move values do not need to be evaluated
from scratch and thus the neighborhood can be fully searched in roughly time
instead of required otherwise.1 To evaluate moves in constant time, we have to
examine all possible moves in each iteration and have their values updated. Because of
that, the scheme can not be easily combined with Fast Local Search, which examines
only a number of moves in each iteration therefore preventing benefiting substantially
from GFLS in this case.

11.3 Guided Local Search

A set of features that can be used in the QAP is the set of all possible assignments of
facilities to locations (i.e. location-facility pairs). This kind of feature is general and
can be used in a variety of assignment problems as explained in Section 9.2. In the
QAP, there are possible location-facility combinations. Because of the structure of

1To evaluate the change in the cost function 13 caused by a move normally requires O(n) time. Since
there are moves to be evaluated, the search of the neighborhood without the update scheme requires

time.

206 C. Voudouris and E.P.K. Tsang

the objective function, it is not possible to estimate easily the impact of features and
assign to them appropriate feature costs. In particular, the contribution in the objective
function of a facility assignment to a location depends also on the placement of the
other facilities with a non-zero flow to that facility.

Experimenting with the problem, we found that if all features are assigned the same
cost (e.g. 1), the algorithm is still capable of generating high quality solutions. This is
due to the ability of GLS to diversify search using the penalty memory. Since features
are considered of equal cost, the algorithm is distributing search efforts uniformly
across the feature set. Comparative tests we conducted between GLS and the Taboo
Search of (Taillard, 1991) indicate that both algorithms are performing equally well
when applied to the QAPLIB instances (Burkard et al., 1997) with no clear winner
across the instance set. GLS, although not using feature costs in this problem, is still
very competitive to state-of-the-art techniques such as Taboo Search.

To determine in the QAP, one may use the formula below, which was derived
experimentally:

where n is the size of the problem and the flow and distance means are computed over
the distance and flow matrices respectively (including any possible 0 entries which are
common in QAP instances). Experimenting with QAPLIB instances, we found that
optimal performance is achieved for a = 0.75.

12 WORKFORCE SCHEDULING PROBLEM

12.1 Problem Description

We now look at how GLS can be applied to a real-word resource allocation problem with
unallocated requests called the Workforce Scheduling problem (WSP), see (Tsang and
Voudouris, 1997) for more details. The problem is to schedule a number of engineers
to a set of jobs, minimizing total cost according to a function, which is to be explained
below. Each job is described by a triple:

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is the
standard duration of the job and Type indicates whether this job must be done in the
morning, in the afternoon, as the first job of the day, as the last job of the day, or “don’t
care”.

Each engineer is described by a 5-tuple:

where Base is the x and y co-ordinates at which the engineer locates, ST and ET are
this engineer’s starting and ending time, OT_limit is his/her overtime limit, and Skill

is a skill factor between 0 and 1 which indicates the fraction of the standard duration
that this engineer needs to accomplish a job. The cost function that is to be minimized
is defined as follows:

Guided Local Search 207

where

NoT = number of engineers,
NoJ = number of jobs,

= Travelling Cost of engineer i,

= Overtime of engineer i,
= Standard duration of job j,

= 1 if job j is unallocated; 0 otherwise,
Penalty = constant (which is set to 60 in the tests).

The traveling cost between is defined as follows:

12.2 Local Search

12.2.1 Solution Representation

We represent a candidate solution (i.e. a possible schedule) by a permutation of the
jobs. Each permutation is mapped into a schedule using the deterministic algorithm
described below:

procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed once
and recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation.
For each job x, try to allocate it to an engineer according to the ordered list of
qualified engineers:

2.1. to check if engineer g can do job x, make x the first job of g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2. if job x can be fitted into engineer g’s current tour, then try to improve g’s
new tour (now with x in it): the improvement is done by a simple 2-opting
algorithm (see section 10), modified in the way that only better tours which
satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into engineer g’s current tour, then consider the next
engineer in the ordered list of qualified engineers for x; the job is unallocated
if it cannot fit into any engineer’s current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created,
is returned.

Here is the absolute difference between and and is the absolute
difference between and The greater of the x and y differences is halved before
summing. Engineers are required to start from and return to their base everyday. An
engineer may be assigned more jobs than he/she can finish.

208 C. Voudouris and E.P.K. Tsang

12.2.2 Construction Method

The starting point of local search is generated heuristically and deterministically: the
jobs are ordered by the number of qualified engineers for them. Jobs that can be served
by the fewest number of qualified engineers are placed earlier in the permutation.

12.2.3 Improvement Method

Given a permutation, local search is performed in a simple way: a pair of jobs is
examined at a time. Two jobs are swapped to generate a new permutation if the new
permutation is evaluated (using the Evaluation procedure above) to a lower cost than
the original permutation.

Note here that since the problem is also close to the Vehicle Routing Problem (VRP),
one may follow a totally different approach considering VRP move operators such as
insertions, swaps etc. In this case, the solution representation and construction methods
need to be revised. The reader may refer to (Backer et al., 2000) for more information
on the application of GLS to the VRP.

12.3 Guided Local Search

In the workforce scheduling problem, we use the feature type recommended for
resource allocation problems in Section 9.3. In particular, the inability to serve jobs
incurs a cost, which plays the most important part in the objective function. Therefore,
we intend to bias local search to serve jobs of high importance. To do so, we define
a feature for each job in the problem:

The cost of this feature is given by which is equal to the cost
incurred in the cost function (17) when a job is unallocated.

The jobs penalized in a local minimum are selected according to the utility function
(3) which for workforce scheduling takes the form:

WSP exhibits properties found in resource allocation problems (i.e. unallocated
job costs) and also in routing problems (i.e. travel costs). In addition to the above
feature type and for better performance, we may consider introducing a second feature
type based on edges as suggested in section 9.1 for routing problems and explained in
section 10.3 for the TSP. This feature set can help to aggressively optimize the travel
costs also incorporated in the objective function (17). Furthermore, one or both features
sets can be used in conjunction with a VRP based local search method.

12.4 Guided Fast Local Search

To apply Guided Fast Local Search to workforce scheduling, each job permutation posi-
tion defines a separate sub-neighborhood. The activation bits are manipulated according

Guided Local Search 209

to the general FLS algorithm of section (8). In particular:

1. all the activation bits are set to 1 (or “on”) when GFLS starts;

2. the bit for job permutation position x will be switched to 0 (or “off”) if every
possible swap between the job at position x and the other jobs under the current
permutation has been considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved
in a swap which has been accepted.

Mapping penalized jobs to sub-neighborhoods is straightforward. We simply acti-
vate the sub-neighborhoods corresponding to the permutation positions of the penalized
jobs. This essentially forces Fast Local Search to examine moves, which swap the
penalized jobs.

13 RADIO LINK FREQUENCY ASSIGNMENT PROBLEM

13.1 Problem Description

The Radio Link Frequency Assignment Problem (RLFAP) (Tiourine et al., 1995; Mur-
phey et al., 1999) is abstracted from the real life application of assigning frequencies to
radio links. The problem belongs to the class of constraint optimization problems men-
tioned in Section 9.4. In brief, the interference level between the frequencies assigned
to the different links has to be acceptable; otherwise communication will be distorted.
The frequency assignments have to comply with certain regulations and physical char-
acteristics of the transmitters. Moreover, the number of frequencies is to be minimized,
because each frequency used in the network has to be reserved at a certain cost. In cer-
tain cases, some of the links may have pre-assigned frequencies which may be respected
or preferred by the frequency assignment algorithm. In here, we examine a simplified
version of the problem considering only the interference constraints. Information on
the application of GLS to the full problem can be found in (Voudouris and Tsang,
1998). A definition of the simplified problem is the following.

We are given a set L of links. For each link i, a frequency has to be chosen from
a given domain Constraints are defined on pairs of links that limit the choice of
frequencies for these pairs. For a pair of links {i, j} these constraints are either of type

or of type

for a given distance Two links i and j involved in a constraint of type (21)
are called interfering links, and the corresponding is the interfering distance. Two
links bound by a constraint of type (22) are referred to as a pair of parallel links; every
link belongs to exactly one such pair.

Some of the constraints may be violated at a certain cost. Such restrictions are called
soft, in contrast to the hard constraints, which may not be violated. The constraints
of type (22) are always hard. Interference costs for violating soft constraints of
type (21) are given. An assignment of frequencies is complete if every link in L has
a frequency assigned to it. We denote by C the set of all soft interference constraints.

210 C. Voudouris and E.P.K. Tsang

The goal is to find a complete assignment that satisfies all hard constraints and is
of minimum cost:

subject to hard constraints:

for all pairs of links {i, j} involved in the hard constraints,
for all pairs of parallel links { i , j } ,

for all links

where is 1 if the condition within brackets is true and 0 otherwise.
We look next at a local search procedure for the problem.

13.2 Local Search

13.2.1 Using an Alternative Objective Function

When using heuristic search to solve a combinatorial optimization problem, it is not
always necessary to use the objective function as dictated in the problem formula-
tion. Objective functions based on the original one can be devised which result in
smoother landscapes. These objective functions can sometimes generate solutions of
higher quality (with respect to the original objective function) than if the original one
is used.

In the RLFAP, we can define and use a simple objective function g, which is given
by the sum of all constraint violation costs in the solution with all the constraints
contributing equally to the sum instead of using weights as in (23). This objective
function is as follows:

subject to hard constraints:

where is 1 if the condition within brackets is true and 0 otherwise, is
the frequency assigned to link i in solution s, is the set of hard inequality
constraints, C is the set of soft inequality constraints and is the reduced domain for
link i containing only frequencies which satisfy the hard equality constraints.

A solution s with cost 0 with respect to g is satisfying all hard and soft constraints
of the problem.

The motivation to use an objective function such as (24) is closely related to the
rugged landscapes formed in RLFAP, if the original cost function is used. In particular,
high and very low violation costs are defined for some of the soft constraints. This leads
to even higher violation costs to have to be defined for hard constraints. The landscape
is not smooth but full of deep local minima mainly due to the hard and soft constraints
of high cost. Soft constraints of low cost are buried under these high costs.

A similar approach to replace the objective function has been used successfully by
(Mills and Tsang, 2000) in the MAX-SAT problem suggesting the universal appeal of
the idea in constraint optimization problems.

for all links

Guided Local Search 211

13.2.2 Solution Representation

An efficient solution representation for the problem takes into account the fact that each
link in RLFAP is connected to exactly one other link via a hard constraint of type (22).
In particular, we can define a decision variable for each pair of parallel links bound
by an equality constraint (22). The domain of this variable is defined as the set of all
pairs of frequencies from the original domains of the parallel links that satisfy the hard
equality constraint.

13.2.3 Construction Method

A construction method can be implemented by assigning to each decision variable
(assigns values to a pair of links) a random value from its domain. In large problem
instances, it is beneficial to consider a domain pre-processing and reduction phase.
Sophisticated techniques based on Arc-Consistency (Tsang, 1993) can be utilized
during that phase to reduce domains based on the problem’s hard constraints. These
domains can then be used instead of the original ones for the random solution generation
and also by the improvement method.

13.2.4 Improvement Method

An improvement method can based on the min-conflicts heuristic of Minton et al. (1992)
for Constraint Satisfaction Problems. A 1-optimal type move is used which changes
the value of one variable at a time. Starting from a random and complete assignment
of values to variables, variables are examined in an arbitrary static order. Each time
a variable is examined, the current value of the variable changes to the value (in the
variable’s domain) which yields the minimum value for the objective function. Ties are
randomly resolved allowing moves which transit to solutions with equal cost. These
moves are called sideways moves (Selman et al., 1992) and enable local search to exam-
ine plateau of solutions occurring in the landscapes of many constraint optimization
problems.

13.3 Guided Local Search

The most important cost factor in the RLFAP is constraint violation costs defined for
soft inequality constraints. Inequality constraints can be used to define a basic feature
set for the RLFAP. Each inequality constraint is interpreted as a feature with the feature
cost given by the constraint violation cost as defined in the problem’s original cost
function (23).

Hard inequality constraints are also modelled as features though the cost assigned
to them is infinity. This results in their utility to be penalized to also tend to infinity.
To implement this in the code, hard constraints are simply given priority over soft
constraints when penalties are applied. This basically forces local search to return back
to a feasible region where penalizing soft constraints can resume.

GLS is especially suited to use the alternative objective function (24) because of
the definition of feature costs as described above. The application of penalties can
force local search toward solutions which satisfy constraints with high violation costs,
to some degree independently from the objective function used by local search while
benefiting from the smoother landscape introduced by (24).

212 C. Voudouris and E.P.K. Tsang

The parameter can be set to 1 provided that we use (24) as the objective function.
The same value for has also been used in MAX-SAT problems in (Mills and Tsang,
2000) where the same approach is followed with respect to smoothing the landscape.

A variation of the GLS method which seems to significantly improve performance in
certain RLFAP instances is to decrease penalties and not only increase them (Voudouris
and Tsang, 1998). More specifically, the variant uses a circular list to retract the effects
of penalty increases made earlier in the search process, in a way that very much resem-
bles a tabu list. In particular, penalties increased are decreased after a certain number
of penalty increases is performed. The scheme uses an array of size t where the t most
recent features penalised are recorded. The array is treated as a circular list, adding
elements in sequence in positions 1 through t and then starting over at position 1. Each
time the penalty of a feature is increased (by one unit), the feature is inserted in the
array and the penalty of the feature previously stored in the same position is decreased
(by one unit). The rational behind the strategy is to allow GLS to return to regions of
the search visited earlier in the search process, so introducing a search intensification
mechanism.

13.4 Guided Fast Local Search

Best improvement local search for the RLFAP as used in the context of Tabu Search,
for an example see (Hao et al., 1998), evaluates all possible 1-optimal moves over all
variables before selecting and performing the best move. Given the large number of
links in real world instances, greedy local search is a computationally expensive option.
This is especially the case for the RLFAP where we cannot easily devise an incremental
move update mechanism (such as that for the QAP) for all the problem’s variations.
The local search procedure described in Section 13.2 is already a faster alternative than
best improvement. Using Guided Fast Local Search, things can be improved further.

To apply Guided Fast Local Search to RLFAP, each decision variable defines a sub-
neighborhood and has a bit associated to it. Whenever a variable is examined and
its value is changed (i.e., the variable’s parallel links are assigned to another pair
of frequencies because of an improving or sideways move) the activation bit of the
variable remains to 1 otherwise it turns to 0 and the variable is excluded in future
iterations of the improvement loop. Additionally, if a move is performed activation
spreads to other variables which have their bits set to 1. In particular, we set to 1
the bit of variables where improving moves may occur as a result of the move just
performed. These are the variables for which either one of their links is connected via
a constraint to one of the links of the variable that changed value. There are five potential
schemes for propagating activation after changing the value of a variable. They are the
following:

1. Activate all variables connected via a constraint to the variable which changed
value.

2. Activate only variables that are connected via a constraint which is violated. This
resembles CSP local search methods where only variables in conflict have their
neighborhood searched.

3. Activate only variables that are connected via a constraint which has become
violated as a result of the move (subset of condition 2 and also 4).

Guided Local Search 213

4. Activate only variables that are connected via a constraint that changed state (i.e.
violated satisfied or satisfied violated) as a result of the move (superset of
condition 3).

5. Activate variables that fall under either condition 2 or 4.

Experimentation suggests that scheme 5 tends to produce better results for the real
world instances of RLFAP available in the literature. Fast local search stops when all
the variables are inactive or when a local minimum is detected by other means (i.e.
a number of sideways moves is performed without an improving move found).

Finally, when a constraint is penalized we activate the variables connected via the
constraint in an effort to find 1-Opt moves which will satisfy the constraint.

14 SUMMARY AND CONCLUSIONS

For many years, general heuristics for combinatorial optimization problems with most
prominent examples the methods of Simulated Annealing and Genetic Algorithms
heavily relied on randomness to generate good approximate solutions to difficult NP-
Hard problems. The introduction and acceptance of Tabu Search (Glover and Laguna,
1997) by the Operations Research community initiated an important new era for heuris-
tic methods where deterministic algorithms exploiting historical information started
appearing and being used in real world applications.

Guided local search described in this chapter follows this trend. GLS heavily
exploits information (not only the search history) to distribute the search effort in
the various regions of the search space. Important structural properties of solutions are
captured by solution features. Solutions features are assigned costs and local search is
biased to spend its efforts according to these costs. Penalties on features are utilized
for that purpose.

When local search settles in a local minimum, the penalties are increased for selected
features present in the local minimum. By penalizing features appearing in local min-
ima, GLS avoids the local minima visited (exploiting historical information) but also
diversifies choices for the various structural properties of solutions captured by the
solution features. Features of high cost are penalized more times than features of low
cost: the diversification process is directed and deterministic rather than undirected and
random.

In general, several penalty cycles may be required before a move is executed out of
a local minimum. This should not be viewed as an undesirable situation. It is caused
by the uncertainty in the information as captured by the feature costs which makes
necessary the testing of the GLS decisions against the landscape of the problem.

The penalization scheme of GLS is ideally combined with FLS which limits
neighbourhood search to particular parts of the overall solution leading to the GFLS
algorithm. GFLS significantly reduces the computation times required to explore the
area around a local minimum to find the best escape route allowing many more penalty
modification cycles to be performed in a given amount of running time.

The GLS and GFLS methods are still in their early stages and future research
is required to develop them further. The use of incentives implemented as negative
penalties, which encourage the use of specific solution features, is one promising
direction to be explored. Other interesting directions include fuzzy features with indi-
cator functions returning real values in the [0,1] interval, automated tuning of the

214 C. Voudouris and E.P.K. Tsang

lambda or alpha parameters, definition of effective termination criteria, alternative util-
ity functions for selecting the features penalized and also studies about the convergence
properties of GLS.

We found it relatively easy to adapt GLS and GFLS to the different problems exam-
ined in this chapter. Although local search is problem dependent, the other structures
of GLS and also GFLS are problem independent. Moreover, a step by step procedure
is usually followed when GLS or GFLS is applied to a new problem (i.e. implement
a local search procedure, identify features, assign costs, define sub-neighborhoods,
etc.) something which makes easier the use of the technique by non-specialists (e.g.
software engineers).

REFERENCES

Anderson, C.A., Fraughnaugh, K., Parker, M. and Ryan, J. (1993) Path assignment
for call routing: An application of tabu search. Annals of Operations Research, 41,

301–312.

Azarmi, N. and Abdul-Hameed, W. (1995) Workforce scheduling with constraint logic
programming. BT Technology Journal, 13(1), 81–94.

Backer, B.D., Furnon, V., Shaw, P., Kilby, P. and Prosser, P. (2000) Solving vehi-
cle routing problems using constraint programming and metaheuristics. Journal of

Heuristics, 6(4), 501–523.

Bentley, J.J. (1992) Fast algorithms for geometric traveling salesman problems. ORSA

Journal on Computing, 4, 387–111.

Bouju, A., Boyce, J.F., Dimitropoulos, C.H.D., vom Scheidt, G. and Taylor, J.G. (1995)
Intelligent search for the radio link frequency assignment problem. Proceedings of

the International Conference on Digital Signal Processing, Cyprus.

Chalmers, A.G. (1994) A Minimum Path Parallel Processing Environment. Research
Monographs in Computer Science, Alpha Books.

Choi, K.M.F., Lee, J.H.M. and Stuckey, P.J. A Lagrangian reconstruction of GENET.
Artificial Intelligence (to appear).

Chu, P. and Beasley, J.E. (1997) A genetic algorithm for the generalized assignment
problem. Computers and Operations Research, 24, 17–23.

Congram, R.K. and Potts, C.N., (1999) Dynasearch Algorithms for the Traveling
Salesman Problem. Presentation at the Travelling Salesman Workshop, CORMSIS,
University of Southampton.

Croes, A. (1958) A method for solving traveling-salesman problems. Operations

Research, 5, 791–812.

Davenport, A., Tsang, E.P.K., Wang, C.J. and Zhu, K. (1994) GENET: a con-
nectionist architecture for solving constraint satisfaction problems by iterative
improvement. Proceedings 12th National Conference for Artificial Intelligence

(AAAI), pp. 325–330.

Faroe, O., Pisinger, D. and Zachariasen, M (1999) Guided local search for the three-
dimensional bin packing problem. Tech. Rep. 99–13, Department of Computer
Science, University of Copenhagen.

Guided Local Search 215

Freisleben, B. and Merz, P. (1996) A genetic local search algorithm for solving sym-
metric and asymmetric travelling salesman problems. Proceedings of the 1996 IEEE

International Conference on Evolutionary Computation, IEEE Press, pp. 616–621.

Gent, I.P., van Maaren, H. and Walsh, T. (2000) SAT2000, Highlights of satisfiability
research in the year 2000. Frontiers in Artificial Intelligence and Applications, IOS
Press.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Boston.

Goldberg, D.E. (1989) Genetic algorithms in search, optimization, and machine
learning, Reading, MA, Addison-Wesley Pub. Co., Inc.

Hansen, P. and Mladenovic, N. (1999) An introduction to variable neighborhood
search. In: S. Voss, S. Martello, I.H. Osman, and C. Roucairol (eds.), Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Optimization.

Kluwer, Boston, pp. 433–458.

Hao J.-K., Dorne, R. and Galinier, P. (1998) Tabu search for frequency assignment in
mobile radio Networks. Journal of Heuristics, 4(1), 47–62.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Holstein, D. and Moscato, P. (1999) Memetic algorithms using guided local search: a
case study. In: D. Corne, F. Glover, and M. Dorigo (eds.), New Ideas in Optimisation

McGraw-Hill, London, pp. 234–244.

Johnson, D. (1990) Local optimization and the traveling salesman problem. Proceed-

ings of the 17th Colloquium on Automata Languages and Programming, Lecture
Notes in Computer Science 443, Springer-Verlag, pp. 446–461.

Jose, R. and Boyce, J. (1997) Appication of connectionist local search to line
management rail traffic control. Proceedings of International Conf. on Practical

Applications of Constraint Technology (PACT’97), London.

Kilby, P., Prosser, P. and Shaw, P. (1999) Guided local search for the vehicle routing
problem with time windows. In: S. Voss, S. Martello, I.H. Osman and C. Rou-
cairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for

Optimization. Kluwer Academic Publishers, pp. 473–486.

Kilby, P., Prosser, P. and Shaw, P. (2000) A comparison of traditional and constraint-
based heuristic methods on vehicle routing problems with side constraints.
Constraints, 5(4), 389–114.

Knox, J. (1994) Tabu search performance on the symmetric traveling salesman
problem. Computers Operations Research, 21(8), 867–876.

Koopman, B.O. (1957) The theory of search, part III, the optimum distribution of
search effort. Operations Research, 5, 613–626.

Lau, T.L. and Tsang, E.P.K. (1997) Solving the processor configuration problem with
a mutation-based genetic algorithm. International Journal on Artificial Intelligence

Tools (IJAIT), 6(4), 567–585.

Lau, T.L. and Tsang, E.P.K. (1998) The guided genetic algorithm and its application
to the general assignment problem. IEEE 10th International Conference on Tools

with Artificial Intelligence (ICTAI’98), Taiwan, pp. 336–343.

216 C. Voudouris and E.P.K. Tsang

Lau, T.L. and Tsang, E.P.K. (1998) Guided genetic algorithm and its application
to the radio link frequency allocation problem. Proceedings of NATO symposium

on Frequency Assignment, Sharing and Conservation in Systems (AEROSPACE),

AGARD, RTO-MP-13, Paper No. 14b.

Lau, T.L. (1999) Guided Genetic Algorithm. PhD Thesis, Department of Computer
Science, University of Essex, Colchester, UK.

Lee, J.H.M. and Tam, V.W.L. (1995) A framework for integrating artificial neural
networks and logic programming. International Journal on Artificial Intelligence

Tools, 4, 3–32.

Lin, S. (1965) Computer Solutions of the Traveling-Salesman Problem. Bell Systems

Technical Journal, 44, 2245–2269.

Lin, S. and Kernighan, B.W. (1973) An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21, 498–516.

Martin, O., and Otto, S.W. (1966) Combining simulated annealing with local search
heuristics. In: G. Laporte and I.H. Osman (eds.), Metaheuristics in Combinatorial

Optimization, Annals of Operations Research, Vol. 63.

Mills, P. and Tsang, E.P.K. (2000) Guided local search for solving SAT and weighted
MAX-SAT problems. Journal of Automated Reasoning, 24, 205–223.

Mills, P. and Tsang, E.P.K. (2000) An empirical study of extended guided local
search on the quadratic assignment problem. Manuscript, submitted to Nareyek,
A. (ed.), Post-Proceedings, ECAI-2000 Workshop on Local Search for Planning

and Scheduling, Springer LNCS/LNAI book series.

Minton S., Johnston, M.D., Philips A.B. and Laird, P. (1992) Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence 58(1–3) (Special Volume on Constraint Based Reasoning),
161–205.

Murphey, R.A., Pardalos, P.M. and Resende, M.G.C. (1999) Frequency assign-
ment problems. In: D.-Z Du and P. Pardalos (eds.), Handbook of Combinatorial

Optimization, Vol. 4, Kluwer Academic Publishers.

Padron, V. and Balaguer, C. (2000) New Methodology to solve the RPP by means
of Isolated Edge. In: A. Tuson (ed.), 2000 Cambridge Conference Tutorial Papers,

Young OR 11, UK Operational Research Society.

Pesant, G. and Gendreau, M. (1999) A constraint programming framework for local
search methods. Journal of Heuristics, 5(3), 255–279.

R.E. Burkard, R.E., Karisch, S.E. and Rendl F. (1997) QAPLIB—a quadratic
assignment problem library. Journal of Global Optimization, 10, 391–403.

Reinelt, G. (1991) A traveling salesman problem library. ORSA Journal on Computing,

3, 376–384.

Reinelt, G. (1995) The traveling salesman: computational solutions for TSP applica-
tions. Lecture Notes in Computer Science, Vol. 840, Springer-Verlag.

Resende, M.G.C. and Feo, T.A. (1996) A GRASP for satisfiability. In: D.S. Johnson
and M. A. Trick (eds.), Cliques, coloring, and satisfiability: Second DIMACS Imple-

mentation Challenge. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, Vol. 26, pp. 499–520.

Guided Local Search 217

Selman, B., Levesque, H. J. and Mitchell, D. G. (1992) A new method for solving
hard satisfiability problems. Proceedings of AAAI-92, 440–446.

Selman, B. and Kautz, H. (1993) Domain-independent extensions to GSAT: solv-
ing large structured satisfiability problems. Proceedings of 13th International Joint

Conference on AI, 290–295.

Shang, Y. and Wah, B.W. (1998) A discrete lagrangian-based global-search method
for solving satisfiability problems. Journal of Global Optimization, 12(1), 61–99.

Simon, H. U. (1989) Approximation algorithms for channel assignment in cellu-
lar radio networks. Proceedings 7th International Symposium on Fundamentals
of Computation Theory, Lecture Notes in Computer Science, Vol. 380. Springer-
Verlag, pp. 405–416.

Stone, L.D. (1983) The process of search planning: current approaches and continuing
problems. Operations Research, 31, 207–233.

Stuckey, P. and Tam, V. (1998) Semantics for using stochastic constraint solvers in
constraint logic programming. Journal of Functional and Logic Programming, 2.

Taillard, E. (1991) Robust taboo search for the QAP. Parallel Computing 17, 443–455.

Taillard, E. (1995) Comparison of iterative searches for the quadratic assignment
problem. Location Science, 3, 87–105.

Tiourine, S., Hurkins, C. and Lenstra, J.K. (1995) An overview of algorithmic
approaches to frequency assignment problems. EUCLID CALMA Project Overview

Report, Delft University of Technology, The Netherlands.

Tsang, E.P.K. and Wang, C. J. (1992) A generic neural network approach for constraint
satisfaction problems. In: J.G. Taylor(ed.), Neural Network Applications, Springer-
Verlag, pp. 12–22.

Tsang, E.P.K. and Voudouris, C. (1997) Fast local search and guided local search and
their application to British Telecom’s workforce scheduling problem. Operations

Research Letters, 20(3), 119–127.

Tsang, E.P.K., Wang, C.J., Davenport, A., Voudouris, C. and Lau, T.L. (1999) A fam-
ily of stochastic methods for constraint satisfaction and optimisation. Proceedings

of the First International Conference on The Practical Application of Constraint

Technologies and Logic Programming (PACLP), London, pp. 359–383.

Voudouris, C. and Tsang, E.P.K. (1996) Partial constraint satisfaction problems and
guided local search. Proceedings of PACT’96, London, pp. 337–356.

Voudouris, C. (1997) Guided Local Search for Combinatorial Optimisation Problems.

PhD Thesis, Department of Computer Science, University of Essex, Colchester,
UK.

Voudouris, C. (1998) Guided Local Search—An illustrative example in function
optimisation. BT Technology Journal, 16(3), 46–50.

Voudouris, C. and Tsang, E. (1998) Solving the Radio Link Frequency Assignment
Problems using Guided Local Search. Proceedings of NATO symposium on Fre-

quency Assignment, Sharing and Conservation in Systems (AEROSPACE), AGARD,
RTO-MP-13, PaperNo. 14a.

218 C. Voudouris and E.P.K. Tsang

Voudouris, C. and Tsang, E.P.K. (1999) Guided Local Search and its application to the
Travelling Salesman Problem. European Journal of Operational Research, 113(2),
469–499.

Wang, C.J. and Tsang, E.P.K. (1991) Solving constraint satisfaction problems using
neural-networks. Proceedings of the IEE Second International Conference on

Artificial Neural Networks, pp. 295–299.

Wang, C.J. and Tsang, E.P.K. (1994) A cascadable VLSI design for GENET. In: J.G.
Delgado-Frias and W.R. Moore (eds.), VLSI for Neural Networks and Artificial

Intelligence. Plenum Press, New York, pp. 187–196.

Chapter 8

GREEDY RANDOMIZED ADAPTIVE
SEARCH PROCEDURES

Mauricio G.C. Resende
AT&T Labs Research

E-mail: mgcr@research.att.com

Celso C. Ribeiro
Catholic University of Rio de Janeiro

E-mail: celso@inf.puc-rio.br

Abstract GRASP is a multi-start metaheuristic for combinatorial problems, in which each
iteration consists basically of two phases: construction and local search. The construction phase
builds a feasible solution, whose neighborhood is investigated until a local minimum is found

during the local search phase. The best overall solution is kept as the result. In this chapter, we first
describe the basic components of GRASP. Successful implementation techniques and parameter
tuning strategies are discussed and illustrated by numerical results obtained for different appli-

cations. Enhanced or alternative solution construction mechanisms and techniques to speed up
the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and
learning, local search on partially constructed solutions, hashing, and filtering. We also discuss
in detail implementation strategies of memory-based intensification and post-optimization tech-
niques using path-relinking. Hybridizations with other metaheuristics, parallelization strategies,
and applications are also reviewed.

1 INTRODUCTION

We consider in this chapter a combinatorial optimization problem, defined by a finite
ground set E = {1,..., n}, a set of feasible solutions and an objective function

In the minimization version, we search an optimal solution
such that The ground set E, the cost function f, and the set
of feasible solutions F are defined for each specific problem. For instance, in the case
of the traveling salesman problem, the ground set E is that of all edges connecting the
cities to be visited, f(S) is the sum of the costs of all edges and F is formed by
all egde subsets that determine a Hamiltonian cycle.

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic
[38,39] is a multi-start or iterative process, in which each iteration consists of two
phases: construction and local search. The construction phase builds a feasible solu-
tion, whose neighborhood is investigated until a local minimum is found during the
local search phase. The best overall solution is kept as the result. An extensive survey of

220 M.G.C. Resende and C.C. Ribeiro

the literature is given in [44]. The pseudo-code in Figure 8.1 illustrates the main blocks
of a GRASP procedure for minimization, in which Max_Iterations iterations are
performed and Seed is used as the initial seed for the pseudorandom number generator.

Figure 8.2 illustrates the construction phase with its pseudo-code. At each iteration
of this phase, let the set of candidate elements be formed by all elements that can be
incorporated to the partial solution under construction without destroying feasibility.
The selection of the next element for incorporation is determined by the evaluation of
all candidate elements according to a greedy evaluation function. This greedy function
usually represents the incremental increase in the cost function due to the incorporation
of this element into the solution under construction. The evaluation of the elements by
this function leads to the creation of a restricted candidate list (RCL) formed by the best
elements, i.e. those whose incorporation to the current partial solution results in the
smallest incremental costs (this is the greedy aspect of the algorithm). The element to be
incorporated into the partial solution is randomly selected from those in the RCL (this is
the probabilistic aspect of the heuristic). Once the selected element is incorporated to the
partial solution, the candidate list is updated and the incremental costs are reevaluated
(this is the adaptive aspect of the heuristic). This strategy is similar to the semi-greedy
heuristic proposed by Hart and Shogan [55], which is also a multi-start approach based
on greedy randomized constructions, but without local search.

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usually

221Greedy Randomized Adaptive Search Procedures

improves the constructed solution. A local search algorithm works in an iterative fashion
by successively replacing the current solution by a better solution in the neighborhood of
the current solution. It terminates when no better solution is found in the neighborhood.
The pseudo-code of a basic local search algorithm starting from the solution Solution
constructed in the first phase and using a neighborhood N is given in Figure 8.3.

The effectiveness of a local search procedure depends on several aspects, such as the
neighborhood structure, the neighborhood search technique, the fast evaluation of the
cost function of the neighbors, and the starting solution itself. The construction phase
plays a very important role with respect to this last aspect, building high-quality starting
solutions for the local search. Simple neighborhoods are usually used. The neighbor-
hood search may be implemented using either a best-improving or a first-improving

strategy. In the case of the best-improving strategy, all neighbors are investigated and
the current solution is replaced by the best neighbor. In the case of a first-improving
strategy, the current solution moves to the first neighbor whose cost function value
is smaller than that of the current solution. In practice, we observed on many appli-
cations that quite often both strategies lead to the same final solution, but in smaller
computation times when the first-improving strategy is used. We also observed that
premature convergence to a non-global local minimum is more likely to occur with a
best-improving strategy.

2 CONSTRUCTION OF THE RESTRICTED CANDIDATE LIST

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing efficient data structures to assure quick iterations. GRASP has
two main parameters: one related to the stopping criterion and another to the quality
of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Figure 8.1 is determined
by the number Max_Iterations of iterations. Although the probability of finding a
new solution improving the currently best decreases with the number of iterations,
the quality of the best solution found may only improve with the latter. Since the
computation time does not vary much from iteration to iteration, the total computation
time is predictable and increases linearly with the number of iterations. Consequently,
the larger the number of iterations, the larger will be the computation time and the
better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Section 1. We denote

222 M.G.C. Resende and C.C. Ribeiro

by c(e) the incremental cost associated with the incorporation of element into the
solution under construction. At any GRASP iteration, let and be, respectively,
the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of elements with the best (i.e.,
the smallest) incremental costs c(e). This list can be limited either by the number of
elements (cardinality-based) or by their quality (value-based). In the first case, it is
made up of the p elements with the best incremental costs, where p is a parameter. In
this chapter, the RCL is associated with a threshold parameter The restricted
candidate list is formed by all “feasible” elements which can be inserted into
the partial solution under construction without destroying feasibility and whose quality
is superior to the threshold value, The case

corresponds to a pure greedy algorithm, while is equivalent to a random
construction. The pseudo-code in Figure 8.4 is a refinement of the greedy randomized
contruction pseudo-code shown in Figure 8.2. It shows that the parameter controls
the amounts of greediness and randomness in the algorithm.

GRASP may be viewed as a repetitive sampling technique. Each iteration produces a
sample solution from an unknown distribution, whose mean and variance are functions
of the restrictive nature of the RCL. For example, if the RCL is restricted to a single
element, then the same solution will be produced at all iterations. The variance of the
distribution will be zero and the mean will be equal to the value of the greedy solution.
If the RCL is allowed to have more elements, then many different solutions will be
produced, implying a larger variance. Since greediness plays a smaller role in this case,
the mean solution value should be worse. However, the value of the best solution found
outperforms the mean value and very often is optimal. The histograms in Figure 8.5
illustrate this situation on an instance of MAXSAT with 100 variables and 850 clauses,
depicting results obtained with 1000 independent constructions using the first phase
of the GRASP described in [83,84]. Since this is a maximization problem, the purely
greedy construction corresponds to whereas the random construction occurs
with We notice that when the value of increases from 0 to 1, the mean

Greedy Randomized Adaptive Search Procedures 223

solution value increases towards the purely greedy solution value, while the variance
approaches zero.

For each value of we present in Figure 8.6 histograms with the results obtained by
applying local search to each of the 1000 constructed solutions. Figure 8.7 summarizes
the overall results of this experiment in terms of solution diversity, solution quality, and
computation time. We first observe that the larger the variance of the solution values
obtained in the construction phase, the larger is the variance of the overall solution
values, as shown in the top graph. The graph in the middle illustrates the relationship
between the variance of the solution values and the average solution values, and how
this affects the best solution found. It is unlikely that GRASP will find an optimal
solution if the average solution value is low, even if there is a large variance in the

M.G.C. Resende and C.C. Ribeiro224

overall solution values, such as is the case for On the other hand, if there is
little variance in the overall solution values, it is also unlikely that GRASP will find an
optimal solution, even if the average solution is high, as is the case for What
often leads to good solutions are relatively high average solution values in the presence
of a relatively large variance, such as is the case for The middle graph also
shows that the distance between the average solution value and the value of the best
solution found increases as the construction phase moves from more greedy to more
random. This causes the average time taken by the local search to increase, as shown
in the graph in the bottom. Very often, many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge from a
single random start.

These results are illustrated in Table 8.1 and Figure 8.8, for another instance of
MAXSAT where 1000 iterations were run. For each value of ranging from 0 (purely

Greedy Randomized Adaptive Search Procedures 225

random construction) to 1 (purely greedy construction), we give in Table 8.1 the aver-
age Hamming distance between each solution built at the end of the construction phase
and the corresponding local optimum obtained after local search, the average number
of moves from the first to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 8.8 summarizes the values observed for the total

226 M.G.C. Resende and C.C. Ribeiro

processing time and the local search time. We notice that both time measures consider-
ably decrease as tends to 1, approaching the purely greedy choice. In particular, we
observe that the average local search time taken by (purely random) is approxi-
mately 2.5 times that taken in the case (almost greedy). In this example, two
to three greedily constructed solutions can be investigated in the same time needed to
apply local search to one single randomly constructed solution. The appropriate choice
of the value of the RCL parameter is clearly critical and relevant to achieve a good
balance between computation time and solution quality.

Prais and Ribeiro [77] have shown that using a single fixed value for the value of
RCL parameter very often hinders finding a high-quality solution, which eventually

Greedy Randomized Adaptive Search Procedures 227

could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter is self-
tuned and its value is periodically modifed according with the quality of the solutions
obtained recently. In particular, computational experiments on the problem of traffic
assignment in communication satellites [78] have shown that Reactive GRASP found
better solutions than the basic algorithm for many test instances. These results motivated
the study of the behavior of GRASP for different strategies for the variation of the value
of the RCL parameter

(R) self tuned according with the Reactive GRASP procedure;

(E) randomly chosen from a uniform discrete probability distribution;

(H) randomly chosen from a decreasing non-uniform discrete probability
distribution; and

(F) fixed value of close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [76,77]. These
four strategies were incorporated into the GRASP procedures developed for four dif-
ferent optimization problems: (P-1) matrix decomposition for traffic assignment in
communication satellite [78], (P-2) set covering [38], (P-3) weighted MAX-SAT
[83,84], and (P-4) graph planarization [85,87]. Let be the set of
possible values for the parameter for the first three strategies. The strategy for choos-
ing and self-tuning the value of in the case of the Reactive GRASP procedure (R)
is described later in Section 3. In the case of the strategy based on using the discrete
uniform distribution (E), all choice probabilities are equal to 1/m. The third case corre-
sponds to the a hybrid strategy (H), in which we typically consider

and
Finally, in the last strategy (F), the value of is fixed as recom-

mended in the original reference where this parameter was tuned for each problem. A
subset of the literature instances was considered for each class of test problems. The
results reported in [77] are summarized in Table 8.2. For each problem, we first list the
number of instances considered. Next, for each strategy, we give the number of times
it found the best solution (hits), as well as the average CPU time (in seconds) on an
IBM 9672 model R34. The number of iterations was fixed at 10,000.

Strategy (F) presented the shortest average computation times for three out of the
four problem types. It was also the one with the least variability in the constructed

M.G.C. Resende and C.C. Ribeiro228

solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the cost of
computation times that are longer than those of some of the other strategies. The high
number of hits observed by strategy (E) also illustrates the effectiveness of strategies
based on the variation of the RCL parameter.

3 ALTERNATIVE CONSTRUCTION MECHANISMS

One possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the history of solutions found
in previous iterations. This is so because the basic algorithm discards information
about any solution encountered that does not improve the incumbent. Information
gathered from good solutions can be used to implement memory-based procedures to
influence the construction phase, by modifying the selection probabilities associated
with each element of the RCL. In this section, we consider enhancements and alternative
techniques for the construction phase of GRASP. They include Reactive GRASP, cost
perturbations in place of randomized selection, bias functions, memory and learning,
and local search on partially constructed solutions.

3.1 Reactive GRASP

A first possible strategy to incorporate a learning mechanism in the memoryless con-
struction phase of the basic GRASP is the Reactive GRASP procedure introduced in
Section 2. In this case, the value of the RCL parameter is not fixed, but instead is
selected at each iteration from a discrete set of possible values. This selection is guided
by the solution values found along the previous iterations. One way to accomplish this
is to use the rule proposed in [78]. Let be the set of possible values
for The probabilities associated with the choice of each value are all initially made
equal to Furthermore, let z* be the incumbent solution and
let be the average value of all solutions found using The
selection probabilities are periodically reevaluated by taking with

The value of will be larger for values of leading
to the best solutions on average. Larger values of correspond to more suitable values
for the parameter The probabilities associated with these more appropriate values
will then increase when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms
of robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [76–78], this approach has been
used in power system transmission network planning [20] and in a capacitated location
problem [29].

3.2 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the
so-called “noising method” of Charon and Hudry [25,26]. It adds more flexibility
into algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure, in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the

for

Greedy Randomized Adaptive Search Procedures 229

shortest-path heuristic of Takahashi and Matsuyama [95], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [90] for the Steiner problem in graphs. Another situation where
cost perturbations can be effective appears when no greedy algorithm is available for
straight randomization. This happens to be the case of the hybrid GRASP developed
by Canuto et al. [22] for the prize-collecting Steiner tree problem, which makes use of
the primal-dual algorithm of Goemans and Williamson [52] to build initial solutions
using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [22], a new solution is built at each iteration using node prizes updated by a pertur-
bation function, according to the structure of the current solution. Two different prize
perturbation schemes are used:

Perturbation by eliminations: To enforce search diversification, the primal-dual
algorithm used in the construction phase is driven to build a new solution without
some of the nodes appearing in the solution constructed in the previous iteration.
This is done by changing to zero the prizes of some persistent nodes, which
appeared in the last solution built and remained at the end of the local search.
A parameter controls the fraction of the persistent nodes whose prizes are
temporarily set to zero.

Perturbation by prize changes: Another strategy to enforce the primal-dual algo-
rithm to build different, but still good solutions, consists in introducing some noise
into the node prizes, similarly to what is proposed in [25,26], so as to change the
objective function. For each node i, a perturbation factor is randomly gener-
ated in the interval [1 – a, 1 + a],where a is an implementation parameter. The
prize associated with node i is temporarily changed to where

is its original prize.

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [90] incorporate learning mechanisms associated with intensifica-
tion and diversification strategies, originally proposed in the context of tabu search. Let

denote the weight of edge e. Three distinct weight randomization methods (D, I, U)
are applied. At a given GRASP iteration i, the modified weight of each edge e is
randomly selected from a uniform distribution between and where the
coefficient depends on the selected weight randomization method applied at itera-
tion i. Let be the number of locally optimal solutions in which edge e appeared,
after i – 1 iterations of the hybrid GRASP procedure have been performed. Clearly,

Table 8.3 displays how the coefficients are computed by
each randomization method.

M.G.C. Resende and C.C. Ribeiro230

In method D, values of the coefficients are larger for edges which appeared
more frequently in previously found local optima. This scheme leads to a diversifica-
tion strategy, since more frequently used edges are likely to be penalized with stronger
augmentations. Contrarily, method I is an intensification strategy penalizing less fre-
quent edges with larger coefficients Finally, the third randomization method U

uses a uniform penalization strategy, independent of frequency information. The orig-
inal weights without any penalization are used in the first three iterations, combined
with three different construction heuristics. The weight randomization methods are
then cyclically applied, one at each of the remaining iterations, starting with method
I, next D, then U, then I again, and so on. The alternation between diversifying
(method D) and intensifying (method I) iterations characterizes a strategic oscilla-
tion approach [49]. The experimental results reported in [90] show that the strategy
combining these three perturbation methods is more robust than any of them used
isolated, leading to the best overall results on a quite broad mix of test instances with
different characteristics. The hybrid GRASP with path-relinking using this cost pertur-
bation strategy is among the most effective heuristics currently available for the Steiner
problem in graphs.

3.3 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements
of the RCL are assigned equal probabilities of being chosen. However, any probabil-
ity distribution can be used to bias the selection toward some particular candidates.
Another construction mechanism was proposed by Bresina [21], where a family of
such probability distributions is introduced. They are based on the rank assigned
to each candidate element according to its value of the greedy function. Several bias
functions are introduced, such as:

random bias: bias(r) = 1;

linear bias: bias(r) = 1/r;

log bias:

exponential bias:

polynomial bias of order n:

Let denote the rank of element and let be one of the bias function
defined above. Once these values have been evaluated for all elements of the RCL, the
probability of selecting element is

The evaluation of these bias functions may be restricted to the elements of the RCL.
Bresina’s selection procedure restricted to elements of the RCL was used in [19]. Note
that the standard GRASP uses a random bias function.

3.4 Intelligent Construction: Memory and Learning

Fleurent and Glover [46] observed that the basic GRASP does not use long-term mem-
ory (information gathered in previous iterations) and proposed a long-term memory

Greedy Randomized Adaptive Search Procedures 231

scheme to address this issue in multi-start heuristics. Long-term memory is one of the
fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction phase.
To become an elite solution, a solution must be either better than the best member of the
pool, or better than its worst member and sufficiently different from the other solutions
in the pool. For example, one can count identical solution vector components and set
a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the
objective or changing significantly other valuables. A consistent variable is one that
receives a particular value in a large portion of the elite solution set. Let I(e) be a
measure of the strongly determined and consistent features of solution element
Then, I (e) becomes larger as e appears more often in the pool of elite solutions. The
intensity function I(e) is used in the construction phase as follows. Recall that c(e) is the
greedy function, i.e., the incremental cost associated with the incorporation of element

into the solution under construction. Let be a function of
the greedy and the intensification functions. For example, The
intensification scheme biases selection from the RCL to those elements with a
high value of K (e) by setting its selection probability to be

The function K(e) can vary with time by changing the value of e.g., initially may
be set to a large value that is decreased when diversification is called for. Procedures
for changing the value of are given by Fleurent and Glover [46] and Binato et al. [19].

3.5 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level” [50].
Fleurent and Glover [46] provided a GRASP interpretation of this principle. They
suggested that imperfections introduced during steps of GRASP construction can be
“ironed-out” by applying local search during (and not only at the end of) the GRASP
construction phase.

Because of efficiency considerations, a practical implementation of POP to GRASP
is to apply local search during a few points in the construction phase and not during
each construction iteration. In Binato et al. [19], local search is applied after 40% and
80% of the construction moves have been taken, as well as at the end of the construction
phase.

4 PATH-RELINKING

Path-relinking is another enhancement to the basic GRASP procedure, leading to sig-
nificant improvements in solution quality. Path-relinking was originally proposed by
Glover [48] as an intensification strategy exploring trajectories connecting elite solu-
tions obtained by tabu search or scatter search [49–51]. Starting from one or more elite
solutions, paths in the solution space leading towards other elite solutions are gener-
ated and explored in the search for better solutions. This is accomplished by selecting
moves that introduce attributes contained in the guiding solutions. Path-relinking may
be viewed as a strategy that seeks to incorporate attributes of high quality solutions, by
favoring these attributes in the selected moves.

M.G.C. Resende and C.C. Ribeiro232

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martí [62]. It was followed by several extensions, improvements, and successful
applications [4,22,86,90]. Two basic strategies are used:

path-relinking is applied as a post-optimization step to all pairs of elite solutions;
and

path-relinking is applied as an intensification strategy to each local optimum
obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum seems to
be more effective than simply using it as a post-optimization step. In this context, path-
relinking is applied to pairs of solutions, where is the locally optimal solution
obtained after local search and is one of a few elite solutions randomly chosen from
a pool with a limited number Max_Elite of elite solutions found along the search.
The pool is originally empty. Each locally optimal solution obtained by local search is
considered as a candidate to be inserted into the pool if it is sufficiently different from
every other solution currently in the pool. If the pool already has Max_Elite solutions
and the candidate is better than the worst of them, then the former replaces the latter.
If the pool is not full, the candidate is simply inserted.

The algorithm starts by computing the symmetric difference between
and resulting in the set of moves which should be applied to one of them

(the initial solution) to reach the other (the guiding solution). Starting from the initial
solution, the best move from still not performed is applied to the current
solution, until the guiding solution is attained. The best solution found along this
trajectory is also considered as a candidate for insertion in the pool and the incum-
bent is updated. Several alternatives have been considered and combined in recent
implementations:

do not apply path-relinking at every GRASP iteration, but only periodically;

explore two different trajectories, using first then as the initial solution;

explore only one trajectory, starting from either or and

do not follow the full trajectory, but instead only part of it (truncated path-
relinking).

All these alternatives involve the trade-offs between computation time and solution
quality. Ribeiro et al. [90] observed that exploring two different trajectories for each
pair takes approximately twice the time needed to explore only one of them,
with very marginal improvements in solution quality. They have also observed that if
only one trajectory is to be investigated, better solutions are found when path-relinking
starts from the best among and Since the neighborhood of the initial solution is
much more carefully explored than that of the guiding one, starting from the best of
them gives the algorithm a better chance to investigate in more detail the neighborhood
of the most promising solution. For the same reason, the best solutions are usually
found closer to the initial solution than to the guiding solution, allowing pruning the
relinking trajectory before the latter is reached.

Detailed computational results illustrating the trade-offs between these strategies
for the problem of routing private virtual circuits in frame-relay services are reported by
Resende and Ribeiro [86]. In this case, the set of moves corresponding to the symmetric

Greedy Randomized Adaptive Search Procedures 233

difference between any pair of solutions is the subset of private virtual
circuits routed through different routes (i.e., using different edges) in and We
summarize below some of these results, obtained on an SGI Challenge computer (with
28 196-MHz MIPS R10000 processors) with 7.6 Gb of memory. We considered four
variants of the GRASP and path-relinking schemes previously discussed:

G: This variant is a pure GRASP with no path-relinking.

GPRf: This variant adds to G a one-way (forward) path-relinking starting from
a locally optimal solution and using a randomly selected elite solution as the
guiding solution.

GPRb: This variant adds to G a one way (backwards) path-relinking starting from
a randomly selected elite solution and using a locally optimal solution as the
guiding solution.

GPRfb: This variant combines GPRf and GPRb, performing path-relinking in both
directions.

These variants are evaluated and compared in terms of their trade-offs between
computation time and solution quality.

To study the effect of path-relinking on GRASP, we compared the four variants on
two instances: att and fr750a, see [86] for details. Two hundred independent runs
for each variant were performed for each problem. Execution was terminated when
a solution of value less than or equal to a given parameter value look4 was found.
The sub-optimal values chosen for this parameter were such that the slowest variant
could terminate in a reasonable amount of computation time. Empirical probability
distributions for the time to target solution value are plotted in Figures 8.9 and 8.10. To
plot the empirical distribution for each algorithm and each instance, we associate with
the i-th smallest running time a probability and plot the points

for i = 1, . . . , 200. Due to the time taken by the pure GRASP procedure,
we limited its plot in Figure 8.10 to 60 points.

These plots show a similar relative behavior of the four variants on the two instances.
Since instance fr750a is harder for all variants and the associated computation times
are longer, its plot is more discerning. For a given computation time, the probability of
finding a solution at least as good as the target value increases from G to GPRf, from
GPRf to GPRfb, and from GPRfb to GPRb. For example, there is a 9.25% probability for
GPRfb to find a target solution value in less than 100s, while this probability increases
to 28.75% for GPRb. For G, there is a 8.33% probability of finding a target solution value
within 2000s, while for GPRf this probability increases to 65.25%. GPRb finds a target
solution value in at most 129 s with 50% probability. For the same probability, this time
increases to 172, 1727, and 10933 s, respectively, for variants GPRfb, GPRf, and G.
In accordance with these results, variant GPRb, which does path-relinking backwards
from an elite solution to a locally optimal solution, seems to be the most effective,
confirming the preliminary findings reported in [90]. To further illustrate the behavior
of GRASP and path-relinking, we depict in Figure 8.11 four plots representing the
behavior of variant GPRb (GRASP with backwards path-relinking) on instance att
with the variation of the target solution value. As before, 200 runs were performed
for each target value decreasing from 126,600 to 126,000 by steps of 200. A similar
behavior was observed for all other variants, with or without path-relinking, as well as
for other instances and classes of test problems.

234 M.G.C. Resende and C.C. Ribeiro

Greedy Randomized Adaptive Search Procedures 235

As a final experiment, once again we made use of the different GRASP variants for
the problem of routing private virtual circuits to illustrate the effect of path-relinking
in improving the solutions obtained by a pure GRASP approach, with only the con-
struction and local search phases. This experiment was also performed using the same
SGI Challenge computer (with 28,196-MHz MIPS R10000 processors) with 7.6 Gb of
memory. For each of ten different seeds, we ran twice each variant for instance att ,
enforcing two different time limits: 10 and 100 s of processing time. The numerical
results are reported in Table 8.4. For each variant and for each time limit, we give the
average and the best solution values over the ten runs. We first note that both versions
with backwards path-relinking performed systematically better, since they found better
solutions for both time limits. Variants GPRb (GRASP with backwards path-relinking)
and GPRfb (GRASP with path-relinking in both directions) showed similar behav-
iors, as it could be anticipated from the empirical probability distributions depicted in
Figure 8.9. Variant GPRb obtained better results (in terms of both the average and the

236 M.G.C. Resende and C.C. Ribeiro

best solution values found) within the time limit of 10 s, while variant GPRfb performed
better for the time limit of 100 s. In the first case, GPRb found the best solution among
the two variants in seven runs, while GPRfb did better for only two runs. However,
when the time limit was increased to 100 s, GPRb found the best solutions in four runs,
while GPRfb did better for five runs.

Path-relinking is a quite effective strategy to introduce memory in GRASP, leading
to very robust implementations. The results reported above can be further illustrated by
those obtained with the hybrid GRASP with path-relinking algorithm for the Steiner
problem in graphs described in [90], which in particular improved the best known
solutions for 33 out of the 41 still open problems in series i640 of the SteinLib
repository [99] on May 1, 2001.

5 EXTENSIONS

In this section, we comment on some extensions, implementation strategies, and hybrids
of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [100]. A similar approach was later explored by
Ribeiro et al. [88] in their tabu search algorithm for query optimization in relational
databases. In the context of GRASP implementations, hashing tables were first used
by Martins et al. [66] in their multineighborhood heuristic for the Steiner problem in
graphs, to avoid the application of local search to solutions already visited in previous
iterations.

Filtering strategies have also been used to speed up the iterations of GRASP, see,
e.g., [40,66,78]. In these cases, local search is not applied to all solutions obtained at the
end of the construction phase, but instead only to some promising unvisited solutions,
defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and

rely almost entirely on the randomization of the local search to
escape from local optima. With respect to this issue, GRASP and variable neighbor-
hood strategies may be considered as complementary and potentially capable of leading
to effective hybrid methods. A first attempt in this direction was done by Martins
et al. [66]. The construction phase of their hybrid heuristic for the Steiner problem in
graphs follows the greedy randomized strategy of GRASP, while the local search phase
makes use of two different neighborhood structures as a VND procedure [54,69]. Their
heuristic was later improved by Ribeiro et al. [90], one of the key components of the
new algorithm being another strategy for the exploration of different neighborhoods.
Ribeiro and Souza [89] also combined GRASP with VND in a hybrid heuristic for the
degree-constrained minimum spanning tree problem. Festa et al. [45] studied different
variants and combinations of GRASP and VNS for the MAX-CUT problem, finding
and improving the best known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP is applied to
generate the initial population for a genetic algorithm. We may cite e.g., the genetic
algorithm of Ahuja et al. [3] for the quadratic assignment problem, which makes use

Greedy Randomized Adaptive Search Procedures 237

of the GRASP proposed by Li et al. [63] to create the initial population of solutions.
A similar approach was used by Armony et al. [11], with the initial population made
up by both randomly generated solutions and those built by a GRASP.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [61]. Delmaire et al. [29] considered two approaches. In the first,
GRASP is applied as a powerful diversification strategy in the context of a tabu
search procedure. The second approach is an implementation of the Reactive GRASP
algorithm presented in Section 3.1, in which the local search phase is strengthened
by tabu search. Results reported for the capacitated location problem show that the
hybrid approaches perform better than the isolated methods previously used. Two two-
stage heuristics are proposed in [1] for solving the multi-floor facility layout problem.
GRASP/TS applies a GRASP to find the initial layout and tabu search to refine it.

6 PARALLEL GRASP

Even though parallelism is not yet systematically used to speed up or to improve the
effectiveness of metaheuristics, parallel implementations are very robust and abound
in the literature; see e.g., Cung et al. [27] for a recent survey.

Most parallel implementations of GRASP follow the multiple-walk independent

thread strategy, based on the distribution of the iterations over the processors [6,7,40,
63,65,67,70,73,74]. In general, each search thread has to perform Max_Iterations/p
iterations, where p and Max_Iterations are, respectively, the number of processors
and the total number of iterations. Each processor has a copy of the sequential algorithm,
a copy of the problem data, and an independent seed to generate its own pseudorandom
number sequence. To avoid that the processors find the same solutions, each of them
must use a different sequence of pseudorandom numbers. A single global variable is
required to store the best solution found over all processors. One of the processors
acts as the master, reading and distributing problem data, generating the seeds which
will be used by the pseudorandom number generators at each processor, distributing
the iterations, and collecting the best solution found by each processor. Since the
iterations are completely independent and very little information is exchanged, linear
speedups are easily obtained provided that no major load imbalance problems occur.
The iterations may be evenly distributed over the processors or according with their
demands, to improve load balancing.

Martins et al. [67] implemented a parallel GRASP for the Steiner problem in graphs.
Parallelization is achieved by the distribution of 512 iterations over the processors,
with the value of the RCL parameter randomly chosen in the interval [0.0,0.3] at
each iteration. The algorithm was implemented in C on an IBM SP-2 machine with
32 processors, using the MPI library for communication. The 60 problems from series
C, D, and E of the OR-Library [18] have been used for the computational experiments.
The parallel implementation obtained 45 optimal solutions over the 60 test instances.
The relative deviation with respect to the optimal value was never larger than 4%.
Almost-linear speedups observed for 2, 4, 8, and 16 processors with respect to the
sequential implementation are illustrated in Figure 8.12.

Path-relinking may also be used in conjunction with parallel implementations of
GRASP. In the case of the multiple-walk independent-thread implementation described

M.G.C. Resende and C.C. Ribeiro238

by Aiex et al. [4] for the 3-index assignment problem, each processor applies path-
relinking to pairs of elite solutions stored in a local pool. Computational results
using MPI on an SGI Challenge computer with 28 R10000 processors showed linear
speedups.

Alvim and Ribeiro [6,7] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit much from load balanc-
ing techniques, whenever heterogeneous processors are used or if the parallel machine
is simultaneously shared by several users. In this case, almost-linear speedups may be
obtained with a heterogeneous distribution of the iterations over the p processors in

packets. Each processor starts performing one packet of
iterations and informs the master when it finishes its packet of iterations. The master
stops the execution of each slave processor when there are no more iterations to be
performed and collects the best solution found. Faster or less loaded processors will
perform more iterations than the others. In the case of the parallel GRASP implemented
for the problem of traffic assignment described in [78], this dynamic load balancing
strategy allowed reductions in the elapsed times of up to 15% with respect to the times
observed for the static strategy, in which the iterations were uniformly distributed over
the processors.

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics, based on running multiple copies of the same sequential algorithm, has
been addressed by some authors. A given target value for the objective function is
broadcasted to all processors which independently execute the sequential algorithm.
All processors halt immediately after one of them finds a solution with value at least as
good as The speedup is given by the ratio between the times needed to find a solution
with value at least as good as using respectively the sequential algorithm and the

Greedy Randomized Adaptive Search Procedures 239

parallel implementation with p processors. Some care is needed to ensure that no
two iterations start with identical random number generator seeds. These speedups are
linear for a number of metaheuristics, including simulated annealing [31,71]; iterated
local search algorithms for the traveling salesman problem [33]; tabu search, provided
that the search starts from a local optimum [17,94]; and WalkSAT [93] on hard random
3-SAT problems [56]. This observation can be explained if the random variable time

to find a solution within some target value is exponentially distributed, as indicated by
the following proposition [98].

Proposition 8.1. Let be the probability of not having found a given target

solution value in t time units with independent processes. If with

corresponding to an exponential distribution, then

This proposition follows from the definition of the exponential distribution. It
implies that the probability of finding a solution within a given target value
in time with a sequential algorithm is equal to the probability of finding a solution
at least as good as that in time t using independent parallel processors. Hence, it is
possible to achieve linear speedups in the time to find a solution within a target value
by multiple independent processors. An analogous proposition can be stated for a two
parameter (shifted) exponential distribution.

Proposition 8.2. Let be the probability of not having found a given target

solution value in t time units with independent processors. If with

and corresponding to a two parameter exponential distribution, then

Analogously, this proposition follows from the definition of the two-parameter
exponential distribution. It implies that the probability of finding a solution within a
given target value in time with a sequential algorithm is equal to
while the probability of finding a solution at least as good as that in time t using
independent parallel processors is If then both probabilities
are equal and correspond to the non-shifted exponential distribution. Furthermore,
if then the two probabilities are approximately equal and it is possible to
approximately achieve linear speedups in the time to find a solution within a target
value using multiple independent processors.

Aiex et al. [5] have shown experimentally that the solution times for GRASP also
have this property, showing that they fit a two-parameter exponential distribution.
Figure 8.13 illustrates this result, depicting the superimposed empirical and theoretical
distributions observed for one of the cases studied along the computational experi-
ments reported by the authors, which involved 2400 runs of GRASP procedures for
each of five different problems: maximum independent set [40,81], quadratic assign-
ment [63,82], graph planarization [85,87], maximum weighted satisfiability [84], and
maximum covering [79]. The same result still holds when GRASP is implemented in
conjunction with a post-optimization path-relinking procedure [4].

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-thread strategies. The most difficult
aspect to be set up is the determination of the nature of the information to be shared or
exchanged to improve the search, without taking too much additional memory or time to

240 M.G.C. Resende and C.C. Ribeiro

be collected. Cooperative-thread strategies may be implemented using path-relinking,
by combining elite solutions stored in a central pool with the local optima found by each
processor at the end of each GRASP iteration. Canuto et al. [22] used path-relinking
to implement a parallel GRASP for the prize-collecting Steiner tree problem. Their
strategy is truly cooperative, since pairs of elite solutions from a centralized unique
central pool are distributed to the processors which perform path-relinking in paral-
lel. Computational results obtained with an MPI implementation running on a cluster
of 32,400-MHz Pentium II processors showed linear speedups, further illustrating the
effectiveness of path-relinking procedures used in conjunction with GRASP to improve
the quality of the solutions found by the latter.

7 APPLICATIONS

The first application of GRASP described in the literature concerns the set covering
problem [38]. The reader is referred to Festa and Resende [44] for an annotated bibliog-
raphy of GRASP and its applications. We conclude this chapter by summarizing below
some references focusing the main applications of GRASP to problems in different
areas:

routing [9,12,16,24,59];

logic [30,74,80,83];

covering and partition [8,10,38,47,53];

Greedy Randomized Adaptive Search Procedures 241

location [1,29,57,96,97];

minimum Steiner tree [23,65–67,90];

optimization in graphs [2,40,60,72,79,85,87];

assignment [37,46,63,64,68,70,73,75,78];

timetabling, scheduling, and manufacturing [13–15,19,28,32,34–36,41,42,58,91,
92,101];

transportation [9,34,37];

power systems [20];

telecommunications [2,11,57,64,78,79,86];

graph and map drawing [43,62,85,87]; and

VLSI [8], among other areas of application.

8 CONCLUDING REMARKS

The results described in this chapter reflect successful applications of GRASP to a large
number of classical combinatorial optimization problems, as well as to those that arise
in real-world situations in different areas of business, science, and technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks: solution construction procedures and local search methods,
which often are readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which use a large number of parameters in
their implementations, the basic version of GRASP requires the adjustment of a single
parameter.

Recent developments, presented in this chapter, show that different extensions to the
basic procedure allow further improvement to the solutions found by GRASP. Among
these, we highlight: reactive GRASP, which automates the adjustments of the restricted
candidate list parameter; variable neighborhoods, which permit accelerated and inten-
sified local search; and path-relinking, which beyond allowing the implementation of
intensification strategies based on the memory of elite solutions, opens the way for
development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to simpler
heuristics to find better-quality solutions. To illustrate the effect of additional extensions
on solution quality, Figure 8.14 shows some results obtained for the prize-collecting
Steiner tree problem, as discussed in [22]. We consider the 40 instances of series C.
The lower curve represents the results obtained exclusively with the primal-dual con-
structive algorithm (GW) of Goemans and Williamson [52]. The second curve shows
the quality of the solutions produced with an additional local search (GW + LS), corre-
sponding to the first iteration of GRASP. The third curve is associated with the results
obtained after 500 iterations of GRASP with path-relinking (GRASP + PR). Finally,
the top curve shows the results found by the complete algorithm, using variable neigh-
borhood search as a post-optimization procedure (GRASP + PR + VNS). For a given
relative deviation with respect to the optimal value, each curve indicates the number
of instances for which the corresponding algorithm found a solution within that qual-
ity range. For example, we observe that the number of optimal solutions found goes
from six, using only the constructive algorithm, to a total of 36, using the complete

242 M.G.C. Resende and C.C. Ribeiro

algorithm described in [22]. The largest relative deviation with respect to the optimal
value decreases from 36.4% in the first case, to only 1.1 % for the complete algorithm.
It is easy to see the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups both
in independent and cooperative strategies. Cooperative strategies are based on the col-
laboration between processors using path-relinking and a global pool of elite solutions.
This allows the use of more processors to find better solutions in less computation time.

BIBLIOGRAPHY

S. Abdinnour-Helm and S.W. Hadley (2000) Tabu search based heuristics for
multi-floor facility layout. International Journal of Production Research, 38,
365–383.

J. Abello, P.M. Pardalos and M.G.C. Resende (1999) On maximum clique
problems in very large graphs. In: J. Abello and J. Vitter (eds.), External Memory

Algorithms and Visualization, volume 50 of DIMACS Series on Discrete Math-

ematics and Theoretical Computer Science. American Mathematical Society,
pp. 199–130.

R.K. Ahuja, J.B. Orlin and A. Tiwari (2000) A greedy genetic algorithm for
the quadratic assignment problem. Computers and Operations Research, 27,
917–934.

R.M. Aiex, M.G.C. Resende, P.M. Pardalos and G. Toraldo (2000) GRASP with
path-relinking for the three-index assignment problem. Technical report, AT&T
Labs–Research.

[1]

[2]

[3]

[4]

Greedy Randomized Adaptive Search Procedures 243

R,M. Aiex, M.G.C. Resende and C.C. Ribeiro (2002) Probability distribution of
solution time in GRASP: an experimental investigation. Journal of Heuristics,

8, 343–373.

A.C. Alvim (1998) Parallelization strategies for the metaheuristic GRASP.
Master’s thesis, Department of Computer Science, Catholic University of
Rio de Janeiro, Brazil (in Portuguese).

A.C. Alvim and C.C. Ribeiro (1998) Load balancing for the parallelization of
the GRASP metaheuristic. In: Proceedings of the X Brazilian Symposium on

Computer Architecture, Búzios, pp. 279–282 (in Portuguese).

S. Areibi and A. Vannelli (1997) A GRASP clustering technique for circuit par-
titioning. In: J. Gu and P.M. Pardalos (eds.), Satisfiability Problems, Volume 35
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, pp. 711–724.

M.F. Argüello, J.F. Bard and G. Yu (1997) A GRASP for aircraft routing in
response to groundings and delays. Journal of Combinatorial Optimization, 1,
211–228.

M.F. Argüello, T.A. Feo and O. Goldschmidt (1996) Randomized methods for
the number partitioning problem. Computers and Operations Research, 23,
103–111.

M. Armony, J.C. Klincewicz, H. Luss and M.B. Rosenwein (2000) Design of
stacked self-healing rings using a genetic algorithm. Journal of Heuristics, 6,
85–105.

J.B. Atkinson (1998) A greedy randomised search heuristic for time-constrained
vehicle scheduling and the incorporation of a learning strategy. Journal of the

Operational Research Society, 49, 700–708.

J.F. Bard and T.A. Feo (1989) Operations sequencing in discrete parts manufac-
turing. Management Science, 35, 249–255.

J.F. Bard and T.A. Feo (1991) An algorithm for the manufacturing equipment
selection problem. IIE Transactions, 23, 83–92.

J.F. Bard, T.A. Feo and S. Holland (1996) A GRASP for scheduling printed
wiring board assembly. IIE Transactions, 28, 155–165.

J.F. Bard, L. Huang, P. Jaillet and M. Dror (1998) A decomposition approach to
the inventory routing problem with satellite facilities. Transportation Science,

32, 189–203.

R. Battiti and G. Tecchiolli (1992) Parallel biased search for combinatorial
optimization: Genetic algorithms and tabu. Microprocessors and Microsystems,

16, 351–367.

J.E. Beasley (1990) OR-Library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41, 1069–1072.

S. Binato, W.J. Hery, D, Loewenstern and M.G.C. Resende (2002) A GRASP for
job shop scheduling. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys

in Metaheuristics. Kluwer Academic Publishers, pp. 59–79.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

244 M.G.C. Resende and C.C. Ribeiro

S. Binato and G.C. Oliveira (2002) A reactive GRASP for transmission network
expansion planning. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys

in Metaheuristics. Kluwer Academic Publishers, pp. 81–100.

J.L. Bresina (1996) Heuristic-biased stochastic sampling. In: Proceedings

of the Thirteenth National Conference on Artificial Intelligence. Portland,
pp. 271–278.

S.A. Canuto, M.G.C. Resende and C.C. Ribeiro (2001) Local search with
perturbations for the prize-collecting Steiner tree problem in graphs. Networks,

38, 50–58.

S.A. Canuto, C.C. Ribeiro and M.G.C. Resende (1999) Local search with
perturbations for the prize-collecting Steiner tree problem. In: Extended

Abstracts of the Third Metaheuristics International Conference. Angra dos Reis,
pp. 115–119.

C. Carreto and B. Baker (2002) A GRASP interactive approach to the vehicle
routing problem with backhauls. In: C.C. Ribeiro and P. Hansen (eds.), Essays

and Surveys in Metaheuristics. Kluwer Academic Publishers, pp. 185–199.

I. Charon and O. Hudry (1993) The noising method: a new method for
combinatorial optimization. Operations Research Letters, 14, 133–137.

I. Charon and O. Hudry (2002) The noising methods: a survey. In: C.C. Ribeiro
and C.C. Ribeiro (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, pp. 245–261.

V.-D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol (2002) Strategies for
the parallel implementation of metaheuristics. In: C.C. Ribeiro and C.C. Ribeiro
(eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers,
pp. 263–308.

P. De, J.B. Ghosj and C.E. Wells (1994) Solving a generalized model for
con due date assignment and sequencing. International Journal of Production

Economics, 34, 179–185.

H. Delmaire, J.A. Díaz, E. Fernández and M. Ortega (1999) Reactive GRASP
and Tabu Search based heuristics for the single source capacitated plant location
problem. INFOR, 37, 194–225.

A.S. Deshpande and E. Triantaphyllou (1998) A greedy randomized adap-
tive search procedure (GRASP) for inferring logical clauses from examples in
polynomial time and some extensions. Mathematical Computer Modelling, 27,
75–99.

N. Dodd (1990) Slow annealing versus multiple fast annealing runs: an empirical
investigation. Parallel Computing, 16, 269–272.

A. Drexl and F. Salewski (1997) Distribution requirements and compactness
constraints in school timetabling. European Journal of Operational Research,

102, 193–214.

H.T. Eikelder, M. Verhoeven, T. Vossen and E. Aarts (1996) A probabilistic
analysis of local search. In: I. Osman and J. Kelly (eds.), Metaheuristics: Theory

and Applications. Kluwer Academic Publishers, pp. 605–618.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Greedy Randomized Adaptive Search Procedures 245

T.A. Feo and J.F. Bard (1989) Flight scheduling and maintenance base planning.
Management Science, 35, 1415–1432.

T.A. Feo and J.F. Bard (1989) The cutting path and tool selection problem in
computer-aided process planning. Journal of Manufacturing Systems, 8, 17–26.

T.A. Feo, J.F. Bard and S. Holland (1995) Facility-wide planning and scheduling
of printed wiring board assembly. Operations Research, 43, 219–230.

T.A. Feo and J.L. González-Velarde (1995) The intermodal trailer assign-
ment problem: models, algorithms, and heuristics. Transportation Science, 29,
330–341.

T.A. Feo and M.G.C. Resende (1989) A probabilistic heuristic for a com-
putationally difficult set covering problem. Operations Research Letters, 8,
67–71.

T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109–133.

T.A. Feo, M.G.C. Resende and S.H. Smith (1994) A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research, 42,
860–878.

T.A. Feo, K. Sarathy and J. McGahan (1996) A GRASP for single machine
scheduling with sequence dependent setup costs and linear delay penalties.
Computers and Operations Research, 23, 881–895.

T.A. Feo, K. Venkatraman and J.F. Bard (1991) A GRASP for a difficult
single machine scheduling problem. Computers and Operations Research, 18,
635–643.

E. Fernández and R. Martí (1999) GRASP for seam drawing in mosaicking of
aerial photographic maps. Journal of Heuristics, 5, 181–197.

P. Festa and M.G.C. Resende (2002) GRASP: an annotated bibliography.
In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics.

Kluwer Academic Publishers, pp. 325–367.

P. Festa, M.G.C. Resende, P. Pardalos and C.C. Ribeiro (2001) GRASP and VNS
for Max-Cut. In: Extended Abstracts of the Fourth Metaheuristics International

Conference. Porto, pp. 371–376.

C. Fleurent and F. Glover (1999) Improved constructive multistart strategies for
the quadratic assignment problem using adaptive memory. INFORMS Journal

on Computing, 11, 198–204.

J.B. Ghosh (1996) Computatinal aspects of the maximum diversity problem.
Operations Research Letters, 19, 175–181.

F. Glover (1996) Tabu search and adaptive memory programming—advances,
applications and challenges. In: R.S. Barr, R.V. Helgason and J.L. Kenning-
ton (eds.), Interfaces in Computer Science and Operations Research. Kluwer,
pp. 1–75.

F. Glover (2000) Multi-start and strategic oscillation methods—principles to
exploit adaptive memory. In: M. Laguna and J.L. Gonzáles-Velarde (eds.),
Computing Tools for Modeling, Optimization and Simulation: Interfaces in

Computer Science and Operations Research. Kluwer, pp. 1–24.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

246 M.G.C. Resende and C.C. Ribeiro

F. Glover and M. Laguna (1997) Tabu Search. Kluwer.

F. Glover, M. Laguna and R. Martí (2000) Fundamentals of scatter search and
path relinking. Control and Cybernetics, 39, 653–684.

M.X. Goemans and D.P. Williamson (1996) The primal dual method for
approximation algorithms and its application to network design problems.
In: D. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems. PWS
Publishing Co., pp. 144–191.

P.L. Hammer and D.J. Rader, Jr. (2001) Maximally disjoint solutions of the set
covering problem. Journal of Heuristics, 7, 131–144.

P. Hansen and (2002) Developments of variable neighbor-
hood search. In: C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in

Metaheuristics. Kluwer Academic Publishers, pp. 415–439.

J.P. Hart and A.W. Shogan (1987) Semi-greedy heuristics: an empirical study.
Operations Research Letters, 6, 107–114.

H. Hoos and T. Stützle (1999) Towards a characterisation of the behaviour of
stochastic local search algorithms for SAT. Artificial Intelligence, 112, 213–232.

J.G. Klincewicz (1992) Avoiding local optima in the p–hub location problem
using tabu search and GRASP. Annals of Operations Research, 40, 283–302.

J.G. Klincewicz and A. Rajan (1994) Using GRASP to solve the component
grouping problem. Naval Research Logistics, 41, 893–912.

G. Kontoravdis and J.F. Bard (1995) A GRASP for the vehicle routing problem
with time windows. ORSA Journal on Computing, 7, 10–23.

M. Laguna, T.A. Feo and H.C. Elrod (1994) A greedy randomized adap-
tive search procedure for the two–partition problem. Operations Research, 42,
677–687.

M. Laguna and J.L. González-Velarde (1991) A search heuristic for just-in-
time scheduling in parallel machines. Journal of Intelligent Manufacturing, 2,
253–260.

M. Laguna and R. Martí (1999) GRASP and path relinking for 2-layer straight
line crossing minimization. INFORMS Journal on Computing, 11, 44–52.

Y. Li, P.M. Pardalos and M.G.C. Resende (1994) A greedy randomized adaptive
search procedure for the quadratic assignment problem. In: P.M. Pardalos and
H. Wolkowicz (eds.), Quadratic Assignment and Related Problems, volume 16
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, pp. 237–261.

X. Liu, P.M. Pardalos, S. Rajasekaran and M.G.C. Resende (2000) A GRASP
for frequency assignment in mobile radio networks. In: B.R. Badrinath, F. Hsu,
P.M. Pardalos and S. Rajasekaran (eds.), Mobile Networks and Computing, vol-
ume 52 of DIMACS Series on Discrete Mathematics and Theoretical Computer

Science. American Mathematical Society, pp. 195–201.

S.L. Martins, P.M. Pardalos, M.G.C. Resende and C.C. Ribeiro (1999) Greedy
randomized adaptive search procedures for the steiner problem in graphs.
In: P.M. Pardalos, S. Rajasekaran and J. Rolim (eds.), Randomization Methods in

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Greedy Randomized Adaptive Search Procedures 247

Algorithmic Design, volume 43 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, pp. 133–145.

S.L. Martins, M.G.C. Resende, C.C. Ribeiro and P. Pardalos (2000) A paral-
lel GRASP for the Steiner tree problem in graphs using a hybrid local search
strategy. Journal of Global Optimization, 17, 267–283.

S.L. Martins, C.C. Ribeiro and M.C. Souza (1998) A parallel GRASP for
the Steiner problem in graphs. In: A. Ferreira and J. Rolim (eds.), Proceed-

ings of IRREGULAR’98—5th International Symposium on Solving Irregularly

Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer

Science. Springer-Verlag, pp. 285–297.

T. Mavridou, P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1998)
A GRASP for the biquadratic assignment problem. European Journal of

Operational Research, 105, 613–621.

and P. Hansen (1997) Variable neighborhood search. Computers

and Operations Research, 24, 1097–1100.

R.A. Murphey, P.M. Pardalos and L.S. Pitsoulis (1998) A parallel GRASP for the
data association multidimensional assignment problem. In: P.M. Pardalos (ed.),
Parallel Processing of Discrete Problems, volume 106 of The IMA Volumes in

Mathematics and Its Applications, Springer-Verlag, pp. 159–180.

L. Osborne and B. Gillett (1991) A comparison of two simulated annealing
algorithms applied to the directed Steiner problem on networks. ORSA Journal

on Computing, 3, 213–225.

P.M. Pardalos, T. Qian and M.G.C. Resende (1999) A greedy randomized
adaptive search procedure for the feedback vertex set problem. Journal of

Combinatorial Optimization, 2, 399–412.

P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1995) A parallel GRASP
implementation for the quadratic assignment problem. In: A. Ferreira and
J. Rolim (eds.), Parallel Algorithms for Irregularly Structured Problems—

Irregular’94. Kluwer Academic Publishers, pp. 115–133.

P.M. Pardalos, L.S. Pitsoulis and M.G.C. Resende (1996) A parallel GRASP for
MAX-SAT problems. Lecture Notes in Computer Science, 1184, 575–585.

L.S. Pitsoulis, P.M. Pardalos and D.W. Hearn (2001) Approximate solutions to
the turbine balancing problem. European Journal of Operational Research, 130,
147–155.

M. Prais and C.C. Ribeiro (1999) Parameter variation in GRASP imple-
mentations. In: Extended Abstracts of the Third Metaheuristics International

Conference. Angra dos Reis, pp. 375–380.

M. Prais and C.C. Ribeiro (2000) Parameter variation in GRASP procedures.
Investigación Operativa, 9, 1–20.

M. Prais and C.C. Ribeiro (2000) Reactive GRASP: an application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on

Computing, 12, 164–176.

M.G.C. Resende (1998) Computing approximate solutions of the maximum
covering problem using GRASP. Journal of Heuristics, 4, 161–171.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

M.G.C. Resende and C.C. Ribeiro248

M.G.C. Resende and T.A. Feo (1996) A GRASP for satisfiability. In:
D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability:

The Second DIMACS Implementation Challenge, volume 26 of DIMACS

Series on Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, pp. 499–520.

M.G.C. Resende, T.A. Feo and S.H. Smith (1998) Algorithm 787: Fortran sub-
routines for approximate solution of maximum independent set problems using
GRASP. ACM Transactions on Mathematical Software, 24, 386–394.

M.G.C. Resende, P.M. Pardalos and Y. Li (1996) Algorithm 754: Fortran sub-
routines for approximate solution of dense quadratic assignment problems using
GRASP. ACM Transactions on Mathematical Software, 22, 104–118.

M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos (1997) Approximate solution
of weighted MAX-SAT problems using GRASP. In: J. Gu and P.M. Pardalos
(eds.), Satisfiability Problems, volume 35 of DIMACS Series on Discrete Math-

ematics and Theoretical Computer Science, American Mathematical Society,
pp. 393–405.

M.G.C. Resende, L.S. Pitsoulis and P.M. Pardalos (2000) Fortran subroutines
for computing approximate solutions of MAX-SAT problems using GRASP.
Discrete Applied Mathematics, 100, 95–113.

M.G.C. Resende and C.C. Ribeiro (1997) A GRASP for graph planarization.
Networks, 29, 173–189.

M.G.C. Resende and C.C. Ribeiro (2001) A GRASP with path-relinking for
private virtual circuit routing. Technical report, AT&T Labs Research.

C.C. Ribeiro and M.G.C. Resende (1999) Algorithm 797: Fortran subroutines
for approximate solution of graph planarization problems using GRASP. ACM

Transactions on Mathematical Software, 25, 342–352.

C.C. Ribeiro, C.D. Ribeiro and R.S. Lanzelotte (1997) Query optimization in
distributed relational databases. Journal of Heuristics, 3, 5–23.

C.C. Ribeiro and M.C. Souza (2002) Variable neighborhood search for the degree
constrained minimum spanning tree problem. Discrete Applied Mathematics,

118, 43–54.

C.C. Ribeiro, E. Uchoa and R.F. Werneck (2002) A hybrid GRASP with per-
turbations for the Steiner problem in graphs. INFORMS Journal on Computing,

14, 228–246.

R.Z. Ríos-Mercado and J.F. Bard (1998) Heuristics for the flow line problem
with setup costs. European Journal of Operational Research, 76–98.

R.Z. Ríos-Mercado and J.F. Bard (1999) An enhanced TSP-based heuristic for
makespan minimization in a flow shop with setup costs. Journal of Heuristics,

5, 57–74.

B. Selman, H. Kautz and B. Cohen (1994) Noise strategies for improving
local search. In: Proceedings of the Twelfth National Conference on Artificial

Intelligence. Seattle, MIT Press, pp. 337–343.

E. Taillard (1991) Robust taboo search for the quadratic assignment problem.
Parallel Computing, 7, 443–455.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Greedy Randomized Adaptive Search Procedures 249

H. Takahashi and A. Matsuyama (1980) An approximate solution for the Steiner
problem in graphs. Mathematica Japonica, 24, 573–577.

T.L. Urban (1998) Solution procedures for the dynamic facility layout problem.
Annals of Operations Research, 323–342.

T.L. Urban, W.-C. Chiang and R.A. Russel (2000) The integrated machine
allocation and layout problem. International Journal of Production Research,

2913–2930.

M.G.A. Verhoeven and E.H.L. Aarts (1995) Parallel local search. Journal of

Heuristics, 1, 43–65.

S. Voss, A. Martin and T. Koch (2001) Steinlib testdata library. Online document
at http://elib.zib.de/steinlib/steinlib.html, last visited on May 1.

D.L. Woodruff and E. Zemel (1993) Hashing vectors for tabu search. Annals of

Operations Research, 41, 123–137.

J. Yen, M. Carlsson, M. Chang, J.M. Garcia and H. Nguyen (2000) Constraint
solving for inkjet print mask design. Journal of Imaging Science and Technology,

44, 391–397.

[95]

[96]

[97]

[98]

[99]

[100]

[101]

This page intentionally left blank

Chapter 9

THE ANT COLONY OPTIMIZATION
METAHEURISTIC: ALGORITHMS,
APPLICATIONS, AND ADVANCES

Marco Dorigo
IRIDIA, Université Libre de Bruxelles, Belgium

E-mail: mdorigo@ulb.ac.be

URL: http://iridia.ulb.ac.be/~mdorigo

Thomas Stützle
Intellectics Group, TU Darmstadt, Germany

E-mail: stuetzle@informatik.tu-darmstadt.de

URL: http://www.intellektik.informatik.tu-darmstadt.de/~tom

1 INTRODUCTION

Ant Colony Optimization (ACO) [32,33] is a recent metaheuristic approach for
solving hard combinatorial optimization problems. The inspiring source of ACO is
the pheromone trail laying and following behavior of real ants which use pheromones
as a communication medium. In analogy to the biological example, ACO is based on the
indirect communication of a colony of simple agents, called (artificial) ants, mediated
by (artificial) pheromone trails. The pheromone trails in ACO serve as a distributed,
numerical information which the ants use to probabilistically construct solutions to the
problem being solved and which the ants adapt during the algorithm’s execution to
reflect their search experience.

The first example of such an algorithm is Ant System (AS) [30,36–38], which was
proposed using as example application, the well known Traveling Salesman Problem
(TSP) [60,76]. Despite encouraging initial results, AS could not compete with state-
of-the-art algorithms for the TSP. Nevertheless, it had the important role of stimulating
further research both on algorithmic variants, which obtain much better computational
performance, and on applications to a large variety of different problems. In fact,
there exists now a considerable number of applications obtaining world class perfor-
mance on problems including the quadratic assignment, vehicle routing, sequential
ordering, scheduling, routing in Internet-like networks, and so on [22,26,46,47,67,85].
Motivated by this success, the ACO metaheuristic has been proposed [32,33] as a
common framework for the existing applications and algorithmic variants. Algo-
rithms which follow the ACO metaheuristic will be called in the following ACO
algorithms.

252 M. Dorigo and T. Stützle

Current applications of ACO algorithms fall into the two important problem classes
of static and dynamic combinatorial optimization problems. Static problems are those
whose topology and costs do not change while the problems are being solved. This
is the case, e.g., for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s run-time. In contrast, in dynamic problems the
topology and costs can change while solutions are built. An example of such a problem
is routing in telecommunications networks [26], in which traffic patterns change all the
time. The ACO algorithms for solving these two classes of problems are very similar
from a high-level perspective, but they differ significantly in implementation details.
The ACO metaheuristic captures these differences and is general enough to comprise
the ideas common to both application types.

The (artificial) ants in ACO implement a randomized construction heuristic which
makes probabilistic decisions as a function of artificial pheromone trails and possibly
available heuristic information based on the input data of the problem to be solved.
As such, ACO can be interpreted as an extension of traditional construction heuristics
which are readily available for many combinatorial optimization problems. Yet, an
important difference with construction heuristics is the adaptation of the pheromone
trails during algorithm execution to take into account the cumulated search experience.

The rest of this chapter is organized as follows. In Section 2, we briefly overview
construction heuristics and local search algorithms. In Section 3, we define the type
of problem to which the ACO metaheuristic applies, the ants’ behavior, and the ACO
metaheuristic itself. Section 4 outlines the inspiring biological analogy and describes
the historical developments leading to ACO. In Section 5, we illustrate how the ACO
metaheuristic can be applied to different types of problems and we give an overview of
its successful applications. Section 6 discusses several issues arising in the application
of the ACO metaheuristic; Section 7 reports on recent developments and in Section 8
we conclude indicating future research directions.

2 TRADITIONAL APPROXIMATION APPROACHES

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [49,74]
and for many important problems it is well known that they are that is, the
time needed to solve an instance in the worst case grows exponentially with instance
size. Often, approximate algorithms are the only feasible way to obtain near optimal
solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search

algorithms.1 These two types of methods are significantly different, because construc-
tion algorithms work on partial solutions trying to extend these in the best possible way
to complete problem solutions, while local search methods move in the search space
of complete solutions.

1Other approximate methods are also conceivable. For example, when stopping exact methods, like
Branch & Bound, before completion [4,58] (e.g., after some given time bound, or when some guarantee on
the solution quality is obtained through the use of lower and upper bounds), we can convert exact algorithms
into approximate ones.

Ant Colony Optimization Metaheuristic 253

2.1 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an incre-
mental way starting with an empty initial solution and iteratively adding appropriate
solution components without backtracking until a complete solution is obtained. In the
simplest case, solution components are added in random order. Often better results
are obtained if a heuristic estimate of the myopic benefit of adding solution compo-
nents is taken into account. Greedy construction heuristics add at each step a solution
component which achieves the maximal myopic benefit as measured by some heuris-
tic information. An algorithmic outline of a greedy construction heuristic is given in
Figure 9.1. The function GreedyComponent returns the solution component e with the
best heuristic estimate. Solutions returned by greedy algorithms are typically of better
quality than randomly generated solutions. Yet, a disadvantage of greedy construction
heuristics is that they can generate only a very limited number of different solutions.
Additionally, greedy decisions in early stages of the construction process strongly con-
strain the available possibilities at later stages, often causing very poor moves in the
final phases of the solution construction.

As an example, consider a greedy construction heuristic for the traveling salesman
problem. In the TSP we are given a complete weighted graph with
being the set of vertices, representing the cities, and the set of edges fully connecting
the vertices Each edge is assigned a value which is the length of edge
The TSP is the problem of finding a minimal length Hamiltonian circuit of the graph,
where an Hamiltonian circuit is a closed tour visiting exactly once each of the
vertices of G. For symmetric TSPs, the distances between the cities are independent
of the direction of traversing the edges, that is, for every pair of vertices. In
the more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have

A simple rule of thumb to build a tour is to start from some initial city and to always
choose to go to the closest still unvisited city before returning to the start city. This
algorithm is known as the nearest neighbor tour construction heuristic.

Figure 9.2 shows a tour returned by the nearest neighbor heuristic on TSP instance
att532, taken from with 532 cities in the US. Noteworthy in this example is
that there are a few very long links in the tour, leading to a strongly suboptimal solution.

2 TSPLIB is a benchmark library for the TSP and related problems and is accessible via
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95.

M. Dorigo and T. Stützle

In fact, construction algorithms are typically the fastest approximate methods, but the
solutions they generate often are not of a very high quality and they are not guaranteed to
be optimal with respect to small changes; the results produced by constructive heuristics
can often be improved by local search algorithms.

2.2 Local Search

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improving
neighbor solution can be found in the neighborhood of the current solution and the
algorithm ends in a local optimum. An outline of an iterative improvement algorithm
is given in Figure 9.3. The procedure Improve returns a better neighbor solution
if one exists, otherwise it returns the current solution, in which case the algorithm
stops.

The choice of an appropriate neighborhood structure is crucial for the performance
of the local search algorithm and has to be done in a problem specific way. The neigh-
borhood structure defines the set of solutions that can be reached from s in one single
step of a local search algorithm. An example neighborhood for the TSP is the k-change

neighborhood in which neighbor solutions differ by at most k edges. Figure 9.4 shows
an example of a 2-change neighborhood. The 2-change algorithm systematically tests
whether the current tour can be improved by replacing two edges. To fully specify a
local search algorithm it is necessary to designate a particular neighborhood exam-
ination scheme that defines how the neighborhood is searched and which neighbor

254

Ant Colony Optimization Metaheuristic

solution replaces the current one. In the case of iterative improvement algorithms, this
rule is called the pivoting rule [93] and examples are the best-improvement rule, which
chooses the neighbor solution giving the largest improvement of the objective func-
tion, and the first-improvement rule, which uses the first improved solution found in
the neighborhood to replace the current one. A common problem with local search
algorithms is that they easily get trapped in local minima and that the result strongly
depends on the initial solution.

3 THE ACO METAHEURISTIC

Artificial ants used in ACO are stochastic solution construction procedures that prob-
abilistically build a solution by iteratively adding solution components to partial
solutions by taking into account (i) heuristic information on the problem instance being
solved, if available, and (ii) (artificial) pheromone trails which change dynamically at
run-time to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of different
solutions and hence explore a much larger number of solutions than greedy heuristics.
At the same time, the use of heuristic information, which is readily available for many
problems, can guide the ants towards the most promising solutions. More important,
the ants’ search experience can be used to influence, in a way reminiscent of rein-
forcement learning [89], the solution construction in future iterations of the algorithm.
Additionally, the use of a colony of ants can give the algorithm increased robustness
and in many ACO applications the collective interaction of a population of agents is
needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can be
applied to any discrete optimization problem for which some solution construction

255

M. Dorigo and T. Stützle

mechanism can be conceived. In the following of this section, we first define a generic
problem representation which the ants in ACO exploit to construct solutions, then we
detail the ants’ behavior while constructing solutions, and finally we define the ACO
metaheuristic.

3.1 Problem Representation

Let us consider the minimization problem3 where is the set of candidate

solutions, is the objective function which assigns to each candidate solution
an objective function (cost) value and is a set of constraints. The goal is to
find a globally optimal solution that is, a minimum cost solution that satisfies
the constraints

The problem representation of a combinatorial optimization problem
which is exploited by the ants can be characterized as follows:

A finite set of components is given.

The states of the problem are defined in terms of sequences
over the elements of The set of all possible sequences is

denoted by The length of a sequence x, that is, the number of components in
the sequence, is expressed by The maximum length of a sequence is bounded
by a positive constant

The set of (candidate) solutions is a subset of

The finite set of constraints defines the set of feasible states with

A non-empty set of feasible solutions is given, with and

A cost is associated to each candidate solution

In some cases a cost, or the estimate of a cost, can be associated to states
other than solutions. If can be obtained by adding solution components to a
state then Note that

Given this representation, artificial ants build solutions build solutions by moving
on the construction graph where the vertices are the components and
the set fully connects (elements of are called connections). The problem con-
straints are implemented in the policy followed by the artificial ants build solutions,
as explained in the next section. The choice of implementing the constraints in the
construction policy of the artificial ants allows a certain degree of flexibility. In fact,
depending on the combinatorial optimization problem considered, it may be more rea-
sonable to implement constraints in a hard way allowing ants to build only feasible
solutions, or in a soft way, in which case ants can build infeasible solutions (that is,
candidate solutions in) that will be penalized, depending on their degree of
infeasibility.

3.2 Ant’s Behavior

Ants can be characterized as stochastic construction procedures which build solutions
moving on the construction graph Ants do not move arbitrarily on G,

3 The adaptation to a maximization problem is straightforward.
4 The parameter t indicates that the the objective function can be time dependent, as it is the case in

applications to dynamic problems.

256

Ant Colony Optimization Metaheuristic

but rather follow a construction policy which is a function of the problem constraints
In general, ants try to build feasible solutions, but, if necessary, they can generate

infeasible solutions. Components and connections can have associated
a pheromone trail (if associated to components, if associated to connections)
encoding a long-term memory about the whole ant search process that is updated by the
ants themselves, and a heuristic value (and respectively) representing a priori
information about the problem instance definition or run-time information provided by
a source different from the ants. In many cases is the cost, or an estimate of the cost,
of extending the current state. These values are used by the ants’ heuristic rule to make
probabilistic decisions on how to move on the graph.

More precisely, each ant k of the colony has the following properties:

It exploits the graph to search for feasible solutions s of minimum
cost. That is, solutions s such that

It has a memory that it uses to store information about the path it followed
so far. Memory can be used (i) to build feasible solutions (i.e., to implement
constraints), (ii) to evaluate the solution found, and (iii) to retrace the path
backward to deposit pheromone.

It can be assigned a start state and one or more termination conditions

Usually, the start state is expressed either as a unit length sequence (that is,
a single component sequence), or an empty sequence.

When in state it tries to move to any vertex j in its feasible

neighborhood that is, to a state If this is not possible, then the
ant might be allowed to move to a vertex j in its infeasible neighborhood

generating in this way an infeasible state (that is, a state

It selects the move by applying a probabilistic decision rule. Its probabilistic
decision rule is a function of (i) locally available pheromone trails and heuristic
values, (ii) the ant’s private memory storing its past history, and (iii) the problem
constraints.

The construction procedure of ant k stops when at least one of the termination
conditions is satisfied. Examples of termination conditions are when a solution
is completed, or when, if building infeasible solutions is not allowed, there are
no feasible states reachable from the ant current state.

When adding a component to the current solution it can update the pheromone
trail associated to it or to the corresponding connection. This is called online

step-by-step pheromone update.

Once built a solution, it can retrace the same path backward and update the
pheromone trails of the used components or connections. This is called online

delayed pheromone update.

It is important to note that ants move concurrently and independently and that
each ant is complex enough to find a (probably poor) solution to the problem under
consideration. Typically, good quality solutions emerge as the result of the collective
interaction among the ants which is obtained via indirect communication mediated by
the information ants read/write in the variables storing pheromone trail values. In a
way, this is a distributed learning process in which the single agents, the ants, are not

257

258 M. Dorigo and T. Stützle

adaptive themselves but, on the contrary, they adaptively modify the way the problem
is represented and perceived by other ants.

3.3 The Metaheuristic

Informally, the behavior of ants in an ACO algorithm can be summarized as follows.
A colony of ants concurrently and asynchronously move through adjacent states of the
problem by building paths on G. They move by applying a stochastic local decision
policy that makes use of pheromone trails and heuristic information. By moving, ants
incrementally build solutions to the optimization problem. Once an ant has built a
solution, or while the solution is being built, the ant evaluates the (partial) solution and
deposits pheromone trails on the components or connections it used. This pheromone
information will direct the search of future ants.

Besides ants’ activity, an ACO algorithm includes two additional procedures: phero-

mone trail evaporation and daemon actions (this last component being optional).
Pheromone evaporation is the process by means of which the pheromone deposited
by previous ants decreases over time. From a practical point of view, pheromone
evaporation is needed to avoid a too rapid convergence of the algorithm towards a sub-
optimal region. It implements a useful form of forgetting, favoring the exploration of
new areas of the search space. Daemon actions can be used to implement centralized
actions which cannot be performed by single ants. Examples are the activation of a
local optimization procedure, or the collection of global information that can be used
to decide whether it is useful or not to deposit additional pheromone to bias the search
process from a non-local perspective. As a practical example, the daemon can observe
the path found by each ant in the colony and choose to deposit extra pheromone on the
components used by the ant that built the best solution. Pheromone updates performed
by the daemon are called off-line pheromone updates.

In Figure 9.5 the ACO metaheuristic behavior is described in pseudo-code. The
main procedure of the ACO metaheuristic manages, via the ScheduleActivities con-
struct, the scheduling of the three above discussed components of ACO algorithms: (i)
management of ants’ activity, (ii) pheromone evaporation, and (iii) daemon actions.
The ScheduleActivities construct does not specify how these three activities are sched-
uled and synchronized. In other words, it does not say whether they should be executed
in a completely parallel and independent way, or if some kind of synchronization

Ant Colony Optimization Metaheuristic

among them is necessary. The designer is therefore free to specify the way these three
procedures should interact.

4 HISTORY OF ACO ALGORITHMS

The first ACO algorithm proposed was Ant System (AS). AS was applied to some rather
small instances of the traveling salesman problem (TSP) with up to 75 cities. It was
able to reach the performance of other general-purpose heuristics like evolutionary
computation [30,38]. Despite these initial encouraging results, AS did not prove to
be competitive with state-of-the-art algorithms specifically designed for the TSP when
attacking large instances. Therefore, a substantial amount ofrecent research has focused
on ACO algorithms which show better performance than AS when applied, for example,
to the TSP. In the following of this section we first briefly introduce the biological
metaphor on which AS and ACO are inspired, and then we present a brief history of
the developments that have led from the original AS to the most recent ACO algorithms.
In fact, these more recent algorithms are direct extensions of AS which add advanced
features to improve the algorithm performance.

4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a particular chemical
that ants can smell) on the ground while walking [23,52]. By depositing pheromone
they create a trail that is used, e.g., to mark the path from the nest to food sources
and back. In fact, by sensing pheromone trails foragers can follow the path to food
discovered by other ants. Also, they are capable of exploiting pheromone trails to
choose the shortest among the available paths leading to the food.

Deneubourg and colleagues [23,52] used a double bridge connecting a nest of ants
and a food source to study pheromone trail laying and following behavior in controlled
experimental conditions.5 They ran a number of experiments in which they varied the
ratio between the length of the two branches of the bridge. The most interesting, for
our purposes, of these experiments is the one in which one branch was longer than the
other. In this experiment, at the start the ants were left free to move between the nest
and the food source and the percentage of ants that chose one or the other of the two
branches was observed over time. The outcome was that, although in the initial phase
random oscillations could occur, in most experiments all the ants ended up using the
shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone on
the two branches. Hence, the ants do not have a preference and they select with the same
probability either of the two branches. Therefore, it can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch are the
first to reach the food and to start their travel back to the nest.6 But then, when they must

5The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when returning
to the nest [52].

6 In the ACO literature this is often called differential path length effect.

259

260 M. Dorigo and T. Stützle

make a decision between the short and the long branch, the higher level of pheromone
on the short branch biases their decision in its favor.7 Therefore, pheromone starts
to accumulate faster on the short branch which will eventually be used by the great
majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms: the
double bridge was substituted by a graph, and pheromone trails by artificial pheromone
trails. Also, because we wanted artificial ants to solve problems more complicated than
those solved by real ants, we gave artificial ants some extra capacities, like a memory
(used to implement constraints and to allow the ants to retrace their path back to the nest
without errors) and the capacity for depositing a quantity of pheromone proportional
to the quality of the solution produced (a similar behavior is observed also in some real
ants species in which the quantity of pheromone deposited while returning to the nest
from a food source is proportional to the quality of the food source found [3]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less and
less biologically inspired and more and more motivated by the need of making ACO
algorithms competitive with or indeed better than other state-of-the-art algorithms.
Nevertheless, many aspects of the original Ant System remain: the need for a colony,
the role of autocatalysis, the cooperative behavior mediated by artificial pheromone
trails, the probabilistic construction of solutions biased by artificial pheromone trails
and local heuristic information, the pheromone updating guided by solution quality, and
the evaporation of pheromone trail, are present in all ACO algorithms. It is interesting
to note that there is one well known algorithm that, although making use in some way
of the ant foraging metaphor, cannot be considered an instance of the Ant Colony
Optimization metaheuristic. This is HAS-QAP, proposed in [48], where pheromone
trails are not used to guide the solution construction phase; on the contrary, they are
used to guide modifications of complete solutions in a local search style. This algorithm
belongs nevertheless to ant algorithms, a new class of algorithms inspired by a number
of different behaviors of social insects. Ant algorithms are receiving increasing attention
in the scientific community (see, e.g., [8,9,11,31]) as a promising novel approach to
distributed control and optimization.

4.2 Historical Development

As we said, AS was the first example of an ACO algorithm to be proposed in the
literature. In fact, AS was originally a set of three algorithms called ant-cycle, ant-

density, and ant-quantity. These three algorithms were proposed in Dorigo’s doctoral
dissertation [30] and first appeared in a technical report [36,37] that was published
a few years later in the IEEE Transactions on Systems, Man, and Cybernetics [38].
Another early publication is [17].

While in ant-density and ant-quantity the ants updated the pheromone directly after
a move from a city to an adjacent one, in ant-cycle the pheromone update was only
done after all the ants had constructed the tours and the amount of pheromone deposited
by each ant was set to be a function of the tour quality. Because ant-cycle performed
better than the other two variants, it was later called simply Ant System (and in fact, it

7 A process like this, in which a decision taken at time t increases the probability of making the same
decision at time T > t is said to be an autocatalytic process. Autocatalytic processes exploit positive
feedback.

Ant Colony Optimization Metaheuristic 261

is the algorithm that we will present in the following subsection), while the other two
algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not compet-
itive with other more established approaches, was to stimulate a number of researchers,
mostly in Europe, to develop extensions and improvements of its basic ideas so as to
produce better performing, and often state-of-the-art, algorithms. It is following the
successes of this collective undertaking that recently Dorigo and Di Caro [32] made
the synthesis effort that led to the definition of the ACO metaheuristic presented in this
chapter (see also [33]). In other words, the ACO metaheuristic was defined a posteriori

with the goal of providing a common characterization of a new class of algorithms and
a reference framework for the design of new instances of ACO algorithms.

4.2.1 The First ACO Algorithm: Ant System and the TSP

The traveling salesman problem (TSP) is a paradigmatic combinatorial
optimization problem which has attracted an enormous amount of research effort
[57,60,76]. The TSP is a very important problem also in the context of Ant Colony Opti-
mization because it is the problem to which the original AS was first applied [30,36,38],
and it has later often been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory which
stores the partial solution it has constructed so far (initially the memory contains only
the start city). Starting from its start city, an ant iteratively moves from city to city. When
at a city i, an ant k chooses to go to an as yet unvisited city j with a probability given by

where is a priori available heuristic information, and are two
parameters which determine the relative influence of pheromone trail and heuristic
information, and is the feasible neighborhood of ant k, that is, the set of cities
which ant k has not yet visited. Parameters and have the following influence on the
algorithm behavior. If the selection probabilities are proportional to and
the closest cities will more likely be selected: in this case AS corresponds to a classical
stochastic greedy algorithm (with multiple starting points since ants are initially ran-
domly distributed on the cities). If only pheromone amplification is at work:
this will lead to the rapid emergence of a stagnation situation with the corresponding
generation of tours which, in general, are strongly suboptimal [30]. (Search stagnation
is defined in [38] as the situation where all the ants follow the same path and construct
the same solution.)

The solution construction ends after each ant has completed a tour, that is, after each
ant has constructed a sequence of length n. Next, the pheromone trails are updated.
In AS this is done by first lowering the pheromone trails by a constant factor (this is
pheromone evaporation) and then allowing each ant to deposit pheromone on the edges
that belong to its tour:

where is the pheromone trail evaporation rate and m is the number of
ants. The parameter is used to avoid unlimited accumulation of the pheromone trails

262 M. Dorigo and T. Stützle

and enables the algorithm to “forget” previous “bad” decisions. On edges which are
not chosen by the ants, the associated pheromone strength will decrease exponentially
with the number of iterations. is the amount of pheromone ant deposits on
the edges; it is defined as

where is the length of the th ant’s tour. By Equation 9.3, the shorter the ant’s tour
is, the more pheromone is received by edges belonging to the tour.8 In general, edges
which are used by many ants and which are contained in shorter tours will receive more
pheromone and therefore are also more likely to be chosen in future iterations of the
algorithm.

4.2.2 Ant System and its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for TSP.
Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [30,38]. It consists
in giving the best tour since the start of the algorithm (called where stands for
global-best) a strong additional weight. In practice, each time the pheromone trails are
updated, those belonging to the edges of the global-best tour get an additional amount
of pheromone. For these edges Equation 9.3 becomes:

The edges of are therefore reinforced with a quantity of pheromone given by
where is the length of and e is a positive integer. Note that this type of

pheromone update is a first example of daemon action as described in Section 3.3.
Other improvements were the rank-based version of Ant System

Ant System and Ant Colony System (ACS). [14] is
in a sense an extension of the elitist strategy: it sorts the ants according to the lengths
of the tours they generated and, after each tour construction phase, only the
best ants and the global-best ant are allowed to deposit pheromone. The rth best ant of
the colony contributes to the pheromone update with a weight given by max
while the global-best tour reinforces the pheromone trails with weight Equation 9.2
becomes therefore:

where
ACS [34,35,44] improves over AS by increasing the importance of exploitation

of information collected by previous ants with respect to exploration of the search

8Note that when applied to symmetric TSPs the edges are considered to be bidirectional and edges (i, j)
and (j, i) are both updated. This is different for the ATSP, where edges are directed; an ant crossing edge
(i, j) will update only this edge and not the edge (j, i).

Ant Colony Optimization Metaheuristic 263

space.9 This is achieved via two mechanisms. First, a strong elitist strategy is used to
update pheromone trails. Second, ants choose the next city to move to using a so-called
pseudo-random proportional rule [35]: with probability they move to
the city j for which the product between pheromone trail and heuristic information is
maximum, that is, while with probability they

operate a biased exploration in which the probability is the same as in AS (see
Equation 9.1). The value is a parameter: when it is set to a value close to 1, as it is
the case in most ACS applications, exploitation is favored over exploration. Obviously,
when the probabilistic decision rule becomes the same as in AS.

As mentioned earlier, pheromone updates are performed using a strong elitist strat-
egy: only the ant that has produced the best solution is allowed to update pheromone
trails, according to a pheromone trail update rule similar to that used in AS:

The best ant can be the iteration-best ant, that is, the best in the current iteration,
or the global-best ant, that is, the ant that made the best tour from the start of the trial.

Finally, ACS differs from previous ACO algorithms also because ants update the
pheromone trails while building solutions (as in ant-quantity and in ant-density). In
practice, ACS ants “eat” some of the pheromone trail on the edges they visit. This
has the effect of decreasing the probability that the same path is used by all the ants
(i.e., it favors exploration, counterbalancing this way the other two above-mentioned
modifications that strongly favor exploitation of the collected knowledge about the
problem). ACS has been improved also by the addition of local search routines that
take the solution generated by ants to their local optimum just before the pheromone
update.

[84,87,88] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, in

the allowed range of the pheromone trail strength is limited to the interval
that is, and the pheromone trails are initial-

ized to the upper trail limit, which causes a higher exploration at the start of the
algorithm. Also, as in ACS, in only the best ant (the global-best or the
iteration-best ant) is allowed to add pheromone after each algorithm iteration. In fact,
in the iteration-best ant and the global-best ant can be used alternatingly in
the pheromone update. Computational results have shown that best results are obtained
when pheromone updates are performed using the global-best solution with increas-
ing frequency during the algorithm execution. Similarly to ACS, also often
exploits local search to improve its performance.

4.2.3 Applications to Dynamic Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is the most recent major development in the
field. The first such application [79] concerned routing in circuit-switched networks

9ACS was an offspring of Ant-Q [43], an algorithm intended to create a link between reinforcement
learning [89] and Ant Colony Optimization. Computational experiments have shown that some aspects of
Ant-Q, in particular the pheromone update rule, could be strongly simplified without affecting performance.
It is for this reason that Ant-Q was abandoned in favor of the simpler and equally good ACS.

264 M. Dorigo and T. Stützle

(e.g., classical telephone networks). The proposed algorithm, called ABC, was demon-
strated on a simulated version of the British Telecom network. The main merit of ABC
was to stimulate the interest of ACO researchers in dynamic problems. In fact, only
rather limited comparisons were made between ABC and state-of-the-art algorithms,
so that it is not possible to judge on the quality of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet algorithm,
proposed by Di Caro and Dorigo [24–26,28] and discussed in Section 5. AntNet was
applied to routing in packet-switched networks (e.g., the Internet). It contains a number
of innovations with respect to AS and it has been shown experimentally to outperform
a whole set of state-of-the-art algorithms on numerous benchmark problems.

5 EXAMPLES OF APPLICATIONS

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to a
number of different problems.

The ACO application to the TSP has already been presented in the previous section.
Here, we additionally discuss applications to three optimization problems,
the single machine total weighted tardiness problem (SMTWTP), the generalized
assignment problems (GAP), and the set covering problem (SCP). We have chosen
these problems to make the application examples as comprehensive as possible with
respect to different ways of representing solutions. While the TSP and the SMTWTP
are permutation problems, that is, solutions are represented as permutations of solution
components, solutions in the GAP are assignments of tasks to agents and in the SCP a
solution is represented as a subset of the available solution components.

Applications of ACO to dynamic problems focus mainly on routing in data
networks. As an example, in the following we present the AntNet algorithm [26].

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has an associated processing time a weight and a
due date and all jobs are available for processing at time zero. The tardiness of job
j is defined as where is its completion time in the current
job sequence. The goal in the SMTWTP is to find a job sequence which minimizes the
sum of the weighted tardiness given by

For the ACO application to the SMTWTP, the set of components is the set of all
jobs. As in the TSP case, the states of the problem are all possible partial sequences.
In the SMTWTP case we do not have explicit costs associated with the connections
because the objective function contribution of each job depends on the partial solution
constructed so far.

The SMTWTP was attacked in [22] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, each ant starts with an empty sequence and then iteratively appends an
unscheduled job to the partial sequence constructed so far. Each ant chooses the next
job using the pseudo-random-proportional action choice rule, where at each step the
feasible neighborhood of ant k is the list of as yet unscheduled jobs. Pheromone
trails are defined as follows: refers to the desirability of scheduling job j at posi-
tion i. This definition of the pheromone trails is, in fact, used in most ACO application

Example 9.1. The single machine total weighted tardiness scheduling problem

(SMTWTP)

Ant Colony Optimization Metaheuristic 265

to scheduling problems [2,22,67,82]. Concerning the heuristic information, in [22] the
use of three priority rules allowed to define three different types of heuristic infor-
mation for the SMTWTP. The investigated priority rules were: (i) the earliest due
date rule, which puts the jobs in non-decreasing order of the due dates (ii) the
modified due date rule which puts the jobs in non-decreasing order of the modi-
fied due dates given by where C is the sum of the
processing times of the already sequenced jobs, and (iii) the apparent urgency rule
which puts the jobs in non-decreasing order of the apparent urgency [72], given by

exp where is a parameter of the priority
rule. In each case, the heuristic information was defined as where is
either or depending on the priority rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Section 4.2, where in the global pheromone update, is the total
weighted tardiness of the global best solution.

In [22], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB
at http://www.ms.ic.ac.uk/info.html. Within the computation time limits
given,10 ACS reached a very good performance and could find in each single run
the optimal or best known solutions on all instances of the benchmark set. For more
details on the computational results we refer to [22].

subject to

The constraints 9.8 implement the limited resource capacity of the agents, while
constraints 9.9 and 9.10 impose that each task is assigned to exactly one agent and that
a task cannot be split among several agents.

10 The maximum time for the largest instances was 20min on a 450 MHz Pentium III PC with 256 MB
RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

Example 9.2. The generalized assignment problem (GAP)

In the GAP a set of tasks i = 1, . . . ,n , has to be assigned to a set of agents
j = 1,... , m. Each agent j has only a limited capacity and each task i consumes,

when assigned to agent j, a quantity of the agent’s capacity. Also, the cost
of assigning task i to agent j is given. The objective then is to find a feasible task
assignment with minimal cost.

Let be one if task i is assigned to agent j and zero otherwise. Then the GAP
can formally be defined as

266 M. Dorigo and T. Stützle

Example 9.3. The set covering problem (SCP)

In the set covering problem (SCP) we are given a m × n matrix in which
all the matrix elements are either zero or one. Additionally, each column is given a
non-negative cost We say that a column i covers a row j if The goal in the

The GAP can easily be cast into the framework of the ACO metaheuristic. The
problem can be represented by a graph in which the set of components comprises the set
of tasks and agents, that is and the set of connections fully connect the graph.
Each assignment, which consists of n couplings (i, j) of tasks and agents, corresponds
to an ant’s walk on this graph. Such a walk has to observe the constraints 9.9 and 9.10
to obtain a valid assignment. One particular way of generating such an assignment is
by an ant’s walk which iteratively switches from task vertices (vertices in the set)
to agent vertices (vertices in the set) without repeating any task vertex but possibly
using the same agent vertex several times (that is, several tasks may be assigned to the
same agent).

At each step of the construction process, an ant has to make one of the following
two basic decisions: (i) it has to decide which task to assign next and (ii) it has to decide
to which agent a chosen task should be assigned. Pheromone trail and heuristic infor-
mation can be associated with both steps. With respect to the first step the pheromone
information can be used to learn an appropriate assignment order of the tasks, that is,

gives the desirability of assigning task j directly after task i, while the pheromone
information in the second step is associated with the desirability of assigning a task to
a specific agent.

For simplicity let us consider an approach in which the tasks are assigned in a
random order. Then, at each step a task has to be assigned to an agent. Intuitively, it is
better to assign tasks to agents such that small assignment costs are incurred and that
the agent needs only a relatively small amount of its available resource to perform the
task. Hence, one possible heuristic information is and a probabilistic
selection of the assignments can follow the AS probabilistic rule (Equation 9.1) or
the pseudo-random proportional rule of ACS. Yet, a complication in the construction
process is that the GAP involves resource capacity constraints and, in fact, for the GAP
no guarantee is given that an ant will construct a feasible solution which obeys the
resource constraints given by Equation 9.8. In fact, to have a bias towards generating
feasible solutions, the resource constraints should be taken into account in the definition
of the feasible neighborhood of ant k. For the GAP, we define to consist of all
those agents to which the task i can be assigned without violating the agents’ resource
capacity. If no agent can meet the task’s resource requirement, we are forced to build
an infeasible solution and in this case we can simply choose as the set of all agents.
Infeasibilites can then be handled, for example, by assigning penalties proportional to
the amount of resource violations.

A first application of Ant System to the GAP was pre-
sented in [75]. The approach shows some particularities, like the use of a single ant
and the lack of any heuristic information. The infeasibility of solutions is only treated
in the pheromone update: the amount of pheromone deposited by an ant is set to a high
value if the solution it generated is feasible, to a low value if it is infeasible. These
values are constants independent of the solution quality. Additionally, was
coupled with a local search based on tabu search and ejection chain elements [51] and
it obtained very good performance on benchmark instances available at ORLIB.

Ant Colony Optimization Metaheuristic 267

SCP is to choose a subset of the columns of minimal weight that covers every row. Let
denote a subset of the columns and be a binary variable which is one, if

and zero otherwise. The SCP can be defined formally as follows.

subject to

The constraints 9.12 enforce that each row is covered by at least one column.
ACO can be applied in a very straightforward way to the SCP. The columns are

chosen as the solution components and have associated a cost and a pheromone trail.
The constraints say that each column can be visited by an ant at most once and that
a final solution has to cover all rows. A walk of an ant over the graph representation
corresponds to the iterative addition of columns to the partial solution obtained so far.
Each ant starts with an empty solution and adds columns until a cover is completed.
A pheromone trail and a heuristicinformation are associated to each column i. A
column to be added is chosen with probability

where is the feasible neighborhood of ant k which consists of all columns which
cover at least one still uncovered row. The heuristic information can be chosen in
several different ways. For example, a simple static information could be used, taking
into account only the column cost: A more sophisticate approach would be
to consider the total number of rows covered by a column i and to set
The heuristic information could also be made dependent on the partial solution of
an ant k. In this case, it can be defined as where is the so-called cover

value, that is, the number of additional rows covered when adding column i to the
current partial solution. In other words, the heuristic information measures the unit
cost of covering one additional row.

An ant ends the solution construction when all rows are covered. In a post-
optimization step, an ant can remove redundant columns—columns that only cover
rows which are also covered by a subset of other columns in the final solution—or
apply some additional local search to improve solutions. The pheromone update can
be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP we have two main differences with the previously
presented applications: (i) pheromone trails are associated only to components and,
(ii) the length of the ant’s walks (corresponding to the lengths of the sequences) may
differ among the ants and, hence, the solution construction only ends when all the ants
have terminated their corresponding walks.

There already exist some first applications of ACO to the SCP. In [1], ACO has been
used only as a construction algorithm and the approach has only been tested on some

268 M. Dorigo and T. Stützle

small SCP instances. A more recent article [55] applies Ant System to the SCP and
uses techniques to remove redundant columns and local search to improve solutions.
Good results are obtained on a large set of benchmark instances taken from ORLIB,
but the performance of Ant System could not fully reach that of the best performing
algorithms for the SCP.

Example 9.4. AntNet for network routing applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst case
complexity [5]), it becomes extremely difficult when the costs on the edges are time-
varying stochastic variables. This is the case of routing in packet-switched networks,
the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader should
refer to [26], where the AntNet approach to routing is explained and evaluated in detail).
As stated earlier, in AntNet each ant searches for a minimum cost path between a given
pair of vertices of the network. To this goal, ants are launched from each network vertex
towards randomly selected destination vertices. Each ant has a source vertex s and a
destination vertex d, and moves from s to d hopping from one vertex to the next until
vertex d is reached. When ant k is in vertex i, it chooses the next vertex j to move to
according to a probabilistic decision rule which is a function of the ant’s memory and
of local pheromone and heuristic information (very much like to what happened, for
example, in AS).

Unlike AS, where pheromone trails are associated to edges, in AntNet pheromone
trails are associated to edge-destination pairs. That is, each directed edge (i, j) has
n – 1 trail values associated, where n is the number of vertices in the
graph associated to the routing problem; in general, In other words, there
is one trail value for each possible destination vertex d an ant located in vertex
i can have. Each edge has also associated an heuristic value independent
of the final destination. The heuristic values can be set for example to the values

where is the length (in bits waiting to be sent) of the
queue of the link connecting vertex i with its neighbor j: links with a shorter queue
have a higher heuristic value.

In AntNet, as well as in most other implementations of ACO algorithms for routing
problems [79,90], the daemon component (see Figure 9.5) is not present.

Ants choose their way probabilistically, using as probability a functional composi-
tion of the local pheromone trails and of the heuri stic values While building the
path to their destinations, ants move using the same link queues as data and experience
the same delays as data packets. Therefore, the time elapsed while moving from
the source vertex s to the destination vertex d can be used as a measure of the quality
of the path they built. The overall quality of a path is evaluated by an heuristic function
of the trip time and of a local adaptive statistical model maintained in each vertex.
In fact, paths need to be evaluated relative to the network status because a trip time
T judged of low quality under low congestion conditions could be an excellent one
under high traffic load. Once the generic ant k has completed a path, it deposits on
the visited vertices an amount of pheromone proportional to the quality of the
path it built. To deposit pheromone, after reaching its destination vertex, the ant moves

Ant Colony Optimization Metaheuristic 269

back to its source vertex along the same path but backward and using high priority
queues, to allow a fast propagation of the collected information. The pheromone trail
intensity of each edge the ant used while it was moving from s to d is increased as
follows: After the pheromone trail on the visited edges has
been updated, the pheromone value of all the outgoing connections of the same vertex i,
relative to the destination d, evaporates in such a way that the pheromone values are nor-
malized and can continue to be usable as probabilities:

where is the set of neighbors of vertex i.

AntNet was compared with many state-of-the-art algorithms on a large set of bench-
mark problems under a variety of traffic conditions. It always compared favorably with
competing approaches and it was shown to be very robust with respect to varying traf-
fic conditions and parameter settings. More details on the experimental results can be
found in [26].

Applications of the ACO metaheuristic

ACO has recently raised a lot of interest in the scientific community. There are now
available numerous successful implementations of the ACO metaheuristic applied to
a wide range of different combinatorial optimization problems. These applications
comprise two main application fields.

for which the best known algorithms have exponential time
worst case complexity. For these problems, very often ACO algorithms are cou-
pled with extra capabilities such as problem-specific local optimizers, which take
the ants’ solutions to local optima.

Shortest path problems in which the properties of the problem’s graph representa-
tion change over time concurrently with the optimization process that has to adapt
to the problem’s dynamics. In this case, the problem’s graph can be physically
available (as in network problems), but its properties, like the costs of components
or of connections, can change over time. In this case we conjecture that the use
of ACO algorithms becomes more and more appropriate as the variation rate of
the costs increases and/or the knowledge about the variation process diminishes.

These applications are summarized in Table 9.1. In some of these applications, ACO
algorithms have obtained world-class performance, which is the case, for example,
for quadratic assignment [63,88], sequential ordering [45,46], vehicle routing [47],
scheduling [22,67] or packet-switched network routing [26].

6 DISCUSSION OF APPLICATION PRINCIPLES

Despite being a rather recent metaheuristic, ACO algorithms have already been applied
to a large number of different combinatorial optimization problems. Based on this
experience, we have identified some basic issues which play an important role in
several of these applications. These are discussed in the following.

6.1 Pheromone Trails Definition

An initial, very important choice when applying ACO is the definition of the intended
meaning of the pheromone trails. Let us explain this issue with an example. When

270 M. Dorigo and T. Stützle

Ant Colony Optimization Metaheuristic 271

272 M. Dorigo and T. Stützle

applying ACO to the TSP, the standard interpretation of a pheromone trail used in
all published ACO applications to the TSP, is that it refers to the desirability of visiting
city j directly after a city i. That is, it provides some information on the desirability
of the relative positioning of city i and j. Yet, another possibility, not working so well
in practice, would be to interpret as the desirability of visiting city i as the jth
city in a tour, that is, the desirability of the absolute positioning. Conversely, when
applying ACO to the SMTWTP (see Section 5) better results are obtained when using
the absolute position interpretation of the pheromone trails, where is the desirability
of putting job j on the ith position [21]. This is intuitively due to the different role
that permutations have in the two problems. In the TSP, permutations are cyclic, that
is, only the relative order of the solution components is important and a permutation

has the same tour length as the permutation
it represents the same tour. Therefore, a relative position based pheromone trail is
the appropriate choice. On the contrary, in the SMTWTP (as well as in many other
scheduling problems), and represent two different solutions with most probably
very different costs. Hence, in the SMTWTP the absolute position based pheromone
trails are a better choice. Nevertheless, it should be noted that, in principle, both
choices are possible, because any solution of the search space can be generated with
both representations.

The definition of the pheromone trails is crucial and a poor choice at this stage
of the algorithm design will result in poor performance. Fortunately, for many prob-
lems the intuitive choice is also a very good one, as it was the case for the previous
example applications. Yet, sometimes the use of the pheromones can be somewhat
more involved, which is, for example, the case in the ACO application to the shortest
common supersequence problem [70].

6.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance between
the exploitation of the search experience gathered so far and the exploration of unvisited
or relatively unexplored search space regions. In ACO several ways exist of achieving
such a balance, typically through the management of the pheromone trails. In fact, the
pheromone trails induce a probability distribution over the search space and determine
which parts of the search space are effectively sampled, that is, in which part of the
search space the constructed solutions are located with higher frequency. Note that,
depending on the distribution of the pheromone trails, the sampling distribution can
vary from a uniform distribution to a degenerate distribution which assigns probability
one to a single solution and zero probability to all the others. In fact, this latter situation
corresponds to the stagnation of the search as explained on page 261.

The simplest way to exploit the ants’ search experience is to make the pheromone
update a function of the solution quality achieved by each particular ant. Yet, this bias
alone is often too weak to obtain good performance, as was shown experimentally on
the TSP [84, 88]. Therefore, in many ACO algorithms (see Section 4) an elitist strategy

was introduced whereby the best solutions found during the search strongly contribute
to pheromone trail updating.

A stronger exploitation of the “learned” pheromone trails can also be achieved
during solution construction by applying the pseudo-random proportional rule of Ant
Colony System, as explained in Section 4.2.2.

Ant Colony Optimization Metaheuristic 273

Search space exploration is achieved in ACO primarily by the ants’ randomized
solution construction. Let us consider for a moment an ACO algorithm that does not
use heuristic information (this can be easily achieved by setting In this case,
the pheromone updating activity of the ants will cause a shift from the initial uniform
sampling of the search space to a sampling focused on specific search space regions.
Hence, exploration of the search space will be higher in the initial iterations of the
algorithm, and will decrease as the computation goes on. Obviously, attention must be
paid to avoid too strong a focus on apparently good regions of the search space, which
can cause the ACO algorithm to enter a stagnation situation.

There are several ways to try to avoid such stagnation situations, thus maintaining
a reasonable level of exploration of the search space. For example, in ACS the ants use
a local pheromone update rule during the solution construction to make the path they
have taken less desirable for following ants and, thus, to diversify search,
introduces an explicit lower limit on the pheromone trail level so that a minimal level of
exploration is always guaranteed. also uses a reinitialization of the pheromone
trails, which is a way of enforcing search space exploration. Experience has shown
that pheromone trail reinitialization, when combined with appropriate choices for the
pheromone trail update [88], can be very useful to refocus the search on a different
search space region.

Finally, an important, though somewhat neglected, role in the balance of explo-
ration and exploitation is that of the parameters and which determine the relative
influence of pheromone trail and heuristic information. Consider first the influence
of parameter For the larger the value of the stronger the exploitation of
the search experience, for the pheromone trails are not taken into account at
all, and for the most probable choices taken by the ants are those that are less
desirable from the point of view of pheromone trails. Hence, varying could be used
to shift from exploration to exploitation and vice versa. The parameter determines
the influence of the heuristic information in a similar way. In fact, systematic variations
of and could, similarly to what is done in the strategic oscillations approach [50],
be part of simple and useful strategies to balance exploration and exploitation.

6.3 ACO and Local Search

In many applications to combinatorial optimization problems, ACO algo-
rithms perform best when coupled with local search algorithms (which is, in fact,
a particular type of daemon action of the ACO metaheuristic). Local search algorithms
locally optimize the ants’ solutions and these locally optimized solutions are used in
the pheromone update.

The use of local search in ACO algorithms can be very interesting as the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally optimized by an
adequate local search algorithm. The coupling can therefore greatly improve the quality
of the solutions generated by the ants.

On the other side, generating initial solutions for local search algorithms is not an
easy task. For example, it has been shown that, for most problems, repeating local
searches from randomly generated initial solutions is not efficient (see, e.g., [57]). In
practice, ants probabilistically combine solution components which are part of the best
locally optimal solutions found so far and generate new, promising initial solutions

274 M. Dorigo and T. Stützle

for the local search. Experimentally, it has been found that such a combination of
a probabilistic, adaptive construction heuristic with local search can yield excellent
results [6,35,87].

It is important to note that when using local search a choice must be made con-
cerning pheromone trail update: either pheromone is added to the components and/or
connections of the locally optimal solution, or to the starting solutions for the local
search.11 The quasi totality of published research has used the first approach. Although
it could be interesting to investigate the second approach, some recent experimental
results suggest that its performance is worse.

Despite the fact that the use of local search algorithms has been shown to be crucial
for achieving best performance in many ACO applications, it should be noted that ACO
algorithms also show very good performance where local search algorithms cannot be
applied easily. One such example are the network routing applications described in
Section 5 or the shortest common supersequence problem [70].

6.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solution
construction is important because it gives the possibility of exploiting problem specific
knowledge. This knowledge can be available a priori (this is the most frequent situation
in static problems) or at run-time (this is the typical situation in dynamic problems). In
static problems, the heuristic information is usually computed once at initialization
time and then it remains the same throughout the whole algorithm’s run. An example
is the use, in the TSP applications, of the length of the edge connecting cities i

and j to define the heuristic information Static heuristic information has
the advantage that (i) it is easy to compute, (ii) it has to be computed only once at
initialization time, and (iii) in each iteration of the ACO algorithm, a table can be
pre-computed with the values of which can result in a very significant
saving of computation time. In the dynamic case, the heuristic information may also
depend on the partial solution constructed so far and therefore has to be computed at
each step of an ant’s walk. This determines a higher computational cost that may be
compensated by the higher accuracy of the computed heuristic values. For example,
in the ACO application to the SMTWTP we found that the use of dynamic heuristic
information based on the modified due date or the apparent urgency heuristics (see
Section 5) resulted in a better overall performance.

Another way of computing heuristic information was introduced in the ANTS
algorithm [63], where it is computed using lower bounds on the solution cost of the
completion of an ant’s partial solution. This method has the advantage that it facil-
itates the exclusion of certain choices because they lead to solutions that are worse
than the best found so far. It allows therefore the combination of knowledge on the
calculation of lower bounds from mathematical programming with the ACO paradigm.
Nevertheless, a disadvantage is that the computation of the lower bounds can be time
consuming, especially because they have to be calculated at each single construction
step by each ant.

11 Making an analogy with genetic algorithms, we could call the first approach “Lamarckian” and the
second “Darwinian”.

Ant Colony Optimization Metaheuristic 275

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.
Fortunately, this means that ACO algorithms can also achieve, in combination with
a local search algorithm, very good performance for problems for which it is difficult
to define a priori a very informative heuristic information.

6.5 Number of Ants

Why use a colony of ants instead of using one single ant? In fact, although a single ant
is capable of generating a solution, efficiency considerations suggest that the use of a
colony of ants is often a desirable choice. This is particularly true for geographically
distributed problems, because the differential path length effect exploited by ants in the
solution of this class of problems can only arise in presence of a colony of ants. It is
also interesting to note that in routing problems ants solve many shortest path problems
in parallel (one between each pair of vertices) and a colony of ants must be used for
each of these problems.

On the other hand, in the case of combinatorial optimization problems the differ-
ential length effect is not exploited and the use of m ants, m > 1, that build r solutions
each (i.e., the ACO algorithm is run for r iterations) could be equivalent to the use of
one ant that generates solutions. Nevertheless, in this case theoretical results on the
convergence of some specific ACO algorithms, which will be presented in Section 7,
as well as experimental evidence suggest that ACO algorithms perform better when
the number m of ants is set to a value m > 1.

In general, the best value for m is a function of the particular ACO algorithm chosen
as well as of the class of problems being attacked, and most of the times it must be
set experimentally. Fortunately, ACO algorithms seem to be rather robust to the actual
number of ants used.

6.6 Candidate Lists

One possible difficulty encountered by ACO algorithms is when they are applied to
problems with a large neighborhood in the solution construction. In fact, an ant that
visits a state with a large neighborhood has a correspondingly large number of possible
moves among which to choose. Possible problems are that the solution construction is
significantly slowed down and that the probability that many ants visit the same state
is very small. Such a situation can occur, for example, in the ACO application to large
TSPs or large SCPs.

In such situations, the above-mentioned problem can be considerably reduced by
the use of candidate lists. Candidate lists comprise a small set of promising neighbors of
the current state. They are created using a priori available knowledge on the problem,
if available, or dynamically generated information. Their use allows ACO algorithms
to focus on the more interesting components, strongly reducing the dimension of the
search space.

As an example, consider the ACO application to the TSP. For the TSP it is known
that very often optimal solutions can be found within a surprisingly small subgraph
consisting of all the cities and of those edges that connect each city to only a few of its
nearest neighbors. For example, for the TSPLIB instance pr2392.tsp with 2392 cities

276 M. Dorigo and T. Stützle

an optimal solution can be found within a subgraph of the 8 nearest neighbors [76].
This knowledge can be used for defining candidate lists, which was first done in the
context of ACO algorithms in [44]. A candidate list includes for each city its cl nearest
neighbors. During solution construction an ant tries to choose the city to move to only
among the cities in the candidate list. Only if all these cities have already been visited,
the ant can choose among the other cities.

So far, in ACO algorithms the use of candidate lists or similar approaches is still
rather unexplored. Inspiration from other techniques like Tabu Search [51] or GRASP
[42], where strong use of candidate lists is made, could be useful for the development
of effective candidate list strategies for ACO.

7 OTHER DEVELOPMENTS

7.1 Proving Convergence

The simplest stochastic optimization algorithm is random search. Besides simplicity,
random search has also the nice property that it guarantees that it will find, sooner
or later, the optimal solution to your problem. Unfortunately, it is very inefficient.
Stochastic optimization algorithms can be seen as ways of biasing random search so
to make it more efficient. Unfortunately, once a stochastic algorithm is biased, it is no
longer guaranteed to find, at some point, the optimal solution. In fact, the bias could
simply rule out this possibility. It is therefore interesting to have convergence proofs
that reassure you that this does not happen.

Although the problem of proving convergence to the optimal solution of a generic
ACO algorithm is open (and it will most probably remain so, given the generality of
the ACO metaheuristic), convergence has recently been proved for a few instances of
ACO algorithms. The first of such proofs was provided by Gutjahr [53,54] who proved
convergence to the optimal solution for a particular ACO algorithm he calls Graph-

based Ant System (GBAS): the proof states that, given a small and for fixed
values of some algorithm parameters, after a number of cycles the algorithm
will find the optimal solution with probability where A limitation
of this important result is that it applies to an ACO algorithm, GBAS, for which no
experimental results are available (i.e., we do not know what is its performance). More
recently, Stützle and Dorigo [86] have proved convergence for two of the experimentally
most successful ACO algorithms: ACS and

7.2 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or pop-
ulation domains. In particular, many parallel models used in other population-based
algorithms can be easily adapted to the ACO structure. Most parallelization strategies
can be classified into fine-grained and coarse-grained strategies. Characteristic of fine-
grained parallelization is that very few individuals are assigned to one single processor
and that frequent information exchange among the processors takes place. On the con-
trary, in coarse grained approaches larger subpopulations or even full populations are
assigned to single processors and information exchange is rather rare. We refer, for
example, to [16] for an overview.

Ant Colony Optimization Metaheuristic 277

Fine-grained parallelization schemes have been investigated with parallel versions
of AS for the TSP on the Connection Machine CM-2 adopting the approach of
attributing a single processing unit to each ant [7]. Experimental results showed that
communication overhead can be a major problem with this approach on fine grained
parallel machines, since ants end up spending most of their time communicating to
other ants the modifications they made to pheromone trails. Similar negative results
have also been reported in [15].

As shown by several researches [7,15,59,71,83], coarse grained parallelization
schemes are much more promising for ACO. When applied to ACO, coarse grained
schemes run p subcolonies in parallel, where p is the number of available processors.
Information among the subcolonies is exchanged at certain intervals. For example,
in the Partially Asynchronous Parallel Implementation (PAPI) of Bullnheimer, Kotsis
and Strauss [15], for which high speed-up was observed, the subcolonies exchange
pheromone information every fixed number of iterations performed by each sub-
colony. Krüger, Merkle and Middendorf [59] investigated which information should
be exchanged between the m subcolonies and how this information should be used
to update the subcolony’s trail information. Their results showed that it was better to
exchange the best solutions found so far and to use them in the pheromone update than to
exchange complete pheromone matrices for modifications of the pheromone matrix of a
local subcolony. Middendorf, Reischle, and Schmeck [71] investigate different ways of
exchanging solutions among m ant colonies. They consider an exchange of the global
best solutions among all colonies and local exchanges based on a virtual neighbor-
hood among subcolonies which corresponds to a directed ring. Their main observation
was that the best solutions, with respect to computing time and solution quality, were
obtained by limiting the information exchange to a local neighborhood of the colonies.
In the extreme case, there is no communication among the subcolonies, resulting in
parallel independent runs of an algorithm. This is the easiest way to parallelize ran-
domized algorithms and can be very effective as has been shown by computational
results presented by Stützle [83].

8 CONCLUSIONS

The field of ACO algorithms is very lively, as testified, for example, by the suc-
cessful biannual workshop (ANTS—From Ant Colonies to Artificial Ants: A Series of
International Workshops on Ant Algorithms; http://iridia.ulb.ac.be/~ants/)
where researchers meet to discuss the properties of ACO and other ant algorithms, both
theoretically and experimentally.

From the theory side, the most interesting ongoing work concerns the study of
the relationship between ACO algorithms and other well-known stochastic optimiza-
tion techniques. For example, it has been shown [68] that, when interpreting ACO
algorithms as methods for searching in the space of pheromones (i.e., artificial ants
are seen as procedures to update pheromone trails so to increase the probability of
generating very good solutions to the combinatorial optimization problem), then AS
can be interpreted as an approximate form of stochastic gradient descent [92] (a well-
known algorithm which has been extensively used in machine learning) in the space
of pheromones. Similarly, it has been shown [41,94] that there are strong connections
between ACO algorithms and the Cross-Entropy method [77].

278 M. Dorigo and T. Stützle

From the experimental side, most of the current research is in the direction of
increasing the number of problems that are successfully solved by ACO algorithms,
including real-word, industrial applications [39].

Currently, the great majority of problems attacked by ACO are static and well-
defined combinatorial optimization problems, that is, problems for which all the
necessary information is available and does not change during problem solution. For
this kind of problems ACO algorithms must compete with very well established algo-
rithms, often specialized for the given problem. Also, very often the role played by local
search is extremely important to obtain good results (see for example [46]). Although
rather successful on these problems, we believe that ACO algorithms will really show
their greatest advantage when they are systematically applied to “ill-structured” prob-
lems for which it is not clear how to apply local search, or to highly dynamic domains
with only local information available. A first step in this direction has already been
made with the application to telecommunications networks routing, but much further
research will be necessary. The reader interested in learning more about ACO is referred
to the book “Ant Colony Optimization” by the same authors [40].

ACKNOWLEDGMENTS

We thank Joshua Knowles and Michael Sampels for their useful comments on a draft
version of this paper. Marco Dorigo acknowledges support from the Belgian FNRS,
of which he is a Senior Research Associate. This work was partially supported by
the “Metaheuristics Network”, a Research Training Network funded by the Improving
Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The infor-
mation provided is the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for any use that might be
made of data appearing in this publication.

REFERENCES

D.A. Alexandrov and Y.A. Kochetov (2000) The behavior of the ant colony
algorithm for the set covering problem. In: K. Inderfurth, G. Schwödiauer,
W. Domschke, F. Juhnke, P. Kleinschmidt, and G. Wäscher (eds.), Operations

Research Proceedings 1999. Springer-Verlag, Berlin, Germany, pp. 255–260.

A. Bauer, B. Bullnheimer, R.F. Hartl and C. Strauss (1999) An ant colony
optimization approach for the single machine total tardiness problem. In: Pro-

ceedings of the 1999 Congress on Evolutionary Computation (CEC’99), IEEE
Press, Piscataway, NJ, pp. 1445–1450.

R. Beckers, J.-L. Deneubourg and S. Goss (1993) Modulation of trail laying in the
ant Lasius niger (hymenoptera: Formicidae) and its role in the collective selection
of a food source. Journal of Insect Behavior, 6(6), 751–759.

R. Bellman, A.O. Esogbue and I. Nabeshima (1982) Mathematical Aspects of

Scheduling and Applications. Pergamon Press, New York, NJ.

D. Bertsekas (1998) Network Optimization: Continuous and Discrete Models.

Athena Scientific, Belmont, MA.

[1]

[2]

[3]

[4]

[5]

Ant Colony Optimization Metaheuristic 279

K.D. Boese, A.B. Kahng and S. Muddu (1994) A new adaptive multi-start tech-
nique for combinatorial global optimization. Operations Research Letters, 16,
101–113.

M. Bolondi and M. Bondanza (1993) Parallelizzazione di un algoritmo per la
risoluzione del problema del commesso viaggiatore. Master’s thesis, Diparti-
mento di Elettronica, Politecnico di Milano, Italy.

E. Bonabeau, M. Dorigo and G. Theraulaz (1999) Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press, New York, NJ.

E. Bonabeau, M. Dorigo and G. Theraulaz (2000) Inspiration for optimization
from social insect behavior. Nature, 406, 39–42.

E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz and G. Theraulaz
(1998) Routing in telecommunication networks with “Smart” ant-like agents. In:
Proceedings of IATA’98, Second International Workshop on Intelligent Agents

for Telecommunication Applications, volume 1437 of Lecture Notes in Artificial

Intelligence. Springer-Verlag, Berlin, Germany, pp. 60–72.

E. Bonabeau and G. Theraulaz (2000) Swarm smarts. Scientific American, 282(3),
54–61.

B. Bullnheimer, R.F. Hartl and C. Strauss (1999) Applying the Ant System to the
vehicle routing problem. In: S. Voß, S. Martello, I.H. Osman and C. Roucairol
(eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms

for Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands,
pp. 285–296.

B. Bullnheimer, R.F. Hartl and C. Strauss (1999) An improved Ant System
algorithm for the vehicle routing problem. Annals of Operations Research, 89,
319–328.

B. Bullnheimer, R.F. Hartl and C. Strauss (1999) A new rank-based version of the
Ant System: A computational study. Central European Journal for Operations

Research and Economics, 7(1), 25–38.

B. Bullnheimer, G. Kotsis and C. Strauss (1998) Parallelization strategies for
the Ant System. In: R. De Leone, A. Murli, P. Pardalos and G. Toraldo
(eds.), High Performance Algorithms and Software in Nonlinear Optimization,

volume 24 of Applied Optimization. Kluwer Academic Publishers, Dordrecht,
The Netherlands, pp. 87–100.

E. Cantú-Paz (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Boston, MA.

A. Colorni, M. Dorigo and V. Maniezzo (1992) Distributed optimization by ant
colonies. In: F.J. Varela and P. Bourgine (eds.), Proceedings of the First European

Conference on Artificial Life, MIT Press, Cambridge, MA, pp. 134–142.

A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian (1994) Ant System for job-
shop scheduling. JORBEL—Belgian Journal of Operations Research, Statistics

and Computer Science, 34(1), 39–53.

O. Cordón, I. Fernández de Viana, F. Herrera and L. Moreno (2000) A new
ACO model integrating evolutionary computation concepts: The best-worst Ant
System. In: M. Dorigo, M. Middendorf and T. Stützle (eds.), Abstract proceedings

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

280 M. Dorigo and T. Stützle

of ANTS2000—From Ant Colonies to Artificial Ants: A Series of International

Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles, Belgium,
pp. 22–29.

D. Costa and A. Hertz (1997) Ants can colour graphs. Journal of the Operational

Research Society, 48, 295–305.

M. den Besten (2000) Ants for the single machine total weighted tardiness
problem. Master’s thesis, University of Amsterdam, The Netherlands.

M.L. den Besten, T. Stützle and M. Dorigo (2000) Ant colony optimization for
the total weighted tardiness problem. In: M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J. Merelo and H.-P. Schwefel (eds.), Proceedings of PPSN-VI,

Sixth International Conference on Parallel Problem Solving from Nature, volume
1917 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
pp. 611–620.

J.-L. Deneubourg, S. Aron, S. Goss and J.-M. Pasteels (1990) The self-organizing
exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, 159–168.

G. Di Caro and M. Dorigo (1997) AntNet: A mobile agents approach to adaptive
routing. Technical Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles,
Belgium.

G. Di Caro and M. Dorigo (1998) Ant colonies for adaptive routing in packet-
switched communications networks. In: A.E. Eiben, T. Bäck, M. Schoenauer and
H.-P. Schwefel (eds.), Proceedings of PPSN-V, Fifth International Conference on

Parallel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer

Science. Springer-Verlag, Berlin, Germany, pp. 673–682.

G. Di Caro and M. Dorigo (1998) AntNet: Distributed stigmergetic control
for communications networks. Journal of Artificial Intelligence Research, 9,
317–365.

G. Di Caro and M. Dorigo (1998) Extending AntNet for best-effort Quality-
of-Service routing. Unpublished presentation at ANTS’98—From Ant Colonies

to Artificial Ants: First International Workshop on Ant Colony Optimization,

http://iridia.ulb.ac.be/ants98/ants98.html, October 15–16.

G. Di Caro and M. Dorigo (1998) Mobile agents for adaptive routing. In:
H. El-Rewini (ed.), Proceedings of the 31st International Conference on Sys-

tem Sciences (HICSS-31). IEEE Computer Society Press, Los Alamitos, CA,
pp. 74–83.

G. Di Caro and M. Dorigo (1998) Two ant colony algorithms for best-effort routing
in datagram networks. In: Y. Pan, S.G. Akl and K. Li (eds.), Proceedings of the

Tenth IASTED International Conference on Parallel and Distributed Computing

and Systems (PDCS’98), IASTED/ACTA Press, Anaheim, CA, pp. 541–546.

M. Dorigo (1992) Optimization, Learning and Natural Algorithms (in Italian).
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 140 pp.

M. Dorigo, E. Bonabeau and G. Theraulaz (2000) Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(8), 851–871.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Ant Colony Optimization Metaheuristic 281

M. Dorigo and G. Di Caro (1999) The Ant Colony Optimization meta-heuristic.
In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization. McGraw
Hill, London, UK, pp. 11–32.

M. Dorigo, G. Di Caro and L.M. Gambardella (1999) Ant algorithms for discrete
optimization. Artificial Life, 5(2), 137–172.

M. Dorigo and L.M. Gambardella (1997) Ant colonies for the traveling salesman
problem. BioSystems, 43, 73–81.

M. Dorigo and L.M. Gambardella (1997) Ant Colony System: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on

Evolutionary Computation, 1(1), 53–66.

M. Dorigo, V. Maniezzo and A. Colorni (1991) The Ant System: An autocat-
alytic optimizing process. Technical Report 91-016 Revised, Dipartimento di
Elettronica, Politecnico di Milano, Italy.

M. Dorigo, V. Maniezzo and A. Colorni (1991) Positive feedback as a search
strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di
Milano, Italy.

M. Dorigo, V. Maniezzo, and A. Colorni (1996) The Ant System: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics—PartB, 26(1), 29–41.

M. Dorigo, M. Middendorf and T. Stützle (2000) (eds.) Abstract proceedings

of ANTS2000—From Ant Colonies to Artificial Ants: A Series of International

Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles, Belgium,
7–9 September.

M. Dorigo and T. Stützle Ant Colony Optimization. MIT Press, Cambridge, MA
(forthcoming).

M. Dorigo, M. Zlochin, N. Meuleau and M. Birattari (2001) Updating ACO
pheromones using stochastic gradient ascent and cross-entropy methods. Tech-
nical Report IRIDIA/2001-19, IRIDIA, Université Libre de Bruxelles, Belgium.
Proceedings of the 2nd European Workshop on Evolutionary Computation in

Combinatorial Optimization (EvoCOP-2002), (to appear).

T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109–133.

L.M. Gambardella and M. Dorigo (1995) Ant-Q: A reinforcement learning
approach to the traveling salesman problem. In: A. Prieditis and S. Russell
(eds.), Proceedings of the Twelfth International Conference on Machine Learning

(ML-95), Morgan Kaufmann Publishers, Palo Alto, CA, pp. 252–260.

L.M. Gambardella and M. Dorigo (1996) Solving symmetric and asymmetric
TSPs by ant colonies. In: Proceedings of the 1996 IEEE International Con-

ference on Evolutionary Computation (ICEC’96), IEEE Press, Piscataway, NJ,
pp. 622–627.

L.M. Gambardella and M. Dorigo (1997) HAS-SOP: An hybrid Ant System for
the sequential ordering problem. Technical Report IDSIA-11 -97, IDSIA, Lugano,
Switzerland.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

282 M. Dorigo and T. Stützle

L.M. Gambardella and M. Dorigo (2000) Ant Colony System hybridized with
a new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3), 237–255.

L.M. Gambardella, È D. Taillard and G. Agazzi (1999) MACS-VRPTW: A mul-
tiple ant colony system for vehicle routing problems with time windows. In: D.
Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization. McGraw Hill,
London, UK, pp. 63–76.

L.M. Gambardella, È.D. Taillard and M. Dorigo (1999) Ant colonies for the
quadratic assignment problem. Journal of the Operational Research Society,

50(2), 167–176.

M.R. Garey and D.S. Johnson (1979) Computers and Intractability: A Guide to
the Theory of Freeman, San Francisco, CA.

F. Glover (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.

F. Glover and M. Laguna (1997) Tabu Search. Kluwer Academic Publishers,
Boston, MA.

S. Goss, S. Aron, J.L. Deneubourg and J.M. Pasteels (1989) Self-organized
shortcuts in the Argentine ant. Naturwissenschaften, 76, 579–581.

W.J. Gutjahr (2000) A Graph-based Ant System and its convergence. Future

Generation Computer Systems, 16(8), 873–888.

W.J. Gutjahr (2002) ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, (in press).

R. Hadji, M. Rahoual, E. Talbi and V. Bachelet (2000) Ant colonies for the set
covering problem. In: M. Dorigo, M. Middendorf and T. Stützle (eds.), Abstract

proceedings of ANTS2000—From Ant Colonies to Artificial Ants: A Series of Inter-

national Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles,
Belgium, pp. 63–66.

M. Heusse, S. Guérin, D. Snyers and P. Kuntz (1998) Adaptive agent-driven
routing and load balancing in communication networks. Advances in Complex

Systems, 1(2), 237–254.

D.S. Johnson and L.A. McGeoch (1997) The travelling salesman problem: A
case study in local optimization. In: E.H.L. Aarts and J.K. Lenstra (eds.), Local
Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK,
pp. 215–310.

M. Jünger, G. Reinelt and S. Thienel (1994) Provably good solutions for the
traveling salesman problem. Zeitschrift für Operations Research, 40, 183–217.

F. Krüger, D. Merkle and M. Middendorf Studies on a parallel Ant System for
the BSP model. Unpublished manuscript.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1985) The
Travelling Salesman Problem. John Wiley & Sons, Chichester, UK.

G. Leguizamón and Z. Michalewicz (1999) A new version of Ant System for sub-
set problems. In: Proceedings of the 1999 Congress on Evolutionary Computation

(CEC’99). IEEE Press, Piscataway, NJ, pp. 1459–1464.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Ant Colony Optimization Metaheuristic 283

Y.-C. Liang and A.E. Smith (1999) An Ant System approach to redundancy
allocation. In: Proceedings of the 1999 Congress on Evolutionary Computation

(CEC’99). IEEE Press, Piscataway, NJ, pp. 1478–1484.

V. Maniezzo (1999) Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. INFORMS Journal on Computing,

11(4), 358–369.

V. Maniezzo and A. Carbonaro (2000) An ANTS heuristic for the frequency
assignment problem. Future Generation Computer Systems, 16(8), 927–935.

V. Maniezzo and A. Colorni (1999) The Ant System applied to the quadratic
assignment problem. IEEE Transactions on Data and Knowledge Engineering,

11(5), 769–778.

V. Maniezzo, A. Colorni and M. Dorigo (1994) The Ant System applied to
the quadratic assignment problem. Technical Report IRIDIA/94-28, IRIDIA,
Université Libre de Bruxelles, Belgium.

D. Merkle, M. Middendorf and H. Schmeck (2000) Ant colony optimization
for resource-constrained project scheduling. In: Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann
Publishers, San Francisco, CA, pp. 893–900.

N. Meuleau and M. Dorigo (2002) Ant colony optimization and stochastic gradient
descent. Artificial Life, (in press).

R. Michel and M. Middendorf (1998) An island model based Ant System
with lookahead for the shortest supersequence problem. In: A.E. Eiben, T.
Bäck, M. Schoenauer and H.-P. Schwefel (eds.), Proceedings of PPSN-V, Fifth

International Conference on Parallel Problem Solving from Nature, volume
1498 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
pp. 692–701.

R. Michel and M. Middendorf (1999) An ACO algorithm for the shortest super-
sequence problem. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in

Optimization. McGraw Hill, London, UK, pp. 51–61.

M. Middendorf, F. Reischle and H. Schmeck (2002) Multi colony ant algorithms.
Journal of Heuristics, (in press).

T.E. Morton, R.M. Rachamadugu and A. Vepsalainen (1984) Accurate
myopic heuristics for tardiness scheduling. GSIA Working Paper 36-83-84,
Carnegie–Mellon University, PA.

G. Navarro Varela and M.C. Sinclair (1999) Ant colony optimisation for virtual-
wavelength-path routing and wavelength allocation. In: Proceedings of the 1999

Congress on Evolutionary Computation (CEC’99). IEEE Press, Piscataway, NJ,
pp. 1809–1816.

C.H. Papadimitriou (1994) Computational Complexity. Addison-Wesley,
Reading, MA.

H. Ramalhinho Lourenço and D. Serra (1998) Adaptive approach heuristics
for the generalized assignment problem. Technical Report Economic Working
Papers Series No. 304, Universitat Pompeu Fabra, Department of Economics and
Management, Barcelona, Spain.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

284 M. Dorigo and T. Stützle

G. Reinelt (1994) The Traveling Salesman: Computational Solutions for TSP

Applications, volume 840 of Lecture Notes in Computer Science. Springer- Verlag,
Berlin, Germany.

R.Y. Rubinstein (2001) Combinatorial optimization via the simulated cross-
entropy method. In: Encyclopedia of Operations Research and Management

Science. Kluwer Academic Publishers, Boston, MA.

R. Schoonderwoerd, O. Holland and J. Bruten (1997) Ant-like agents for load bal-
ancing in telecommunications networks. In: Proceedings of the First International

Conference on Autonomous Agents. ACM Press, New York, NY, pp. 209–216.

R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz (1996) Ant-
based load balancing in telecommunications networks. Adaptive Behavior, 5(2),
169–207.

C. Solnon (2000) Solving permutation constraint satisfaction problems with arti-
ficial ants. In: W. Horn (ed.), Proceedings of the 14th European Conference on

Artificial Intelligence. IOS Press, Amsterdam, The Netherlands, pp. 118–122.

T. Stützle (1997) Ant System for the quadratic assignment prob-
lem. Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt,
Germany.

T. Stützle (1998) An ant approach to the flow shop problem. In: Proceed-

ings of the 6th European Congress on Intelligent Techniques & Soft Computing

(EUFIT’98), volume 3, Verlag Mainz, Wissenschaftsverlag, Aachen, Germany,
pp. 1560–1564.

T. Stützle (1998) Parallelization strategies for ant colony optimization. In:
A.E. Eiben, T. Bäck, M. Schoenauer and H.-P. Schwefel (eds.), Proceedings

of PPSN-V, Fifth International Conference on Parallel Problem Solving from

Nature, volume 1498 of Lecture Notes in Computer Science. Springer Verlag,
Berlin, Germany, pp. 722–731.

T. Stützle (1999) Local Search Algorithms for Combinatorial Problems: Analysis,

Improvements and New Applications. Infix, Sankt Augustin, Germany.

T. Stützle and M. Dorigo (1999) ACO algorithms for the quadratic assignment
problem. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization.

McGraw Hill, London, UK, pp. 33–50.

T. Stützle and M. Dorigo (2002) A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation (in press).

T. Stützle and H.H. Hoos (1997) The Ant System and local search
for the traveling salesman problem. In: T. Bäck, Z. Michalewicz and X. Yao
(eds.), Proceedings of the 1997 IEEE International Conference on Evolutionary

Computation (ICEC’97), IEEE Press, Piscataway, NJ, pp. 309–314.

T. Stützle and H.H. Hoos (2000) Ant System. Future Generation

Computer Systems, 16(8):889–914.

R.S. Sutton and A.G. Barto (1998) Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA.

R. van der Put (1998) Routing in the faxfactory using mobile agents. Technical
Report R&D-SV-98-276, KPN Research, The Netherlands.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Ant Colony Optimization Metaheuristic 285

T. White, B. Pagurek and F. Oppacher (1998) Connection management using
adaptive mobile agents. In: H.R. Arabnia (ed.), Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’98). CSREA Press, pp. 802–809.

R.J. Williams (1992) Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3), 229–256.

M. Yannakakis (1997) Computational complexity. In: E.H.L. Aarts and
J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. John Wiley &
Sons, Chichester, UK, pp. 19–55.

M. Zlochin, M. Birattari, N. Meuleau and M. Dorigo (2001) Combinatorial opti-
mization using model-based search. Technical Report IRIDIA/2001-15, IRIDIA,
Université Libre de Bruxelles, Belgium, (submitted to Annals of Operations

Research).

[91]

[92]

[93]

[94]

This page intentionally left blank

Chapter 10

THE THEORY AND PRACTICE OF
SIMULATED ANNEALING

Darrall Henderson
Department of Mathematical Sciences

United States Military Academy

West Point, NY 10996-1786, USA

E-mail: darrall@stanfordalumni.org

Sheldon H. Jacobson
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign

1206 West Green Street, MC-244

Urbana, Illinois 61801-2906, USA

E-mail: shj@uiuc.edu

Alan W. Johnson
Department of Mathematical Sciences

United States Military Academy

West Point, NY 10996-1786, USA

E-mail: aa2895@usma.edu

Abstract Simulated annealing is a popular local search meta-heuristic used to address discrete
and, to a lesser extent, continuous optimization problems. The key feature of simulated annealing
is that it provides a means to escape local optima by allowing hill-climbing moves (i.e., moves
which worsen the objective function value) in hopes of finding a global optimum. A brief history
of simulated annealing is presented, including a review of its application to discrete and contin-
uous optimization problems. Convergence theory for simulated annealing is reviewed, as well
as recent advances in the analysis of finite time performance. Other local search algorithms are
discussed in terms of their relationship to simulated annealing. The chapter also presents prac-
tical guidelines for the implementation of simulated annealing in terms of cooling schedules,
neighborhood functions, and appropriate applications.

Keywords: Local Search Algorithms, Simulated Annealing, Heuristics, Meta-heuristics

D. Henderson et al.

BACKGROUND SURVEY

Simulated annealing is a local search algorithm (meta-heuristic) capable of escaping
from local optima. Its ease of implementation, convergence properties and its use
of hill-climbing moves to escape local optima have made it a popular technique over
the past two decades. It is typically used to address discrete, and to a lesser extent,
continuous optimization problems. Recent survey articles that provide a good overview
of simulated annealing’s theoretical development and domains of application include
Eglese (1990), Fleischer (1995), Koulamas et al. (1994), and Romeo and Sangiovanni-
Vincentelli (1991). Aarts and Korst (1989) and van Laarhoven and Aarts (1988) devote
entire books to the subject. Aarts and Lenstra (1997) dedicate a chapter to simulated
annealing in their book on local search algorithms for discrete optimization problems.

1.1 History and Motivation

1

288

Simulated annealing is so named because of its analogy to the process of physical
annealing with solids, in which a crystalline solid is heated and then allowed to cool
very slowly until it achieves its most regular possible crystal lattice configuration (i.e., its
minimum lattice energy state), and thus is free of crystal defects. If the cooling schedule
is sufficiently slow, the final configuration results in a solid with such superior structural
integrity. Simulated annealing establishes the connection between this type of thermo-
dynamic behavior and the search for global minima for a discrete optimization problem.
Furthermore, it provides an algorithmic means for exploiting such a connection.

At each iteration of a simulated annealing algorithm applied to a discrete optimiza-
tion problem, the objective function generates values for two solutions (the current
solution and a newly selected solution) are compared. Improving solutions are always
accepted, while a fraction of non-improving (inferior) solutions are accepted in the
hope of escaping local optima in search of global optima. The probability of accept-
ing non-improving solutions depends on a temperature parameter, which is typically
non-increasing with each iteration of the algorithm.

The key algorithmic feature of simulated annealing is that it provides a means
to escape local optima by allowing hill-climbing moves (i.e., moves which worsen
the objective function value). As the temperature parameter is decreased to zero, hill-
climbing moves occur less frequently, and the solution distribution associated with the
inhomogeneous Markov chain that models the behavior of the algorithm converges to a
form in which all the probability is concentrated on the set of globally optimal solutions
(provided that the algorithm is convergent; otherwise the algorithm will converge to
a local optimum, which may or not be globally optimal).

1.2 Definition of Terms

To describe the specific features of a simulated annealing algorithm for discrete opti-
mization problems, several definitions are needed. Let be the solution space (i.e., the
set of all possible solutions). Let be an objective function defined on
the solution space. The goal is to find a global minimum, such that

for all The objective function must be bounded to ensure
that exists. Define to be the neighborhood function for Therefore,
associated with every solution, are neighboring solutions, that can be
reached in a single iteration of a local search algorithm.

The Theory and Practice of Simulated Annealing 289

Simulated annealing starts with an initial solution neighboring solution
is then generated (either randomly or using some pre-specified rule). Sim-

ulated annealing is based on the Metropolis acceptance criterion (Metropolis et al.,
1953), which models how a thermodynamic system moves from the current solution
(state) to a candidate solution in which the energy content is being
minimized. The candidate solution, is accepted as the current solution based on the
acceptance probability

Define as the temperature parameter at (outer loop) iteration k, such that

This acceptance probability is the basic element of the search mechanism in sim-
ulated annealing. If the temperature is reduced sufficiently slowly, then the system
can reach an equilibrium (steady state) at each iteration k. Let
denote the energies (objective function values) associated with solutions and

respectively. This equilibrium follows the Boltzmann distribution, which
can be described as the probability of the system being in state with energy

at temperature T such that

If the probability of generating a candidate solution from the neighbors of solution
where

then a non-negative square stochastic matrix can be defined with transition
probabilities

for all solutions and all iterations k = 1,2,. . . and These
transition probabilities define a sequence of solutions generated from an inhomoge-
neous Markov chain (Romeo and Sangiovanni-Vincentelli, 1991). Note that boldface
type indicates matrix/vector notation, and all vectors are row vectors.

290 D. Henderson et al.

1.3 Statement of Algorithm

Simulated annealing is outlined in pseudo-code (Eglese, 1990).

Select an initial solution
Select the temperature change counter k=0
Select a temperature cooling schedule,
Select an initial temperature
Select a repetition schedule, that defines the number of iterations executed at each

temperature,
Repeat

Set repetition counter m = 0
Repeat

Generate a solution
Calculate
If
If with probability

Until stopping criterion is met

This simulated annealing formulation results in total iter-
ations being executed, where k corresponds to the value for at which the stopping
criteria is met. In addition, if for all k, then the temperature changes at each
iteration.

1.4 Discrete versus Continuous Problems

The majority of the theoretical developments and application work with simulated
annealing has been for discrete optimization problems. However simulated annealing
has also been used as a tool to address problems in the continuous domain. There is
considerable interest in using simulated annealing for global optimization over regions
containing several local and global minima (due to inherent non-linearity of objective
functions). Fabian (1997) studies the performance of simulated annealing methods for
finding a global minimum of a function and Bohachevsky et al. (1986) presents a gen-
eralized simulated annealing algorithm for function optimization for use in statistical
applications. Optimization of continuous functions involves finding a candidate loca-
tion by picking a direction from the current (incumbent) solution and a step size to
take in this direction, and evaluating the function at the new (candidate) location. If
the function value of this candidate location is an improvement over the function value
of the incumbent location, then the candidate becomes the incumbent. This migra-
tion through local minima in search of a global minimum continues until the global
minimum is found or some termination criteria are reached. Belisle (1992) presents a
special simulated annealing algorithm for global optimization, which uses a heuristi-
cally motivated cooling schedule. This algorithm is easy to implement and provides a
reasonable alternative to existing methods.

Belisle et al. (1993) discusses convergence properties of simulated annealing
algorithms applied to continuous functions and applies these results to hit-and-run
algorithms used in global optimization. His convergence properties are consistent

The Theory and Practice of Simulated Annealing 291

with those presented by Hajek (1988) and he provides a good contrast between con-
vergence in probability and the stronger almost sure convergence. Zabinsky et al.
(1993) extends this work to an improved hit-and-run algorithm used for global
optimization.

Fleischer and Jacobson (1996) proposes cybernetic optimization by simulated
annealing as a method of parallel processing that accelerated the convergence of simu-
lated annealing to the global optima. Fleischer (1999) extends the theory of cybernetic
optimization by simulated annealing into the continuous domain by applying prob-
abilistic feedback control to the generation of candidate solutions. The probabilistic
feedback control method of generating candidate solutions effectively accelerates con-
vergence to a global optimum using parallel simulated annealing on continuous variable
problems.

Locatelli (1996) presents convergence properties for a class of simulated annealing
algorithms for continuous global optimization by removing the restriction that the next
candidate point must be generated according to a probability distribution whose support
is the whole feasible set. Siarry et al. (1997) studies simulated annealing algorithms
for globally minimizing functions of many-continuous variables. Their work focuses
on how high-dimensionality can be addressed using variables discretization, as well as
considering the design and implementation of several complementary stopping criteria.
Yang (2000) and Locatelli (2000) also provide convergence results and criteria for
simulated annealing applied to continuous global optimization problems. Kiatsupaibul
and Smith (2000) introduces a general purpose simulated annealing algorithm to solve
mixed integer linear programs. The simulated annealing algorithm is constructed using
a Markov chain sampling algorithm to generate uniformly distributed points on an
arbitrary bounded region of a high dimensional integer lattice. They show that their
algorithm converges in probability to a global optimum. Romeijn et al. (1999) also
studies a simulated annealing algorithm that uses a reflection generator for mixed
integer/continuous global optimization problems.

2 CONVERGENCE RESULTS

Convergence results for simulated annealing have typically taken one of two directions;
either the algorithm has been modeled as a sequence of homogeneous Markov chains
or as a single inhomogeneous Markov chain.

The homogeneous Markov chain approach (see, e.g., Aarts and van Laarhoven,
1985; Faigle and Kern, 1991; Granville et al., 1994; Johnson and Jacobson, 2002a,b;
Lundy and Mees, 1986; Mitra et al., 1986; Rossier et al., 1986) assumes that each
temperature is held constant for a sufficient number of iterations m such that the
stochastic matrix can reach its stationary (steady state) distribution Note that
in the interest of simplifying notation, the inner loop index m is suppressed. However,
the index k should be interpreted as the double index k,m, where a sequence of

simulated annealing iterations occur for each fixed k.) The existence of
a stationary distribution at each iteration k follows from Theorem 10.1. (Note: to
ensure that Theorem 1 is consistent with the simulated annealing algorithm depicted
in Section 1.3, without loss of generality, let be a function only of each outer loop
iteration k, and let the respective number of inner loop iterations and outer loop
iterations k each approach infinity).

292 D. Henderson et al.

Theorem 10.1. Let be the probability of moving from solution to solu-

tion in one inner iteration at outer loop k, and let be the probability

of going from solution to solution in m inner loops. If the Markov chain asso-

ciated with is irreducible and aperiodic with finitely many solutions, then

exists for all and iterations k. Furthermore,

is the unique strictly positive solution of

and

Proof. See Cinlar (1974)p. 153.

The key requirements for the existence of the stationary distributions and for the
convergence of the sequence of vectors include

1.

2.

3.

transition matrix irreducibility (for every finite outer loop k, the transition matrix
can assign a path of non-zero probability between any two solutions

aperiodicity (starting at solution it is possible to return to with
period 1. See Isaacson and Madsen (1976),

a non-zero stationary probability distribution, as the number of outer loops k

approaches infinity.

Note that all simulated annealing proofs of convergence in the literature based on
homogeneous Markov chain theory, either explicitly or implicitly, use the sufficient
condition of reversibility (also called detailed balance) (Ross, 1996), defined as

Reversibility is sufficient condition for a unique solution to exist for (6) and (7)
at each outer loop iteration k. Ross (1997) shows that a necessary condition for
reversibility is multiplicativity (i.e., for any three solutions such that

and for all iterations k,

where is the probability of accepting the transition from solution to solu-
tion at outer loop iteration k). Reversibility is enforced by assuming conditions of
symmetry on the solution generation probabilities and by either directly expressing the
acceptance probability using an exponential form, or by requiring the multiplicative
condition in (9).

The homogeneous Markov chain proofs of convergence in the literature (implicitly
or explicitly) require the condition in (9) to hold for the acceptance function, and then
address the sufficient conditions on the solution generation matrix. For example, the
original homogeneous proofs of convergence (Aarts and van Laarhoven, 1985; Lundy
and Mees, 1986) require the multiplicative condition for the acceptance function, and
then assume that the solution generation function is symmetric and constant for all outer

The Theory and Practice of Simulated Annealing 293

loop iterations k. Rossier et al. (1986) partitions the solution space into blocks composed
of neighboring solutions of equal objective function value, and then requires that only
the solution generation probabilities be symmetric between these blocks. Rossier et al.
(1986) then expresses the acceptance function as a ratio of the stationary distribution
probabilities (discussed in Section 2.1.3). Faigle and Schrader (1988) and Faigle and
Kern (1991) use a graph theoretic approach to relax the solution generation function
symmetry condition. However, they require that the solution acceptance probability
function satisfies (9).

Granville et al. (1994) proposes a simulated annealing procedure for filtering binary
images, where the acceptance function is based on the probability of the current solu-
tion, instead of the change in objective function value. The probability function that
Granville et al. (1994) present for accepting a candidate solution at (outer loop) itera-
tion k is based on the ratio of the stationary probability of the incumbent solution from
iteration k – 1, versus the stationary probability of an initial solution (which is based
on a maximum likelihood estimate). The acceptance probability is

where (q must also be estimated), and is a
slowly increasing function. Therefore, the probability of a solution transition does not
consider the objective function value of the candidate solution. Granville et al. (1994)
provides a proof of asymptotic convergence of this approach, but note that the proof
methodology does not show that the set of globally optimal solutions are asymptotically
uniformly distributed.

Simulated annealing and the homogeneous convergence theory are based on the
work of Metropolis et al. (1953), which addresses problems in equilibrium statistical
mechanics (Hammersley and Handscomb, 1964). To see this relationship, consider
a system in thermal equilibrium with its surroundings, in solution (state) S with
energy F(S). The probability density in phase space of the point representing S is
proportional to

where b is the Boltzmann constant, and T is the absolute temperature of the sur-
roundings. Therefore the proportion of time that the system spends in solution S

is proportional to (11) (Hammersley and Handscomb, 1964), hence the equilibrium
probability density for all is

The expectation of any valid solution function f(S) is thus

Unfortunately, for many solution functions, (13) cannot be evaluated analytically.
Hammersley and Handscomb (1964) notes that one could theoretically use naive Monte
Carlo techniques to estimate the value of the two integrals in (11). However, this often

294 D. Henderson et al.

fails in practice since the exponential factor means that a significant portion of the inte-
grals is concentrated in a very small region of the solution space This problem can
be overcome using importance sampling (see Bratley et al., 1987; Chapter 2), by gen-
erating solutions with probability density (12). This approach would also seem to fail,
because of the integral in the denominator of (12). However, Metropolis et al. (1953)
solves this problem by first discretizing the solution space, such that the integrals in (12)
and (13) are replaced by summations over the set of discrete solutions and then
by constructing an irreducible, aperiodic Markov chain with transition probabilities

such that

where

Note that to compute the equilibrium distribution the denominator of (13) (a
normalizing constant) does not need to be calculated. Instead, the ratios
need only be computed and a transition matrix P defined that satisfies (14). Hammer-
sley and Handscomb (1964) show that Metropolis et al. (1953) accomplishes this by
defining P as the product of symmetric solution generation probabilities and
the equilibrium ratios

where

The use of stationary probability ratios to define the solution acceptance probabili-
ties, combined with symmetric solution generation probabilities, enable Metropolis
et al. (1953) to use the reversibility condition in (8) to show that (16) and (17)
satisfy (14).

Homogeneous proofs of convergence for simulated annealing become more diffi-
cult to establish when the reversibility condition is not satisfied. Note that the existence
of a unique stationary distribution for each outer loop iteration k is easily shown by
specifying that each transition matrix be irreducible and aperiodic. On the other
hand, it becomes very difficult to derive an explicit closed-form expression for each
stationary distribution that remains analytically tractable as the problem’s solution
space becomes large. One can no longer use (8) to describe each stationary distribution,
because in general, the multiplicative condition is not met. Instead, one must directly
solve the system of equations formed with (6) and (7). For example, Davis (1991)

The Theory and Practice of Simulated Annealing 295

attempts to obtain a closed-form expression for by using Cramer’s rule and rewriting
(6) and (7) as

and

respectively, where boldface type indicates vector/matrix notation, I is the identity
matrix, and is a column vector of ones. Note that the transition
matrix associated with (18) is of rank (1974). Therefore, by

deleting any one equation from (18), and substituting (19), the result is the set of
linearly independent equations

where the square matrix is obtained by substituting the ith column of matrix
with a column vector of ones. The vector is a row vector of zeroes, except

for a one in the i th position. Since is of full rank, then its determinant (written
as is non-zero. Define to be the same matrix as except
that the elements of the row of are replaced by the vector Therefore,
for all iterations k,

Davis (1991) attempts to solve (21) for each via a multivariate Taylor series
expansion of each determinant, but is not able to derive a closed-form analytical
expression.

Overall, the difficulty of explicitly expressing the stationary distributions for large
solution spaces, combined with bounding the transition matrix condition number for
large k, suggests that it is very difficult to prove asymptotic convergence of the simulated
annealing algorithm by treating (5) and (6) as a linear algebra problem.

Lundy and Mees (1986) notes that for each fixed outer loop iteration k, convergence
to the solution equilibrium probability distribution vector (in terms of the Euclidean
distance between is geometric since the solution space is
finite, and the convergence factor is given by the second largest eigenvalue of the transi-
tion matrix This result is based on a standard convergence theorem for irreducible,
aperiodic homogeneous Markov chains (see Çinlar, 1974). Note that a large solution
space precludes practical calculation of this eigenvalue. Lundy and Mees (1986) con-
jectures that when the temperature is near zero, the second largest eigenvalue will be
close to one for problems with local optima, and thus convergence to the equilibrium
distribution will be very slow (recall that the dominant eigenvalue for is one, with
algebraic multiplicity one (Isaacson and Madsen, 1976). Lundy and Mees (1986) uses
its conjecture to justify why simulated annealing should be initiated with a relatively
high temperature. For an overview of current methods for assessing non-asymptotic
rates of convergence for general homogeneous Markov chains, see Rosenthal (1995).

The assumption of stationarity for each outer loop iteration k limits practical appli-
cation of homogeneous Markov chain theory—Romeo and Sangiovanni-Vincentelli
(1991) shows that if equilibrium (for a Markov chain that satisfies the reversibility
condition) is reached in a finite number of steps, then it is achieved in one step. Thus,

296 D. Henderson et al.

Romeo and Sangiovanni-Vincentelli (1991) conjectures that there is essentially no
hope for the most-used versions of simulated annealing to reach equilibrium in a finite
number of iterations.

The second convergence approach for simulated annealing is based on inhomoge-
neous Markov chain theory (Anily and Federgruen, 1987; Gidas, 1985; Mitra et al.,
1986). In this approach, the Markov chain need not reach a stationary distribution (e.g.,
the simulated annealing inner loop need not be infinitely long) for each outer loop k. On
the other hand, an infinite sequence of (outer loop) iterations k must still be examined,
with the condition that the temperature parameter cool sufficiently slowly. The proof
given by Mitra et al. (1986) is based on satisfying the inhomogeneous Markov chain
conditions of weak and strong ergodicity (Isaacson and Madsen, 1976; Seneta, 1981).
The proof requires four conditions:

1.

2.

3.

4.

The inhomogeneous simulated annealing Markov chain must be weakly ergodic
(i.e., dependence on the initial solution vanishes in the limit).

An eigenvector with eigenvalue one must exist such that (6) and (7) hold for
every iteration k.

The Markov chain must be strongly ergodic (i.e., the Markov chain must be
weakly ergodic and the sequence of eigenvectors must converge to a limiting
form), i.e.,

The sequence of eigenvectors must converge to a form where all probability mass
is concentrated on the set of globally optimal solutions Therefore,

where is the equilibrium distribution with only global optima having prob-
abilities greater than zero. (Note that weak and strong ergodicity are equivalent
for homogeneous Markov chain theory.)

Mitra et al. (1986) satisfies condition (1) (weak ergodicity) by first forming a lower
bound on the probability of reaching any solution from any local minimum, and then
showing that this bound does not approach zero too quickly. For example, they define
the lower bound for the simulated annealing transition probabilities in (5) as

where m is the number of transitions needed to reach any solution from any solution
of non-maximal objective function value, is a lower bound on the one-step
solution generation probabilities, and is the maximum one-step increase in objective
function value between any two solutions. Mitra et al. (1986) shows that the Markov
chain is weakly ergodic if

The Theory and Practice of Simulated Annealing 297

Therefore, weak ergodicity is obtained if the temperature is reduced sufficiently
slowly to zero such that (25) is satisfied. In general, the (infinite) sequence of
temperatures must satisfy

where is a problem-dependent constant, and k is the number of
iterations. Mitra et al. (1986) shows that conditions (2), (3), and (4) are satisfied by
using the homogeneous Markov chain theory developed for the transition probabilities
(5), and assuming that the solution generation function is symmetric.

Romeo and Sangiovanni-Vincentelli (1991) notes that while the logarithmic cooling
schedule in (26) is a sufficient condition for the convergence, there are only a few
values for which make the logarithmic rule also necessary. Furthermore, there exists
a unique choice for which makes the logarithmic rule both necessary and sufficient
for the convergence of simulated annealing to the set of global optima. Hajek (1988)
was the first to show that the logarithmic cooling schedule (26) is both necessary and
sufficient, by developing a tight lower bound for namely the depth of the deepest
local minimum which is not a global minimum, under a weak reversibility assumption.
(Note that Hajek requires the depth of global optima to be infinitely deep.) Hajek defines
a Markov chain to be weakly reversible if, for any pair of solutions and for
any non-negative real number h, is reachable at height h from if and only if
is reachable at height h from Note that Hajek (1988) does not attempt to satisfy the
conditions of weak and strong ergodicity, but instead uses a more general probabilistic
approach to develop a lower bound on the probability of escaping local, but not global
optima. Connors and Kumar (1989) substantiate the necessary and sufficient conditions
in Hajek (1988) using the orders of recurrence,

Connors and Kumar (1989) shows that these orders of recurrence quantify the asymp-
totic behavior of each solution’s probability in the solution distribution. The key result is
that the simulated annealing inhomogeneous Markov chain converges in a Cesaro sense
to the set of solutions having the largest recurrence orders. Borkar (1992) improves this
convergence result by using a convergence/oscillation dichotomy result for martingales.
Tsitsiklis (1989) uses bounds and estimates for singularly perturbed, approximately sta-
tionary Markov chains to develop a convergence theory that subsumes the condition of
weak reversibility in Hajek (1988). (Note that Tsitsiklis (1989) defines as
the set of all local minima (in terms of objective function value) of depth h + 1 or more.
Therefore is the smallest h such that all local (but not global) minima have depth h

or less. Tsitsiklis (1989) conjectures that without some form of reversibility, there does
not exist any h such that the global optima are contained in the set of local optima.)
Note that Chiang and Chow (1988, 1994), Borkar (1992), Connors and Kumar (1989),
Hajek (1988), and Mitra et al. (1986) all require (either explicitly or implicitly) the
multiplicative condition (9) for their proofs of convergence.

Anily and Federgruen (1987) uses perturbation analysis techniques (e.g., see Meyer,
1980) to prove convergence of a particular stochastic hill-climbing algorithm, by

298 D. Henderson et al.

bounding the deviations of the sequence of stationary distributions of the particular
hill-climbing algorithm against the sequence of known stationary distributions cor-
responding to a simulated annealing algorithm. In general, this convergence proof
approach is only useful for a restrictive class of simulated annealing algorithms, since
the transition matrix condition number grows exponentially as the number of iterations
k becomes large.

Anily and Federgruen (1987) also presents a proof of convergence for simu-
lated annealing with general acceptance probability functions. Using inhomogeneous
Markov chain theory, it proves convergence under the following necessary and sufficient
conditions:

1.

2.

3.

4.

Anily and Federgruen (1987) uses condition (3) to relax the acceptance function
multiplicative condition (9). However, in practice, condition (3) would be very diffi-
cult to check without assuming that (9) holds. Condition (4) provides the necessary
condition for the rate that the probability of hill-climbing transitions approaches zero.
Condition (4) is expressed quantitatively as follows: let be defined by (2), and define
the minimum one-step acceptance probability as

Define the set of local optima such that implies that for
all and let

Finally, let any solution be reachable from any solution in q transitions
or less. Then if (non-globally) locally optimal solutions exist,

and conditions (1), (2), and (3) hold, then the simulated annealing algorithm will
asymptotically converge to the set of global optima with probability one. However, if
(non-globally) locally optimal solutions exist and

The acceptance probability function must, for any iteration k, allow any hill-
climbing transition to occur with positive probability.

The acceptance probability function must be bounded and asymptotically
monotone, with limit zero for hill-climbing solution transitions.

In the limit, the stationary probability distribution must have zero probability
mass for every non-globally optimal solution.

The probability of escaping from any locally (but not globally) optimal solution
must not approach zero too quickly.

The Theory and Practice of Simulated Annealing 299

then the probability of each solution is asymptotically dependent upon the initial solu-
tion. Therefore, the simulated annealing algorithm will not always converge to the
set of global optima with probability one. Johnson and Jacobson (2002b) relaxes the
sufficient conditions found in Anily and Federgruen (1987) by using a path argument
between global optima and local (but not global) optima.

Yao and Li (1991) and Yao (1995) also discuss simulated annealing algorithms with
general acceptance probabilities, though their primary contribution is with respect to
general neighborhood generation distributions. Schuur (1997) provides a description of
acceptance functions ensuring the convergence of the associated simulated annealing
algorithm to the set of global optima.

The inhomogeneous proof concept is stronger than the homogeneous approach
in that it provides necessary conditions for the rate of convergence, but its asymp-
totic nature suggests that practical implementation may not be feasible. Romeo and
Sangiovanni-Vincentelli (1991) notes “there is no reason to believe that truncating the
logarithmic temperature sequence would yield a good configuration, since the tail of
the sequence is the essential ingredient in the proof.” In addition, the logarithmic cool-
ing schedule dictates a very slow rate of convergence. Therefore, most recent work has
focused on methods of improving simulated annealing’s finite-time behavior and mod-
ifying or blending the algorithm with other search methods such as genetic algorithms
(Liepins and Hilliard, 1989), tabu search (Glover, 1994), or both (Fox, 1993).

RELATIONSHIP TO OTHER LOCAL
SEARCH ALGORITHMS

3

The hill-climbing strategy inherent in simulated annealing has lead to the formulation
of other such algorithms (e.g., threshold accepting, the noising method). Moreover,
though different in how they traverse the solution space, both tabu search and genetic
algorithm share with simulated annealing the objective of using local information to
find global optima over solution spaces contaminated with multiple local optima.

3.1 Threshold Accepting

Questioning the very need for a randomized acceptance function, Dueck and Scheuer
(1990), and independently, Moscato and Fontanari (1990) propose the threshold
accepting algorithm, where the acceptance function is defined as

with defined as the threshold value at iteration is typically set to be a
deterministic, non-increasing step function in k. Dueck and Scheuer (1990) reports
computational results that suggest dramatic improvements in traveling salesman prob-
lem solution quality and algorithm run-time over basic simulated annealing. Moscato
and Fontanari (1990) reports more conservative results—they conjecture that simulated
annealing’s probabilistic acceptance function does not play a major role in the search
for near-optimal solutions.

Althofer and Koschnick (1991) develops a convergence theory for threshold accept-
ing based on the concept that simulated annealing belongs to the convex hull of threshold

300 D. Henderson et al.

accepting. The idea presented in Althofer and Koschnick (1991) is that (for a finite
threshold sequence) there can exist only finitely many threshold accepting transition
matrices; but simulated annealing can have infinitely many transition matrices because
of the real-valued nature of the temperature at each iteration. However, every simu-
lated annealing transition matrix for a given problem can be represented as a convex
combination of the finitely many threshold accepting transition matrices. Althofer and
Koschnick (1991) is unable to prove that threshold accepting will asymptotically reach
a global minimum, but it does prove the existence of threshold schedules that pro-
vide convergence to within an of the optimal solutions. Jacobson and
Yücesan (2002a) proves that if the threshold value approaches zero as k approaches
infinity, then the algorithm does not converge in probability to the set of globally optimal
solutions.

Hu et al. (1995) modifies threshold accepting to include a non-monotonic,
self-tuning threshold schedule in the hope of improving the algorithm’s finite-time
performance. Hu et al. (1995) allows the threshold to change dynamically (either
up or down), based on the perceived likelihood of being near a local minimum. These
changes are accomplished using a principle they call dwindling expectation—when
the algorithm fails to move to neighboring solutions, the threshold is gradually
increased, in the hope of eventually escaping a local optimum. Conversely, when solu-
tion transitions are successful, the threshold is reduced, in order to explore local optima.
The experimental results based on two traveling salesman problems presented in Hu
et al. (1995) showed that the proposed algorithm outperformed previous hill-climbing
methods in terms of finding good solutions earlier in the optimization process.

Threshold accepting’s advantages over simulated annealing lie in its ease of imple-
mentation and its generally faster execution time, due to the reduced computational
effort in avoiding acceptance probability computations and generation of random num-
bers (Moscato and Fontanari, 1990). However, compared to simulated annealing,
relatively few threshold accepting applications are reported in the literature (Lin et al.,
1995; Scheermesser and Bryngdahl, 1995; Nissen and Paul, 1995).

3.2 Noising Method

Charon and Hudry (1993) advocates a simple descent algorithm called the noising

method. The algorithm first perturbs the solution space by adding random noise to the
problem’s objective function values. The noise is gradually reduced to zero during the
algorithm’s execution, allowing the original problem structure to reappear. Charon and
Hudry (1993) provides computational results, but does not prove that the algorithm will
asymptotically converge to the set of globally optimal solutions. Charon and Hudry
(2001) shows how the noising method is a generalization of simulated annealing and
threshold accepting.

Storer et al. (1992) proposes an optimization strategy for sequencing problems, by
integrating fast, problem-specific heuristics with local search. Its key contribution is
to base the definition of the search neighborhood on a heuristic problem pair (h,p),
where h is a fast, known, problem-specific heuristic and p represents the problem
data. By perturbing the heuristic, the problem, or both, a neighborhood of solutions is
developed. This neighborhood then forms the basis for local search. The hope is that
the perturbations will cluster good solutions close together, thus making it easier to
perform local search.

The Theory and Practice of Simulated Annealing 301

3.3 Tabu Search

Tabu search (Glover, 1994) is a general framework for a variety of iterative local
search strategies for discrete optimization. Tabu search uses the concept of memory

by controlling the algorithm’s execution via a dynamic list of forbidden moves. This
allows the tabu search algorithm to intensify or diversify its search of a given problem’s
solution space in an effort to avoid entrapment in local optima. Note that a criticism
of simulated annealing is that it is completely memoryless (i.e., simulated annealing
disregards all historical information gathered during the algorithm’s execution). On the
other hand, no proofs of convergence exist in the literature for the general tabu search
algorithm.

Faigle and Kern (1992) proposes a particular tabu search algorithm called proba-

bilistic tabu search (Glover, 1989) as a meta-heuristic to help guide simulated annealing.
Probabilistic tabu search attempts to capitalize on both the asymptotic optimality of
simulated annealing and the memory feature of tabu search. In probabilistic tabu search,
the probabilities of generating and accepting each candidate solution are set as functions
of both a temperature parameter (as in simulated annealing) and information gained
in previous iterations (as for tabu search). Faigle and Kern (1992) are then able to
prove asymptotic convergence of their particular tabu search algorithm by using meth-
ods developed for simulated annealing (Faigle and Kern, 1991; Faigle and Schraeder,
1988). Note that the results of Faigle and Kern (1992) build upon Glover (1989) where
probabilistic tabu search was first introduced and contrasted with simulated annealing.

3.4 Genetic Algorithms

Genetic algorithms (Liepens and Hilliard, 1989) emulate the evolutionary behavior of
biological systems. They generate a sequence of populations of qcandidate solutions to
the underlying optimization problem by using a set of genetically inspired stochastic
solution transition operators to transform each population of candidate solutions into a
descendent population. The three most popular transition operators are reproduction,
cross-over, and mutation (Davis, 1991). Davis and Principe (1991) and Rudolph (1994)
attempt to use homogeneous finite Markov chain techniques to prove convergence of
genetic algorithms (Cerf, 1998), but are unable to develop a theory comparable in scope
to that of simulated annealing.

Mühlenbein (1997) presents a theoretical analysis of genetic algorithms based on
population genetics. He counters the popular notion that models that mimic natural phe-
nomenon are superior to other models. The article argues that evolutionary algorithms
can be inspired by nature, but do not necessarily have to copy a natural phenomenon.
He addresses the behavior of transition operators and designs new genetic operators
that are not necessarily related to events in nature, yet still perform well in practice.

One criticism of simulated annealing is the slow speed at which it sometimes con-
verges. Delport (1998) combines simulated annealing with evolutionary algorithms
to improve performance in terms of speed and quality of solution. He improves this
hybrid system of simulated annealing and evolutionary selection by improving the cool-
ing schedule based on fast recognition of the thermal equilibrium in terms of selection
intensity. This technique results in much faster convergence of the algorithm.

Sullivan and Jacobson (2000) links genetic algorithms with simulated annealing
using generalized hill climbing algorithms (Jacobson et al., 1998). They first link
genetic algorithms to ordinal hill climbing algorithms, which can then be used, through

302 D. Henderson et al.

its formulation within the generalized hill climbing algorithm framework, to form a
bridge with simulated annealing. Though genetic algorithms have proven to be effec-
tive for addressing intractable discrete optimization problems, and can be classified
as a type of hill-climbing approach, its link with generalized hill climbing algorithms
(through the ordinal hill climbing formulation) provides a means to establish well-
defined relationships with other generalized hill climbing algorithms (like simulated
annealing and threshold accepting). They also present two formulations of genetic algo-
rithms that provide a first step towards developing a bridge between genetic algorithms
and other local search strategies like simulated annealing.

4 PRACTICAL GUIDELINES

Implementation issues for simulated annealing can follow one of two paths—that
of specifying problem-specific choices (neighborhood, objective function, and con-
straints), and that of specifying generic choices (generation and acceptance probability
functions, and the cooling schedule) (Eglese, 1990). The principal shortcoming of
simulated annealing is that it often requires extensive computer time. Implementation
modifications generally strive to retain simulated annealing’s asymptotic convergence
character, but at reduced computer run-time. The methods discussed here are mostly
heuristic.

Problem-Specific Choices

Objective Functions One problem-specific choice involves the objective function
specification. Stern (1992) recommends a heuristic temperature-dependent penalty
function as a substitute for the actual objective function for problems where low cost
solutions have neighbors of much higher cost, or in cases of degeneracy (i.e., large
neighborhoods of solutions of equal, but high costs). The original objective function
surfaces, as the penalty and the temperature are gradually reduced to zero. This tech-
nique is similar to the noising method presented by Charon and Hudrey (1993), where
the penalty function is described as noise and is reduced at each outer loop iteration of
the algorithm. One speed-up technique is to evaluate only the difference in objective

functions, instead of calculating both and Tovey (1988) suggests
several methods of approximating by using surrogate functions (that are faster
to evaluate than but not as accurate) probabilistically for cases when evaluation
of is expensive; this technique is referred to as the surrogate function swindle.

Straub et al. (1995) improves the performance of simulated annealing on problems
in chemical physics by using the classical density distribution instead of the molecular
dynamics of single point particles to describe the potential energy landscape. Ma and
Straub (1994) reports that using this distribution has the effect of smoothing the energy
landscape by reducing both the number and depth of local minima.

Yan and Mukai (1992) considers the case when a closed-form formula for the objec-
tive function is not available. They use a probabilistic simulation (termed the stochastic
ruler method) to generate a sample objective function value for an input solution, and
then accept the solution if the sample objective function value falls within a predeter-
mined bound. They also provide a proof of asymptotic convergence by extrapolating
the convergence proofs for simulated annealing, and analyze the rate of convergence.

The Theory and Practice of Simulated Annealing 303

Generic Choices

Generation Probability Functions Generation probability functions are usually cho-
sen as uniform distributions with probabilities proportional to the size of the neigh-
borhood. The generation probability function is typically not temperature-dependent.
Fox (1993) suggests that instead of blindly generating neighbors uniformly, adopt an
intelligent generation mechanism that modifies the neighborhood and its probability
distribution to accommodate search intensification or diversification, in the same spirit
of the tabu search meta-heuristic. Fox (1993) also notes that simulated annealing con-
vergence theory does not preclude this idea. Tovey (1988) suggests an approach with
a similar effect, called the neighborhood prejudice swindle.

Acceptance Probability Functions The literature reports considerable experimen-
tation with acceptance probability functions for hill-climbing transitions. The most
popular is the exponential form (1). Ogbu and Smith (1990) considers replacing the
basic simulated annealing acceptance function with a geometrically decreas-
ing form that is independent of the change in objective function value. They adopt a
probabilistic-exhaustive heuristic technique in which randomly chosen neighbors of
a solution are examined and all solutions that are accepted are noted, but only the
last solution accepted becomes the new incumbent. The hope is that this scheme will
explore a broader area of the solution space of a problem. Their acceptance probability
function is defined for all solutions and for k = 1, 2, . . . , K as

where is the initial acceptance probability value, is a reducing factor, and
K is the number of stages (equivalent to a temperature cooling schedule). They also
experiment with this method (and a neighborhood of large cardinality) on a permutation
flow shop problem, and reports that its approach found comparable solutions to the basic
simulated annealing algorithm in one-third the computation time.

4.1 Choice of Cooling Schedule

The simulated annealing cooling schedule is fully defined by an initial temperature, a
schedule for reducing/changing the temperature, and a stopping criterion. Romeo and
Sangiovanni-Vincentelli (1991) notes that an effective cooling schedule is essential to
reducing the amount of time required by the algorithm to find an optimal solution.
Therefore much of the literature on cooling schedules (e.g., Cardoso et al., 1994;
Fox and Heine, 1993; Nourani and Andersen, 1998; and Cohn and Fielding, 1999) is
devoted to this topic.

Homogeneous simulated annealing convergence theory has been used to design
effective cooling schedules. Romeo and Sangiovanni-Vincentelli (1991) suggests the
following procedure for designing a cooling schedule:

1. Start with an initial temperature for which a good approximation of the
stationary distribution is quickly reached.

304 D. Henderson et al.

2.

3.

Reduce by an amount small enough such that is a good starting point
to approximate

Fix the temperature at a constant value during the iterations needed for the
solution distribution to approximate

Repeat the above process of cooling and iterating until no further improvement seems
possible.

Cooling schedules are grouped into two classes: static schedules, which must be
completely specified before the algorithm begins; and adaptive schedules, which adjust
the temperature’s rate of decrease from information obtained during the algorithm’s exe-
cution. Cooling schedules are almost always heuristic; they seek to balance moderate
execution time with simulated annealing’s dependence on asymptotic behavior.

Strenski and Kirkpatrick (1991) presents an exact (non-heuristic) characterization
of finite-length annealing schedules. They consider extremely small problems that
represent features (local optima and smooth/hilly topologies), and solve for solution
probabilities after a finite number of iterations to gain insights into some popular
assumptions and intuition behind cooling schedules. Their experiments suggest that
optimal cooling schedules are not monotone decreasing in temperature. They also show
that for the test problem (a white noise surface), geometric and linear cooling schedules
perform better than inverse logarithmic cooling schedules, when sufficient computing
effort is allowed. Moreover, their experiments do not show measurable performance
differences between linear and geometric cooling schedules. They also observe that
geometric cooling schedules are not greatly affected by excessively high initial tem-
peratures. The results presented suggest that the even the most robust adaptive cooling
schedule “produces annealing trajectories which are never in equilibrium” (Strenski
and Kirkpatrick, 1991). However, they also conclude that the transition acceptance rate
is not sensitive to the degree of closeness to the equilibrium distribution.

Christoph and Hoffmann (1993) also attempts to characterize optimal cooling
schedules. They derive a relationship between a finite sequence of optimal temper-
ature values (i.e., outer loops) and the number of iterations (i.e., inner loops) at each
respective temperature for several small test problems to reach optimality (i.e., the
minimal mean final energy). They find that this scaling behavior is of the form

where a and b are scaling coefficients, is referred to as the temperature,
is the number of inner loop iterations at temperature and m is the number of outer
loops at which the temperature is reduced. The proposed approach is to solve for
the coefficients a and b based on known temperature and iteration parameter values
for an optimal schedule based on several replications of the algorithm using
iterations for each replication, and then use (32) to interpolate the optimal cooling
schedule for intermediate iterations. They however do not make any suggestions on
how to efficiently solve for the necessary optimal cooling schedules for a (typically
large) problem instance.

Romeo and Sangiovanni-Vincentelli (1991) presents a theoretical framework for
evaluating the performance of the simulated annealing algorithm. They discuss anneal-
ing schedules in terms of initial temperature T, the number of inner loops for each value
of T, the rate that the temperature T decreases (i.e., cooling schedule) and the criteria
for stopping the algorithm. They conclude that the theoretical results obtained thus far

The Theory and Practice of Simulated Annealing 305

have not been able to explain why simulated annealing is so successful even when a
diverse collection of static cooling schedule heuristics is used. Many heuristic methods
are available in the literature to find optimal cooling schedules, but the effectiveness
of these schedules can only be compared through experimentation. They conjecture
that the neighborhood and the corresponding topology of the objective function are
responsible for the behavior of the algorithm.

Conn and Fielding (1999) conducts a detailed analysis of various cooling schedules
and how they affect the performance of simulated annealing. Convergent simulated
annealing algorithms are often too slow in practice, whereas a number of non-
convergent algorithms may be preferred for good finite-time performance. They analyze
various cooling schedules and present cases where repeated independent runs using a
non-convergent cooling schedule provide acceptable results in practice. They pro-
vide examples of when it is both practically and theoretically justified to use a very
high, fixed temperature, or even fast cooling schedules which have a small probability
of reaching global minima and apply these cooling schedules to traveling salesman
problems of various sizes. Fielding (2000) computationally studies fixed temperature
cooling schedules for the traveling salesman problem, the quadratic assignment prob-
lem, and the graph partitioning problem, and demonstrates that a fixed temperature
cooling schedule can yield superior results in locating optimal and near-optimal solu-
tions. Orosz and Jacobson (2002a,b) present finite-time performance measures for
simulated annealing with fixed temperature cooling schedules. They illustrate their
measures using randomly generated instances of the traveling salesman problem.

Another approach to increasing the speed of simulated annealing is to implement
a two-staged simulated annealing algorithm. In two-staged simulated annealing algo-
rithms, a fast heuristic is used to replace simulated annealing at higher temperatures,
with a traditional simulated annealing algorithm implemented at lower temperatures to
improve on the fast heuristic solution. In addition to implementing an intelligent cool-
ing schedule, finding the initial temperature to initialize the traditional simulated
annealing algorithm is important to the success of the two-staged algorithm. Varanelli
and Cohoon (1999) proposes a method for determining an initial temperature for
two-staged simulated annealing algorithms using traditional cooling schedules. They
note that if is too low at the beginning of the traditional simulated annealing phase,
the algorithm can get trapped in an inferior solution, while if the initial temperature

is too high, the algorithm can waste too many iterations (hence computing time) by
accepting too many hill-climbing moves.

4.2 Choice of Neighborhood

A key problem-specific choice concerns the neighborhood function definition. The effi-
ciency of simulated annealing is highly influenced by the neighborhood function used
(Moscato, 1993). The choice of neighborhood serves to enforce a topology—Eglese
(1990) reports that “a neighborhood structure which imposes a ‘smooth’ topology
where the local minima are shallow is preferred to a ‘bumpy’ topology where there
are many deep local minima.” Solla et al. (1986) and Fleischer and Jacobson (1999)
report similar conclusions. This also supports the result in Hajek (1988) that shows that
asymptotic convergence to the set of global optima depends on the depth of the local
minima.

306 D. Henderson et al.

Another factor to consider when choosing neighborhood functions is the neighbor-
hood size. No theoretical results are available, other than the necessity of reachability
(in a finite number of steps) from any solution to any other solution. Cheh et al. (1991)
reports that small neighborhoods are best, while Ogbu and Smith (1990) provides
evidence that larger neighborhoods result in better simulated annealing performance.
Goldstein and Waterman (1988) conjectures that if the neighborhood size is small com-
pared to the total solution space cardinality, then the Markov chain cannot move around
the solution space fast enough to find the minimum in a reasonable time. On the other
hand, a very large neighborhood has the algorithm merely sampling randomly from a
large portion of the solution space, and thus, is unable to focus on specific areas of the
solution space. It is reasonable to believe that neighborhood size is heavily problem-
specific. For example, problems where the smoothness of its solution space topology
is moderately insensitive to different neighborhood definitions may benefit from larger
neighborhood sizes.

Fleischer (1993) and Fleischer and Jacobson (1999) use concepts from information
theory to show that the neighborhood structure can affect the information rate or total
uncertainty associated with simulated annealing. Fleischer (1993) shows that simulated
annealing tends to perform better as the entropy level of the associated Markov chain
increases, and thus conjectures that an entropy measure could be useful for predicting
when simulated annealing would perform well on a given problem. However, efficient
ways of estimating the entropy are needed to make this a practical tool.

Another issue on neighborhood function definition addresses the solution space
itself. Chardaire et al. (1995) proposes a method for addressing 0–1 optimization
problems, in which the solution space is progressively reduced by fixing the value of
strongly persistent variables (which have the same value in all optimal solutions). They
isolate the persistent variables during simulated annealing’s execution by periodically
estimating the expectation of the random variable (a vector of binary elements) that
describes the current solution, and fixing the value of those elements in the random
variable that meet threshold criteria.

4.3 Domains—Types of Problems with Examples

Simulated annealing has developed into a popular tool for optimization in the last
decade. It has been used to address numerous discrete optimization problems as well
as continuous variable problems. Several application and computational survey articles
have been published on simulated annealing. Johnson et al. (1989, 1991) present a series
of articles on simulated annealing applied to certain well-studied discrete optimization
problems. The first in the series of articles uses the graph partitioning problem to
illustrate simulated annealing and highlight the effectiveness of several modifications to
the basic simulated annealing algorithm. The second in the series focuses on applying
lessons learned from the first article to the graph coloring and number partitioning
problems. Local optimization techniques were previously thought to be unacceptable
approaches to these two problems. Johnson et al. (1991) also observes that for long
run lengths, simulated annealing outperforms the traditional techniques used to solve
graph coloring problems. However, simulated annealing did not compare well with
traditional techniques on the number partitioning problem except for small problem
instances. The third article in the series (not yet published) uses simulated annealing
to approach the well-known traveling salesman problem.

The Theory and Practice of Simulated Annealing 307

Koulamas et al. (1994) focuses specifically on simulated annealing applied to appli-
cations in production/operations management and operations research. They discuss
traditional problems such as single machine, flow shop and job shop scheduling, lot
sizing, and traveling salesman problems as well as non-traditional problems to include
graph coloring and number partitioning. They conclude that simulated annealing is an
effective tool for solving many problems in operations research and that the degree
of accuracy that the algorithm achieves can be controlled by the practitioner, in terms
of number of iterations and neighborhood functions (i.e., an increased number of iter-
ations (outer loops) combined with increased number of searches at each iteration
(inner loops) can result in solutions with a higher probability of converging to the
optimal solution). Fleischer (1995) discusses simulated annealing from a historical
and evolutionary point of view in terms of solving difficult optimization problems. He
summarizes on-going research and presents an application of simulated annealing to
graph problems.

The simulated annealing algorithm has proved to be a good technique for solv-
ing difficult discrete optimization problems. In engineering optimization, simulated
annealing has emerged as an alternative tool to address problems that are difficult to
solve by conventional mathematical programming techniques. The algorithm’s major
disadvantage is that solving a complex system problem may be an extremely slow,
albeit convergent process, using much more processor time than some conventional
algorithms. Consequently, simulated annealing has not been widely embraced as an
optimization algorithm for engineering problems. Attempts have been made to improve
the performance of the algorithm either by reducing the annealing length or changing
the generation and the acceptance mechanisms. However, these faster schemes, in gen-
eral, do not inherit the property of escaping local minima. A more efficient way to
reduce the processor time and make simulated annealing a more attractive alternative
for engineering problems is to add parallelism (e.g., see Hamma et al., 2000). How-
ever, the implementation and efficiency of parallel simulated annealing algorithms are
typically problem-dependent. Leite et al. (1999) considers the evaluation of parallel
schemes for engineering problems where the solution spaces may be very complex
and highly constrained, with function evaluations varying from medium to high cost.
In addition, they provide guidelines for selecting appropriate schemes for engineering
problems. They also present an engineering problem with relatively low fitness evalu-
ation cost and strong time constraints to demonstrate the lower bounds of applicability
of parallel schemes.

Many signal processing applications create optimization problems with multi-
modal and non-smooth cost functions. Gradient methods are ineffective in these
situations because of multiple local minima and the requirement to calculate gradients.
Chen and Luk (1999) proposes an adaptive simulated annealing algorithm as a viable
optimization tool for addressing such difficult non-linear optimization problems. The
adaptive simulated annealing algorithm maintains the advantages of simulated anneal-
ing, but converges faster. Chen and Luk demonstrate the effectiveness of adaptive
simulated annealing with three signal processing applications: maximum likelihood
joint channel and data estimation, infinite-impulse-response filter design and evalua-
tion of minimum symbol-error-rate decision feedback equalizer. They conclude that
the adaptive simulated annealing algorithm is a powerful global optimization tool for
solving such signal processing problems.

308 D. Henderson et al.

Abramson et al. (1999) describes the use of simulated annealing for solving the
school time tabling problem. They use the scheduling problem to highlight the per-
formance of six different cooling schedules: the basic geometric cooling schedule,
a scheme that uses multiple cooling rates, geometric reheating, enhanced geometric
reheating, non-monotonic cooling, and reheating as a function of cost. The basic geo-
metric cooling schedule found in van Laarhoven and Aarts (1987) is used as the baseline
schedule for comparison purposes. Experimental results suggest that using multiple
cooling rates for a given problem yields better quality solutions in less time than
the solutions produced by a single cooling schedule. They conclude that the cooling
scheme that uses the phase transition temperature (i.e., when sub-parts of the combi-
natorial optimization problem are solved) in combination with the best solution to date
produces the best results.

Emden-Weinert and Proksch (1999) presents a study of a simulated annealing
algorithm for the airline crew-pairing problem based on an algorithm run-cutting for-
mulation. They found that the algorithm run-time can be decreased and solution quality
can be improved by using a problem-specific initial solution, relaxing constraints, com-
bining simulated annealing with a problem-specific local improvement heuristic, and
by conducting multiple independent runs.

There is no question that simulated annealing can demand significant computa-
tional time to reach global minima. Recent attempts to use parallel computing schemes
to speed up simulated annealing have provided promising results. Chu et al. (1999)
presents a new, efficient, and highly general-purpose parallel optimization method
based upon simulated annealing that does not depend on the structure of the opti-
mization problem being addressed. Their algorithm was used to analyze a network of
interacting genes that control embryonic development and other fundamental biologi-
cal processes. They use a two-stage procedure which monitors and pools performance
statistics obtained simultaneously from all processors and then mixes states at inter-
vals to maintain a Boltzman-like distribution of costs. They demonstrate that their
parallel simulated annealing approach leads to nearly optimal parallel efficiency for
certain optimization problems. In particular, the approach is appropriate when the
relative effort required to compute the cost function is large compared to the rela-
tive communication effort between parallel machines for pooling statistics and mixing
states.

Alrefaei and Andradottir (1999) presents a modified simulated annealing algo-
rithm with a constant temperature to address discrete optimization problems and use
two approaches to estimate an optimal solution to the problem. One approach esti-
mates the optimal solution based on the state most visited versus the state last visited,
while the other approach uses the best average estimated objective function value to
estimate the optimal solution. Both approaches are guaranteed to converge almost
surely to the set of global optimal solutions under mild conditions. They compare per-
formance of the modified simulated annealing algorithm to other forms of simulated
annealing used to solve discrete optimization problems.

Creating effective neighborhood functions or neighborhood generation mecha-
nisms is a critical element in designing efficient simulated annealing algorithms
for discrete optimization problems. Tian et al. (1999) investigates the application
of simulated annealing to discrete optimization problems with a permutation prop-
erty, such as the traveling salesman problem, the flow-shop scheduling problem,
and the quadratic assignment problems. They focus on the neighborhood function

5 FUTURE DIRECTIONS

5.1 Generalized Hill Climbing Algorithms

Generalized Hill Climbing algorithms (GHC) (Jacobson et al., 1998) provide a
framework for modeling local search algorithms used to address intractable discrete
optimization problems. All generalized hill climbing algorithms have the same basic
structure, but can be tailored to a specific instance of a problem by changing the
hill-climbing random variable (which is used to accept or reject inferior solutions)
and neighborhood functions. Generalized hill climbing algorithms are described in
pseudo-code form:

Select an initial solution
Set the outer loop counter bound K and the inner loop counter bounds

Define a set of hill-climbing (random) variables

The Theory and Practice of Simulated Annealing 309

of the discrete optimization problem and in particular the generation mechanism
for the algorithm used to address the problem. They introduce six types of per-
turbation scheme for generating random permutation solutions and prove that each
scheme satisfies asymptotic convergence requirements. The results of the experi-
mental evaluations on the traveling salesman problem, the flow-shop scheduling
problem, and the quadratic assignment problem suggest that the efficiencies of the
perturbation schemes are different for each problem type and solution space. They
conclude that with the proper perturbation scheme, simulated annealing produces effi-
cient solutions to different discrete optimization problems that possess a permutation
property.

Research continues to focus on the idea of simulated annealing applied to opti-
mization of continuous functions. Continuous global optimization is defined as the
problem of finding points on a bounded subset of where some real valued function
f assumes its optimal (maximal or minimal) value. Application of simulated anneal-
ing to continuous optimization generally falls into two classes. The first approach
closely follows the original idea presented by Kirkpatrick et al. (1983) in that the
algorithm mimics the physical annealing process. The second approach describes
the annealing process with Langevin equations, where the global minimum is found
by solving stochastic differential equations (see Aluffi-Pentini et al., 1985). Geman
and Hwang (1986) proves that continuous optimization algorithms based on Langevin
equations converge to the global optima. Dekkers and Aarts (1991) proposes a third
stochastic approach to address global optimization based on simulated annealing. Their
approach is very similar to the formulation of simulated annealing as applied to dis-
crete optimization problems. They extend the mathematical formulation of simulated
annealing to continuous optimization problems, and prove asymptotic convergence to
the set of global optima based on the equilibrium distribution of Markov chains. They
also discuss an implementation of the proposed algorithm and compares its perfor-
mance with other well-known algorithms on a standard set of test functions from the
literature.

310 D. Henderson et al.

Set the iteration indices k = m = 1
Repeat while

Repeat while

Generate a solution
Calculate
If then
If then

Until k = K

Note that the outer and inner loop bounds, K and respectively,
may all be fixed, or K can be fixed with the defined as random
variables whose values are determined by the solution at the end of each set of inner
loop iterations satisfying some property (e.g., the solution is a local optima).

Generalized hill climbing algorithms can be viewed as sampling procedures over
the solution space The key distinction between different generalized hill climbing
algorithm formulations is in how the sampling is performed. For example, simulated
annealing produces biased samples, guided by the neighborhood function, the objective
function, and the temperature parameter. More specifically, simulated annealing can be
described as a generalized hill climbing algorithm by setting the hill-climbing random
variable, and the are
independent and identically distributed U(0,1) random variables. To formulate Monte
Carlo search as a generalized hill climbing algorithm, set

Deterministic local search accepts only neighbors of
improving (lower) objective function value and can be expressed as a generalized hill
climbing algorithm with Other
algorithms that can be described using the generalized hill climbing framework include
threshold accepting (1990) some simple forms of tabu search (1997), and Weibull
accepting. Jacobson et al. (1998), Sullivan and Jacobson (2001), and Johnson and
Jacobson (2002b) provide a complete discussion of these algorithms and a description
of how these algorithms fit into the generalized hill climbing algorithm framework.

5.2 Convergence versus Finite-Time Performance

The current literature focuses mainly on asymptotic convergence properties of simu-
lated annealing algorithms (Section 2 outlines and describes several of these results);
however, considerable work on finite-time behavior of simulated annealing has been
presented over the past decade. Chiang and Chow (1989) and Mazza (1992) investi-
gate the statistical properties of the first visit time to a global optima which provides
insight into the time-asymptotic properties of the algorithm as the outer loop counter,

Catoni (1996) investigates optimizing a finite-horizon cooling schedule to
maximize the number of visits to a global optimum after a finite number of iterations.
Desai (1999) focuses on finite-time performance by incorporating size-asymptotic
information supplied by certain eigenvalues associated with the transition matrix. Desai
provides some quantitative and qualitative information about the performance of sim-
ulated annealing after a finite number of steps by observing the quality of solutions
related to the number of steps that the algorithm has taken.

The Theory and Practice of Simulated Annealing 311

Srichander (1995) examines the finite-time performance of simulated annealing
using spectral decomposition of matrices. He proposes that an annealing schedule
on the temperature is not necessary for the final solution of the simulated annealing
algorithm to converge to the global minimum with probability one. Srichander shows
that initiating the simulated annealing algorithm with high initial temperatures produces
an inefficient algorithm in the sense that the number of function evaluations required
to obtain a global minima is very large. A modified simulated annealing algorithm is
presented with a low initial temperature and an iterative schedule on the size of the
neighborhood sets that leads to a more efficient algorithm. The new algorithm is applied
to a real-world example and performance is reported.

Fleischer and Jacobson (1999) uses a reverse approach to establish theoretical rela-
tionships between the finite-time performance of an algorithm and the characteristics
of problem instances. They observe that the configuration space created by an instance
of a discrete optimization problem determines the efficiency of simulated annealing
when applied to that problem. The entropy of the Markov chain embodying simulated
annealing is introduced as a measure that captures the entire topology of the configura-
tion space associated with the particular instance of the discrete optimization problem.
By observing the expected value of the final state in a simulated annealing algorithm
as it relates to the entropy value of the underlying Markov chain, the article presents
measures of performance that determine how well the simulated annealing algorithm
performs in finite-time. Their computational results suggest that superior finite-time
performance of a simulated annealing algorithm are associated with higher entropy
measures.

5.3 Extensions

The popularity of simulated annealing has spawned several new annealing-like algo-
rithms. Pepper et al. (2000) introduce demon algorithms and test them on the traveling
salesman problem. Ohlmann and Bean (2000) introduce another variant of simulated
annealing termed compressed annealing. They incorporate the concepts of pressure
and volume, in addition to temperature, to address discrete optimization problems with
relaxed constraints. They also introduce a primal/dual meta-heuristic by simultaneously
adjusting temperature and pressure in the algorithm.

Much work continues in the area of convergence and comparing the performance of
simulated annealing algorithms to other local search strategies. Jacobson and Yücesan
(2002b) presents necessary and sufficient (asymptotic) convergence conditions for gen-
eralized hill climbing algorithms that include simulated annealing as a special case.
They also introduce new performance measures that can be used to evaluate and com-
pare both convergent and non-convergent generalized hill climbing algorithms with
random restart local search (Jacobson, 2002). Such a comparison provides insights
into both asymptotic and finite-time performance of discrete optimization algorithms.
For example, they use the global visit probability to evaluate the performance of simu-
lated annealing using random restart local search as a benchmark. These results suggest
that random restart local search may outperform simulated annealing provided that a
sufficiently large number of restarts are executed. Ferreira and Zerovnik (1993) develop
bounds on the probability that simulated annealing obtains an optimal (or near-optimal)
solution, and use these bound to obtain similar results for random restart local search
and simulated annealing. Fox (1994) notes that this result is only true if both the number

312 D. Henderson et al.

of accepted and rejected moves are counted. Fox (1994) also provides a clever exam-
ple to illustrate this point, and notes that comparing random restart local search and
simulating annealing may not be prudent. Fox (1993, 1995) presents modifications of
simulated annealing that circumvent this counting issue, hence yielding superior per-
forming simulated annealing algorithm implementations. The primary value of using
simulated annealing may therefore be for finite-time executions that obtain near-optimal
solutions reasonably quickly. This, in turn, suggests that one should focus on the finite-
time behavior of simulated annealing rather than the asymptotic convergence results
that dominate the literature.

ACKNOWLEDGEMENTS

This work is supported in part by the Air Force Office of Scientific Research (F49620-
01-1-0007) and the National Science Foundation (DMI-9907980).

BIBLIOGRAPHY

Aarts, E.H.L. and Korst, J. (1989) Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing. John
Wiley & Sons, Chichester, England.

Aarts, E.H.L. and Lenstra, J.K. (1997) Local Search in Combinatorial Optimization.

John Wiley & Sons, Chichester, England.

Aarts, E.H.L. and van Laarhoven, P.J.M. (1985) Statistical cooling: A general approach
to combinatorial optimization problems. Phillips Journal of Research, 40, 193–226.

Abramson, D., Krishnamoorthy, M. and Dang, H. (1999) Simulated annealing cooling
schedules for the school timetabling problem. Asia-Pacific Journal of Operational

Research, 16, 1–22.

Alrefaei, M.H. and Andradottir, S. (1999) A simulated annealing algorithm with con-
stant temperature for discrete stochastic optimization. Management Science, 45,
748–764.

Althofer, I. and Koschnick, K.U. (1991) On the convergence of threshold accepting.
Applied Mathematics and Optimization, 24, 183–195.

Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1985) Global optimization and stochastic
differential equations. Journal of Optimization Theory and Applications, 47, 1–16.

Anily, S. and Federgruen, A. (1987) Simulated annealing methods with general
acceptance probabilities. Journal of Applied Probability, 24, 657–667.

Belisle, C.J.P. (1992) Convergence theorems for a class of simulated annealing
algorithms on . Journal of Applied Probability, 29, 885–895.

Belisle, C.J.P, Romeijn, H.E. and Smith, R.L. (1993) Hit-and-run algorithms for
generating multivariate distributions. Mathematics of Operations Research, 18,
255–266.

Bohachevsky, I.O., Johnson, M.E. and Stein, M.L. (1986) Generalized simulated
annealing for function optimization. Technometrics, 28, 209–217.

The Theory and Practice of Simulated Annealing 313

Borkar, V.S. (1992) Pathwise recurrence orders and simulated annealing. Journal of

Applied Probability, 29, 472–476.

Bratley, P., Fox, B.L. and Schrage, L. (1987) A Guide to Simulation, Springer-Verlag,
New York.

Cardoso, M.F., Salcedo, R.L. and de Azevedo, S.F. (1994) Nonequilibrium simulated
annealing: a faster approach to combinatorial minimization. Industrial Engineering

and Chemical Research, 33, 1908–1918.

Catoni, O. (1996) Metropolis, simulated annealing, and iterated energy transformation
algorithms: theory and experiments. Journal of Complexity, 12, 595–623.

Cerf, R. (1998) Asymptotic convergence of genetic algorithms. Advances in Applied

Probability, 30, 521–550.

Chardaire, P., Lutton, J.L. and Sutter, A. (1995) Thermostatistical persistency: a pow-
erful improving concept for simulated annealing algorithms. European Journal of

Operational Research, 86, 565–579.

Charon, I. and Hudry, O. (1993) The noising method—a new method for combinatorial
optimization. Operations Research Letters, 14, 133–137.

Charon, I. and Hudry, O. (2001) The noising methods—a generalization of some
metaheuristics. European Journal of Operational Research, 135, 86–101.

Cheh, K.M., Goldberg, J.B. and Askin, R.G. (1991) A note on the effect
of neighborhood-structure in simulated annealing. Computers and Operations

Research, 18, 537–547.

Chen, S. and Luk, B.L. (1999) Adaptive simulated annealing for optimization in signal
processing applications. Signal Processing, 79, 117–128.

Chiang, T.S. and Chow, Y.S. (1988) On the convergence rate of annealing processes.
SIAM Journal on Control and Optimization, 26, 1455–1470.

Chiang, T.S. and Chow, Y.Y. (1989) A limit-theorem for a class of inhomogeneous
markov-processes. Annals of Probability, 17, 1483–1502.

Chiang, T.S. and Chow, Y.Y. (1994) The asymptotic-behavior of simulated anneal-
ing processes with absorption. SIAM Journal on Control and Optimization, 32,
1247–1265.

Christoph, M. and Hoffmann, K.H. (1993) Scaling behavior of optimal simu-
lated annealing schedules. Journal of Physics A—Mathematical and General, 26,
3267–3277.

Chu, K.W., Deng, Y.F. and Reinitz, J. (1999) Parallel simulated annealing by mixing
of states. Journal of Computational Physics, 148, 646–662.

Çinlar, E. (1974) Introduction to Stochastic Processes. Prentice-Hall, Englewood
Cliffs, New Jersey.

Cohn, H. and Fielding, M. (1999) Simulated annealing: searching for an optimal
temperature schedule. SIAM Journal on Optimization, 9, 779–802.

Connors, D.P. and Kumar, P.R. (1989) Simulated annealing type markov-chains and
their order balance-equations. SIAM Journal on Control and Optimization, 27,
1440–1461.

314 D. Henderson et al.

Davis, T.E. (1991) Toward an Extrapolation of the Simulated Annealing Convergence

Theory onto the Simple Genetic Algorithm (Doctoral Dissertation), University of
Florida, Gainesville, Florida.

Davis, T.E. and Principe, J.C. (1991) A simulated annealing like convergence theory
for the simple genetic algorithm. In: Fourth Conference on Genetic Algorithm, pp.
174–181.

Dekkers, A. and Aarts, E. (1991) Global optimization and simulated annealing.
Mathematical Programming, 50, 367–393.

Delport, V. (1998) Parallel simulated annealing and evolutionary selection for
combinatorial optimisation. Electronics Letters, 34, 758–759.

Desai, M.P. (1999) Some results characterizing the finite time behaviour of the simu-
lated annealing algorithm. Sadhana-Academy Proceedings in Engineering Sciences,

24, 317–337.

Dueck, G. and Scheuer, T. (1990) Threshold accepting—a general-purpose optimiza-
tion algorithm appearing superior to simulated annealing. Journal of Computational

Physics, 90, 161–175.

Eglese, R.W. (1990) Simulated annealing: a tool for operational research. European

Journal of Operational Research, 46, 271–281.

Emden-Weinert, T. and Proksch, M. (1999) Best practice simulated annealing for the
airline crew scheduling problem. Journal of Heuristics, 5, 419–436.

Fabian, V. (1997) Simulated annealing simulated. Computers and Mathematics with

Applications, 33, 81–94.

Faigle, U. and Kern, W. (1991) Note on the convergence of simulated annealing
algorithms. SIAM Journal on Control and Optimization, 29, 153–159.

Faigle, U. and Kern, W. (1992) Some convergence results for probabilistic tabu search.
ORSA Journal on Computing, 4, 32–37.

Faigle, U. and Schrader, R. (1988) On the convergence of stationary distributions in
simulated annealing algorithms. Information Processing Letters, 27, 189–194.

Faigle, U. and Schrader, R. (1988) Simulated annealing-—a case-study. Angewandte

Informatik, 259–263.

Fielding, M. (2000) Simulated annealing with an optimal fixed temperature. SIAM

Journal of Optimization, 11, 289–307.

Fleischer, M.A. (1995) Assessing the Performance of the Simulated Annealing Algo-

rithm Using Information Theory (Doctoral Dissertation), Department of Operations
Research, Case Western Reserve University, Clevelend, Ohio.

Fleischer, M.A. (1995) Simulated annealing: past, present, and future. In:
C. Alexopoulos, K. Kang, W.R. Lilegdon and D. Goldsman (eds.), Proceedings

of the 1995 Winter Simulation Conference, IEEE Press, pp. 155–161.

Fleischer, M.A. (1999) Generalized cybernetic optimization: solving continuous vari-
able problems. In: S. Voss, S. Martello, C. Roucairol, H. Ibrahim, and I.H. Osman
(eds.), Meta-heuristics: Advances and Trends in Local Search Paradigms for

Optimization, Kluwer Academic Publishers, pp. 403–418.

The Theory and Practice of Simulated Annealing 315

Fleischer, M.A. and Jacobson, S.H. (1996) Cybernetic optimization by simulated
annealing: an implementation of parallel processing using probabilistic feed-
back control. In: I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory and

Applications, Kluwer Academic Publishers, pp. 249–264.

Fleischer, M.A. and Jacobson, S.H. (1999) Information theory and the finite-time
behavior of the simulated annealing algorithm: experimental results. INFORMS

Journal on Computing, 11, 35–43.

Fox, B.L. (1993) Integrating and accelerating tabu search, simulated annealing, and
genetic algorithms. Annals of Operations Research, 41, 47–67.

Fox, B.L. (1994) Random restarting versus simulated annealing. Computers and

Mathematics with Applications, 27, 33–35.

Fox, B.L. (1995) Faster simulated annealing. Siam Journal of Optimzation, 5, 485–505.

Fox, B.L. and Heine, G.W. (1993) Simulated annealing with overrides, technical,
Department of Mathematics, University of Colorado, Denver, Colorado.

Gemen, S. and Hwang, C.R. (1986) Diffusions for global optimization. SIAM Journal

on Control and Optimization, 24, 1031–1043.

Gidas, B. (1985) Nonstationary markov chains and convergence of the annealing
algorithm. Journal of Statistical Physics, 39, 73–131.

Glover, F. (1989) Tabu search—Part I. ORSA Journal on Computing, 1, 190–206.

Glover, F. (1994) Tabu search for nonlinear and parametric optimization (with links to
genetic algorithms). Discrete Applied Mathematics, 49, 231–255.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers, Boston,
Massachusetts.

Goldstein, L. and Waterman, M. (1988) Neighborhood size in the simulated anneal-
ing algorithm. American Journal of Mathematical and Management Sciences, 8,
409–423.

Granville, V., Krivanek, M. and Rasson, J.P. (1994) Simulated annealing—a proof of
convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16,

652–656.

Hajek, B. (1988) Cooling schedules for optimal annealing. Mathematics of Operations

Research, 13, 311–329.

Hamma, B., Viitanen, S. and Torn, A. (2000) Parallel continuous simulated annealing
for global optimization. Optimization Methods and Software, 13, 95–116.

Hammersley, J.M. and Handscomb, D.C. (1964) Monte Carlo Methods, Methuen,
John Wiley & Sons, London, New York.

Hu, T.C., Kahing, A.B. and Tsao, C.W.A. (1995) Old bachelor acceptance: a new
class of non-monotone threshold accepting methods. ORSA Journal on Computing,

7, 417–425.

Isaacson, D.L. and Madsen, R.W. (1976) Markov Chains, Theory and Applications.

John Wiley & Sons, New York.

Jacobson, S.H. (2002) Analyzing the performance of local search algorithms using gen-
eralized hill climbing algorithms, pp. 441–467. (Chapter 20 in Essays and Surveys

316 D. Henderson et al.

on Metaheuristics, P. Hansen and C.C. Ribeiro (eds.), Kluwer Academic Publishers,
Norwell, Massachusetts.

Jacobson, S.H., Sullivan, K.A. and Johnson, A.W. (1998) Discrete manufactur-
ing process design optimization using computer simulation and generalized hill
climbing algorithms. Engineering Optimization, 31, 247–260.

Jacobson, S.H. and Yücesan, E. (2002a) A performance measure for generalized hill
climbing algorithms. Technical Report, Department of Mechanical and Industrial
Engineering, University of Illinois, Urbana, Illinois.

Jacobson, S.H. and Yücesan, E. (2002b) On the effectiveness of generalized hill
climbing algorithms. Technical Report, Department of Mechanical and Industrial
Engineering, University of Illinois, Urbana, Illinois.

Johnson, A.W. and Jacobson, S.H. (2002a) A class of convergent generalized hill
climbing algorithms. Applied Mathematics and Computation, 125(2–3), 359–373.

Johnson, A.W. and Jacobson, S.H. (2002b) On the convergence of generalized hill
climbing algorithms. Discrete Applied Mathematics (To Appear).

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1989) Optimization
by simulated annealing—an experimental evaluation; part 1, graph partitioning.
Operations Research, 37, 865–892.

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1991) Optimization
by simulated annealing—an experimental evaluation; part 2, graph-coloring and
number partitioning. Operations Research, 39, 378–406.

Kiatsupaibul, S. and Smith, R.L. (2000) A general purpose simulated annealing algo-
rithm for integer linear programming. Technical Report, Department of Industrial
and Operations Engineering, University of Michigan, Ann Arbor, Michigan.

Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science, 220, 671–680.

Koulamas, C., Antony, S.R. and Jaen, R. (1994) A survey of simulated annealing
applications to operations-research problems. OMEGA-International Journal of

Management Science, 22, 41–56.

Leite, J.P.B. and Topping, B.H.V. (1999) Parallel simulated annealing for structural
optimization. Computers and Structures, 73, 545–564.

Liepins, G.E. and Hilliard, M.R. (1989) Genetic algorithms: foundations and
applications. Annals of Operations Research, 21, 31–58.

Lin, C.K.Y., Haley, K.B. and Sparks, C. (1995) A comparative study of both standard
and adaptive versions of threshold accepting and simulated annealing algorithms
in three scheduling problems. European Journal of Operational Research, 83,
330–346.

Locatelli, M. (1996) Convergence properties of simulated annealing for continuous
global optimization. Journal of Applied Probability, 33, 1127–1140.

Locatelli, M. (2000) Simulated annealing algorithms for continuous global optimiza-
tion: convergence conditions. Journal of Optimization Theory and Applications,

104, 121–133.

Lundy, M. and Mees, A. (1986) Convergence of an annealing algorithm. Mathematical

Programming, 34, 111–124.

The Theory and Practice of Simulated Annealing 317

Ma, J. and Straub, J.E. (1994) Simulated annealing using the classical density
distribution. Journal of Chemical Physics, 101, 533–541.

Mazza, C. (1992) Parallel simulated annealing. Random Structures and Algorithms,

3, 139–148.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953)
Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21, 1087–1092.

Meyer, C.D. (1980) The condition of a finite markov chain and perturbation bounds
for the limiting probabilities. SIAM Journal of Algebraic and Discrete Methods, 1,
273–283.

Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A.L. (1986) Convergence and
finite time behavior of simulated annealing. Advances in Applied Probability, 18,
747–771.

Moscato, P. (1993) An introduction to population approaches for optimization and
hierarchical objective functions: a discussion on the role of tabu search. Annals of

Operations Research, 41, 85–121.

Moscato, P. and Fontanari, J.F. (1990) Convergence and finite-time behavior of
simulated annealing. Advances in Applied Probability, 18, 747–771.

Muhlenbein, H. (1997) Genetic algorithms. In: E, Aarts and J.K. Lenstra (eds.), Local

Search in Combinatorial Optimization. John Wiley & Sons, New York, New York,
pp. 137–172.

Nissen, V. and Paul, H. (1995) A modification of threshold accepting and its application
to the quadratic assignment problem. OR Spektrum, 17, 205–210.

Nourani, Y. and Andresen, B. (1998) A comparison of simulated annealing cooling
strategies. Journal of Physics A—Mathematical and General, 31, 8373–8385.

Ogbu, F.A. and Smith, D.K. (1990) The application of the simulated annealing
algorithm to the solution of the N/M/Cmax flowshop problem. Computers and

Operations Research, 17, 243–253.

Ohlmann, J.W. and Bean, J.C. (2000) Compressed annealing: simulated anneal-
ing under pressure. Technical Report, Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, Michigan.

Orosz, J.E. and Jacobson, S.H. (2002a) Finite-time performance analysis of static
simulated annealing algorithms. Computational Optimization and Applications, 21,
21–53.

Orosz, J.E. and Jacobson, S.H. (2002b) Analysis of static simulated annealing
algorithms. Journal of Optimization Theory and Application (to appear).

Pepper, J.W., Golden, B.L. and Wasil, E.A. (2000) Solving the traveling salesman
problem with demon algorithms and variants. Technical Report, Smith School of
Business, University of Maryland, College Park, Maryland.

Romeijn, H.E., Zabinsky, Z.B., Graesser, D.L. and Noegi, S. (1999) New reflection
generator for simulated annealing in mixed-integer/continuous global optimization.
Journal of Optimization Theory and Applications, 101, 403–427.

Romeo, F. and Sangiovanni-Vincentelli, A. (1991) A theoretical framework for
simulated annealing. Algorithmica, 6, 302–345.

318 D. Henderson et al.

Rosenthal, J.S. (1995) Convergence rates for markov chains. SIAM Review, 37,
387–405.

Ross, S.M. (1996) Stochastic Processes. John Wiley & Sons, New York, New York.

Ross, S.M. (1997) Introduction to Probability Models. Academic Press, San Diego,
California.

Rossier, Y., Troyon, M. and Liebling, T.M. (1986) Probabilistic exchange algorithms
and euclidean traveling salesman problems. OR Spektrum, 8, 151–164.

Rudolph, G. (1994) Convergence analysis of cononical genetic algorithms. IEEE

Transactions on Neural Networks, Special Issue on Evolutional Computing, 5,
96–101.

Scheermesser, T. and Bryngdahl, O. (1995) Threshold accepting for constrained half-
toning. Optics Communications, 115, 13–18.

Schuur, PC. (1997) Classification of acceptance criteria for the simulated annealing
algorithm. Mathematics of Operations Research, 22, 266–275.

Seneta, E. (1981) Non-Negative Matrices and Markov Chains. Springer-Verlag, New
York, New York.

Siarry, P., Berthiau, G., Durbin, F. and Haussy, J. (1997) Enhanced simulated annealing
for globally minimizing functions of many-continuous variables. ACM Transactions

On Mathematical Software, 23, 209–228.

Solla, S.A., Sorkin, G.B. and White, S.R. (1986) Configuration space analysis for
optimization problems. NATO ASI Series, Disordered Systems and Biological

Organization, F20, 283–293.

Srichander, R. (1995) Efficient schedules for simulated annealing. Engineering

Optimization, 24, 161–176.

Stern, J.M. (1992) Simulated annealing with a temperature dependent penalty function.
ORSA Journal on Computing, 4, 311–319.

Storer, R.H., Wu, S.D. and Vaccari, R. (1992) New search spaces for sequenc-
ing problems with application to job shop scheduling. Management Science, 38,
1495–1509.

Straub, J.E., Ma, J. and Amara, P. (1995) Simulated annealing using coarse grained
classical dynamics: smouuchowski dynamics in the gaussian density approximation.
Journal of Chemical Physics, 103, 1574–1581.

Strenski, P.N. and Kirkpatrick, S. (1991) Analysis of finite length annealing schedules.
Algorithmica, 6, 346–366.

Sullivan, K.A. and Jacobson, S.H. (2000) Ordinal hill climbing algorithms for discrete
manufacturing process design optimization problems. Discrete Event Dynamical

Systems, 10, 307–324.

Sullivan, K.A. and Jacobson, S.H. (2001) A convergence analysis of generalized hill
climbing algorithms. IEEE Transactions on Automatic Control, 46, 1288–1293.

Tian, P., Ma, J. and Zhang, D.M. (1999) Application of the simulated annealing
algorithm to the combinatorial optimisation problem with permutation property: an
investigation of generation mechanism. European Journal of Operational Research,

118, 81–94.

The Theory and Practice of Simulated Annealing 319

Tovey, C.A. (1988) Simulated simulated annealing. American Journal of Mathematical

and Management Sciences, 8, 389–407.

Tsitsiklis, J.N. (1989) Markov chains with rare transitions and simulated annealing.
Mathematics of Operations Research, 14, 70–90.

van Laarhoven, P.J.M. (1988) Theoretical and Computational Aspects of Simulated

Annealing, Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands.

van Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and

Applications, D. Reidel, Kluwer Academic Publishers, Dordrecht, Boston, Norwell,
Massachusetts.

Varanelli, J.M. and Cohoon, J.P. (1999) A fast method for generalized starting tem-
perature determination in homogeneous two-stage simulated annealing systems.
Computers and Operations Research, 26, 481–503.

Yan, D. and Mukai, H. (1992) Stochastic discrete optimization. SIAM Journal on

Control and Optimization, 30, 594–612.

Yang, R.L. (2000) Convergence of the simulated annealing algorithm for continu-
ous global optimization. Journal of Optimization Theory and Applications, 104,

691–716.

Yao, X. (1995) A new simulated annealing algorithm. International Journal of

Computer Mathematics, 56, 161–168.

Yao, X. and Li, G. (1991) General simulated annealing. Journal of Computer Science

and Technology, 6, 329–338.

Zabinsky, Z.B., Smith, R.L., McDonald, J.F., Romeijn, H.E. and Kaufman,
D.E. (1993) Improving hit-and-run for global optimization. Journal of Global

Optimization, 3, 171–192.

This page intentionally left blank

Chapter 11

ITERATED LOCAL SEARCH

Helena R. Lourenço
Universitat Pompeu Fabra, Barcelona, Spain

E-mail: helena.ramalhinho@econ.upf.es

Olivier C. Martin
Université Paris-Sud, Orsay, France

E-mail: martino@ipno.in2p3.fr

Thomas Stützle
Darmstadt University of Technology, Darmstadt, Germany

E-mail: stuetzle@informatik.tu-darmstadt.de

1 INTRODUCTION

The importance of high performance algorithms for tackling difficult optimization
problems cannot be understated, and in many cases the only available methods are
metaheuristics. When designing a metaheuristic, it is preferable that it be simple, both
conceptually and in practice. Naturally, it also must be effective, and if possible, general
purpose. If we think of a metaheuristic as simply a construction for guiding (problem-
specific) heuristics, the ideal case is when the metaheuristic can be used without any

problem-dependent knowledge.
As metaheuristics have become more and more sophisticated, this ideal case has

been pushed aside in the quest for greater performance. As a consequence, problem-
specific knowledge (in addition to that built into the heuristic being guided) must
now be incorporated into metaheuristics in order to reach the state of the art level.
Unfortunately, this makes the boundary between heuristics and metaheuristics fuzzy,
and we run the risk of loosing both simplicity and generality. To counter this, we
appeal to modularity and try to decompose a metaheuristic algorithm into a few parts,
each with its own specificity. In particular, we would like to have a totally general
purpose part, while any problem-specific knowledge built into the metaheuristic would
be restricted to another part. Finally, to the extent possible, we prefer to leave untouched
the embedded heuristic (which is to be “guided”) because of its potential complexity.
One can also consider the case where this heuristic is only available through an object
module, the source code being proprietary; it is then necessary to be able to treat it as
a “black-box” routine. Iterated local search provides a simple way to satisfy all these
requirements.

322 H.R. Lourenço et al.

The essence of the iterated local search metaheuristic can be given in a nut-shell: one
iteratively builds a sequence of solutions generated by the embedded heuristic, leading
to far better solutions than if one were to use repeated random trials of that heuristic.
This simple idea [10] has a long history, and its rediscovery by many authors has lead
to many different names for iterated local search like iterated descent [8,9], large-step

Markov chains [49], iterated Lin-Kernighan [37], chained local optimization [48], or
combinations of these [2] . . . Readers interested in these historical developments should
consult the review [38]. For us, there are two main points that make an algorithm an
iterated local search: (i) there must be a single chain that is being followed (this then
excludes population-based algorithms); (ii) the search for better solutions occurs in a
reduced space defined by the output of a black-box heuristic. In practice, local search
has been the most frequently used embedded heuristic, but in fact any optimizer can
be used, be-it deterministic or not.

The purpose of this review is to give a detailed description of iterated local search
and to show where it stands in terms of performance. So far, in spite of its conceptual
simplicity, it has lead to a number of state-of-the-art results without the use of too
much problem-specific knowledge; perhaps this is because iterated local search is
very malleable, many implementation choices being left to the developer. We have
organized this chapter as follows. First we give a high-level presentation of iterated
local search in Section 2. Then we discuss the importance of the different parts of
the metaheuristic in Section 3, especially the subtleties associated with perturbing the
solutions. In Section 4 we go over past work testing iterated local search in practice,
while in Section 5 we discuss similarities and differences between iterated local search
and other metaheuristics. The chapter closes with a summary of what has been achieved
so far and an outlook on what the near future may look like.

ITERATING A LOCAL SEARCH

2.1 General Framework

We assume we have been given a problem-specific heuristic optimization algorithm
that from now on we shall refer to as a local search (even if in fact it is not a true local
search). This algorithm is implemented via a computer routine that we call LocalSearch.

The question we ask is “Can such an algorithm be improved by the use of iteration?”.
Our answer is “YES”, and in fact the improvements obtained in practice are usually
significant. Only in rather pathological cases where the iteration method is “incompat-
ible” with the local search will the improvement be minimal. In the same vein, in order
to have the most improvement possible, it is necessary to have some understanding of
the way the LocalSearch works. However, to keep this presentation as simple as pos-
sible, we shall ignore for the time being these complications; the additional subtleties
associated with tuning the iteration to the local search procedure will be discussed in
Section 3. Furthermore, all issues associated with the actual speed of the algorithm are
omitted in this first section as we wish to focus solely on the high-level architecture of
iterated local search.

Let be the cost function of our combinatorial optimization problem; is to be
minimized. We label candidate solutions or simply “solutions” by s, and denote by
the set of all s (for simplicity S is taken to be finite, but it does not matter much).
Finally, for the purposes of this high-level presentation, it is simplest to assume that the

2

Iterated Local Search 323

local search procedure is deterministic and memoriless:1 for a given input s, it always
outputs the same solution s* whose cost is less or equal to LocalSearch then
defines a many to one mapping from the set to the smaller set of locally optimal
solutions s*. To have a pictorial view of this, introduce the “basin of attraction” of a
local minimum s* as the set of s that are mapped to s* under the local search routine.
LocalSearch then takes one from a starting solution to a solution at the bottom of the
corresponding basin of attraction.

Now take an s or an s* at random. Typically, the distribution of costs found has
a very rapidly rising part at the lowest values. In Figure 11.1 we show the kind of
distributions found in practice for combinatorial optimization problems having a finite
solution space. The distribution of costs is bell-shaped, with a mean and variance that
is significantly smaller for solutions in than for those in As a consequence,
it is much better to use local search than to sample randomly in if one seeks low
cost solutions. The essential ingredient necessary for local search is a neighborhood
structure. This means that is a “space” with some topological structure, not just a
set. Having such a space allows one to move from one solution s to a better one in an
intelligent way, something that would not be possible if were just a set.

Now the question is how to go beyond this use of LocalSearch. More precisely,
given the mapping from to how can one further reduce the costs found without
opening up and modifying LocalSearch, leaving it as a “black box” routine?

2.2 Random Restart

The simplest possibility to improve upon a cost found by LocalSearch is to repeat
the search from another starting point. Every s* generated is then independent, and
the use of multiple trials allows one to reach into the lower part of the distribution.
Although such a “random restart” approach with independent samplings is sometimes
a useful strategy (in particular when all other options fail), it breaks down as the instance

1The reader can check that very little of what we say really uses this property, and in practice, many
successful implementations of iterated local search have non-deterministic local searches or include memory.

324 H.R. Lourenço et al.

size grows because in that limit the tail of the distribution of costs collapses. Indeed,
empirical studies [38] and general arguments [58] indicate that local search algorithms
on large generic instances lead to costs that: (i) have a mean that is a fixed percentage
excess above the optimum cost; (ii) have a distribution that becomes arbitrarily peaked
about the mean when the instance size goes to infinity. This second property makes it
impossible in practice to find an s* whose cost is even a little bit lower percentage-wise
than the typical cost. Note however that there do exist many solutions of significantly
lower cost, it is just that random sampling has a lower and lower probability of finding
them as the instance size increases. To reach those configurations, a biased sampling
is necessary; this is precisely what is accomplished by a stochastic search.

2.3 Searching in

To overcome the problem just mentioned associated with large instance sizes, recon-
sider what local search does: it takes one from where has a large mean to where

has a smaller mean. It is then most natural to invoke recursion: use local search to
go from to a smaller space where the mean cost will be still lower! That would
correspond to an algorithm with one local search nested inside another. Such a con-
struction could be iterated to as many levels as desired, leading to a hierarchy of nested
local searches. But upon closer scrutiny, we see that the problem is precisely how to
formulate local search beyond the lowest level of the hierarchy: local search requires
a neighborhood structure and this is not à priori given. The fundamental difficulty is
to define neighbors in so that they can be enumerated and accessed efficiently. Fur-
thermore, it is desirable for nearest neighbors in to be relatively close when using
the distance in if this were not the case, a stochastic search on would have little
chance of being effective.

Upon further thought, it transpires that one can introduce a good neighborhood
structure on as follows. First, one recalls that a neighborhood structure on a set

directly induces a neighborhood structure on subsets of two subsets are nearest
neighbors simply if they contain solutions that are nearest neighbors. Second, take
these subsets to be the basins of attraction of the s*; in effect, we are lead to identify
any s* with its basin of attraction. This then immediately gives the “canonical” notion
of neighborhood on notion which can be stated in a simple way as follows:
and are neighbors in if their basins of attraction “touch” (i.e., contain nearest-
neighbor solutions in). Unfortunately this definition has the major drawback that
one cannot in practice list the neighbors of an s* because there is no computationally
efficient method for finding all solutions s in the basin of attraction of s*. Nevertheless,
we can stochastically generate nearest neighbors as follows. Starting from s*, create a
randomized path in where is a nearest neighbor of Determine
the first in this path that belongs to a different basin of attraction so that applying
local search to leads to an Then is a nearest-neighbor of s*.

Given this procedure, we can in principle perform a local search2 in Extending
the argument recursively, we see that it would be possible to have an algorithm imple-
menting nested searches, performing local search on etc in a hierarchical
way. Unfortunately, the implementation of nearest neighbor search at the level of
is much too costly computationally because of the number of times one has to execute

2Note that the local search finds neighbors stochastically; generally there is no efficient way to ensure that
one has tested all the neighbors of any given

Iterated Local Search 325

LocalSearch. Thus we are led to abandon the (stochastic) search for nearest neighbors

in instead we use a weaker notion of closeness which then allows for a fast stochas-
tic search in Our construction leads to a (biased) sampling of such a sampling
will be better than a random one if it is possible to find appropriate computational ways
to go from one s* to another. Finally, one last advantage of this modified notion of
closeness is that it does not require basins of attraction to be defined; the local search
can then incorporate memory or be non-deterministic, making the method far more
general.

2.4 Iterated Local Search

We want to explore using a walk that steps from one s* to a “nearby” one, without
the constraint of using only nearest neighbors as defined above. Iterated local search
(ILS) achieves this heuristically as follows. Given the current s*, we first apply a
change or perturbation that leads to an intermediate state (which belongs to). Then
LocalSearch is applied to and we reach a solution in If passes an acceptance
test, it becomes the next element of the walk in otherwise, one returns to s*. The
resulting walk is a case of a stochastic search in but where neighborhoods are never
explicitly introduced. This iterated local search procedure should lead to good biased
sampling as long as the perturbations are neither too small nor too large. If they are too
small, one will often fall back to s* and few new solutions of will be explored. If
on the contrary the perturbations are too large, will be random, there will be no bias
in the sampling, and we will recover a random restart type algorithm.

The overall ILS procedure is pictorially illustrated in Figure 11.2. To be complete, let
us note that generally the iterated local search walk will not be reversible; in particular
one may sometimes be able to step from to but not from to However this
“unfortunate” aspect of the procedure does not prevent ILS from being very effective
in practice.

Since deterministic perturbations may lead to short cycles (for instance of length 2),
one should randomize the perturbations or have them be adaptive so as to avoid this
kind of cycling. If the perturbations depend on any of the previous s*, one has a walk

326 H.R. Lourenço et al.

in with memory. Now the reader may have noticed that aside from the issue of
perturbations (which use the structure on), our formalism reduces the problem to
that of a stochastic search on Then all of the bells and whistles (diversification,
intensification, tabu, adaptive perturbations and acceptance criteria, etc.) that are com-
monly used in that context may be applied here. This leads us to define iterated local
search algorithms as metaheuristics having the following high level architecture:

In practice, much of the potential complexity of ILS is hidden in the history depen-
dence. If there happens to be no such dependence, the walk has no memory:3 the
perturbation and acceptance criterion do not depend on any of the solutions visited
previously during the walk, and one accepts or not with a fixed rule. This leads
to random walk dynamics on that are “Markovian”, the probability of making a
particular step from to depending only on and Most of the work using ILS
has been of this type, though recent studies show unambiguously that incorporating
memory enhances performance [61].

Staying within Markovian walks, the most basic acceptance criteria will use only
the difference in the costs of s* and this type of dynamics for the walk is then very
similar in spirit to what occurs in simulated annealing. A limiting case of this is to accept
only improving moves, as happens in simulated annealing at zero temperature; the
algorithm then does (stochastic) descent in If we add to such a method a CPU time
criterion to stop the search for improvements, the resulting algorithm pretty much has
two nested local searches; to be precise, it has a local search operating on embedded
in a stochastic search operating on More generally, one can extend this type of
algorithm to more levels of nesting, having a different stochastic search algorithm for

etc. Each level would be characterized by its own type of perturbation and
stopping rule; to our knowledge, such a construction has never been attempted.

We can summarize this section by saying that the potential power of iterated local
search lies in its biased sampling of the set of local optima. The efficiency of this
sampling depends both on the kinds of perturbations and on the acceptance criteria.
Interestingly, even with the most naïve implementations of these parts, iterated local
search is much better than random restart. But still much better results can be obtained
if the iterated local search modules are optimized. First, the acceptance criteria can
be adjusted empirically as in simulated annealing without knowing anything about the
problem being optimized. This kind of optimization will be familiar to any user of
metaheuristics, though the questions of memory may become quite complex. Second,
the Perturbation routine can incorporate as much problem-specific information as the

3 Recall that to simplify this section’s presentation, the local search is assumed to have no memory.

procedure Iterated Local Search

repeat

until termination condition met
end

Iterated Local Search 327

developer is willing to put into it. In practice, a rule of thumb can be used as a guide:
“a good perturbation transforms one excellent solution into an excellent starting point
for a local search”. Together, these different aspects show that iterated local search
algorithms can have a wide range of complexity, but complexity may be added pro-
gressively and in a modular way. (Recall in particular that all of the fine-tuning that
resides in the embedded local search can be ignored if one wants, and it does not appear
in the metaheuristic per-se.) This makes iterated local search an appealing metaheuris-
tic for both academic and industrial applications. The cherry on the cake is speed: as
we shall soon see, one can perform k local searches embedded within an iterated local
search much faster than if the k local searches are run within random restart.

3 GETTING HIGH PERFORMANCE

Given all these advantages, we hope the reader is now motivated to go on and consider
the more nitty-gritty details that arise when developing an ILS for a new application. In
this section, we will illustrate the main issues that need to be tackled when optimizing
an ILS in order to achieve high performance.

There are four components to consider: GenerateInitialSolution, LocalSearch,
Perturbation, and AcceptanceCriterion. Before attempting to develop a state-of-the-
art algorithm, it is relatively straight-forward to develop a more basic version of ILS.
Indeed, (i) one can start with a random solution or one returned by some greedy con-
struction heuristic; (ii) for most problems a local search algorithm is readily available;
(iii) for the perturbation, a random move in a neighborhood of higher order than the one
used by the local search algorithm can be surprisingly effective; and (iv) a reasonable
first guess for the acceptance criterion is to force the cost to decrease, corresponding
to a first-improvement descent in the set Basic ILS implementations of this type
usually lead to much better performance than random restart approaches. The devel-
oper can then run this basic ILS to build his intuition and try to improve the overall
algorithm performance by improving each of the four modules. This should be particu-
larly effective if it is possible to take into account the specificities of the combinatorial
optimization problem under consideration. In practice, this tuning is easier for ILS than
for memetic algorithms or tabu search to name but these metaheuristics. The reason
may be that the complexity of ILS is reduced by its modularity, the function of each
component being relatively easy to understand. Finally, the last task to consider is
the overall optimization of the ILS algorithm; indeed, the different components affect
one another and so it is necessary to understand their interactions. However, because
these interactions are so problem dependent, we wait till the end of this section before
discussing that kind of “global” optimization.

Perhaps the main message here is that the developer can choose the level of optimiza-
tion he wants. In the absence of any optimizations, ILS is a simple, easy to implement,
and quite effective metaheuristic. But with further work on its four components, ILS
can often be turned into a very competitive or even state of the art algorithm.

3.1 Initial Solution

Local search applied to the initial solution gives the starting point of the walk in
the set Starting with a good can be important if high-quality solutions are to be
reached as fast as possible.

328 H.R. Lourenço et al.

Standard choices for are either a random initial solution or a solution returned by
a greedy construction heuristic. A greedy initial solution has two main advantages
over random starting solutions: (i) when combined with local search, greedy initial
solutions often result in better quality solutions (ii) a local search from greedy
solutions takes, on average, less improvement steps and therefore the local search
requires less CPU time.4

The question of an appropriate initial solution for (random restart) local search
carries over to ILS because of the dependence of the walk in on the initial solution

Indeed, when starting with a random ILS may take several iterations to catch
up in quality with runs using an obtained by a greedy initial solution. Hence, for
short computation times the initial solution is certainly important to achieve the highest
quality solutions possible. For larger computation times, the dependence on of the
final solution returned by ILS reflects just how fast, if at all, the memory of the initial
solution is lost when performing the walk in

Let us illustrate the tradeoffs between random and greedy initial solutions when
using an ILS algorithm for the permutation flow shop problem (FSP) [60]. That ILS
algorithm uses a straight-forward local search implementation, random perturbations,
and always applies Perturbation to the best solution found so far. In Figure 11.3 we
show how the average solution cost evolves with the number of iterations for two
instances. The averages are for 10 independent runs when starting from random initial
solutions or from initial solutions returned by the NEH heuristic [57]. (NEH is one of
the best performing constructive heuristics for the FSP.) For short runs, the curve for
the instance on the right shows that the NEH initial solutions lead to better average
solution quality than the random initial solutions. But at longer times, the picture is
not so clear, sometimes random initial solutions lead to better results as we see on the
instance on the left. This kind of test was also performed for ILS applied to the TSP [2].
Again it was observed that the initial solution had a significant influence on quality for
short to medium sized runs.

4 Note that the best possible greedy initial solution need not be the best choice when combined with a local
search. For example, in [38], it is shown that the combination of the Clarke-Wright starting tour (one of the
best performing TSP construction heuristics) with local search resulted in worse local optima than starting
from random initial solutions when using 3-opt. Additionally, greedy algorithms which generate very high
quality initial solutions can be quite time-consuming.

Iterated Local Search 329

In general, there will not always be a clear-cut answer regarding the best choice of
an initial solution, but greedy initial solutions appear to be recommendable when one
needs low-cost solutions quickly. For much longer runs, the initial solution seems to be
less relevant, so the user can choose the initial solution that is the easiest to implement.
If however one has an application where the influence of the initial solution does persist
for long times, probably the ILS walk is having difficulty in exploring and so other
perturbations or acceptance criteria should be considered.

3.2 Perturbation

The main drawback of local descent is that it gets trapped in local optima that are
significantly worse than the global optimum. Much like simulated annealing, ILS
escapes from local optima by applying perturbations to the current local minimum. We
will refer to the strength of a perturbation as the number of solution components which
are modified. For instance for the TSP, it is the number of edges that are changed in the
tour, while in the flow shop problem, it is the number of jobs which are moved in the
perturbation. Generally, the local search should not be able to undo the perturbation,
otherwise one will fall back into the local optimum just visited. Surprisingly often, a
random move in a neighborhood of higher order than the one used by the local search
algorithm can achieve this and will lead to a satisfactory algorithm. Still better results
can be obtained if the perturbations take into account properties of the problem and are
well matched to the local search algorithm.

By how much should the perturbation change the current solution? If the perturba-
tion is too strong, ILS may behave like a random restart, so better solutions will only be
found with a very low probability. On the other hand, if the perturbation is too small,
the local search will often fall back into the local optimum just visited and the diversi-
fication of the search space will be very limited. An example of a simple but effective
perturbation for the TSP is the double-bridge move. This perturbation cuts four edges
(and is thus of “strength” 4) and introduces four new ones as shown in Figure 11.4.
Notice that each bridge is a 2-change, but neither of the 2-changes individually keeps
the tour connected. Nearly all ILS studies of the TSP have incorporated this kind of
perturbation, and it has been found to be effective for all instance sizes. This is almost
certainly because it changes the topology of the tour and can operate on quadruples

330 H.R. Lourenço et al.

of very distant cities, whereas local search always modifies the tour among nearby
cities. (One could imagine more powerful local searches which would include such
double-bridge changes, but the computational cost would be far greater than for the
local search methods used today.) In effect, the double-bridge perturbation cannot be
undone easily, neither by simple local search algorithms such as 2-opt or 3-opt, nor
by Lin-Kernighan [43] which is currently the champion local search algorithm for the
TSP. Furthermore, this perturbation does not increase much the tour length, so even if
the current solution is very good, one is almost sure the next one will be good, too. These
two properties of the perturbation—its small strength and its fundamentally different
nature from the changes used in local search—make the TSP the perfect application
for iterated local search. But for other problems, finding an effective perturbation may
be more difficult.

We will now consider optimizing the perturbation assuming the other modules to
be fixed. In problems like the TSP, one can hope to have a satisfactory ILS when using
perturbations of fixed size (independent of the instance size). On the contrary, for
more difficult problems, fixed-strength perturbations may lead to poor performance.
Of course, the strength of the perturbations used is not the whole story; their nature
is almost always very important and will also be discussed. Finally we will close by
pointing out that the perturbation strength has an effect on the speed of the local search:
weak perturbations usually lead to faster execution of LocalSearch. All these different
aspects need to be considered when optimizing this module.

Perturbation strength For some problems, an appropriate perturbation strength is
very small and seems to be rather independent of the instance size. This is the case for
both the TSP and the FSP, and interestingly iterated local search for these problems
is very competitive with today’s best metaheuristic methods. We can also consider
other problems where instead one is driven to large perturbation sizes. Consider the
example of an ILS algorithm for the quadratic assignment problem (QAP). We use
an embedded 2-opt local search algorithm, the perturbation is a random exchange of
the location of k items, where k is an adjustable parameter, and Perturbation always
modifies the best solution found so far. We applied this ILS algorithm to QAPLIB
instances5 from four different classes of QAP instances [64]; computational results are
given in Table 11.1. A first observation is that the best perturbation size is strongly

5QAPLIB is accessible at http://serv1.imm.dtu.dk/~sk/qaplib/.

Iterated Local Search 331

dependent on the particular instance. For two of the instances, the best performance
was achieved when as many as 75% of the solution components were altered by the
perturbation. Additionally, for a too small perturbation strength, the ILS performed
worse than random restart (corresponding to the perturbation strength n). However, the
fact that random restart for the QAP may perform—on average—better than a basic
ILS algorithm is a bit misleading: in the next section we will show that by simply
modifying a bit the acceptance criterion, ILS becomes far better than random restart.
Thus one should keep in mind that the optimization of an iterated local search may
require more than the optimization of the individual components.

Adaptive perturbations The behavior of ILS for the QAP and also for other com-
binatorial optimization problems [35,60] shows that there is no à priori single best
size for the perturbation. This motivates the possibility of modifying the perturbation
strength and adapting it during the run.

One possibility to do so is to exploit the search history. For the development of such
schemes, inspiration can be taken from what is done in the context of tabu search [6,7].
In particular, Battiti and Protasi proposed [6] a reactive search algorithm for MAX-SAT
which fits perfectly into the ILS framework. They perform a “directed” perturbation
scheme which is implemented by a tabu search algorithm and after each perturbation
they apply a standard local descent algorithm.

Another way of adapting the perturbation is to change deterministically its strength
during the search. One particular example of such an approach is employed in the
scheme called basic variable neighborhood search (basic VNS) [33,55]; we refer to
Section 5 for some explanations on VNS. Other examples arise in the context of tabu
search [31]. In particular, ideas such as strategic oscillations may be useful to derive
more effective perturbations; that is also the spirit of the reactive search algorithm
previously mentioned.

More complex perturbation schemes Perturbations can be more complex than
changes in a higher order neighborhood. One rather general procedure to generate
from the current s* is as follows. (1) Gently modify the definition of the instance,
e.g. via the parameters defining the various costs. (2) For this modified instance, run
LocalSearch using s* as input; the output is the perturbed solution Interestingly,
this is the method proposed it the oldest ILS work we are aware of: in [10], Baxter
tested this approach with success on a location problem. This idea seems to have been
rediscovered much later by Codenotti et al. in the context of the TSP. Those authors [18]
first change slightly the city coordinates. Then they apply the local search to s* using
these perturbed city locations, obtaining the new tour Finally, running LocalSearch

on using the unperturbed city coordinates, they obtain the new candidate tour
Other sophisticated ways to generate good perturbations consist in optimizing a

sub-part of the problem. If this task is difficult for the embedded heuristic, good results
can follow. Such an approach was proposed by Lourenço [44] in the context of the job
shop scheduling problem (JSP). Her perturbation schemes are based on defining one-
or two-machine sub-problems by fixing a number of variables in the current solution
and solving these sub-problems, either heuristically [45] or to optimality using for
instance Carlier’s exact algorithm [15] or the early-late algorithm [45]. These schemes
work well because: (i) local search is unable to undo the perturbations; (ii) after the
perturbation, the solutions tend to be very good and also have “new” parts that are
optimized.

332 H.R. Lourenço et al.

Speed In the context of “easy” problems where ILS can work very well with weak
(fixed size) perturbations, there is another reason why that metaheuristic can perform
much better than random restart: Speed. Indeed, LocalSearch will usually execute
much faster on a solution obtained by applying a small perturbation to a local optimum
than on a random solution. As a consequence, iterated local search can run many more
local searches than can random restart in the same CPU time. As a qualitative example,
consider again Euclidean TSPs. local changes have to be applied by the local
search to reach a local optimum from a random start, whereas empirically a nearly
constant number is necessary in ILS when using the obtained with the double-bridge
perturbation. Hence, in a given amount of CPU time, ILS can sample many more
local optima than can random restart. This speed factor can give ILS a considerable
advantage over other restart schemes.

Let us illustrate this speed factor quantitatively. We compare for the TSP the
number of local searches performed in a given amount of CPU time by: (i) random
restart; (ii) ILS using a double-bridge move; (iii) ILS using five simultaneous double-
bridge moves. (For both ILS implementations, we used random starts and the routine
AcceptanceCriterion accepted only shorter tours.) For our numerical tests we used a
fast 3-opt implementation with standard speed-up techniques. In particular, it used a
fixed radius nearest neighbor search within candidate lists of the 40 nearest neighbors
for each city and don’t look bits [11,38,49], Initially, all don’t look bits are turned off
(set to 0). If for a node no improving move can be found, its don’t look bit is turned
on (set to 1) and the node is not considered as a starting node for finding an improving
move in the next iteration. When an arc incident to a node is changed by a move,
the node’s don’t look bit is turned off again. In addition, when running ILS, after a
perturbation we only turn off the don’t look bits of the 25 cities around each of the four
breakpoints in a current tour. All three algorithms were run for 120s on a 266 MHz
Pentium II processor on a set of TSPLIB6 instances ranging from 100 up to 5915 cities.
Results are given in Table 11.2. For small instances, we see that iterated local search
ran between 2 and 10 times as many local searches as random restart. Furthermore,
this advantage of ILS grows fast with increasing instance size: for the largest instance,
the first ILS algorithm ran approximately 260 times as many local searches as random
restart in our alloted time. Obviously, this speed advantage of ILS over random restart
is strongly dependent on the strength of the perturbation applied. The larger the pertur-
bation size, the more the solution is modified and generally the longer the subsequent
local search takes. This fact is intuitively obvious and is confirmed in Table 11.2.

In summary, the optimization of the perturbations depends on many factors, and
problem-specific characteristics play a central role. Finally, it is important to keep in
mind that the perturbations also interact with the other components of ILS. We will
discuss these interactions in Section 3.5.

3.3 Acceptance Criterion

ILS does a randomized walk in the space of the local minima. The perturbation
mechanism together with the local search defines the possible transitions between a
current solution s* in to a “neighboring” solution also in The procedure
AcceptanceCriterion then determines whether is accepted or not as the new current

6 TSPLIB is accessible at www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95.

Iterated Local Search 333

solution. AcceptanceCriterion has a strong influence on the nature and effectiveness of
the walk in Roughly, it can be used to control the balance between intensification and
diversification of that search. A simple way to illustrate this is to consider a Markovian
acceptance criterion. A very strong intensification is achieved if only better solutions are
accepted. We call this acceptance criterion Better and it is defined for minimization
problems as:

At the opposite extreme is the random walk acceptance criterion (denoted by RW)
which always applies the perturbation to the most recently visited local optimum,
irrespective of its cost:

This criterion clearly favors diversification over intensification.
Many intermediate choices between these two extreme cases are possible. In

one of the first ILS algorithms, the large-step Markov chains algorithm proposed by
Martin, Otto, and Felten [49,50], a simulated annealing type acceptance criterion was
applied. We call it LSMC (history). In particular, is always accepted if it
is better than s*. Otherwise, if is worse than s*, is accepted with probability

where T is a parameter called temperature and it is usually
lowered during the run as in simulated annealing. Note that LSMC approaches the RW
acceptance criterion if T is very high, while at very low temperatures LSMC is similar
to the Better acceptance criterion. An interesting possibility for LSMC is to allow

334 H.R. Lourenço et al.

non-monotonic temperature schedules as proposed in [36] for simulated annealing or
in tabu thresholding [28], This can be most effective if it is done using memory: when
further intensification no longer seems useful, increase the temperature to do diversifi-
cation for a limited time, then resume intensification. Of course, just as in tabu search,
it is desirable to do this in an automatic and self-regulating manner [31].

A limiting case of using memory in the acceptance criteria is to completely restart
the ILS algorithm when the intensification seems to have become ineffective. (Of
course this is a rather extreme way to switch from intensification to diversification.)
For instance one can restart the ILS algorithm from a new initial solution if no improved
solution has been found for a given number of iterations. The restart of the algorithm

be the last iteration in which a better solution has been found and i be the iteration
counter. Then Restart (history) is defined as

where is a parameter that indicates that the algorithm should be restarted if no
improved solution was found for iterations. Typically, s can be generated in different
ways. The simplest strategy is to generate a new solution randomly or by a greedy
randomized heuristic. Clearly many other ways to incorporate memory may and should
be considered, the overall efficiency of ILS being quite sensitive to the acceptance
criterion applied. We now illustrate this with two examples.

Example 11.1. TSP: Let us consider the effect of the two acceptance criteria RW and

Better. We performed our tests on the TSP as summarized in Table 11.3. We give the

average percentage excess over the known optimal solutions when using 10 independent

runs on our set of benchmark instances. In addition we also give this excess for the

random restart 3-opt algorithm. First, we observe that both ILS schemes lead to a

significantly better average solution quality than random restart using the same local

search. This is particularly true for the largest instances, confirming again the claims

given in Section 2. Second, given that one expects the good solutions for the TSP to

cluster (see Section 3.5), a good strategy should incorporate intensification. It is thus

not surprising to see that the Better criterion leads to shorter tours than the RW

criterion.

The runs given in this example are rather short. For much longer runs, the Better

strategy comes to a point where it no longer finds improved tours and diversification

should be considered again. Clearly it will be possible to improve significantly the

results by alternating phases of intensification and diversification.

Example 11.2. QAP: Let us come back to ILS for the QAP discussed previously. For

this problem we found that the acceptance criterion Better together with a (poor)

choice of the perturbation strength could result in worse performance than random

restart. In Table 11.4 we give results for the same ILS algorithm except that we now

also consider the use of the RW and Restart acceptance criteria. We see that the

ILS algorithm using these modified acceptance criteria are much better than random

restart, the only exception being RW with a small perturbation strength on tai60b.

can easily be modeled by the acceptance criterion called Restart (history). Let

Iterated Local Search 335

This example shows that there are strong inter-dependences between the perturba-
tion strength and the acceptance criterion. Rarely is this inter-dependence completely
understood. But, as a general rule of thumb, when it is necessary to allow for
diversification, we believe it is best to do so by accepting numerous small perturbations
rather than by accepting one large perturbation.

Most of the acceptance criteria applied so far in ILS algorithms are either fully
Markovian or make use of the search history in a very limited way. We expect that
there will be many more ILS applications in the future making strong use of the search
history; in particular, alternating between intensification and diversification is likely to
be an essential feature in these applications.

3.4 Local Search

So far we have treated the local search algorithm as a black box which is called many
times by ILS. Since the behavior and performance of the over-all ILS algorithm is
quite sensitive to the choice of the embedded heuristic, one should optimize this choice
whenever possible. In practice, there may be many quite different algorithms that can
be used for the embedded heuristic. (As mentioned at the beginning of the chapter,
the heuristic need not even be a local search.) One might think that the better the
local search, the better the corresponding ILS. Often this is true. For instance in the
context of the TSP, Lin-Kernighan [43] is a better local search than 3-opt which itself
is better than 2-opt [38]. Using a fixed type of perturbation such as the double-bridge
move, one finds that iterated Lin-Kernighan gives better solutions than iterated 3-opt
which itself gives better solutions than iterated 2-opt [38,63]. But if we assume that
the total computation time is fixed, it might be better to apply more frequently a faster

H.R. Lourenço et al.336

Iterated Local Search

but less effective local search algorithm than a slower and more powerful one. Clearly
which choice is best depends on just how much more time is needed to run the better
heuristic. If the speed difference is not large, for instance if it is independent of the
instance size, then it usually worth using the better heuristic. This is the most frequent
case; for instance in the TSP, 3-opt is a bit slower than 2-opt, but the improvement
in quality of the tours are well worth the extra CPU time, be-it using random restart
or iterated local search. The same comparison applies to using L-K rather than 3-opt.
However, there are other cases where the increase in CPU time is so large compared to
the improvement in solution quality that it is best not to use the “better” local search.
For example, again in the context of the TSP, it is known that 4-opt gives slightly better
solutions than 3-opt, but in standard implementations it is O(n) times slower (n being
the number of cities). It is then better not to use 4-opt as the local search embedded
in ILS.7

There are also other aspects that should be considered when selecting a local search.
Clearly, there is not much point in having an excellent local search if it will systemat-
ically undo the perturbation; however this issue is one of globally optimizing iterated
local search, so it will be postponed till the next sub-section. Another important aspect
is whether one can really get the speed-ups that were mentioned in Section 3.2. There
we saw that a standard trick for LocalSearch was to introduce don’t look bits. These give
a large gain in speed if the bits can be reset also after the application of the perturbation.
This requires that the developper be able to access the source code of LocalSearch. A
state of the art ILS will take advantage of all possible speed-up tricks, and thus the
LocalSearch most likely will not be a true black box.

Finally, there may be some advantages in allowing LocalSearch to sometimes gen-
erate worse solutions, For instance, if we replace the local search heuristic by tabu
search or short simulated annealing runs, the corresponding ILS may perform better.
This seems most promising when standard local search methods perform poorly. Such
is indeed the case in the job-shop scheduling problem: the use of tabu search as the
embedded heuristic gives rise to a very effective iterated local search [46].

3.5 Global Optimization of ILS

So far, we have considered representative issues arising when optimizing separately
each of the four components of an iterated local search. In particular, when illustrating
various important characteristics of one component, we kept the other components
fixed. But clearly the optimization of one component depends on the choices made for
the others; as an example, we made it clear that a good perturbation must have the
property that it cannot be easily undone by the local search. Thus, at least in principle,
one should tackle the global optimization of an ILS. Since at present there is no theory
for analyzing a metaheuristic such as iterated local search, we content ourselves here
with just giving a rough idea of how such a global optimization can be approached in
practice.

If we reconsider the sub-section on the effect of the initial solution, we see that
GeneratelnitialSolution is to a large extent irrelevant when the ILS performs well
and rapidly looses the memory of its starting point. Hereafter we assume that this
is the case; then the optimization of GenerateInitialSolution can be ignored and we

7But see Ref. [29] for a way to implement 4-opt much faster.

337

338 H.R. Lourenço et al.

are left with the joint optimization of the three other components. Clearly the best
choice of Perturbation depends on the choice of LocalSearch while the best choice of
AcceptanceCriterion depends on the choices of LocalSearch and Perturbation. In prac-
tice, we can approximate this global optimization problem by successively optimizing
each component, assuming the others are fixed until no improvements are found for
any of the components. Thus the only difference with what has been presented in the
previous sub-sections is that the optimization has to be iterative. This does not guar-
antee global optimization of the ILS, but it should lead to an adequate optimization of
the overall algorithm.

Given these approximations, we should make more precise what in fact we are
to optimize. For most users, it will be the mean (over starting solutions) of the best
cost found during a run of a given length. Then the “best” choice for the different
components is a well posed problem, though it is intractable without further restric-
tions. Furthermore, in general, the detailed instance that will be considered by the
user is not known ahead of time, so it is important that the resulting ILS algorithm be
robust. Thus it is preferable not to optimize it to the point where it is sensitive to the
details of the instance. This robustness seems to be achieved in practice: researchers
implement versions of iterated local search with a reasonable level of global opti-
mization, and then test with some degree of success the performance on standard
benchmarks.

Search space characteristics At the risk of repeating ourselves, let us highlight the
main dependencies of the components:

1.

2.

The perturbation should not be easily undone by the local search; if the local
search has obvious short-comings, a good perturbation should compensate for
them.

The combination Perturbation–AcceptanceCriterion determines the relative bal-
ance of intensification and diversification; large perturbations are only useful if
they can be accepted, which occurs only if the acceptance criterion is not too
biased towards better solutions.

As a general guideline, LocalSearch should be as powerful as possible as long as it is
not too costly in CPU time. Given such a choice, then find a well adapted perturbation
following the discussion in Section 3.2; to the extent possible, take advantage of the
structure of the problem. Finally, set the AcceptanceCriterion routine so that is
sampled adequately. With this point of view, the overall optimization of the ILS is
nearly a bottom-up process, but with iteration. Perhaps the core issue is what to put
into Perturbation: can one restrict the perturbations to be weak? From a theoretical point
of view, the answer to this question depends on whether the best solutions “cluster”
in In some problems (and the TSP is one of them), there is a strong correlation
between the cost of a solution and its “distance” to the optimum: in effect, the best
solutions cluster together, i.e., have many similar components. This has been referred
to in many different ways: “Massif Central” phenomenon [23], principle of proximate
optimality [31], and replica symmetry [53]. If the problem under consideration has
this property, it is not unreasonable to hope to find the true optimum using a biased
sampling of In particular, it is clear that is useful to use intensification to improve
the probability of hitting the global optimum.

Iterated Local Search 339

There are, however, other types of problems where the clustering is incomplete,
i.e., where very distant solutions can be nearly as good as the optimum. Examples
of combinatorial optimization problems in this category are QAP, graph bi-section,
and MAX-SAT. When the space of solutions has this property, new strategies have to
be used. Clearly, it is still necessary to use intensification to get the best solution in
one’s current neighborhood, but generally this will not lead to the optimum. After an
intensification phase, one must go explore other regions of This can be attempted
by using “large” perturbations whose strength grows with the instance. Other possibil-
ities are to restart the algorithm from scratch and repeat another intensification phase
or by oscillating the acceptance criterion between intensification and diversification
phases. Additional ideas on the tradeoffs between intensification and diversification
are well discussed in the context of tabu search (see, e.g., [31]). Clearly, the balance
intensification—diversification is very important and is a challenging problem.

4 SELECTED APPLICATIONS OF ILS

ILS algorithms have been applied successfully to a variety of combinatorial optimiza-
tion problems. In some cases, these algorithms achieve extremely high performance
and even constitute the current state-of-the-art metaheuristics, while in other cases the
ILS approach is merely competitive with other metaheuristics. In this section, we cover
some of the most studied problems, with a stress on the traveling salesman problem
and scheduling problems.

4.1 ILS for the TSP

The TSP is probably the best-known combinatorial optimization problem. De facto, it is
a standard test-bed for the development of new algorithmic ideas: a good performance
on the TSP is taken as evidence of the value of such ideas. Like for many metaheuristic
algorithms, some of the first ILS algorithms were introduced and tested on the TSP,
the oldest case of this being due to Baum [8,9]. He coined his method iterated descent;
his tests used 2-opt as the embedded heuristic, random 3-changes as the perturbations,
and imposed the tour length to decrease (thus the name of the method). His results
were not impressive, in part because he considered the non-Euclidean TSP, which is
substantially more difficult in practice than the Euclidean TSP. A major improvement
in the performance of ILS algorithms came from the large-step Markov chain (LSMC)
algorithm proposed by Martin et al. [49]. They used a simulated annealing like accep-
tance criterion (LSMC) from which the algorithm’s name is derived and considered both
the application of 3-opt local search and the Lin-Kernighan heuristic (LK) which is
the best performing local search algorithm for the TSP. But probably the key ingredient
of their work is the introduction of the double-bridge move for the perturbation. This
choice made the approach very powerful for the Euclidean TSP, and that encouraged
much more work along these lines. In particular, Johnson [37,38] coined the term “iter-
ated Lin-Kernighan” (ILK) for his implementation of ILS using the Lin-Kernighan as
the local search. The main differences with the LSMC implementation are: (i) double-
bridge moves are random rather than biased; (ii) the costs are improving (only better
tours are accepted, corresponding to the choice Better in our notation). Since these
initial studies, other ILS variants have been proposed, and Johnson and McGeoch [38]
give a summary of the situation as of 1997.

340 H.R. Lourenço et al.

Currently the highest performance ILS for the TSP is the chained LK code by
Applegate, Bixby, Chvatal, and Cook which is available as a part of the Concorde
software package at www.keck.caam.rice.edu/concorde.html. These authors have pro-
vided very detailed descriptions of their implementation, and so we refer the reader to
their latest article [1] for details. Furthermore, Applegale et al. [2] performed thorough
experimental tests of this code by considering the effect of the different modules: (i) ini-
tial tour; (ii) implementation choices of the LK heuristic; (iii) types of perturbations.
Their tests were performed on very large instances with up to 25 million cities. For
the double-bridge move, they considered the effect of forcing the edges involved to
be “short”, and investigated the random double-bridge moves as well. Their conclu-
sion is that the best performance is obtained when the double-bridge moves are biased
towards short edge lengths. However, the strength of the bias towards short edges
should be adapted to the available computation time: the shorter the computation time,
the shorter the edges should be. In their tests on the influence of the initial tour, they
concluded that the worst performance is obtained with random initial tours or those
returned by the nearest neighbor heuristic, while best results were obtained with the
Christofides algorithm [17], the greedy heuristic [11] or the Quick-Boruvka heuris-
tic proposed in that article. With long runs of their algorithm on TSPLIB instances
with more than 10.000 cities they obtained an impressive performance, always obtain-
ing solutions that have less than 0.3% excess length over the lower bounds for these
instances. For the largest instance considered, a 25 million city instance, they reached
a solution of only 0.3% over the estimated optimum.

Apart from these works, two new ILS algorithms for the TSP have been pro-
posed since the review article of Johnson and McGeoch. The first algorithm is due
to Stützle [61,63]; he examined the run-time behavior of ILS algorithms for the TSP
and concluded that ILS algorithms with the Better acceptance criterion show a type
of stagnation behavior for long run-times [61] as expected when performing a strong
intensification search. To avoid such stagnation, restarts and a particular acceptance
criterion to diversify the search were proposed. The goal of this latter strategy is to
force the search to continue from a position that is beyond a certain minimal distance
from the current position. This idea is implemented as follows. Let be the solution
from which to escape; is typically chosen as the best solution found in the
recent search. Let be the distance between two tours s and that is the number
of edges in which they differ. Then the following steps are repeated until a solution
beyond a minimal distance from is obtained:

(1)

(2)

(3)

(4)

Generate p copies of

To each of the p solutions apply Perturbation followed by LocalSearch.

Choose the best q solutions, as candidate solutions.

Let s* be the candidate solution with maximal distance to If
then repeat at (2); otherwise return s*.

The purpose of step 3 is to choose good quality solutions, while step 4 guarantees
that the point from which the search will be continued is sufficiently different (far)
from The attempts are continued until a new solution is accepted, but one gives up
after some maximum number of iterations. Computational results for this way of going
back and forth between intensification and diversification show that the method is very
effective, even when using only a 3-opt local search [62,63].

Iterated Local Search 341

The second ILS developed for the TSP since 1997 is that of Katayama and
Narisha [39]. They introduce a new perturbation mechanism which they called a genetic

transformation. The genetic transformation mechanism uses two tours, one of which
is the best found so far while the second solution is a tour found earlier in
the search. First a random 4-opt move is performed on resulting in Then
the subtours that are shared among and are enumerated. The resulting parts are
then reconnected with a greedy algorithm. Computational experiments with an iterated
LK algorithm using the genetic transformation method instead of the standard double-
bridge move have shown that the approach is very effective; further studies should be
forthcoming.

4.2 ILS for Scheduling Problems

ILS has also been applied successfully to scheduling problems. Here we summarize the
different uses of ILS for tackling these types of systems, ranging from single machine
to complex multi-machine scheduling.

Single Machine Total Weighted Tardiness Problem (SMTWTP) Congram, Potts
and van de Velde [19] have presented an ILS algorithm for the SMTWTP based
on a dynasearch local search. Dynasearch uses dynamic programming to find a best
move which is composed of a set of independent interchange moves; each such move
exchanges the jobs at positions i and Two interchange moves are independent
if they do not overlap, that is if for two moves involving positions i, j and k, l we
have or vice versa. This neighborhood is of exponential size but
dynasearch explores this neighborhood in polynomial time.

The perturbation consists of a series of random interchange moves. They also
exploit a well-known property of the SMTWTP: there exists an optimal solution in
which non-late jobs are sequenced in non-decreasing order of the due dates. This
property is used in two ways: to diversify the search in the perturbation step and to
reduce the computation time of the dynasearch. In the acceptance criterion, Congram
et al. introduce a backtrack step: after iterations in which every new local optimum
is accepted, the algorithm restarts with the best solution found so far. In our notation,
the backtrack step is a particular choice for the history dependence incorporated into
AcceptanceCriterion.

Congram et al. used several different embedded LocalSearch, all associated with the
interchange neighborhood. These heuristics were: (i) dynasearch; (ii) a local search
based on first-improvement descent; (iii) a local search based on best-improvement
descent. Then they performed tests to evaluate these algorithms using random restart
and compared them to using iterated local search. While random restart dynasearch
performed only slightly better than the two simpler descent methods, the ILS with
dynasearch significantly outperformed the other two iterated descent algorithms, which
in turn were far superior to the random restart versions. The authors also show that the
iterated dynasearch algorithm significantly improves over the previously best known
algorithm, a tabu search presented in [20].

Single and parallel machine scheduling Brucker et al. [12,13] apply the principles
of ILS to a number of one-machine and parallel-machine scheduling problems. They
introduce a local search method which is based on two types of neighborhoods. At
each step one goes from one feasible solution to a neighboring one with respect to the
secondary neighborhood. The main difference with standard local search methods is

342 H.R. Lourenço et al.

that this secondary neighborhood is defined on the set of locally optimal solutions with
respect to the first neighborhood. Thus in fact this is an ILS with two nested neighbor-
hoods; searching in their primary neighborhood corresponds to our local search phase;
searching in their secondary neighborhood is like our perturbation phase. The authors
also note that the second neighborhood is problem specific; this is what arises in ILS
where the perturbation should be adapted to the problem. The search at a higher level
reduces the search space and at the same time leads to better results.

Flow shop scheduling Stützle [60] applied ILS to the flow shop problem (FSP).
The algorithm is based on a straightforward first-improvement local search using the
insert neighborhood, where a job at position i is removed and inserted at position
The initial schedule is constructed by the NEH heuristic [57] while the perturbation
is generated by composing moves of two different kinds: swaps which exchange the
positions of two adjacent jobs, and interchange moves which have no constraint on
adjacency. Experimentally, it was found that perturbations with just a few swap and
interchange moves were sufficient to obtain very good results. The article also compares
different acceptance criteria; ConstTemp, which is the same as the LSMC acceptance
criterion except that it uses a constant temperature was found to be superior to
Better. The computational results show that despite the simplicity of the approach,
the quality of the solutions obtained is comparable to that of the best performing local
search algorithms for the FSP; we refer to [60] for a more detailed discussion.

ILS has also been used to solve a flow-shop problem with several stages in series.
Yang et al. [67] presented such a method; at each stage, instead ofa single machine, there
is a group of identical parallel machines. Their metaheuristic has two phases that are
repeated iteratively. In the first phase, the operations are assigned to the machines and
an initial sequence is constructed. The second phase uses an ILS to find better schedules
for each machine at each stage by modifying the sequence of each machine. (This part
is very similar in spirit to the approach of Kreipl for the minimum total weighted
tardiness job-shop problem [42] that is presented below.) Yang, Kreipl and Pinedo also
proposed a “hybrid” metaheuristic: they first apply a decomposition procedure that
solves a series of single stage sub-problems; then they follow this by their ILS. The
process is repeated until a satisfactory solution is obtained.

Job shop scheduling Lourenço [44] and Lourenço and Zwijnenburg [46] used
ILS to tackle the job shop scheduling problem (JSP). They performed extensive com-
putational tests, comparing different ways to generate initial solutions, various local
search algorithms, different perturbations, and three acceptance criteria. While they
found that the initial solution had only a very limited influence, the other components
turned out to be very important. Perhaps the heart of their work is the way they perform
the perturbations. They consider relaxations of the problem at hand corresponding to
the optimization of just some of the jobs. Then they use exact methods to solve these
sub-problems, generating the perturbation move. This has the great advantage that
much problem-specific knowledge is built into the perturbation. Such problem spe-
cific perturbations are difficult to generate from local moves only. Now, for the local
search, three alternatives were considered: local descent, short simulated annealing
runs, and short tabu search runs. Best results were obtained using the latter in the local
search phase. Not surprisingly, ILS performed better than random restart given the
same amount of time, for any choice of the embedded local search heuristic.

In more recent work on the job-shop scheduling problem, Balas and Vazacopou-
los [4] presented a variable depth search heuristic which they called guided local search

Iterated Local Search 343

(GLS). GLS is based on the concept of neighborhood trees, proposed by the authors,
where each node corresponds to a solution and the child nodes are obtained by perform-
ing an interchange on some critical arc. In their work, the interchange move consists
in reversing more than one arc and can be seen as a particular kind of variable depth
interchange. They developed ILS algorithms by embedding GLS within the shifting
bottleneck (SB) procedure by replacing the reoptimization cycle of the SB with a num-
ber of cycles of the GLS procedure. They call this procedure SB-GLS1. Later, they
also proposed a variant of this method, SB-GLS2, which works as follows. After all
machines have been sequenced, they iteratively remove one machine and apply GLS to
a smaller instance defined by the remaining machines. Then again GLS is applied on
the initial instance containing all machines. This procedure is an ILS where a perturbed
solution is obtained by applying a (variable depth) local search to just part of an instance.
The authors perform a computational comparison with other metaheuristics and con-
clude that SB-GLS (1 and 2) are robust and efficient, and provide schedules of high
quality in a reasonable computing time. In some sense, both heuristics are similar to the
one proposed by Lourenço [44], the main differences being: (i) Lourenço’s heuristic
applies perturbations to complete schedules whereas the SB-GLS heuristic starts by an
empty (infeasible) schedule and iteratively optimizes it machine by machine until all
machines have been scheduled, in a SB-style followed by a local search application;
(ii) the local search algorithms used differ.

Recently, Kreipl applied ILS to the total weighted tardiness job shop scheduling
problem (TWTJSP) [42]. The TWTJSP is closer to real life problems than the classical
JSP with makespan objective because it takes into account release and due dates and
also it introduces weights that indicate the importance of each job. Kreipl uses an ILS
algorithm with the RW acceptance criterion. The algorithm starts with an initial solution
obtained by the shortest processing time rule [34]. The local search consists in reversing
critical arcs and arcs adjacent to these, where a critical arc has to be an element of at
least one critical path (there may exist several critical paths). One original aspect of this
ILS is the perturbation step: Kreipl applies a few steps of a simulated annealing type
algorithm with the Metropolis acceptance criterion [52] but with a fixed temperature.
For this perturbation phase a smaller neighborhood than the one used in the local search
phase is taken: while in the local search phase any critical arc can be reversed, during
the diversification phase only the critical arcs belonging to the critical path having
the job with highest impact on the objective function are considered.8 The number
of iterations performed in the perturbation depends how good the incumbent solution
is. In promising regions, only a few steps are applied to stay near good solutions,
otherwise, a “large” perturbation is applied to permit the algorithm to escape from
a poor region. Computational results with the ILS algorithm on a set of benchmark
instances has shown a very promising performance compared to an earlier shifting
bottleneck heuristic [59] proposed for the same problem.

4.3 ILS for Other Problems

Graph bipartitioning ILS algorithms have been proposed and tested on a number
of other problems, though not as thoroughly as the ones we have discussed so far.
We consider first the graph bipartitioning problem. Given a (weighted) graph and a

8It should be noted that the perturbation phase leads, in general, to an intermediate solution which is not
locally optimal.

344 H.R. Lourenço et al.

bisection or partition of its vertices into two sets A and B of equal size, call the cut
of the partition the sum of the weights of the edges connecting the two parts. The
graph partitioning problem is to find the partition with the minimum cut. Martin and
Otto [47,48] introduced an ILS for this problem following their earlier work on the
TSP. For the local search, they used the Kernighan-Lin variable depth local search
algorithm (KL) [40] which is the analog for this problem of the LK algorithm. In effect,
KL finds intelligently m vertices of one set to be exchanged with m of the other. Then,
when considering possible perturbations, they noticed a particular weakness of the
KL local search: KL frequently generates partitions with many “islands”, i.e., the two
sets A and B are typically highly fragmented (disconnected). Thus they introduced
perturbations that exchanged vertices between these islands rather than between the
whole sets A and B. This works as follows: choose at random one of the cut edges,
i.e., an edge connecting A and B. This edge connects two “seed” vertices each belonging
to their island. Around each seed, iteratively grow a connected cluster of vertices within
each island. When a target cluster size or a whole island size is reached, stop the
growth. The two clusters are then exchanged and this is the perturbation move. Finally,
for the acceptance criterion, Martin and Otto used the Better acceptance criterion.
The overall algorithm significantly improved over the embedded local search (random
restart of KL); it also improved over simulated annealing if the acceptance criterion was
optimized.

At the time of that work, simulated annealing was the state of the art method for the
graph bisection problem. Since then, there have been many other metaheuristics [5,51]
developed for this problem, so the performance that must be reached is much higher
now. Furthermore, given that the graph bipartitioning problem has a low cost-distance
correlation [51], ILS has difficulty in sampling all good low cost solutions. To overcome
this, some form of history dependence most certainly would have to be built into the
perturbation or the acceptance criterion.

MAX-SAT Battiti and Protasi present an application of reactive search to the
MAX-SAT problem [6]. Their algorithm consists of two phases: a local search phase
and a diversification (perturbation) phase. Because of this, their approach fits perfectly
into the ILS framework. Their perturbation is obtained by running a tabu search on the
current local minimum so as to guarantee that the modified solution is sufficiently
different from the current solution s *. Their measure of difference is just the Hamming
distance; the minimum distance is set by the length of a tabu list that is adjusted during
the run of the algorithm. For the LocalSearch, they use a standard greedy descent local
search appropriate for the MAX-SAT problem. Depending on the distance between

and s*, the tabu list length for the perturbation phase is dynamically adjusted. The
next perturbation phase is then started based on solution to the RW
acceptance criterion. This work illustrates very nicely how one can adjust dynamically
the perturbation strength in an ILS run. We conjecture that similar schemes will prove
useful to optimize ILS algorithms in a nearly automatic way.

Prize-collecting Steiner tree problem The last combinatorial optimization prob-
lem we discuss is the prize-collecting Steiner tree problem on graphs. Canudo, Resende
and Ribeiro [14] presented several local search strategies for this problem: iterative
improvement, multi-start with perturbations, path-relinking, variable neighborhood
search, and a algorithm based on the integration of all these. They showed that all these
strategies are effective in improving solutions; in fact in many of their tests they found
the optimal solution. One of their proposed heuristics, local search with perturbations,

Iterated Local Search 345

is in fact an ILS. In that approach, they first generated initial solutions by the primal-
dual algorithm of Goemans and Wiliamson (GW) [32] but where the cost function is
slightly modified. Canudo et al. proposed two perturbation schemes: perturbation by
eliminations and perturbations by prize changes. In the first scheme, the perturbation
is done by resetting to zero the prizes of some persistent node which appeared in the
solution build by GW and remained at the end of local search in the previous iteration.
In the second scheme, the perturbation consists in introducing noise into the node prize.
This feature of always applying the perturbation to the last solution obtained by the
local search phase is clearly in our notation the ILS-RW choice.

4.4 Summary

The examples we have chosen in this section stress several points that have already been
mentioned before. First, the choice of the local search algorithm is usually quite critical
if one is to obtain peak performance. In most of the applications, the best performing ILS
algorithms apply much more sophisticated local search algorithms than simple best- or
first-improvement descent methods. Second, the other components of an ILS also need
to be optimized if the state of the art is to be achieved. This optimization should be
global, and to succeed should involve the use of problem-specific properties. Examples
of this last point were given for instance in the scheduling applications: there the good
perturbations were not simply random moves, rather they involved re-optimizations of
significant parts of the instance (c.f. the job shop case).

The final picture we reach is one where (i) ILS is a versatile metaheuristic which can
easily be adapted to different combinatorial optimization problems; (ii) sophisticated
perturbation schemes and search space diversification are the essential ingredients to
achieve the best possible ILS performance.

5 RELATION TO OTHER METAHEURISTICS

In this section we highlight the similarities and differences between ILS and other
well-known metaheuristics. We shall distinguish metaheuristics which are essentially
variants of local search and those which generate solutions using a mechanism that
is not necessarily based on an explicit neighborhood structure. Among the first class
which we call neighborhood based metaheuristics are methods like simulated annealing
(SA) [16,41], tabu search (TS) [26,27,31] or guided local search (GLS) [66]. The second
class comprises metaheuristics like GRASP [22], ant colony optimization (ACO) [21],
evolutionary algorithms (EA) [3,54], scatter search [30], variable neighborhood search
(VNS) [33,55] and ILS. Some metaheuristics of this second class, like EAs and ACO,
do not necessarily make use of local search algorithms; however a local search can be
embedded in them, in which case the performance is usually enhanced [56,61]. The
other metaheuristics in this class explicitly use embedded local search algorithms as an
essential part of their structure. For simplicity, we will assume in what follows that all
the metaheuristics of this second class do incorporate local search algorithms. In this
case, such metaheuristics generate iteratively input solutions that are passed to a local
search; they can thus be interpreted as multi-start algorithms, using the most general
meaning of that term. This is why we call them here multi-start based metaheuristics.

346 H.R. Lourenço et al.

5.1 Neighborhood Based Metaheuristics

Neighborhood based metaheuristics are extensions of iterative improvement algo-
rithms and avoid getting stuck in locally optimal solutions by allowing moves to worse
solutions in one’s neighborhood. Different metaheuristics of this class differ mainly by
their move strategies. In the case of simulated annealing, the neighborhood is sampled
randomly and worse solutions are accepted with a probability which depends on a
temperature parameter and the degree of deterioration incurred; better neighboring
solutions are usually accepted while much worse neighboring solutions are accepted
with a low probability. In the case of (simple) tabu search strategies, the neighbor-
hood is explored in an aggressive way and cycles are avoided by declaring attributes of
visited solutions as tabu. Finally, in the case of guided local search, the evaluation func-
tion is dynamically modified by penalizing certain solution components. This allows
the search to escape from a solution that is a local optimum of the original objective
function.

Obviously, any of these neighborhood based metaheuristics can be used as the
LocalSearch procedure in ILS. In general, however, those metaheuristics do not halt,
so it is necessary to limit their run time if they are to be embedded in ILS. One particular
advantage of combining neighborhood based metaheuristics with ILS is that they often
obtain much better solutions than iterative descent algorithms. But this advantage
usually comes at the cost of larger computation times. Since these metaheuristics
allow one to obtain better solutions at the expense of greater computation times, we
are confronted with the following optimization problem when using them within an
ILS:9 “For how long should one run the embedded search in order to achieve the best
tradeoff between computation time and solution quality?” This is very analogous to the
question of whether it is best to have a fast but not so good local search or a slower but
more powerful one. The answer depends of course on the total amount of computation
time available, and on how the costs improve with time.

A different type of connection between ILS, SA and TS arises from certain similar-
ities in the algorithms. For example, SA can be seen as an ILS without a local search
phase (SA samples the original space and not the reduced space) and where
the acceptance criteria is LSMC (s*, history). While SA does not employ memory,
the use of memory is the main feature of TS which makes a strong use of historical
information at multiple levels. Given its effectiveness, we expect this kind of approach
for incorporating memory to become widespread in future ILS applications.10 Further-
more, TS, as one prototype of a memory intensive search procedure, can be a valuable
source of inspiration for deriving ILS variants with a more direct usage of memory; this
can lead to a better balance between intensification and diversification in the search.11

Similarly, TS strategies may also be improved by features of ILS algorithms and by
some insights gained from the research on ILS.

9This question is not specific to ILS; it arises for all multi-start type metaheuristics.
10 In early TS publications, proposals similar to the use of perturbations were put forward under the name

random shakeup [25]. These procedures where characterized as a “randomized series of moves that leads
the heuristic (away) from its customary path” [25]. The relationship to perturbations in ILS is obvious.

Indeed, in [26], Glover uses “strategic oscillation” strategies whereby one cycles over these procedures:
the simplest moves are used till there is no more improvement, and then progressively more advanced moves
are used.

11

Iterated Local Search 347

5.2 Multi-start Based Metaheuristics

Multi-start based metaheuristics can be classified into constructive metaheuristics and
perturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ant colony optimization
and GRASP which both use a probabilistic solution construction phase. An important
difference between ACO and GRASP is that ACO has an indirect memory of the search
process which is used to bias the construction process, whereas GRASP does not have
that kind of memory. An obvious difference between ILS and constructive metaheuris-
tics is that ILS does not construct solutions. However, both generate a sequence of
solutions, and if the constructive metaheuristic uses an embedded local search, both go
from one local minimum to another. So it might be said that the perturbation phase of
an ILS is replaced by a (memory-dependent) construction phase in these constructive
metaheuristics. But another connection can be made: ILS can be used instead of the
embedded “local search” in an algorithm like ant colony optimization or GRASP. This
is one way to generalize ILS, but it is not specific to these kinds of metaheuristics:
whenever one has an embedded local search, one can try to replace it by an iterated
local search.

Perturbation-based metaheuristics differ in the techniques they use to actually per-
turb solutions. Before going into details, let us introduce one additional feature for
classifying metaheuristics: we will distinguish between population-based algorithms
and those that use a single current solution (the population is of size 1). For example,
EA, scatter search, and ant colony optimization are population-based, while ILS uses
a single solution at each step. Whether or not a metaheuristics is population-based is
important for the type of perturbation that can be applied. If no population is used,
new solutions are generated by applying perturbations to single solutions; this is what
happens for ILS and VNS. If a population is present, one can also use the possibil-
ity of recombining several solutions into a new one. Such combinations of solutions
are implemented by “crossover” operators in EAs or in the recombination of multiple
solutions in scatter search.

In general, population-based metaheuristics are more complex to use than those fol-
lowing a single solution: they require mechanisms to manage a population of solutions
and more importantly it is necessary to find effective operators for the combination
of solutions. Most often, this last task is a real challenge. The complexity of these
population-based local search hybrid methods can be justified if they lead to better
performance than non-population based methods. Therefore, one question of inter-
est is whether using a population of solutions is really useful. Unfortunately, there
are very few systematic studies which address this issue [20,24,38,62,65]. Clearly for
some problems such as the TSP with high cost-distance correlations, the use of a single
element in the population leads to good results, so the advantage of population-based
methods is small or nil. However, for other problems (with less cost-distance correla-
tions), it is clear that the use of a population is an appropriate way to achieve search
space diversification. Thus population based methods are desirable if their complexity is
not overwhelming. Because of this, population-based extensions of ILS are promising
approaches.

To date, several population-based extensions of ILS have been proposed [1,35,
61]. The approaches proposed in [35,61] keep the simplicity of ILS algorithms by
maintaining unchanged the perturbations: one parent is perturbed to give one child.

348 H.R. Lourenço et al.

But given that there is a population, the evolution depends on competition among its
members and only the fittests survive. One can give up this simplicity as was done in
the approach of Applegate et al. [1]. Given the solutions in a population that have been
generated by an ILS, they define a smaller instance by freezing the components that
are in common in all parents. (They do this in the context of the TSP; the subtours that
are in common are then fixed in the sub-problem.) They then reoptimize this smaller
problem using ILS. This idea is tested in [1], and they find very high quality solutions,
even for large TSP instances.

Finally, let us discuss variable neighborhood search (VNS) which is the meta-
heuristic closest to ILS. VNS begins by observing that the concept of local optimality
is conditional on the neighborhood structure used in a local search. Then VNS system-
izes the idea of changing the neighborhood during the search to avoid getting stuck
in poor quality solutions. Several VNS variants have been proposed. The most widely
used one, basic VNS, can, in fact, be seen as an ILS algorithm which uses the Better
acceptance criterion and a systematic way of varying the perturbation strength. To
do so, basic VNS orders neighborhoods as where the order is chosen
according to the neighborhood size. Let k be a counter variable, k = 1,2, . . . , m, and
initially set k = 1. If the perturbation and the subsequent local search lead to a new
best solution, then k is reset to 1, otherwise k is increased by one. We refer to [33,55]
for a description of other VNS variants.

A major difference between ILS and VNS is the philosophy underlying the two
metaheuristics: ILS explicitly has the goal of building a walk in the set of locally
optimal solutions, while VNS algorithms are derived from the idea of systematically
changing neighborhoods during the search.

Clearly, there are major points in common between most of today’s high perfor-
mance metaheuristics. How can one summarize how iterated local search differs from
the others? We shall proceed by enumeration as the diversity of today’s metaheuristics
seems to forbid any simpler approach. When comparing to ACO and GRASP, we see
that ILS uses perturbations to create new solutions; this is quite different in principle
and in practice from using construction. When comparing to EAs and scatter search,
we see that ILS, as we defined it, has a population size of 1; therefore no recombina-
tion operators need be defined. We could continue like this, but we cannot expect the
boundaries between all metaheuristics to be so clear-cut. Not only are hybrid methods
very often the way to go, but most often one can smoothly go from one metaheuristic
to another. In addition, as mentioned at the beginning of this chapter, the distinction
between heuristic and metaheuristic is rarely unambiguous. So our point of view is not
that iterated local search has essential features that are absent in other metaheuristics;
rather, when considering the basic structure of iterated local search, some simple yet
powerful ideas transpire, and these can be of use in most metaheuristics, being close
or not in spirit to iterated local search.

6 CONCLUSIONS

ILS has many of the desirable features of a metaheuristic: it is simple, easy to imple-
ment, robust, and highly effective. The essential idea of ILS lies in focusing the search
not on the full space of solutions but on a smaller subspace defined by the solutions
that are locally optimal for a given optimization engine. The success of ILS lies in the

Iterated Local Search 349

biased sampling of this set of local optima. How effective this approach turns out to
be depends mainly on the choice of the local search, the perturbations, and the accep-
tance criterion. Interestingly, even when using the most naïve implementations of these
parts, ILS can do much better than random restart. But with further work so that the
different modules are well adapted to the problem at hand, ILS can often become a
competitive or even state of the art algorithm. This dichotomy is important because the
optimization of the algorithm can be done progressively, and so ILS can be kept at any
desired level of simplicity. This, plus the modular nature of iterated local search, leads
to short development times and gives ILS an edge over more complex metaheuristics
in the world of industrial applications. As an example of this, recall that ILS essentially
treats the embedded heuristic as a black box; then upgrading an ILS to take advantage
of a new and better local search algorithm is nearly immediate. Because of all these
features, we believe that ILS is a promising and powerful algorithm to solve real com-
plex problems in industry and services, in areas ranging from finance to production
management and logistics. Finally, let us note that although all of the present review
was given in the context of tackling combinatorial optimization problems, in reality
much of what we covered can be extended in a straight-forward manner to continuous
optimization problems.

Looking ahead towards future research directions, we expect ILS to be applied to
new kinds of problems. Some challenging examples are: (i) problems where the con-
straints are very severe and so most metaheuristics fail; (ii) multi-objective problems,
bringing one closer to real problems; (iii) dynamic or real-time problems where the
problem data vary during the solution process.

The ideas and results presented in this chapter leave many questions unanswered.
Clearly, more work needs to be done to better understand the interplay between the ILS
modules GeneratelnitialSolution, Perturbation, LocalSearch, and AcceptanceCriterion.

In particular, we expect significant improvements to arise through the intelligent use
of memory, explicit intensification and diversification strategies, and greater problem-
specific tuning. The exploration of these issues has barely begun but should lead to
higher performance iterated local search algorithms.

ACKNOWLEDGMENTS

O.M. acknowledges support from the Institut Universitaire de France.
This work was partially supported by the “Metaheuristics Network”, a Research

Training Network funded by the Improving Human Potential programme of the CEC,
grant HPRN-CT-1999-00106. The information provided is the sole responsibility of
the authors and does not reflect the Community’s opinion. The Community is not
responsible for any use that might be made of data appearing in this publication.

REFERENCES

[1] D. Applegate, R. Bixby, V. Chvátal and W. Cook (2000) Finding
tours in the TSP. Preliminary version of a book chapter available via
www.keck.caam.rice.edu/concorde.html.

350 H.R. Lourenço et al.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

D. Applegate, W. Cook and A. Rohe (1999) Chained Lin-Kernighan for large
traveling salesman problems. Technical Report No. 99887, Forschungsinstitut
für Diskrete Mathematik, University of Bonn, Germany.

T. Bäck (1996) Evolutionary Algorithms in Theory and Practice. Oxford
University Press.

E. Balas and A. Vazacopoulos (1998) Guided local search with shifting
bottleneck for job shop scheduling. Management Science, 44(2), 262–275.

R. Battiti and A. Bertossi (1999) Greedy, prohibition, and reactive heuristics for
graph-partitioning. IEEE Transactions on Computers, 48(4), 361–385.

R. Battiti and M. Protasi (1997) Reactive search, a history-based heuristic for
MAX-SAT. ACM Journal of Experimental Algorithmics, 2.

R. Battiti and G. Tecchiolli (1994) The reactive tabu search. ORSA Journal on

Computing, 6(2), 126–140.

E.B. Baum (1986) Iterated descent: A better algorithm for local search in com-
binatorial optimization problems. Technical report, Caltech, Pasadena, CA.
manuscript.

E.B. Baum (1986) Towards practical “neural” computation for combinatorial
optimization problems. In: J. Denker (ed.), Neural Networks for Computing.

AIP conference proceedings, pp. 53–64.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Baxter (1981) Local optima avoidance in depot location. Journal of the

Operational Research Society, 32, 815–819.

J.L. Bentley (1992) Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4), 387–411.

P. Brucker, J. Hurink and F. Werner (1996) Improving local search heuristics
for some scheduling problems—part I. Discrete Applied Mathematics, 65(1–3),
97–122.

P. Brucker, J. Hurink and F. Werner (1997) Improving local search heuristics
for some scheduling problems—part II. Discrete Applied Mathematics, 72(1–2),
47–69.

S.A. Canute, M.G.C. Resende and C.C. Ribeiro (2000) Local search with per-
turbations for the prize-collecting steiner tree problem in graphs. Networks
(submitted).

J. Carlier (1982) The one-machine sequencing problem European Journal of

Operational Research, 11, 42–47.

V. Cerny (1985) A thermody namical approach to the traveling salesman problem.
Journal of Optimization Theory and Applications, 45(1), 41–51.

N. Christofides (1976) Worst-case analysis of a new heuristic for the travel-
ling salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA.

B. Codenotti, G. Manzini, L. Margara and G. Resta (1996) Perturbation: An
efficient technique for the solution of very large instances of the Euclidean TSP.
INFORMS Journal on Computing, 8, 125–133.

Iterated Local Search 351

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R.K. Congram, C.N. Potts and S.L. Van de Velde (2000) An iterated dynasearch
algorithm for the single–machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing (to appear).

H.A.J. Crauwels, C.N. Potts and L.N. Van Wassenhove (1998) Local search
heuristics for the single machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 10(3), 341–350.

M. Dorigo and G. Di Caro (1999) The ant colony optimization meta-heuristic.
In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization.

McGraw Hill, pp. 11–32.

T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109–133.

C. Fonlupt, D. Robilliard, P. Preux and E.-G. Talbi (1999) Fitness landscape
and performance of meta-heuristics. In: S. Voss, S. Martello, I.H. Osman
and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization. Kluwer Academic Publishers, Boston, MA,
pp. 257–268.

C. Glass and C. Potts (1996) A comparison of local search methods for flow
shop scheduling. Annals of Operations Research, 63, 489–509.

F. Glover (1986) Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5), 533–549.

F. Glover (1989) Tabu search—part I. ORSA Journal on Computing, 1(3),
190–206.

F. Glover (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.

F. Glover (1995) Tabu thresholding: Improved search by nonmonotonic trajec-
tories. ORSA Journal on Computing, 7(4), 426–442.

F. Glover (1996) Finding a best traveling salesman 4-opt move in the same time
as a best 2-opt move. Journal of Heuristics, 2, 169–179.

F. Glover (1999) Scatter search and path relinking. In: D. Corne, M. Dorigo and
F. Glover (eds.), New Ideas in Optimization. McGraw Hill, pp. 297–316.

F. Glover and M. Laguna (1997) Tabu Search. Kluwer Academic Publishers,
Boston, MA.

M.X. Goemans and D.P. Williamson (1996) The primal dual method for
approximation algorithms and its application to network design problems. In:
D. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems. PWS
Publishing, pp. 144–191.

P. Hansen and (1999) An introduction to variable neighborhood
search. In: S. Voss, S. Martello, I.H. Osman and C. Roucairol (eds.), Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Optimization.

Kluwer Academic Publishers, Boston, MA, pp. 433–58.

R. Haupt (1989) A survey of priority rule-based scheduling. OR Spektrum, 11,

3–6.

I. Hong, A.B. Kahng and B.R. Moon (1997) Improved large-step Markov chain
variants for the symmetric TSP. Journal of Heuristics, 3(1), 63–81.

352 H.R. Lourenço et al.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

T.C. Hu, A.B. Kahng and C.-W.A. Tsao (1995) Old bachelor acceptance: A
new class of non-monotone threshold accepting methods. ORSA Journal on

Computing, 7(4), 417–425.

D.S. Johnson (1990) Local optimization and the travelling salesman prob-
lem. In: Proceedings of the 17th Colloquium on Automata, Languages, and

Programming, volume 443 of LNCS, Springer Verlag, Berlin, pp. 446–461.

D.S. Johnson and L.A. McGeoch (1997) The travelling salesman problem:
A case study in local optimization. In: E.H.L. Aarts and J.K. Lenstra (eds.),
Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester,
England, pp. 215–310.

K. Katayama and H. Narihisa (1999) Iterated local search approach using
genetic transformation to the traveling salesman problem. In: Proceedings of

GECCO’99, Vol. 1. Morgan Kaufmann, pp. 321–328.

B.W. Kernighan and S. Lin (1970) An efficient heuristic procedure for partition-
ing graphs. Bell Systems Technology Journal, 49, 213–219.

S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi (1983) Optimization by simulated
annealing. Science, 220, 671–680.

S. Kreipl (2000) A large step random walk for minimizing total weighted
tardiness in a job shop. Journal of Scheduling, 3(3), 125–138.

S. Lin and B.W. Kernighan (1973) An effective heuristic algorithm for the
travelling salesman problem. Operations Research, 21, 498–516.

H.R. Lourenço (1995) Job-shop scheduling: Computational study of local
search and large-step optimization methods. European Journal of Operational
Research, 83, 347–364.

H.R. Lourenço (1998) A polynomial algorithm for a special case of the one-
machine scheduling problem with time–lags. Technical Report Economic Work-
ing Papers Series, No. 339, Universitat Pompeu Fabra. Journal of Scheduling

(submitted).

H.R. Lourenço and M. Zwijnenburg (1996) Combining the large-step opti-
mization with tabu-search: Application to the job-shop scheduling problem.
In: I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory & Applications.

Kluwer Academic Publishers, pp. 219–236.

O. Martin and S.W. Otto (1995) Partitoning of unstructured meshes for load
balancing. Concurrency: Practice and Experience, 7, 303–314.

O. Martin and S.W. Otto (1996) Combining simulated annealing with local
search heuristics. Annals of Operations Research, 63, 57–75.

O. Martin, S.W. Otto and E.W. Felten (1991) Large-step Markov chains for the
traveling salesman problem. Complex Systems, 5(3), 299–326.

O. Martin, S.W. Otto and E.W. Felten (1992) Large-step Markov chains for
the TSP incorporating local search heuristics. Operations Research Letters, 11,
219–224.

P. Merz and B. Freisleben (2000) Fitness landscapes, memetic algorithms and
greedy operators for graph bi-partitioning. Evolutionary Computation, 8(1),
61–91.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Iterated Local Search 353

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and M. Teller (1953)
Equation of state calculations for fast computing machines. Journal of Chemical

Physics, 21, 1087–1092.

M. Mézard, G. Parisi and M.A. Virasoro (1987) Spin-Glass Theory and Beyond,

volume 9 of Lecture Notes in Physics. World Scientific, Singapore.

Z. Michalewicz and D.B. Fogel (2000) How to Solve it: Modern Heuristics.

Springer-Verlag, Berlin.

 and P. Hansen (1997) Variable neighborhood search. Comput-

ers & Operations Research, 24, 1097–1100.

H. Mühlenbein (1991) Evolution in time and space—the parallel genetic algo-
rithm. In: Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo.
pp. 316–337.

M. Nawaz, E. Enscore Jr. and I. Ham (1983) A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem. OMEGA, 11(1), 91–95.

G.R. Schreiber and O.C. Martin (1999) Cut size statistics of graph bisection
heuristics. SIAM Journal on Optimization, 10(1), 231–251.

M. Singer and M. Pinedo (1997) A shifting bottleneck heuristic for minimizing
the total weighted tardiness in a job shop. IIE Scheduling and Logistics, 30,
109–118.

T. Stützle (1998). Applying iterated local search to the permutation flow shop
problem. Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt, August.

T. Stützle (1998) Local Search Algorithms for Combinatorial Problems—

Analysis, Improvements, and New Applications. PhD thesis, Darmstadt
University of Technology, Department of Computer Science.

T. Stützle, A. Grim, S. Linke and M. Rüttger (2000) A comparison of nature
inspired heuristics on the traveling salesman problem. In: Deb et al. (eds.),
Proceedings of PPSN-VI, volume 1917 of LNCS. Springer Verlag, Berlin,
pp. 661–670.

T. Stützle and H.H. Hoos (2000) Analyzing the run-time behaviour of iter-
ated local search for the TSP. Technical Report IRIDIA/2000-01, IRIDIA,
Université Libre de Bruxelles. Available at http://www.intellektik.informatik.
tu-darmstadt.de/~tom/pub.html.

E.D. Taillard (1995) Comparison of iterative searches for the quadratic assign-
ment problem. Location Science, 3, 87–105.

R.J.M. Vaessens, E.H.L. Aarts and J.K. Lenstra (1996) Job shop scheduling by
local search. INFORMS Journal on Computing, 8, 302–317.

C. Voudouris and E. Tsang (1995) Guided Local Search. Technical Report
Technical Report CSM-247, Department of Computer Science, University of
Essex.

Y. Yang, S. Kreipl and M. Pinedo (2000) Heuristics for minimizing total
weighted tardiness in flexible flow shops. Journal of Scheduling, 3(2), 89–108.

This page intentionally left blank

Chapter 12

MULTI-START METHODS

Rafael Martí
Dpto de Estadística e Investigación Operativa. Universitat de València

Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

E-mail: Rafael.Marti@uv.es

Abstract Heuristic search procedures that aspire to find global optimal solutions to hard
combinatorial optimization problems usually require some type of diversification to overcome
local optimality. One way to achieve diversification is to re-start the procedure from a new solu-
tion once a region has been explored. In this chapter we describe the best known multi-start
methods for solving optimization problems. We propose classifying these methods in terms of
their use of randomization, memory and degree of rebuild. We also present a computational
comparison of these methods on solving the linear ordering problem in terms of solution quality
and diversification power.

Keywords: Optimization, Heuristic Search, Re-Starting

1 INTRODUCTION

Search methods based on local optimization that aspire to find global optima usually
require some type of diversification to overcome local optimality. Without this diver-
sification, such methods can become localized in a small area of the solution space,
making it impossible to find a global optimum. In recent years many techniques have
been suggested to avoid local optima. One way to achieve diversification is to re-start
the search from a new solution once a region has been extensively explored. Multi-start
strategies can then be used to guide the construction of new solutions in a long term
horizon of the search process.

There are some problems in which we find it is more effective to construct solutions
than to apply a local search procedure. For example, in constrained scheduling problems
it is difficult to define neighborhoods to keep feasibility whereas solutions can be
relatively easily constructed. Therefore, Multi-start methods provide an appropriate
framework within which to develop algorithms to solve these problems.

The re-start mechanism can be super-imposed on many different search methods.
Once a new solution has been generated, we can apply a simple greedy routine, slight
perturbations or a complex metaheuristic to improve it. This chapter is focused on
studying the different ways, strategies and methods of generating solutions to re-start
a search for a global optimum.

356 R. Martí

2 AN OVERVIEW

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

Figure 12.1 shows a pseudo-code of the multi-start procedure. A solution is
constructed in Step 1 at iteration i. This is typically performed with a constructive
algorithm. Step 2 is devoted to improving this solution, obtaining solution A simple
improvement method can be applied. However, this second phase has recently become
more elaborate and, in some cases, is performed with a complex metaheuristic that
may or may not improve the initial solution (in this latter case we set).

In recent years, many heuristic algorithms have been proposed to solve some com-
binatorial optimization problems following the outline given in Figure 12.1. Some of
them are problem-dependent and the ideas and strategies implemented are difficult to
apply to different problems, while others are based on a framework that can be used
directly to design solving methods for other problems. In this section we describe the
most relevant procedures in terms of applying them to a wide variety of problems.

Tabu Search is by now a well-known metaheuristic for solving hard combinatorial
optimization problems. One of the papers that contains a number of its foundation ideas
(Glover, 1977), also focuses on applying these ideas within a framework of iterated
re-starting. Adaptive memory designs can be used to retain and analyze features of
selected solutions and thus, provide a basis for improving future executions of the
constructive process. The authors propose different memory functions, like frequency
and recency information, to design these restarting mechanisms.

Adaptive memory strategies introduced in this seminal paper have had widespread
success in solving a variety of practical and difficult combinatorial optimization prob-
lems. They have been adapted to many different fields in the combinatorial optimization
theory, since using such memory has proved to be very effective in most metaheuris-
tic methods. Some of them are explicitly based on these memory structures like tabu
search, while others, like simulated annealing or re-starting methods, have evolved
incorporating these ideas. Some applications of probabilistic forms of re-starting based

Multi-Start Methods 357

on memory functions are given in Rochat and Taillard (1995) and Lokketangen and
Glover (1996).

Early papers in multi-start methods are devoted to the Monte Carlo random re-start
in the context of nonlinear unconstrained optimization, where the method simply eval-
uates the objective function at randomly generated points. The probability of success
approaches one as the sample size tends to infinity under very mild assumptions about
objective function. Many algorithms have been proposed that combine the Monte Carlo
method with local search procedures (Rinnooy Kan and Timmer, 1989). Solis and Wets
(1981) study convergence for random re-start methods in which the probability distri-
bution used to choose the next starting point can depend on how the search evolves.
Some extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to the
global optimum (Mayne and Meewella, 1988).

Ulder et al. (1990) combines genetic algorithms with local search strategies improv-
ing previous genetic approaches for the travelling salesman problem. We apply an
iterative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution “offspring”. The combination of these
three elements: Generation, Combination and Local Search, extends the paradigm of
Re- Start and links with other areas of the metaheuristics such as Scatter Search (Glover
et al., 2000) or Memetic Algorithms (Moscato, 1999).

From a theoretical point of view, Hu et al. (1994) study the combination of the
“gradient” algorithm with random initializations to find a global optimum. Efficacy of
parallel processing, choice of the restart probability distribution and number of restarts
are studied for both discrete and continuous models. The authors show that the uniform
probability is a good measure for restarting procedures.

Boese et al. (1994) analyze relationships among local minima “from the perspective
of the best local minimum”, finding convex structures in the cost surfaces. Based on the
results of that study, they propose a multi-start method where starting points for greedy
descent are adaptively derived from the best previously found local minima. In the
first step, Adaptive Multi-start heuristics (AMS) generate r random starting solutions
and run a greedy descent method from each one to determine a set of corresponding
random local minima. In the second step, adaptive starting solutions are constructed
based on the local minima obtained so far and improved with a greedy descent method.
This improvement is applied several times from each adaptive starting solution to yield
corresponding adaptive local minima. The authors test this method for the traveling
salesman problem and obtain significant speedups over previous multi-start imple-
mentations. Hagen and Kahng (1997) apply this method for the iterative partitioning
problem.

Moreno et al. (1995) proposed a stopping rule for the multi-start method based
on a statistical study of the number of iterations needed to find the global optimum.
The authors introduce two random variables that together provide a way of estimating
the number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed on
finding the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at each
global iteration, this value is computed and if it is greater than a prefixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method in the median p-hub problem.

358 R. Martí

Simple forms of multi-start methods are often used to compare other methods and
measure their relative contribution. Baluja (1995) compares different genetic algo-
rithms for six sets of benchmark problems commonly found in the GA literature:
Traveling salesman problem, job-shop scheduling, knapsack, bin packing, neural net-
work weight optimization, and numerical function optimization. The author uses the
multi-start method (Multiple restart stochastic hill-climbing, MRSH) as a baseline in
the computational testing. Since solutions are represented with strings, the improve-
ment step consists of a local search based on random flip of bits. The results indicate
that using genetic algorithms for the optimization of static functions does not yield
a benefit, in terms of the final answer obtained, over simpler optimization heuristics.
Other comparisons between MRSH and GAs can be found, for example, in Ackley
(1987) or Wattenberg and Juels (1994).

One of the most well known Multi-start methods is the greedy adaptive search
procedures (GRASP). The GRASP methodology was introduced by Feo and Resende
(1995). It was first used to solve set covering problems (Feo and Resende, 1989). Each
GRASP iteration consists of constructing a trial solution and then applying a local
search procedure to find a local optimum (i.e., the final solution for that iteration). The
construction step is an adaptive and iterative process guided by a greedy evaluation
function. It is iterative because the initial solution is built considering one element at a
time. It is greedy because the addition of each element is guided by a greedy function.
It is adaptive because the element chosen at any iteration in a construction is a function
of those previously chosen. (That is, the method is adaptive in the sense of updating
relevant information from one construction step to the next.). At each stage, the next
element to be added to the solution is randomly selected from a candidate list of
high quality elements according to the evaluation function. Once a solution has been
obtained, it is typically improved by a local search procedure. The improvement phase
performs a sequence of moves towards a local optimum solution, which becomes the
output of a complete GRASP iteration. Some examples of successful applications are
given in Laguna el al. (1994), Resende (1998) and Laguna and Martí (1999).

Hickernell and Yuan (1997) present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of deter-
ministic points, as opposed to random, that are evenly distributed over a set. The
algorithm applies an inexpensive local search (steepest descent) on a set of quasiran-
dom points to concentrate the sample. The sample is reduced replacing worse points
with new quasirandom points. Any point that is retained for a certain number of itera-
tions is used to start an efficient complete local search. The algorithm terminates when
no new local minimum is found after several iterations. An experimental comparison
shows that the method performs favorably with respect to other global optimization
procedures.

Hagen and Kang (1997) used an adaptive multi start method for the partitioning
optimization VLSI problem where the objective is to minimize the number of signals
which pass between components. The method consists of two phases: (1) To generate
a set of random starting points and perform the iterative (local search) algorithm, thus
determining a set of local minimum solutions; and (2) construct adaptive starting points
that are central to the best local minimum solutions found so far. The authors add a
preprocessing cluster module to reduce the size of the problem. The resulting Clustering
Adaptive Multi Start method (CAMS) is fast and stable and improves upon previous
partitioning results in the literature.

Multi-Start Methods 359

Fleurent and Glover (1999) propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search based on both, a set of elite solutions and the intensifica-
tion strategies that rely on identifying of strongly determined and consistent variables.

Strongly determined variables are those whose values cannot be changed without signif-
icantly eroding the objective function value or disrupting the values of other variables.
A consistent variable is defined as one that receives a particular value in a significant
portion of good solutions. The authors propose the inclusion of memory structures
within the multi-start framework as those used in tabu search: recency, frequency and
attractiveness. Computational experiments for the quadratic assignment problem dis-
close that these methods improve significantly over previous multi-start methods like
GRASP and random restart that do not incorporate memory based strategies.

Multi-start procedures usually follow the global scheme given in Figure 1; but there
are some applications in which Step 2 can be applied several times within a global itera-
tion. In the incomplete construction methods, the improvement phase was periodically
invoked during the construction process of the partial solution rather than the standard
implementation after the complete construction. See Russell (1995) and Chiang and
Russell (1995) for successful applications of this approach to vehicle routing.

Patterson et al. (1999) introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the short term
and long term memory functions, proposed in the tabu search framework, to solve the
Capacitated Minimum Spanning Tree Problem. ART is an iterative, constructive solu-
tion procedure that implements learning methodologies on top of memory structures.
ART derives its success from being able to learn about, and modify the behavior of
a primary greedy heuristic. The greedy heuristic is executed repeatedly, and for each
new execution we probabilistically introduce constraints that prohibit certain solution
elements from being considered by the greedy heuristic. The active constraints are
held in a short term memory. A long term memory holds information regarding which
constraints were in the active memory for the best set of solutions.

Laguna and Martí (1999) introduced Path Relinking within GRASP as a way to
improve Multi-start methods. Path Relinking has been suggested as an approach to
integrate intensification and diversification strategies (Glover and Laguna, 1997) in the
context of tabu search. This approach generates new solutions by exploring trajectories
that connect high-quality solutions, by starting from one of these solutions and gener-
ating a path in the neighborhood space that leads toward the other solutions. This is
accomplished by selecting moves that introduce attributes contained in the “guiding”
solutions. The relinking in the context of GRASP consists of finding a path between
a solution found after an improvement phase and the chosen elite solution. Therefore,
the relinking concept has a different interpretation within GRASP, since the solutions
found from one iteration to the next are not linked by a sequence of moves (as in the
case of tabu search). The proposed strategy can be applied to any method that produces
a sequence of solutions; specifically, it can be used in any multi-start procedure. Based
on these ideas, Binato et al. (2001) proposed the Greedy Randomized Adaptive Path
Relinking.

Glover (2000) proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods, based on new search principles: persis-

tent attractiveness and marginal conditional validity. These concepts play a key role in
deriving appropriate measures to capture information during prior search. Applied to

360 R. Martí

constructive neighborhoods, strategic oscillation operates by alternating constructive
and destructive phases, where each solution generated by a constructive phase is
dismantled (to a variable degree) by the destructive phase, after which a new phase
builds the solution anew. The conjunction of both phases and their associated memory
structures provides the basis for an improved multi-start method.

Prais and Ribeiro (2000) propose an improved GRASP implementation, called
reactive GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory structure
to record information about previously found solutions. In Reactive GRASP, the basic
parameter which defines the restrictive-ness of the candidate list during the construction
phase is self-adjusted, according to the quality of the previously found solutions. The
proposed method matches most of the optimal solutions known.

An open question in order to design a good search procedure is whether it is better to
implement a simple improving method that allows a great number of global iterations
or, alternatively, to apply a complex routine that significantly improves a few gener-
ated solutions. A simple procedure depends heavily on the initial solution but a more
elaborate method takes much more running time and therefore can only be applied a
few times, thus reducing the sampling of the solution space. Some metaheuristics, such
as GRASP, launch limited local searches from numerous constructions (i.e., starting
points). In most of the tabu search implementations, the search starts from one initial
point and if a restarting procedure is also part of the method, it is invoked only a limited
number of times. However, the inclusion of re-starting strategies within the tabu search
framework has been well documented in several papers (Glover, 1977; Glover and
Laguna, 1997).

Martí et al. (2001) study the balance between restarting and search-depth (i.e., the
time spent searching from a single starting point) in the context of the bandwidth matrix
problem. They tested both alternatives and concluded that it was better to invest the time
searching from a few starting points than restarting the search more often. Although
we cannot draw a general conclusion from these experiments, the experience in the
current context and in previous projects indicates that some metaheuristics, like tabu
search, need to reach a critical search depth to be effective. If this search depth is not
reached, the effectiveness of the method is severely compromised.

3 A CLASSIFICATION

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization and degree of rebuild. The choices for
each one of these elements are not restricted to the extreme case of “present” or
“not present”, but they represent the whole range between both extremes that can
be labeled as Memory/ Memory-less, Systematic/Randomized and Rebuild/Build from

scratch, respectively.
The first element is the Memory and it is used to identify elements that are common

to good previously generated solutions. As in the Tabu Search framework (Glover and
Laguna, 1997), it provides a foundation for incentive-based learning, by means of
incentives that reinforce actions leading to good solutions. Thus, instead of simply
resorting to randomized re-starting processes, in which current decisions derive no
benefit from knowledge accumulated during prior search, specific types of information

Multi-Start Methods 361

are identified to exploit history. On the other hand, memory avoidance (Memory-less)
is not as unreasonable as might be imagined since the construction of “unconnected”
solutions may be interpreted as a means of strategically sampling the solution space.
It should be noted that the meaning of good is not restricted to the objective function,
but also includes the notion of diversity, as described later.

Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achieving
diversification, but with no control over the diversity achieved since in some cases we
can obtain very similar solutions. We can add some mechanisms to control the simi-
larities in order to discard some solutions or generate the solutions in a deterministic
way that guarantees a certain degree of difference. The extremes of this element can be
described as Randomized where solutions are generated in a random way and System-

atic where solutions are generated in a deterministic way. Between both extremes there
are a great number of possibilities for combining random elements with deterministic
rules. GRASP construction is an example of a combined method.

The Degree of Rebuild indicates the elements that remain fixed from one generation
to another. Most applications build the solution at each generation from scratch, but
recent implementations have fixed, for a certain number of iterations, some elements
in the construction process that have appeared in previously generated solutions. Such
an approach was proposed in the context of identifying and then iteratively exploiting
‘strongly determined and consistent variables’ in Glover (1977). This selective fixing
of elements, by reference to their previous impact and frequency of occurrence in
various solution classes, is a memory-based strategy of the type commonly used in tabu
search. It can also be considered as an instance of Path Relinking (Glover and Laguna,
1993) which generates new solutions by exploring trajectories that connect high-quality
solutions. This approach seeks to incorporate the attributes of elite solutions previously
generated by creating inducements to favor these attributes in the solutions. In an
extreme case all the elements in the new solution will be fixed by the information
generated from the set of elite solutions considered. This is labeled as Rebuild.

The constructive algorithm depicted in Figure 12.2 has no memory structures, a
combination between randomization and systematic construction rules and, at each
iteration, the solution is built completely from scratch.

Given different re-starting methods for a problem, one way of comparing them is to
generate a set of solutions with each and compare their quality and diversity. Since the
quality is trivially measured by the objective function, we now propose two measures
of diversity. We restrict our attention to solutions represented by permutations.

362 R. Martí

3.1 Diversity Measures

The first measure consists of computing the distances between each solution and a
“center” of the set of solutions P. The sum (or alternatively the average) of these |P|
distances provides a measure of the diversity of P. The second one is to compute the
distance between each pair of solutions in P. The sum of these |P × P| distances
provides another way of measuring the diversity of P.

The first diversity measure is calculated as follows:

Calculate the median position of each element i in the solutions in P.

Calculate the dissimilarity of each solution in the population with respect to the
median solution. The dissimilarity is calculated as the sum of the absolute dif-
ference between the position of the elements in the solution under consideration
and the median solution.

Calculate d as the sum of all the individual dissimilarities.

1.

2.

3.

To illustrate, suppose that P consists of the following three orderings: (A, B, C, D),
(B, D, C, A), (C, B, A, D). The median position of element A is therefore 3, since it
occupies positions 1, 3 and 4 in the given orderings. In the same way, the median
positions of B, C and D are 2, 3 and 4, respectively. Note that the median positions
might not induce an ordering, as in the case of this example. The dissimilarity of the
first solution is then calculated as follows:

In the same way, the dissimilarities of the other two solutions are and
The diversity measure of P is then given by d = 2 + 4 + 2 = 8.

The second measure is calculated, for each pair of solutions in P, as the sum of the
absolute differences between the positions of each element in both solutions. The sum
of these |P × P| values provides the measure of the diversity of the set P. The value
with solutions (A, B, C, D) and (B, D, C, A) in the previous example is computed as
follows:

In the same way, the values of the other three pairs of solutions are and
The diversity measure of P is then given by

We have computationally found that both measures are strongly correlated and
provide the same information. Since the second measure is computationally more
expensive than the first, we will use the first one (dissimilarity) in the following
experiments.

It should be noted that a third measure could be added to evaluate a set of solutions.
The notion of influence introduced by Glover (1990) in the context of Tabu Search,
can be adapted to our study. The influence considers the potential and the structure of
a solution in the search process. The authors propose memory functions that classify
moves relative to their attractiveness within “distance classes” and other measures of
their impact. Consider, for example, two solutions a and b with the same objective and
diversity values, but a is close to a local optimum with a better objective function value
than a and b, while b is itself a local optimum. Consequently, we probably obtain a
better solution with a search from a rather than from b. Therefore it is more valuable
to have a than b in the set of solutions since it has more influence in the search for the

Multi-Start Methods 363

global optimum. Obviously we do not know a priori if a given solution is closer to a
local optimum than another, but if we identify some properties of good solutions we
will be able to define evaluators and measures to reflect the “importance” or influence
of the solutions. Good starting points for this study are given by the solution structure,
landscape and neighborhood induced by the local search method.

4 COMPUTATIONAL EXPERIMENTS

The linear ordering problem (LOP) has generated a considerable amount of research
interest over the years, as documented in Grotschel et al. (1984) and Campos et al.
(1999). Because of its practical and theoretical relevance, we use this problem as a test
case for re-start mechanisms.

Given a matrix of weights the LOP consists of finding a permutation
p of the columns (and rows) in order to maximize the sum of the weights in the upper
triangle. In mathematical terms, we seek to maximize:

where p(i) is the index of the column (and row) in position i in the permutation. Note
that in the LOP, the permutation p provides the ordering of both the columns and the
rows. The equivalent problem in graphs consists of finding, in a complete weighted
graph, an acyclic tournament with a maximal sum of arc weights (Reinelt, 1985).

Instances of input–output tables from sectors in the European Economy can be
found in the public-domain library LOLIB (1997). We employ these problem instances
to compare different restarting methods.

We have tested 10 re-starting generation methods. Six of these methods are based
on GRASP (Feo and Resende, 1995) constructions with a greedy function that selects
sectors based on a measure of attractiveness.

G1 A GRASP construction where the attractiveness of a row is the sum of the elements
in its corresponding row. The method randomly selects from a short list of the most
attractive sectors and constructs the solution starting from the first position of the
permutation.

G2 A GRASP construction where the attractiveness of a sector is the sum of the
elements in its corresponding column. The method randomly selects from a short list
of the most attractive sectors and constructs the solution starting from the first position
of the permutation.

G3 A GRASP construction where the attractiveness of a sector is the sum of the
elements in its corresponding row divided by the sum of the elements in its correspond-
ing column. The method randomly selects from a short list of the most attractive sectors
and constructs the solution starting from the first position of the permutation.

G4, G5 and G6 These methods are identical to the first three, except that sector
selection is from a short list of the least attractive and the solution is constructed starting
from the last position of the permutation.

MIX A mixed procedure derived from the previous six. The procedure generates
an even number of solutions from each of the previous six methods and combines these

364 R. Martí

solutions into a single set. That is, if n solutions are required, then each method Gi (for
i = 1,.. . , 6) contributes with n/6 solutions.

RND A random generator. This method simply generates random permutations.
DG A general purpose diversification generator suggested in Glover (1998)

which generates diversified permutations in a systematic way without reference to
the objective function.

FQ A method using frequency-based memory, as proposed in Tabu Search (Glover
and Laguna, 1997). This method is based on modifying a measure of attractiveness
with a frequency measure that discourages sectors from occupying positions that they
have frequently occupied in previous solution generations. See Campos et al. (1999)
for a description of the method.

In our first experiment we use the instance stabu3 from the LOLIB. We have generated a
set of N = 100 solutions with each of the 10 generation methods. Figures 12.3 and 12.4
show the box and whiskers plot of the objective function value and dissimilarity,
respectively, of the solution set obtained with each method.

With both diagrams together (Figures 12.3 and 12.4) we can observe the per-
formance of the 10 generators on the problem stabu3. We have repeated the same
experiments on 10 other problems from the LOLIB, obtaining similar diagrams.

A good re-starting method must produce a set of solutions with high quality and
high diversity. If we compare, for example, generators MIX and G3 we observe in
Figure 12.3 that G3 produces slightly better solutions in terms of solution quality, but
Figure 12.4 shows that MIX outperforms G3 in terms of diversity. Therefore, we will
probably select MIX as a better method than G3.

In order to rank the methods we have computed the average of both measures across
each set. Figure 12.5 shows in the x-axis the average of the dissimilarity and in the
y-axis the average of the quality. A point is plotted for each method.

Multi-Start Methods 365

As expected, the random generator (RND) produces the maximum diversity (as
measured by the dissimilarity value). DG matches the diversity of RND using a sys-
tematic approach instead of randomness. The mixed method MIX provides a good
balance between dissimilarity and quality, by the union of solutions generated with
methods G1 to G6.

We have standardized both averages in order to directly compare them. We think that
quality and diversity are equally important, so we have added both relative averages,
obtaining the following ranking where the overall best is the FQ generator:

G5, G4, G2, G1, DG, RND, G6, G3, MIX and FQ.

These results are in line with previous works which show the inclusion of memory
structures to be effective within the multi-start framework. However, one should note
that this method ranking has been obtained considering both measures, quality and
diversity, with equal weight. If we vary this criterion, the ranking would also change.

366 R. Martí

5 CONCLUSIONS

The objective of this study has been to extend and advance the knowledge associated to
implementing multi-start procedures. Unlike other well-known methods, it has not yet
become widely implemented and tested as a metaheuristic itself for solving complex
optimization problems. We have shown new ideas that have recently emerged within
the multi-start area that add a clear potential to this framework which has yet to be fully
explored.

ACKNOWLEDGEMENTS

The author wishes to thank professor Vicente Campos for his valuable help in the
computational testing.

REFERENCES

Ackley, D.H. (1987) An empirical study of bit vector function optimization. In: Davis
(ed.), Genetic Algorithms and simulated annealing. Morgan Kaufmann Publishers.

Baluja, S. (1995) An Empirical Comparison of 7 iterative evolutionary function
optimization heuristics. School of Computer Science, Carnegie Mellon University.

Binato, S., Faria Jr. Haroldo and Resende, M.G.C. (2001) Greedy randomized adaptive
path relinking. MIC2001 conference proceedings.

Boese, K.D., Kahng, A.B. and Muddu, S. (1994) A new adaptive multi-start technique
for combinatorial global optimisation. Operations Research Letters, 16, 103–113.

Campos, V., Laguna, M. and Martí, R. (1999) Scatter search for the linear ordering
problem. In: Corne, Dorigo and Glover (eds.), New Ideas in Optimization. Mc Graw
Hill, pp. 331–341.

Chiang, W.C. and Russell, R.A. (1995) Simulated annealing metaheuristics for the
vehicle routing problems with time windows. Annals of Operations Research, 60.

Feo, T. and Resende, M.G.C. (1989) A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8, 67–71.

Feo, T. and Resende, M.G.C. (1995) Greedy randomized adaptive search procedures.
Journal of Global Optimization, 2, 1–27.

Fleurent, C. and Glover, F. (1999) Improved constructive multi-start strategies for
the Quadratic assignment problem using adaptive memory. INFORMS Journal on

Computing.

Glover, F. (1977) Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8, 156–166.

Glover, F. (1990) Tabu search: a tutorial. Interfaces, 20, 74–94.

Glover, F. (2000) Multi-start and strategic oscillation methods—principles to exploit
adaptive memory. In: Laguna and Gonzalez-Velarde (eds.), Computing Tools for

Modeling Optimization and Simulation. Kluwer, pp 1–25.

Multi-Start Methods 367

Glover, F. and Laguna, M. (1993) Tabu search. In: C. Reeves (ed.), Modern Heuris-

tic Techniques for Combinatorial Optimization Problems. Blackwell Scientific
Publishing, Oxford, pp. 70–141.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Boston.

Glover, F., Laguna, M. and Martí, R. (2000) Scatter seach. In: A. Ghosh and S. Tsutsui
(eds.), Theory and Applications of Evolutionary Computation: Recent Trends.

Springer-Verlag (to appear).

Grotschel, M., Junger, M. and Reinelt, G. (1984) A cutting plane algorithm for the
linear ordering problem. Operations Research, 32(6), 1195–1220.

Hagen, L.W. and Kahng, A.B. (1997) Combining problem reduction and adaptive
multi-start: a new technique for superior iterative partitioning. IEEE Transactions

on CAD, 16(7), 709–717.

Hickernell, F.J. and Yuan, Y. (1997) A simple multistart algorithm for global
optimization. OR Transactions, 1(2).

Hu, X., Shonkwiler, R. and Spruill, M.C. (1994) Random restarts in global
optimization. Georgia Institute of technology, Atlanta.

Laguna, M., Feo, T. and Elrod, H. (1994) A greedy randomized adaptive search
procedure for the 2-partition problem. Operations Research, 42(4), 677–687.

Laguna, M. and Martí, R. (1999) GRASP and Path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11(1), 44–52.

Lokketangen, A. and Glover, F. (1996) Probabilistic move selection in tabu search for
0/1 mixed integer programming problems. Meta-Heuristics: Theory and Practice.

Kluwer, pp. 467–488.

LOLIB (1997) http://www.iwr.uni-heildelberg.de/iwr/comopt/soft/LOLIB/
LOLIB.html

Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) Reducing the bandwidth of
a sparse matrix with tabu search. European Journal of Operational Research, 135,
450–459.

Mayne, D.Q. and Meewella, C.C. (1988) A non-clustering multistart algorithm for
global optimization. In: Bensoussan and Lions (eds.), Analysis and Optimization

of Systems, Lecture Notes in control and information sciences, Vol. 111, Springer-
Verlag.

Moreno, J.A., Mladenovic, N. and Moreno-Vega, J.M. (1995) An statistical analy-
sis of strategies for multistart heuristic searches for p-facility location-allocation
problems. Eighth Meeting of the EWG on Locational Analysis Lambrecht,
Germany.

Moscato, P. (1999) Memetic algorithms. In: Corne, Dorigo and Glover (eds.), New

Ideas in Optimization. McGraw Hill, pp. 219–235.

Osman, I.H. and Kelly, J.P. (1996) Meta-Heuristics: An Overview. Meta-Heuristics:

Theory and Practice. Kluwer, pp. 1–23.

Prais, M. and Ribeiro C.C. (2000) Reactive GRASP: an application to a matrix
decomposition problem in TDMA traffic assignment. 12, 164–176.

368 R. Martí

Rochat and Taillard (1995) Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1(1), 147–167.

Resende, M.G.C. (1998) Computing approximate solutions for the maximum covering
problem using GRASP. Journal of Heuristics, 4, 161–171.

Patterson R., Pirkul, H. and Rolland, E. (1999) Adaptive reasoning technique for the
capacitated minimum spanning tree problem. Journal of Heuristics, 5, 159–180.

Rinnooy, Kan, A.H.G. and Timmer, G.T. (1989) Global optimization. In: Rinnoy Kan
and Todds (eds.), Handbooks in Operations Research and Management Science,
Vol. 1. North Holland, pp. 631–662.

Russell, R.A. (1995) Hybrid heuristics for the vehicle routing problem with time
windows. Transportation Science.

Solis, F. and Wets, R. (1981) Minimization by random search techniques. Mathematics

of Operations Research, 6, 19–30.

Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.J., Van Laarhoven, P.J.M. and Pesch, E. (1990)
Genetic Local Search algorithms for the traveling salesman problem. In: Schwefel
and Männer (eds.), Parallel Problem Solving from Nature, Springer-Verlag, pp.
109–116.

Wattenberg, M. and Juels, A. (1994) Stochastic Hillclimbing as a baseline method for
evaluationg genetic algorithms. University of California, Berkeley, CSD94-834.

LOCAL SEARCH AND CONSTRAINT
PROGRAMMING

Filippo Focacci
ILOG S.A.

9, rue de Verdun

BP 85, 94253 Gentilly, France

E-mail: ffocacci@ilog.fr

François Laburthe
BOUYGUES – Direction des Technologies Nouvelles

1, avenue E. Freyssinet

78061 St-Quentin-en-Yvelines Cedex, France

E-mail: flaburthe@bouygues.com

Andrea Lodi
D.E.I.S., University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: alodi@deis.unibo.it

Real-world combinatorial optimization problems have two main characteristics which
makes them difficult: they are usually large (see, e.g., Caprara et al., 1997, which
describes real-world crew scheduling applications), and they are not pure, i.e., they
involve a heterogeneous set of side constraints (see, e.g., union contract regulations for
crew scheduling and rostering again in Caprara et al., 1997).

Hence, in most cases, exact approaches cannot be applied to solve real-world prob-
lems, whereas incomplete methods, and among them Local Search (LS) ones, have
been proved to obtain very good results in practice (see many examples throughout the
book).

LS techniques are based on a simple and general idea. Let P be the combinatorial
optimization problem we want to solve, and s a current solution which, for the moment,

the feasible solutions of P which can be reached from s by means of a move of type
Examples of moves are given throughout the paper, but, roughly speaking, the move is

Chapter 13

1 INTRODUCTION

of P) in a subset of the overall solution space. In other words, contains all

we assume to be feasible for P, and to have value A neighborhood is defined for s
with respect to a move type i.e., a function mapping s (actually, any feasible solution

which imposes that variables must assume different values in a feasible
solution.

To each constraint is associated a propagation algorithm aimed at deleting from
variable domains the values that cannot lead to feasible solutions. Constraints interact

a manipulation of s whose effect is the transition to another solution The LS

that is maximized (for minimization problems). If then
an improved solution has been found, and the process is iterated by considering x* as
new current solution. Otherwise, a local optimum has been reached, and several very
effective techniques can be applied to escape from it (see almost all the chapters of this
book).

If problem P presents relevant feasibility issues, i.e., it is not easy in practice to find a
feasible initial solution, the same framework can be applied anyway by using as current
solution an infeasible one. In order to drive the local search process towards feasible
solutions, the cost function needs to be modified to measure the infeasibility of the
candidate solution. In this sense, the evaluation of a move can be more complex (penalty
functions are usually necessary), but the framework does not change substantially.

Three important issues must be taken into account when dealing with real-world
problems.

370 F. Focacci et al.

1.

2.

3.

Huge problems require large neighborhoods whose exploration can be compu-
tationally expensive.

When dealing with problems involving many heterogeneous side constraints it
is often preferable to consider them as hard constraints rather than transforming
them into penalty functions. In these cases, the neighborhood may contain few
feasible solutions, and again large neighborhoods are required in order to avoid
getting trapped into local minima too often.

Real-world applications typically lead to frequent update/addition of constraints
(recall again union contract regulations), thus the algorithmic approach requires
flexibility.

In the last decade Constraint Programming (CP) has shown its effectiveness in
modeling and solving real-world combinatorial optimization problems. CP is a pro-
gramming paradigm exploiting Constraint Satisfaction techniques (Mackworth, 1977),
and in the following we restrict our attention to CP on Finite Domains (CP(FD)) which
is the case of all constraint tools for discrete optimization such as CHIP (Aggoun and
Beldiceanu, 1992), Ilog Solver (Solver, 2000), Eclipse (Schimpf et al., 1997), cc(FD)
(van Hentenryck et al., 1993), CHOCO (Laburthe, 2000), etc.

The next paragraph briefly introduces the CP terminology that will be used in the
remainder of the chapter. Complete definitions can be found in Marriott and Stuckey,
1998 (a complete textbook), and Focacci et al., 2000b (a basic introduction).

Combinatorial optimization problems are modeled through CP(FD) by means of
a set of variables taking their value on a finite domain of integers, and are linked by a
set of constraints. The constraints can be of mathematical or symbolic type, and in this
second case, when they refer to a set of variables, are referred to as global constraints.

Global constraints typically model a well-defined part of the overall problem, where
well-defined means that the same part has been recognized as a subproblem in several

framework explores the neighborhood by searching for the solution such

cases. A classic example of global constraint is the all_different constraint

are triggered (Mackworth, 1977).
Propagation algorithms are usually incomplete: once propagation

may remain some inconsistent values in the variable domains.1 Therefore, unless the
is finished, there

propagation phase ends with a fully instantiated solution or a failure (proving the
problem inconsistent), a search phase is executed. One branching step is performed by
partitioning the current problem (or the subproblem) into (easier) subproblems, e.g., by
instantiating a variable to a feasible value in its domain. Propagation and search are
interleaved in order to reach one or all feasible solutions.

As soon as a feasible solution improving the current best one is found, CP systems
add a new constraint to the remaining search tree stating that further solutions should
have a better value. This new constraint excludes leaf nodes from the remainder of the
tree having a cost which is worse than the current one. Thus, CP solves a sequence of
feasibility problems that improve the value of the objective function.

It is not difficult to see that the main advantage of using CP systems is flexibility:
CP supports the design of declarative, compact and flexible models where the addition
of new constraints is straightforward and does not affect the previous model. Indeed,
the propagation of the previous constraints remain unchanged (since they locally model
parts of the overall problem), and the previous constraints simply interact with the new
ones through shared variables.

Thus many real-world combinatorial optimization problems may benefit from the
efficiency of LS as well as from the flexibility of CP. Throughout this paper, we review
hybrid methods that combine principles from both methods. A first set of such hybrids
belongs to the family of local search methods (going from one solution to a neighbor
one) and use CP as a way to efficiently explore large neighborhoods with side con-
straints. A second set belongs to the family of global search (tree search) methods and
use LS as a way to improve some of the nodes of the search tree or to explore a set of
paths close to the path selected by a greedy algorithm in the search tree. In short, LS
may use ideas from CP in order to make large neighborhoods more tractable, while CP
may use ideas from LS to explore a set of solutions close to the greedy path in a tree
search and converge more quickly towards the optimum.

The chapter is organized as follows. In Section 2 we present the techniques to
combine LS and CP within hybrid algorithms, and we briefly review the literature on
the topic. In Section 3 we discuss in details a didactic case study by presenting examples
of the techniques described in Section 2 with respect to this specific problem. Finally,
some conclusions are drawn in Section 4.

1Note that in the general case forcing acr consistency even for a single constraint is NP-hard.

371Local Search and Constraint Programming

2 BASIC TECHNIQUES

2.1 Constrained Local Search

As mentioned in Section 1, hybrid approaches combining LS and CP are particularly
suitable for real-world combinatorial problems which are typically huge in size and
involve side constraints. In these cases both the size of the problems and the presence of

through shared variables, i.e., as soon as a constraint has been propagated (no more
values can be eliminated), and at least a value has been eliminated from the domain of
a variable, say then the propagation algorithms of all the other constraints involving

the complexity of the TSPTW 2-opt to by caching earliest arrival times and latest
departure times (Kindervater and Savelsbergh, 1997). Such optimized neighborhood
explorations and constraint checks require specialized code that must be substantially
changed whenever new side constraints are considered.

The main point concerns, however, the effectiveness of small neighborhood for
real-world applications. With the addition of side constraints the number of feasible
solutions of the neighborhood becomes smaller, thus the local optimization process is
more likely to get trapped into local optima. Therefore real-world problems require
larger neighborhoods, and exploring them by simple enumeration becomes ineffective
(the same holds since the size of the problems typically grows).

372 F. Focacci et al.

side constraints lead looking for optimality out of practice. However, even standard LS
algorithm can get into trouble from a computational point of view with these problems
since the size of the neighborhood grows very fast and/or testing solution feasibility is
expensive.

2.1.1 Small Neighborhoods with Side Constraints

Fast LS algorithms typically uses neighborhoods of small size which can be explored
with a relatively small computational effort. Classic examples are the neighborhoods
defined by a move which simply exchange a pair of assignments of the current solution.
This kind of move has a wide domain of application, it is referred as 2-opt, and has
been classically used by Lin and Kernighan, 1973 for the Traveling Salesman Problem

(TSP). In the TSP case, given a Hamiltonian cycle (current solution), i.e., a sequence of
edges connecting the cities in their order of visit, the 2-opt move simply deletes two of
these edges by replacing them with two others in order to obtain a new feasible cycle.

It is well-known that 2-opt can be implemented so as to require an overall time
complexity of to find the move maximizing the improvement, i.e., to find the
solution whose overall length is minimal among all neighbors of the current cycle.

Even if the neighborhood is in principle quite small, the addition of side constraints
can considerably increase the computational effort required to explore it since it is often
necessary to test feasibility.

A typical example is the time-constrained variant of TSP in which the salesman
needs to visit the cities within specific Time Windows (TSPTW). In this case, in order to
find the best 2-exchange move we need to test feasibility, which means testing, for each
move, if the resulting solution violates some of the time window constraints. This is
the standard way of addressing problems with side constraints in LS: the neighborhood
of the pure problem is explored, and for each neighbor, the side constraints are iterated
and, for each one of them, its satisfaction is tested. Thus, note that to each constraint
must be associated an algorithm testing its satisfaction for a given solution. Note also
that as soon as side constraints are added, the computational overhead of constraint
checks for LS increases. However, checking feasibility only at the very end of the
decision process is only a passive way of using constraints; constraints may be used
in more active way by factoring out some of the constraint checks early on in the
iteration. Therefore, single checks may discard (hopefully large) sets of neighbors,
thus improving the overall efficiency of the neighborhood exploration.

In the example of the 2-opt neighborhood for the TSPTW, one check of time window
constraints takes time, therefore a straightforward implementation of 2-opt for
the TSPTW takes time. However, smart incremental computations can reduce

As neighborhoods grow larger, finding the best neighbor becomes an optimization
problem on its own, thus the use of global search is preferable over blunt enumeration.

We review two possibilities for implementing a LS algorithm, using CP. In both
cases, we suppose that we have at hand a current feasible solution s and a CP model
of the problem.

The first method consists in keeping a fragment of the solution s (keeping the value
assignment for a subset of the variables), erasing the value of all variables outside
that fragment and solving the subproblem defined by the uninstantiated variables. This
technique was introduced by Applegate and Cook (1991) for job-shop scheduling. The
job sequence is kept on all machines but one, and the scheduling subproblem on that
machine is solved to optimality by branch-and-bound. In this case, the fragment corre-
sponds to the sequencing order on all machines but one. For scheduling, the approach
was generalized to other fragments (time slice, ranks, sets of ordering decisions etc.)
by Caseau and Laburthe (1996) and Nuijten and Le Pape (1998). The same approach
was also applied to quadratic assignment problems by Mautor and Michelon (1997)
and to vehicle routing by Shaw (1998). Such fragment-based LS methods are usually
easy to implement once a first CP model has been built. A number of constraint based
tools can be used to improve their efficiency:

373Local Search and Constraint Programming

2.1.2 Exploring Large Neighborhood with CP

an optimization constraint can be set on the neighborhood imposing that only
neighbors that strictly improve the objective value over the current solution are
generated (see, e.g., Nuijten and Le Pape (1998));

fragment based neighborhoods can be explored in a Variable Neighborhood
Search (VNS, see, and Hansen, 1997 for its definition, and see,
Caseau and Laburthe (1996) for its application to fragment-based LS);

in order to speed up the procedure, each neighborhood defined by a fragment can
be explored by an incomplete search, such as Limited Discrepancy Search (see,
Harvey and Ginsberg, 1995 and Section 2.2.5).

The second method, introduced in Pesant and Gendreau (1996) and Pesant and
Gendreau (1999), consists in modeling the exploration of a neighborhood through CP
variables and constraints. Roughly speaking, a CP model of the neighborhood is created
such that every feasible solution of the CP problem represents a move that transforms
the current solution into a neighbor solution. As an example one can consider the
classical swap move that swaps the values of two variables and The neighborhood
associated to the move can obviously be explored by two nested loops over indices i

and j. Alternatively, the neighborhood may be defined by a CP model with two domain
variables I, J and one constraint I < J. Every feasible solution (i, j) of the problem
defined by variables I, J and constraint I < J uniquely identifies a swap move. With
such a model, the exploration of the neighborhood by means of iterators (two nested
loops) can be replaced by a tree search (such as branch-and-bound for finding the
best move).

Formally, the neighborhood of a solution s is described by a CP model
such that there is a one-to-one mapping between the set of solutions of and the set of
neighbors We refer to as the neighborhood model and to its decision variables
as neighborhood variables. In the framework proposed by Pesant and Gendreau (1996),

in Shaw et al. (2000) to reduce this complexity to

374 F. Focacci et al.

Pesant and Gendreau (1999), local search is then described as a sequence of CP tree
search on auxiliary problems

While searching for a neighbor, two CP models are active: the original model for P,
and the neighborhood model for The two models communicate through interface

constraints linking variables across P and
In the example given before, the interface constraints are:

2.2 Incomplete Global Search

Local search and constraint propagation can also be applied within a global search
algorithm. Focusing on the family of constructive algorithms, this section shows that,

In addition, a cost function for the neighborhood model can be defined, and
branch-and-bound search can be used on to find the best neighbor. These CP mod-
els support fast neighborhood explorations. Indeed, constraints are used not only for
testing the feasibility of solutions (neighbors) once they have been generated, but also
for removing during the search, through propagation, sets of infeasible neighbors. For
instance, the values of the already instantiated neighborhood variables may cause the
reduction of the domains of the problem variables through the interface constraints
and the domain reductions for the problem variables may, in turn, back-propagate on
other not yet instantiated neighborhood variables, removing the possibility to generate
infeasible neighbors. Propagation can also reduce the search space when only improv-
ing neighbors or only the best neighbors are looked for: the bounding constraint on the
cost of the move can propagate out non optimal neighbors. Propagation is thus able
to discard infeasible or uninteresting portions of the neighborhood without actually
iterating those sets of neighbors. The larger and the more constrained the problem, the
more significant the reduction in neighborhood search provided by propagation.

Several other advantages can be identified in such a CP approach. First, a clear
separation between problem modeling and problem solving is maintained. Modeling
constraints for P are kept separate from the neighborhood model. This supports, e.g.,
the addition of side constraints to P without changing the neighborhood model nor the
search methods. Second, any branching scheme may be used for building and exploring
the neighborhood search tree. The simplest idea would only instantiate variables from

but branching may also be performed on variables from P or on variables from
both P and In addition, efficient exploration strategy like Limited Discrepancy
Search may be used instead of Depth First Search. Few works have started taking
advantage of this flexibility and the assessment of its interest is still an open research
issue.

The main limitation of this approach lies in the overhead from the CP model and
the propagation engine. CP models of the neighborhoods are of interest only when
propagation produces a significant reduction of the search space; in such cases, the
CP search of the neighborhood generates much fewer neighbors than the nested loop
iteration. Moreover, the search tree exploration keeps instantiating and uninstantiating
variables (upon backtracking). Searching the swap CP neighborhood with a simple
branching scheme takes time. Specific branching schemes have been proposed

A global search algorithm produces a solution by taking decisions and backtracking on
failure. The decisions taken in a branch amount to adding a constraint to the problem.
Some general branching scheme, such as the first-fail criterion (see, Haralick and
Elliott, 1980) will select any variable from the model (that with the smallest number
of values in its domain) and instantiate it: in such general cases, it is often difficult to
interpret the state of the system before a solution has been reached. The situation is
different for some branching schemes that are problem specific and where the decisions
at each choice point build a small part of the final solution. For instance, in the case
of vehicle routing, insertion algorithms consider customers one by one and decide the
route that will visit them; for scheduling, ranking algorithms construct the schedule of
a machine in a chronological manner by deciding which task should be sequenced first,
which second, and so on; for time-tabling, assignment algorithms decide of the duty
of a person (or a group of people) for one time-slot. Such global search algorithms are
called constructive search algorithms: their states may indeed be interpreted as relevant
partial solutions (routing plans for a subset of the customers, short-term schedules
planning only a subset of the tasks or time-tables for a subset of the people) and it is
easy to evaluate a bound of the objective function by adding the contribution from past
decisions to an evaluation of the impact of the decisions to come.

2 Note that, in the CP context, the word “heuristic” does not refer to an approximation algorithm, but to a
function used to compare different branches at a choice point. In the remainder of the chapter, heuristic will
always refer to that meaning.

375Local Search and Constraint Programming

on the scale from greedy algorithms to complete global search, incorporating ideas from
local moves and neighborhoods within global search is useful for achieving interesting
compromises between solution quality and search time.

2.2.1 Constructive Algorithms

2.2.2 Greedy Constructive Algorithms

The search in a constructive algorithm is guided by a heuristic:2 at each choice point,
a function h is evaluated for all possible choices and the choice are ranked by increasing
values of h: the choice that minimizes h is considered the preferred decision. In a
greedy constructive algorithm, the preferred branch is systematically followed and no
backtracking takes place. For pure optimization problems where feasibility is not an
issue, such greedy algorithms yield a solution in polynomial time. In case of feasibility
issues, the algorithm may produce a partial solution (some customers are not assigned
to a route, some tasks are not scheduled, some duties are not assigned in the time-table).

When the optimization system is granted more time than what is required by the
greedy constructive algorithm, but not enough for performing a complete global search,
local search may be an effective tool for improving the greedy solution. A first idea
consists in using the greedy solution as starting point for a descent search or any random
walk. However, interesting results can also be achieved by integrating notions from
local search directly within the construction process.

The idea is that the construction process should explore a neighborhood of the
greedy decision at each step of the construction process. Such a result can be reached
in several ways: by performing a lookahead evaluation of the quality of branches (see
Section 2.2.3), by considering a subset of the branches that are “close” to the best

376 F. Focacci et al.

branch selected by the heuristic (see Sections 2.2.4 and 2.2.5), or by trying to improve
the current solution by a LS algorithm after each construction step (see Section 2.2.7).

2.2.3 Lookahead Algorithms

Simple heuristics for evaluating the interest of a branch are often “myopic” in the
sense that they only assess a choice by some of its immediate consequences and not by
long-term consequences on the planning process. For instance, in vehicle routing one
may evaluate the insertion of a client in a route by the minimal distance between the
client and any other client already in the route. A possibility for taking into account
such far-reach effect consists in going down the branch, fully propagating the effects
of the choice and evaluating a heuristic only thereafter. In the example of vehicle
routing, this amounts to performing the insertion of the client at the best place in the
route, propagating the consequences of the insertion, and returning the bound of the
overall cost. One may also perform a deeper exploration of the subtree below each
branch before evaluating and ranking them. Such lookahead heuristics are inspired
from game theory where the players may select their moves by unrolling the game n

moves ahead and choosing the branch from which the worst reachable situation is best.
In the field of combinatorial optimization, lookahead evaluation is a common way of
improving greedy algorithms in vehicle routing (see, e.g., Caseau and Laburthe, 1999)
or scheduling (see, e.g., Dell’Amico and Trubian, 1993).

2.2.4 Restricted Candidate Lists

At each choice point, the heuristic provides a preferred branch, as well as an indication
of the quality of the other branches. In case of binary branching schemes, the heuristic
may indicate how close both possibilities are, with situations ranging from near ties
to definite choices between one good option and a terrible one. In the case of wider
(non binary) branching, the heuristic may consider that some branches are serious
competitors to the favorite branch while others are not. In any case, one can explore a
subset of all solutions by following only those paths in the tree that never consider a poor

yields a complete tree covering all possible solutions. For intermediate values of the
subtree contains only solutions whose construction paths are located “around” greedy
paths.

Such a subtree can be explored either systematically or not. In both cases it is
important to control the global amount by which a solution path will diverge from the
heuristic. It is indeed favorable to generate first solutions that diverge little from the
heuristic (following good branches from the RCL) over solutions that systematically
diverge from the heuristic (following always the worst branches from the RCL).

The GRASP method (Feo and Resende, 1995) uses RCL within a randomized
version of the greedy algorithm: a randomized version of the overall construction

branch according to the heuristic. Let be the possible choices (branches),
the preferred one and the worst one
The idea of Restricted Candidate Lists (RCL, see Feo and Resende, 1995; Glover,
1995) is to retain only the good branches and to discard the bad ones. More precisely,
given a parameter such that only those such that

are kept in a RCL while the others are discarded.
The introduction of RCL thus defines a subtree of the overall search tree. For

this subtree covers all solutions reachable by a greedy algorithm; on the opposite

the tree) and restricting the construction to quasi-greedy choices with low values of
in the end (deep in the tree); this is motivated by the fact that heuristics are often more
reliable in the end of the construction process rather than at the beginning.

377Local Search and Constraint Programming

2.2.5 Discrepancy-based Search

The previous section introduced the notion of a subtree defined by RCL for a given
heuristic . This subtree can either be explored by means of randomized construction pro-
cedures (GRASP) or by systematic search. This is, in essence, what discrepancy-based
search procedures (xDS, Harvey, 1995) do: this subtree is explored with construction
moves and backtrack moves.

xDS add two notions to RCL:

algorithm is run many times. For each construction, at each choice point, one branch is
selected at random among the RCL and according to some probability distribution (with
decreasing probabilities for). Thus, solutions that are globally closer to
the heuristic are generated with an overall higher probability than solutions that are
systematically far from the heuristic. Much room is left for tuning a GRASP algorithm,
through the probability distributions or through the value of For instance, Prais and
Ribeiro, 1998 showed that it is more efficient to consider varying values of starting
with tight ones (around 0, in order to follow the heuristic), and progressively releasing
their values to accept locally bad choices (higher values). Another possibility consists
in allowing higher values of early on in the construction process (at the first levels of

it keeps track of all nodes where the algorithm has diverged from the heuristic.
Such cases when a branch i > 1 is followed are called discrepancies;

it keeps track of the paths already generated in order to avoid visiting them
twice and relying on backtracking to avoid recomputing many times common
intermediate nodes.

This global account of the amount of discrepancy from the greedy heuristic is used
to drive the exploration towards solutions that diverge little from the heuristic (i.e.,
following most of the times the branch) before solutions that diverge more from the
heuristic (i.e., following many branches with i > 1). Thus, xDS methods in a way
ensure by explicit discrepancy bounding what GRASP ensures on average, through
cumulated probabilities. The underlying principle is the same in both methods: it is
assumed that good solutions are more likely to be constructed by following always but
a few times the heuristic rather that by diverging often from it.

The global account of discrepancies can be performed by several manners:

counting the number of times K the search did not follow the heuristic. Limited
Discrepancy Search (LDS, Harvey and Ginsberg, 1995) explores the tree by
generating all solutions for increasing values of K;

counting the number of times the search did not follow the heuristic up to a certain
depth. Depth-bounded Discrepancy Search (DDS, Walsh, 1997) explores the tree
by generating all solutions that do not exceed a maximum number of discrepancies
up to a certain depth, and then strictly follows the greedy algorithm;

that are followed along the path). For two consecutive choices, this method

counting the total divergence in rank between the options taken and the preferred
ones (with C denoting the sum of the rank discrepancy, i.e., i – 1, for all branches

the rank i of a decision object as a preference, and explore an incomplete tree search
(for example using limited discrepancy search) within the preference-based framework
as in (Junker, 2000). After having found a first solution by following the given order,
preference based search is able to explore permutation of such an order by backtracking
on a tree search while looking for new solutions.

378 F. Focacci et al.

taking twice the decision Credit Search, (Beldiceanu et al., 1999) generates
all solutions for which C does not exceed a given limit.

2.2.6 Local search over priority list

2.2.7 Improving Solutions

A last possibility for enhancing an (incomplete) global search algorithm consists in
applying some local search steps.

Local search can be applied at a leaf of the global search tree for improving a
solution. This is a straightforward generalization of local search methods which
build a solution by a greedy algorithm. Global search is simply used as a way to
generate several initial solutions on which a local search improvement phase is
applied. It is interesting to generate starting solutions that are different enough
for the overall exploration to be rather diversified. LDS is an interesting way of
generating such a diversified initial set of solutions.

Local search can be applied at internal nodes of the global search tree for repairing
or improving a partial solution (see Prestwich, 2000). Designing such moves in
the general case of any CP model may be hard. Indeed, such moves must handle
partial assignments (producing a partial assignment similar to the current one).

In a similar spirit, in the case of priority-based heuristics, local moves can be applied
directly to the priority list itself. Consider a problem P and a static heuristic for a
constructive algorithm where L is a list of decision objects
of P (e.g., a list of variables in a generic CSP, a list of activities in a scheduling
problem). A constructive algorithm A sequentially makes decision on by adding
a constraint involving If the algorithm A stops at the first solution found, then it
can be seen as a function mapping the constructive heuristic L into a solution S of the
problem P. Given this interpretation, we can apply local search methods to the static
heuristic instead of applying them directly to the solution S (e.g., by considering all
lists generated by exchanging each pair of decision objects in L). Note a similar
technique is sometimes used in Genetic Algorithms (GA). A GA engine may work on
an indirect representation of the problem P (“genotype”), and use a function to map
each genotype to a “phenotype” representing a solution of the real problem. Since most
of the times the mapping between genotype and phenotype needs to consider complex
constraints, and it may be implemented as a constraint programming engine. In this
case the static heuristic is generated by the GA engine; more generally, a static heuristic
may be generated by a different algorithm working on a problem related to P.

Two different ways can be used to explore the neighborhood of a static heuristic L: the
first method applies local search directly to the list L. The second method interprets

associates the same divergence to the path taking and then, and to a path

A simple idea of neighborhoods consists in selecting a set of variables that
are instantiated in the current partial solution, produce a neighbor assignment

domains of variables not in The global search process can then continue
from this improved partial state. Such methods have proven successful on routing
problems. Russell, 1995 introduced the idea of applying local moves every t steps
of insertion: each local move tries to improve the partial plan (routes visiting a
subset of the clients) by another partial plan, visiting the same clients, but in a
different order, before continuing the insertion process. Caseau and Laburthe,
1999 compared the method that applies LS after each insertion step (Incremental
Local Optimization, ILO, see also Gendreau et al., 1992) to the method that
constructs a solution by greedy insertion and then improves it by LS. They showed
that ILO was not only faster but also produced much better solutions.

A variety of other methods have been proposed in the last decade to solve combinatorial
problems with constraints using local search, focusing on solving over-constrained
problems (problems where one wants to minimize a global account of penalties for
violated constraints). For problems that are described as generic constraint satisfaction
problems, the GSAT by Selman et al. (1992) and the Min-Conflict by Minton et al.
(1992) methods start from a random infeasible assignment of values to variables and
improve it by flipping the value of one variable that is involved in the biggest number
of conflicts (violated constraints). Improvements have been proposed over this original
framework, with the careful introduction of some randomization in the choice of the
variable to be flipped, leading to the walkSat algorithm by Selman and Kautz, 1993.
However, such methods are based on very simple models of the optimization problems,
with constraints that are described by the list of their feasible assignments. There is
thus no means of capturing the entire structure of the problem by such methods. The
walkSAT algorithm has recently been generalized into the WSAT algorithm, capable
of handling linear constraints over integer variables (see, Walser, 1999); however, as
a generic method, it is unable to take advantage of the wealth of knowledge that has
been developed for computing bounds over the cost of specific routing or assignment
problems.

A completely different approach is followed by the localizer framework by Michel
and van Hentenryck (1997). Problems are described by means of variables and formulas
called invariants. Although it seems similar to a modeling language, the invariants
do not specify feasible solutions, but are rather used to define the way in which data
structures are updated when a move is performed. The approach is powered by powerful
symbolic reasoning over the invariants and has proven efficient on some problems.
However, it does not yet support global objects for modelling a route, a schedule or an
assignment.

379Local Search and Constraint Programming

A key element to be considered with LS is the evaluation of partial solutions. The
quality of a move can easily be measured when LS is applied on completely instantiated
solutions. On the other hand, when LS is applied on partial solutions, evaluating a move
may be more difficult. It is usually interesting to consider bounds on the objective
function, possibly with the addition of a term evaluating the difficulty of extending the
partial solution into a complete one.

2.3 Other Related Methods

of and apply a propagation algorithm on the overall problem to reduce the

and j, the travel time and the travel cost is reported. A possible CP model

380 F. Focacci et al.

3 PRACTICAL GUIDELINES THROUGH A CASE STUDY

each route is associated to a truck, and starts and ends at the depot;

each client is visited exactly once, and within the time window;

the bins’ capacity constraints are respected.

3.1 A CP Model

The CP model of the transportation problem dTP can be formally stated by using the
following notation:

Thus, for optimization problems featuring a strong combinatorial structure as well
as specific side constraints one is left with the need to craft a specific method from the
model. For this reason, we will not discuss these methods any further.

The techniques for combining Local Search and Constraint Programming described
in the previous section are applied here to a didactic case study: we address a variant
of the classical Vehicle Routing Problem (VRP), (see, Toth and Vigo, 2002) in which
several side constraints are considered modeling real-world requirements.

Informally, we are given a set of clients and a depot in which a fixed number of
trucks are located. Each client produces a given amount of goods of a certain type and
has to be visited within a time window. Early arrivals are allowed, in the sense that a
truck can arrive before the time window lower bound, but, in this case, it has to wait
until the client is ready for the beginning of the service. The service time, for each
client, only depends on the type and quantity of goods to be collected (i.e., it does not
depend on the truck), and each truck has two capacitated bins which each can contain
a unique type of goods. The travel times and costs between each pair of clients, and
between each client and the depot, are given.

This VRP variant, referred to as didactic Transportation Problem (dTP) in the
following, calls for the determination of the set of trucks’ routes minimizing the total
travel cost, and satisfying the following constraints:

For each location i(i = 1 , . . . , N) the corresponding goods are denoted by
and where indicates the type of goods to be collected by client
i, while is its quantity. Moreover, each client i has an associated time window

representing the time frame during which the service must start. The fleet of
vehicles located at the depot 0 is composed by M trucks: each truck k has two bins of
identical capacity C, and each bin may collect a unique type of goods
The duration of the service at location i is Finally, for each pair of locations i

i, for the locations (0 denotes the depot) and, by extension, for
the clients;

for the trucks, and, by extension, for their routes;

for the bins;

for the types of goods.

for dTP is the following:

min

on

subject to

Local Search and Constraint Programming

CP models for combinatorial optimization problems consist in the definition of three
different sets of objects: an objective function, decision objects, and constraints. In the
example, we explicitly separate the three sets with the keywords min, on, and subject

to. Moreover, most Constraint Programming languages provide modeling objects such
as Activities, Resources, etc. Using such objects rather than only variables yields more
concise models. Even if the actual syntax of such objects may vary depending on the
specific CP language at hand, we may safely assume that the model proposed can easily
be coded using most CP languages.

381

3.1.1 Basic Model

We are given M trucks, 2M bins, and N clients that must be visited within a time
window by exactly one truck. Each truck is a UnaryResource object containing the
information on the travel time and cost among locations (clients), and a variable repre-
senting the total travel cost for the truck. The service at each client is an Activity object
defined by a variable start-time, a constant duration, and a location. Constraint (1)

requires enforces that from to the UnaryRe-

source is used by the Activity without interruption. A UnaryResource cannot
be used simultaneously by more than one Activity, and, in addition, it is not used during
the time needed to move from location to location. Moreover a given time and cost
must be considered before the first and after the last activities are executed. In case tt

satisfies the triangle inequality an equivalent model is that

382 F. Focacci et al.

for every pair of Activity such that requires and
requires

Note that the same objects used to model trucks and visits in dTP could also be used to
model machines with maximal capacity equal to 1, and tasks with sequence dependent
setup times and cost in scheduling problems. A client needs to be visited by
exactly one of the M trucks, say the k-th, thus we model the alternative choice of trucks
by defining, for each client, a variable referring to that index k. The require-
ment constraint is thus stated on the array of alternative resources indexed by
the variable

Each client i produces a quantity of goods of type The variable
identifies the bin used to serve client i. The bin capacity constraint (2) for each bin h

simply states that the sum of all quantities such that is collected in h is less or
equal to the maximal capacity C. The variable identifies the type associated
to bin h. The constraint requiring that each bin must contain goods of the same type can
be stated using variables and by imposing that for each client i

the type associated to the bin used by the client i is equal to (3).
Bins with index 2k – 1 and 2k are associated to truck k (bins 1 and 2 are placed

on truck 1, bins 3 and 4 on truck 2, etc.). The link between bins and trucks is modeled
with constraint (4).

The basic model correctly models dTP. Decision variables are start-time
and bin selection variables for each client i. Once all variables and

are instantiated to values satisfying all the constraints of the basic model,

a solution is reached, since all the other variables of the model etc.)
are instantiated by propagation.

Nevertheless, when dealing with routing problems, it may be convenient to explic-
itly manipulate the sequence of services performed by each truck. For this purpose an
extension of the model is considered. This model, based on the abstraction of multiple
path, is redundant with respect to the basic model, since it is not necessary for correctly
modeling dTP.

3.2 Propagation

CP constraints embed domain propagation algorithms aimed at removing values from
variable domains that are proven infeasible with respect to the constraint itself (see,
Mackworth, 1977). Several propagation algorithms can be designed for the same
CP constraint; we briefly sketch some algorithms that can be used to implement the
propagation of the constraints used in the dTP model.

Concerning notation, given a variable in the following we will refer to the min-
imum (resp. maximum) value in its domain as (resp.). Moreover, the
domain itself is referred to as whereas once has been instantiated its
value is returned as

3.2.1 Disjunctive Relations

Consider the UnaryResource object used to model the trucks and the require con-
straints linking objects Activity and UnaryResource. As mentioned these constraints
state that two activities must not be executed simultaneously on the same unary
resource, and a transition time must be granted between two subsequent activities.

then More sophisticated
propagation algorithms have been implemented in different CP languages, see e.g.,
Edge Finding techniques for unary and discrete resources, and constructive disjunctive
techniques for alternative resources (see, Nuijten, 1994). These techniques have been
successfully applied to Scheduling Problems and TSPTW (see, Pesant et al., 1998).
In the proposed model, beside the modeling of capacity availability and transition
times, the object UnaryResource is also responsible for maintaining a cost variable
corresponding to the resource specific component of the total cost.

Local Search and Constraint Programming 383

3.2.3 Propagating Costs

In many cases the calculation of good lower bounds on the objective function variable
is especially important. As shown in Focacci et al. (1999a) good lower bounds on
the optimal cost can be used for discarding a priori uninteresting parts of the solution
space. Moreover, lower bounds can also be used in greedy algorithms as described in
Section 3.4.2 for guiding towards more promising parts of the solution space. In CP the

A simple propagation algorithm iterates on all values k belonging to the domain of

from the domain of variable

A simple propagation algorithm updates the start-time variable of activities by look-
ing at all pairs of activities performed on the same resource and deducing precedence
constraints. Consider two activities if

then it can immediately be
deduced that must precede i.e.,

and

3.2.2 Linking Trucks and Bins

For its simplicity, it is worth describing in detail the constraint linking the variables

This propagation rule finds new time bounds for the activities by considering the current
time bounds, the capacity availability, and the resource assignments. Similarly, new
possible assignments are deduced by considering current time bounds, and capacity
available: if

used for the choice of trucks and bins, The constraint
is considered consistent iff the following condition hold:

and vice-versa

and checks for the existence of a value h in the domain of that
satisfies the relation If no value h is found, k is removed from the domain of
variable The propagation algorithm also iterates on all values h belonging
to the domain of and checks for the existence of a value k in the domain
of that satisfy the relation k = [h/2] . If no value k is found, h is removed

and are associated with the internal node i. Variable identifies

introduced by the redundant models. Nevertheless, redundant models
should be used with care. Depending on the problem size, the use of several linked
models could eventually be computationally penalizing. In order to show a wide range
of CP-based local search techniques, we used all redundant models simultaneously.
Performance issues arising with very large instances could be addressed by using lighter
models or other techniques such as decomposition.

The redundant routing model is the following:

384 F. Focacci et al.

link between the objective variable and the decision variables is maintained through a
constraint.

In summary, three things should be stressed. First, whenever a simple or global
constraint acts on several variables the modification of any of the variables triggers
propagation algorithms that propagate the modification on the other variables involved.
Second, for a given constraint several propagation algorithms can enforce different
degrees of consistency. Finally, even without giving complexity results of the propaga-
tion algorithms, it is clear that some of them can be computationally more expensive
than others. For example, checking a constraint for the feasibility on a set of instanti-
ated variables is usually much easier than eliminating all values that can be proved to
be infeasible on a set of yet uninstantiated ones. Therefore, the propagation algorithms
to use may vary depending on the size of the problem, and on the type of solving
procedure used.

3.3 Redundant Routing Model

Let G = (V, A) be digraph, and a partition of V be defined by a set S of M start nodes,
a set I of N internal nodes, and a set E of M end nodes. A multiple path constraint
multiPath enforces that M paths will exist starting from a start node, ending in an end
node and covering all internal nodes exactly once. All internal nodes have one direct
predecessor (previous node) one direct successor (next node).

Internal nodes are labeled 1,2, . . . , N, end nodes are labeled N + 1 , N + 2, . . . , N +

M, while start nodes are labele N + M + 1, N + M + 2, . . . , N + 2M. The multiple

Starting from the basic model of Section 3.1.1, a redundant model can be devised.
The main advantage of using redundant models in CP consists in better filtering out
inconsistent values. In this specific case, another important advantage is that many
neighborhood structures can be easily defined by means of the additional variables

path constraint makes use of four arrays of variables. Variable is associated with
the start node N + M + k, and identifies its next node in the path. Variables

as done with the constraint (6).

385Local Search and Constraint Programming

the node next of i; variable identifies the set of internal nodes occurring after i in
the path containing i; finally, variable identifies the path containing node i.

The multiPath constraint can be used to model a subproblem of dTP: each internal
node represents a client, the set of start and end nodes represents copies of the depot.
The path k starting from the start node N + M + k, covering a set of internal nodes,
and ending at an end node represents the route of The redundant routing model

and the basic model are linked by the variables used in both models, and by
the constraint (7).

Note that the cost on each truck only depends on the sequence of services performed,
therefore the multiple path structure can also be used to define the objective function.
Since the variable and will be extensively used as decision variables for
dTP, it is indeed useful to explicitly link the multiple path model to the cost variables

referred to as and
Constraints (8)–(10) force all internal nodes {1, . . . , N} to have exactly one incom-

ing, and one outgoing arc, while all start nodes are forced to have exactly one outgoing
arc belonging to the set of internal nodes. Constraints (11) and (12) link succ and next,

and succ and visitedBy variables; constraint (11) links the visitedBy variable of the first

3.3.1 Propagation

Since the multi path model will be extensively used in the discussion of the local search
methods, it is important to describe it in details. A model equivalent to the multiPath

constraint based on only simple arithmetical and logical constraints is the following:

As mentioned in the model description, the set variables are used to enforce
precedence relations among nodes. An integer set variable is a variable whose domain
contains sets of integer values. In analogy with the definition of lower and upper bounds
on integer variables, lower and upper bounds can also be defined for an integer set
variable: the lower bound, called required set, is the intersection of all sets belonging
to the domain of the variable; the upper bound, called possible set, is the union of all
sets belonging to the domain of the variable. The variable is considered instantiated
when the domain contains a single set of integer values, thus the required set is equal
to the possible set. Required set, possible set, and value of the set variable will be

386 F. Focacci et al.

internal node in a path starting from node N + M + k to the value k. Finally the last
constraint prevents cycles in the graph.

The global constraint multiPath could indeed be written using all the mentioned con-
straints. However, more effective and efficient propagation algorithms can be designed
enforcing exactly the same semantic. Basic propagation on the next variables enforces
that, whenever a variable is instantiated to a value t, the value t is removed
from the domain of all variables A more powerful propagation can be
obtained by using flow algorithms (see, Régin, 1994). Cycles can be avoided either by
simple cycle removal algorithms, or by performing a more sophisticated propagation
using strong connected components or isthmus detection. Some of the propagation
that can be performed on the variables exploit the transitivity of the succ array:

This prop-
agation rule can be read as follows: if is necessarily after and is necessarily
after then is necessarily after

Beside the simple link between next and succ variables in (11), more effective
propagation can be performed. For example, if given two nodes i and j, the set of
nodes that necessarily follows i has a non-empty intersection with the set of nodes that
necessarily precedes j, then at least a node must exist in any path from i to j, therefore
j cannot be the next of i. More formally,

Note that this last propagation rule is not part of the arithmetic model
of the multiPath constraint (8)–(14); this is a simple example of the extra propagation
that can be done by a global constraint.

3.4 Constructive Algorithms

The model presented above could be solved as such by complete global search. How-
ever, such a solution is impractical in terms of computing time for realistic instances
(recall that the maximal size of plain VRPs that can currently be solved to optimality
within minutes ranges from a few tens of clients for branch-and-bound methods to 80 for
branch-and-cut methods, see Toth and Vigo, 2002). This section discusses constructive
methods which are realistic for solving dTP instances with hundreds of clients.

3.4.1 Insertion Algorithms

In the dTP model, when all CP variables in the arrays visitedBy and succ are instantiated,
then the solution is fully known. Indeed, variables arrays first, next and cost can be
instantiated from succ. When all these variables are instantiated, the objective function
is instantiated although the collectedIn and start variables may be left with an interval
domain. A simple greedy algorithm can instantiate all these remaining variables. For
example one could iteratively choose each client i and instantiate and
to its lower bound.3

We propose a constructive algorithm based on this dominance property using
and as CP decision variables for dTP. Clients are considered one

after the other: for each client i, the algorithm instantiates the variable and for
all j such that has already been instantiated to the same value as
the succ variables are reduced by enforcing one of the two decisions and

This is true with the current set of constraints while one has to be careful in the case of addition of other
constraints.

3

4 In case of failure, it is always possible to remove from the model those clients which could not be inserted
by the solver and return a feasible routing plan covering only a subset of the clients.

387Local Search and Constraint Programming

Such an instantiation scheme implements a constraint-based version of the standard
insertion heuristics for vehicle routing (see, Golden and Assad, 1988). Indeed, each
time a client i is assigned to a truck, the ordering between i and all others clients assigned
to that same route is settled, yielding a total order on all clients of the route. These
ordering decisions implement the insertion of i between two consecutive clients in a
route. Compared to standard insertion algorithms in Operations Research textbooks,
this CP description adds two notions.

The general framework for construction algorithms can thus be described formally
as follows:

In the end of the algorithm, either a feasible routing plan that services all clients
(success) or no solution (failure) is obtained.4

algorithm: INSERTION

for all clients i

The routing problem can be enriched with side constraints, such as time windows,
bin assignments and bin capacity. When selecting the best possibility for insertion,
feasibility is ensured. Rather than performing the insertion and checking for
the satisfaction of all constraints, we rely on propagation to discard some of
the infeasible assignments. Infeasible route assignments are removed from the
domain of and infeasible orderings are discarded by reducing the
domain of

The overall insertion process is seen as a monotonic process where variable
domains are reduced. Indeed, the variables may remain uninstantiated until
the very end of the construction process (until the routes are full). Until then, the
routes are only partially sequenced with precedence decisions: the relative order
among clients already assigned to a given route is settled

but there is room to insert new clients between such i and j. This descrip-
tion of insertion within “open” routes supports the evaluation of lower bounds on
the route costs: at any point in the algorithm, each route k has been assigned a
subset of clients
which have been ordered: When the costs
satisfy the triangle inequality, the cost of the route can be bounded with

for each possible value k in domain

branch on

try the assignment

for all j such that domain

branch on

or

if some feasible insertions were found

commit to one among them

else return(failure)

return(success)

388 F. Focacci et al.

3.4.2 Greedy Insertion

This general scheme can be refined into a greedy algorithm.

In order to help the algorithm finding a routing plan covering all clients, it is
wise to consider first the clients that are “difficult” to insert into a route (those
for which the insertion into a partial route is most likely to be infeasible). We
therefore sort all clients and use as priority criterion a function that returns higher
values for clients far away from routes already built and with tight time windows
over clients close to current routes and with a loose time window. The latter
have indeed little propagation impact when assigned to a route while the former
drastically augment the lower bound on the cost of the route and significantly
reduce the possibilities of further assignments through time window constraints.
An example of such a static criterion returning high values for nodes that should
be considered first would be

Since all trucks are similar, each assignment of a client to a (still) empty route
amounts to a route creation and is strictly equivalent. Therefore, when there exist
several k such that for no client j, domain , then, the tentative
assignment is considered for only one k .

When several possible insertions are found to be feasible for a client i, rather
than selecting any of them, we can choose the assignment and
the ordering (reductions on) that causes the lower bound of the overall
objective z to increase the least: this turns the constructive method into a greedy
algorithm.

The greedy algorithm is then as follows:

procedure: BEST_INS(i, k)

oldInf := inf

try

for all j such that domain

branch on

or

over all solutions, - oldInf

algorithm: GREEDY CONSTRUCTION

sort all clients i by decreasing values of priority(i)
for all clients i

commit to the one that yielded the smallest

otherwise return(failure)

return(success)

Adapting the greedy algorithm to a dynamic priority criterion is straightforward.

for domain domain

try BEST_INS (i, k)

if domain | domain

try BEST_INS

if some feasible insertion was found

389Local Search and Constraint Programming

3.4.3 Discrepancy-based Search

As any greedy heuristic, the previous algorithm can be transformed into a search algo-
rithm through the addition of backtracking. By adding a limited amount of backtracking,
the algorithm explores a more substantial portion of the solution space at the price ofan
increased complexity. Discrepancy-based Search (see, Harvey, 1995) produces solu-
tions by following the preferred branch of the heuristics always but a limited number
of times (the “discrepancies”). Since we not only have a ranking of insertion choices,
but also a valuation on each branch (the value of for each possibility of insertion),
we may precisely control the occurrences of the discrepancies. Pure LDS(K) (Harvey
and Ginsberg, 1995) would allow for discrepancies at any choice point, granted that
all solutions are generated with less that K discrepancies. For dTP, this can be refined
in several manners:

one of the interests of Discrepancy-based Search is to generate solutions that are
spread across the overall solution space. It is therefore particularly interesting
to branch on options that are radically different at each discrepancy. Insertions
at different positions within the same route are considered similar; therefore the
alternate choices for insertion that are considered involve different routes;

it is not worthwhile considering the second best possibility of insertion when its
impact on the cost is significantly worse than the preferred choice. Branching on
discrepancies should be reserved for situations of near-ties. Thus, a discrepancy
is generated only when where is the best (least) insertion cost
and the second best, for some ratio

the branching scheme compares insertions within routes to which some clients
have already been assigned with an insertion into one empty route (route creation).
Comparing such options by their impact on the cost lower bound is sometimes
unfair to the second option. Indeed, let i be the current client,
whereas if the best place of insertion for i in is
between clients and Therefore, accounts for two transitions between
locations (back and forth between the depot, 0, and i), while accounts foronly
one (replacing the direct transition from to by a transition from to i and one
from i to). In order to avoid such a bias against route creations, discrepancies
where the alternate branch is a route creation are encouraged through a higher
ratio threshold

The overall Discrepancy-based Search DISCREPANCY(K), defined below, is a
refined version of LDS(K). Its integer parameter, K, represents the maximal number
of discrepancies allowed in a solution:

algorithm DISCREPANCY(K) :

sort all clients i by decreasing values of priority(i)

DISC(1,K)

procedure: DISC(i, K):

if i > N return(success)

else

for domain domain

try BEST_INS(i, k)

390 F. Focacci et al.

else if commit to BEST_INS

DISC(i + 1, K – 1)

3.5 LS as Post-Optimization

This section illustrates various techniques for the exploration of constrained neighbor-
hoods in the dTP case study. We assume to start with a feasible solution which can, for
instance, be built through constructive methods presented in the previous section. We
review four kinds of LS procedures on dTP: two simple adaptations of standard LS with
constraint checks or inlined constraint checks and two descriptions of neighborhoods
with CP, specifically, frozen fragments and CP models of the neighborhood.

Although we refer to the solution with the notations introduced in Section 3, it is
never assumed that the variables of the model are CP domain variables. More precisely,
in the next two sections (3.5.1 and 3.5.2), the easiest way to implement the LS methods
consists in representing a solution with simple data structures (integer to represent
variables modeling integer), whereas the approach in Sections 3.5.3 and 3.5.4 require
that the variables of the model are implemented as CP variables with domains and
active propagation.

3.5.1 LS + Constraint Checks

A first idea for improving a solution to dTP consists in using classical VRP neighbor-
hoods, and checking, for each neighbor, the feasibility with respect to side constraints.
This method is illustrated on two simple neighborhoods, specifically 3-opt and node-

transfer.

3-opt 3-opt is the straightforward extension of the 2-opt discussed in Section 2.1.1
in which three arcs, instead of two, are removed from the solution, and three others
are added to obtain a new solution. Since this exchange is performed within the same
route, the feasibility test for the new solution needs to be executed only on that route.

let and be the two branches with smallest

if domain domain

try BEST_INS

if no feasible solution was found

return(failure)

else

branch on

preferred choice:

if commit to BEST_INS

DISC(i + 1, K)

else commit to BEST_INS

DISC(i + 1, K)

if K > 0 alternate branch:

if

if commit to BEST_INS

DISC(i + 1, K – 1)
else if commit to BEST_INS

DISC(i + 1, K – 1)

391Local Search and Constraint Programming

The best move is the one with the largest decrease of z (if any). An example of 3-opt
move is depicted in Figure 13.1.

More formally, let k be a route, and be three different clients such that
and and A new

solution can be obtained by re-assigning variables and and keeping
unchanged all the other next variables. Since dTP incorporates side constraints, testing
feasibility can be computationally expensive, but using constraints directly supports
extensions to additional side constraints. For such 3-opt, since there is no exchange of
clients among the routes, bin type and capacity constraints still hold, and only the time
window constraints need to be checked.

The entire exploration of the neighborhood can be implemented as follows:

procedure: 3-opt_EXPLORE

for each

for each

for each

for each

let

try

check feasibility for time windows

over all neighbors, minimize

Once the feasible solution with smallest is found, the data structure succ must be
updated, so as the objective function z. As mentioned at the beginning of Section 3.5,
we do not consider here CP variables, but the constraints (in this case the time window
ones) are used off-line to check feasibility and update the start variables.

Node-transfer Node-transfer moves a single client from a route to another by
keeping feasibility of both routes, and decreasing the overall value of z. This move
leads to more complicated feasibility issues than 3-opt. Specifically, three constraints
need to be checked for the route in which the client is inserted: bin type compatibility,

392 F. Focacci et al.

bin capacity and the time window constraints. An example of node-transfer move is
depicted in Figure 13.2.

More formally, let and be two routes, and let and be three clients such
that and and
Moreover, let j be one more client such that 5 A new solution is
obtained by moving from to at position

A passive way of using constraints within a LS based on a single-client move is to
have the following four nested loops:

procedure: node-transfer_EXPLORE

for each

for each

for each

try

check feasibility for all constraints

over all neighbors, minimize

Unlike the 3-opt case, more side constraints need to be checked, since the move
changes the client-truck assignments, and again an updating of the data structures is
needed.

3.5.2 Constraint Checks within the Neighborhood Iteration

In the pseudo-code presented for the node-transfer neighborhood exploration much of
the time is wasted generating trivially infeasible neighbors. For instance, it is useless
iterating j over a route covered by a truck whose bins are not compatible with

Therefore, to speed up the exploration, we can anticipate some of the feasibility
checks within the nested loop and before the final constraint checks. The infeasibility

5 Since we do not have the variable if is the first client visited in route and/or if we want to
insert it as first client in route then it is necessary to consider also variables and/or

for each

393Local Search and Constraint Programming

(or ineffectiveness) of many of the solutions in the neighborhood can be easily detected
by testing: (i) if the type of goods of client is compatible with the types collected by
the bins ofroute (ii) if the residual capacity of the bins of route can accommodate

and must be updated (together with succ, etc.) once a feasible (improving) move
is performed. Not only does this exploration generate less infeasible neighbors, it
also needs to check less constraints (only time window ones) on the outcome of
the loop.

3.5.3 Freezing Fragments

This section describes another kind of moves called shuffle (Applegate and Cook, 1991)
or Large Neighborhood Search (LNS, Shaw, 1998). Such moves keep a fragment of the
current solution (freezing the values of variables in that fragment), forget the value and
restore the initial domain of variables outside the fragment. Finding the best completion
of such a state into a solution is an optimization subproblem. The search space for this
subproblem is smaller than for the original problem because some variables have been
fixed. Enforcing part of the assignments from the previous solution is the opposite
process as relaxation: the problem is strengthened with additional constraints. The
frozen fragments must be selected carefully and should be:

large enough so that the subproblem is more tractable than the original one;

but not too large so that the subproblem contains enough flexibility to improve
over the current solution;

good enough so that the subproblem consists in good solutions in the overall
search space.

the quantity and (iii) if the neighbor improves i.e., if

Such an optimized neighborhood exploration can be stated as follows:

procedure: node-transfer_EXPLORE_updated

for each

for each

for each

for each

if old - new < 0
try

check feasibility for time windows

over all such neighbors, minimize

where the represents the residual capacity of bin i.e.,

394 F. Focacci et al.

In a way, the fragment plays the role of a strictly followed heuristic while building a
solution. However, since the fragment that is kept corresponds to choices that were
made at any point in the search tree, and not necessarily at the root of the tree, such a
destruction-construction process differs from chronological backtracking.

Such LNS algorithms can be easily implemented within CP systems, since the
neighborhood exploration consists in solving the original problem while some variables
are instantiated and the domain of others are reduced. Moreover, insertion algorithms
are natural candidates to LNS. Specifically, clients are partitioned into two sets: a set
of clients for which the route assignment and relative sequencing is kept (the fragment
from the reference solution that is frozen), and the remainder of the clients, for which
all decisions (assignment and sequencing variables) are forgotten.

As described in Shaw (1998), the forgotten part of the solution should be of relative
significant size and should be made of related clients (clients from the same routes or
from a given geographical area).

In the case of dPT, several neighborhoods can be proposed for such LNS:

keeping all decisions concerning a subset of the routes and re-optimizing all the
remainder of the solution;

keeping all decisions concerning a subset of the types of goods and re-optimizing
all the remainder of the solution;

keeping all decisions concerning a subset of the clients and re-optimizing all the
remainder of the solution.

Note that such different neighborhoods may be combined through VNS (see,
and Hansen, 1997).

In the following, a simple example of LNS based algorithm is proposed. The algo-
rithm iteratively freezes a part of the problem and tries to extend the partial solution.
The iterative process stops when a time limit is reached.

A solution s is encoded through three arrays sNext, sSucc, and sVisitedBy containing
the values of next, succ, and visitedBy in s. The algorithm selects randomly a client
and forgets the decisions that were made on the set ofclients that are close to The term
close to is quantitatively defined by the parameter radium, and the travel time matrix tt:

two clients i, j are considered close if The subproblem obtained is solved
by the GREEDY CONSTRUCTION algorithm described in Section 3.4.2. Whenever an
improving solution is found, the arrays encoding the solution must be updated. The
overall algorithm is as follows:

algorithm: LNS (radium)
while time is still available

select at random a client

restore initial domains for variables not in shuffleSet
for all clients shuffleSet

if shuffleSet

for all clients

if any improving solution was found

return(success)

otherwise return(failure)

395Local Search and Constraint Programming

with We may either look for any improving move or for the best move in the
neighborhood.

3.5.4 CP Models for the Neighborhoods

Some interesting modifications of the LNS algorithm can be done.

if shuffleSet

call algorithm GREEDY CONSTRUCTION

if an improving solution is found

for all clients i

The radium parameter can start with small values and increase whenever the
greedy algorithm was unable to find improving solutions for a given number of
consecutive times. Leading to a Variable Neighborhood Search, this modification
will help escaping from local optimal solutions;

Any constructive algorithm could be used to extend the frozen fragment. The use
of Discrepancy-based Search algorithms could indeed increase the likelyhood of
finding solutions when the problem becomes harder due to the bounding constraint

The pseudo code presented above forgot the assignments for all clients reachable
within a given time from client This forgotten part of the solution could take
into account a more sophisticated distance than mere travel time. For instance,

could be multiplied by a weight depending on the routes, the types of goods,
and the time windows of clients i and j. Clients having equal type of goods
or overlapping time windows should be considered relatively closer than clients
with different type of goods or distant time windows.

In this section a neighborhood is modeled using CP as showed in Section 2.1.2; such a
neighborhood is based on ejection chains: a set of clients belonging to different routes
are chosen and re-located (see Figure 13.3).

A given solution s is encoded through four arrays sNext, sSucc, sVisitedBy, and
sPrev; the first three arrays contain the values of next, succ, and visitedBy in solution s;
array sPrev contain the inverse of next (if in s, then).

The following neighborhood structure can be defined: a move from s chooses
clients such that all the visits are performed in different

trucks in solution s. Then it removes the edges with
j = 1 , . . . , K , and re-connects the tours by rotating the nodes For
all j = 1, . . . , K – 1, replaces the rotation is closed by replacing

396 F. Focacci et al.

This neighborhood structure can be defined using CP by adding the following model
to the existing dTP model:

min dtCost

on

subject to

A solution of the neighborhood model defines an ejection chain affecting size clients;
since size can take any value between 2 and M, we introduce M variables representing

dtCost < 0

variable is [–1, 1 . . . N]; the first size variables6 will take values different from –1.
goes in place of client client goes in place ofclient etc. finally client

goes in place of client All variables with j > size take the value –1. The
objective function of the neighborhood model is the difference between the cost of the
current solution s and the cost of the tentative solution.

Constraints (15) and (16) define the neighborhood structure: size consecutive
variables identify the clients in the ejection chain, and the remaining M – size are
constrained to be equal to –1. The clients must be chosen from size different trucks (15).

Constraints (17)–(22) define the interface constraints between the dTP model and
the neighborhood model. They are basically of two types: some of them are devoted to
restoring of the unchanged part of the solution (17)–(18), some others are devoted to
encoding the move (19)–(22). Finally, constraint (23) links the neighborhood variables
to dtCost.

Defining the neighborhood structure via a CP model yields a stable neighborhood
model that would remain valid if side constraints (such as precedence constraints, etc.)
were added to dTP. All side constraints propagate from the problem variables to the
neighborhood variables, removing some neighbors. For example, once variable is
instantiated to a value visited by the first truck, all requiring a capacity
exceeding the remaining capacity of the first truck are automatically removed from the

397Local Search and Constraint Programming

the variable length ejection chain. The first size variables identify the clients changing
route while the others are meaningless and are set to –1.

domain of variable by propagation of the interface constraints.

3.6 LS during Construction

The last two sections showed how constructive algorithms from greedy to Discrepancy-
based Search could yield one or several solutions, and how local moves from various
neighborhoods could improve them. This section concerns the use of local moves at
the very heart of the construction process. Following Caseau and Laburthe, 1999, we
develop on the idea of Incremental Local Optimization (ILO, see Section 2.2.7) which
applies improving local moves after each construction step.

3.6.1 Single Route Optimization

A standard move in routing problems consists in optimizing the sequence of visits
for each route. Optimizing a route yields one small constrained TSP per route. This
leads to a decomposition of the problem: the partition of clients by routes is kept, and
the induced independent TSPs are re-solved. Each neighborhood for the TSP induces
a neighborhood for dTP. A solution to dTP may, for instance, be transformed into a
neighbor one by applying on any of the routes:

a feasible 3-opt move (Reinelt, 1994);

a feasible Lin and Kernighan move (Lin and Kernighan, 1973);

a sequence of improving feasible 3-opt moves until no more such moves can be
found;

6 When is used to index an array, and –1 is part of the domain of the value is
conventionally considered equal to –1.

M domain variables are used to identify the clients. The domain of

Client

398 F. Focacci et al.

a complete algorithm that sequences each route to optimality.

The last case is of particular interest. Indeed, many routing problems, although involv-
ing thousands of clients typically assign less than 15 clients per truck. It is thus easy
to solve to optimality the constrained TSP associated to a route by branch and bound
with constraint propagation. Such an approach was shown to be viable in Caseau and
Laburthe (1996) and Focacci et al. (1999b).

After each insertion, the partial solution can be re-optimized in a state where each
route is optimally sequenced. For the decomposition of dTP into a master partitioning
sub-problem and an induced sequencing (routing) sub-problem, the sequencing sub-
problem is solved to optimality. The complexity of the overall procedure remains
tractable because the LS phase that is performed at each insertion step can be done much
faster than a LS phase that would be performed in the end, after a complete solution
has been built. Indeed, after the insertion of a node i in route k TSP
moves should be applied on route k only. Therefore, it is worthwhile resolving the TSP
for route k only. This fast incremental exploration accounts for the overall efficiency
of applying local optimization within the construction process.

3.6.2 Ejection Chains

The neighborhood introduced above is well suited for improving sequencing decisions
among clients on the same route but it never questions the partition of clients into
routes. Since the insertion algorithm inserts clients one at a time, it is likely to make
assignments (of clients to routes) that seem good when only a subset of the clients is
considered, but that later prove to be suboptimal when further clients are inserted. This
section presents a neighborhood whose aim is to repair such partitioning decisions that
turn out to be wrong along the insertion process.

Section 3.5.4 proposed a CP model for an ejection chain neighborhood. The idea
of ejection chains, a standard technique for packing problems, is the following. Let

be a set of r clients currently assigned to different routes (say,
and be another client not assigned to The move changes

the bin assignment into
and resolves the induced sequencing problems on routes to Applied on the dTP,
this move amounts to change the route assignment of a few nodes while respecting all
constraints (satisfying capacity constraints with the new insertion
is eased by the removal of from

Such moves are particularly interesting in the case of promising infeasible inser-
tions. For instance, one may foresee that the insertion would yield a
very small insertion cost but that it is infeasible because of, say, a capacity con-
straint (there is no more room for client i in the route k). Instead of considering the
insertion of i into routes that are geographically farther away (which may cause sig-
nificant detours, thus higher insertion cost), it is interesting to try to insert i into the
route k by removing another client j from route k and transferring it to another route.
This leads to the search for ejection chains initiated by the insertion of i in k. Such
moves are particularly useful when capacity constraints on the routes are tight. Another
situation where ejection chains prove useful is the case of travel optimization under a
small number of trucks. In such a case, the routes must be tight in order to cover all
clients. What usually happens in the insertion process is that the algorithm is not able
to insert some of the clients towards the end of the construction (all tentative insertions

that i can be inserted into some route by transferring another client j from to
and so on. Such neighborhoods can be explored through Breadth First Search in order
to find the least length ejection chain (the one that involves the least number of clients),
likely to be less disruptive of the current solution.

Finally, one should be careful about the fact that such ejection chain neighborhoods
are very large neighborhoods and that their exploration may take significantly longer
than the other neighborhoods presented so far (3-opt, single route direct optimization,
etc.). It amounts to a form of LNS and should be used with care. Nevertheless, it com-
plements very efficiently the short-sightness nature of constructive algorithms which
build the solution one step at a time by repairing some of the early non-optimal route
assignments.

By expressing the problem as a standard problem with additional side con-
straints, iterating a neighborhood for the standard problem and, for each neighbor,
checking feasibility for all side constraints; or by optimizing the neighborhood
exploration procedure with inlined constraint checks. These methods can either
be implemented with any programming language following the ideas described
in this paper, or with a CP language using already defined specific data structures
(such as constraints, neighborhood objects, and move operators) (De Backer et al.,
2000).

By using global search techniques for exploring the neighborhood defined by a
fragment of the current solution; these methods are also described in Shaw (1998),
Caseau et al. (1999) for routing problem, or in Nuijten and Le Pape (1998) for
scheduling problems.

By defining the search for the best neighbor as a constrained optimization problem
on its own; originally introduced in Pesant and Gendreau (1996), Pesant and
Gendreau (1999), it has been applied mainly to timetabling and routing problems
in Pesant and Gendreau (1996), Pesant and Gendreau (1999), Pesant et al. (1997).

399Local Search and Constraint Programming

4 CONCLUSIONS

This chapter has presented a variety of techniques for using local search methods with
constraints. Hybrid combinations have been described for local search methods as well
as for constructive global search methods.

Constraints can be blended with local search procedures in several ways:

Local search techniques can be introduced within a constructive global search algorithm
with the following techniques:

Restricted Candidate Lists to filter the good branches of a choice point (see Cesta
et al., 2000 for a recent application to scheduling problems);

Discrepancy-based Search to generate near-greedy paths in a search tree;

Incremental Local Optimization to improve the partial solutions at each step of a
construction process such as a greedy insertion algorithm.

turn out to be infeasible). Ejection chains can be used as a way to force these insertions:
Caseau et al. (1999). An alternate chain of insertions and ejections is searched for such

400 F. Focacci et al.

In all these cases, CP provides the user with clean formalism to combine technologies:
use propagation to reduce the size of neighborhoods, use global search techniques
to explore a neighborhood, control the divergence of a construction process from a
greedy path, etc. In a sense, CP supports a clean engineering of many “good old
tricks” from Operations Research. The first clean integration has been the expression
of neighborhoods with CP models. CP models could be introduced for many other algo-
rithm engineering purposes such as objective function combinations for multi-criteria
optimization (see, e.g., Focacci et al., 2000a), or solution fragment combinations for
population-based optimization methods. All these are open research topics. The def-
inite impact of CP to Operations Research in general, and to LS in particular, is the
introduction of structuring objects that provide a way to easily combine techniques.

Many languages embedding constraint propagation have been developed by
research institutes, universities, and private companies; knowing that we are risking
appearing unfair with respect to some of them, we believe it is important to give some
pointers to few tools that demonstrated larger acceptance both in industries and acad-
emics. A practitioner desiring to experiment local search and constraint programming
could take a closer look to CP tools such as CHIP (Aggoun and Beldiceanu, 1992),
CHOCO (Laburthe, 2000), Eclipse (Schimpf et al., 1997), and ILOG Solver (Solver,
2000). All of them provide a constraint propagation engine, together with tree search
exploration methods, and facilities to design local search methods.

Finally, it is worthwhile mentioning that recently the CP community has more
and more showed interest in hybrid approaches for solving optimization problems.
Some of the conferences and workshops that regularly present interesting papers on
the subject are the International Conference on Principles and Practice of Constraint

Programming (CP), the International Workshop on Integration of Artificial Intelligence

and Operations Research Techniques in CP for Combinatorial Optimization Problems

(CP-AI-OR), and the Constraint clusters at INFORMS conferences.

ACKNOWLEDGMENTS

We warmly thank Paul Shaw, Michela Milano, Fred Glover, Eric Bourreau, Etienne
Gaudin, Cesar Rego, Gilles Pesant and Benoît Rottembourg for reading preliminary
versions of this work and for many interesting discussions on the topic.

REFERENCES

Aggoun, A. and Beldiceanu, N. (1992) Extending CHIP in order to solve com-
plex scheduling and placement problems. In: Actes des Journees Francophones

de Programmation et Logique. Lille, France.

Applegate, D. and Cook, W. (1991) A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3, 149–156.

Beldiceanu, N., Bourreau, E., Simonis, H. and Rivrau, D. (1999) Introducing
metaheuristics in CHIP. In: Proceedings of the 3rd Metaheuristics International

Conference. Angra do Reis, Brazil.

Caprara, A., Fischetti, M., Toth, P., Vigo, D. and Guida, P.-L. (1997) Algorithms for
railway crew management. Mathematical Programming, 79, 125–141.

Local Search and Constraint Programming 401

Caseau, Y. and Laburthe, F. (1996) Improving branch and bound for job-shop schedul-
ing with constraint propagation. In: M. Deza, R. Euler and Y. Manoussakis,
(eds.), Proceedings of Combinatorics and Computer Science, CCS’95, LNCS 1120.

Springer-Verlag, Berlin Heidelberg.

Caseau, Y. and Laburthe, F. (1999) Heuristics for large constrained routing problems.
Journal of Heuristics, 5, 281–303.

Caseau, Y., Laburthe, F. and Silverstein, G. (1999) A metaheuristic factory for
vehicle routing problems. In: J. Jaffar (ed.), Principle and Practice of Con-

straint Programming—CP’99, LNCS 1713. Springer-Verlag, Berlin Heidelberg,
pp. 144–158.

Cesta, A., Oddi, A. and Smith, S. (2000) A constraint-based method for project
scheduling with time windows. Journal of Heuristics (to appear).

De Backer, B., Furnon, V., Shaw, P., Kilby, P. and Prosser, P. (2000) Solving vehicle
routing problems using constraint programming and meta-heuristics. Journal of

Heuristics, 6, 481–500.

Dell’Amico, M. and Trubian, M. (1993) Applying tabu-search to the job-shop
scheduling problem. Annals of Operations Research, 41, 231–252.

Feo, T. and Resende, M. (1995) Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6, 109–133.

Focacci, F., Laborie, P. and Nuijten, W. (2000a) Solving scheduling problems with
setup times and alternative resources. In: Proceedings of the Fifth International

Conference on Artificial Intelligence Planning and Scheduling. AIPS’00. AAAI
Press.

Focacci, F., Lodi, A. and Milano, M. (1999a) Cost-based domain filtering. In: J. Jaffar
(ed.), Principle and Practice of Constraint Programming—CP’99, LNCS 1713.

Springer-Verlag, Berlin Heidelberg, pp. 189–203.

Focacci, F., Lodi, A. and Milano, M. (1999b) Solving TSP with time windows with
constraints. In: D. De Schreye, (ed.), Logic Programming—Proceedings of the

1999 International Conference on Logic Programming. The MIT-press, Cambridge,
Massachusetts, pp. 515–529.

Focacci, F., Lodi, A., Milano, M. and Vigo, D. (2000b) An introduction to constraint
programming. Ricerca Operativa, 91, 5–20.

Gendreau, M., Hertz, A. and Laporte, G. (1992) New insertion and postoptimization
procedures for the traveling salesman problem. Operations Research, 40, 1086–
1094.

Glover, F. (1995) Tabu thresholding: Improved search by nonmonotonic trajectories.
ORSA Journal on Computing, 7, 426–442.

Golden, B. and Assad, A. (1988) Vehicle Routing: Methods and Studies. North-
Holland, Amsterdam.

Haralick, R. and Elliott, G. (1980) Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14, 263–313.

Harvey, W. (1995) Nonsystematic Backtracking Search. PhD thesis, Stanford
University.

402 F. Focacci et al.

Harvey, W. and Ginsberg, M. (1995) Limited discrepancy search. In: Proceedings of

the 14th IJCAI. Morgan Kaufmann, pp. 607–615.

Junker, U. (2000) Preference-based search for scheduling. In Proceedings of the Seven-

teenth National Conference on Artificial Intelligence—AAAI–2000, pp. 904–909.

Kindervater, G. and Savelsbergh, M. (1997) Vehicle routing: Handling edges
exchanges. In: E. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial

Optimization, J. Wiley & Sons, Chichester, pp. 337–360.

Laburthe, F. (2000) CHOCO: implementing a CP kernel. In: CP’00 Post Conference

Workshop on Techniques for Implementing Constraint programming Systems—

TRICS. Singapore.

Lin, S. and Kernighan, B. (1973) An effective heuristic for the traveling salesman
problem. Operations Research, 21, 498–516.

Mackworth, A. (1977) Consistency in networks of relations. Artificial Intelligence,

8, 99–118.

Marriott, K. and Stuckey, P. (1998) Programming with Constraints. The MIT Press.

Mautor, T. and Michelon, P. (1997) MIMAUSA: A new hybrid method combining exact
solution and local search. In: Proceedings of the 2nd International Conference on

Meta-Heuristics. Sophia-Antipolis, France.

Michel, L. and van Hentenryck, P. (1997) Localizer: A modeling language for local
search. In: G. Smolka (ed.), Principle and Practice of Constraint Programming—

CP’97, LNCS 1330. Berlin Heidelberg, Springer-Verlag, pp. 237–251.

Minton, S., Johnston, M., Philips, A. and Laird, P. (1992) Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58, 161–205.

 N. and Hansen, P. (1997) Variable neighborhood search. Computers &

Operations Research, 24, 1097–1100.

Nuijten, W. (1994) Time and Resource Constrainted Scheduling, a Constraint

Satisfaction Approach. PhD thesis, University of Eindhoven, The Netherlands.

Nuijten, W. and Le Pape, C. (1998) Constraint based job shop scheduling with ILOG
scheduler. Journal of Heuristics, 3, 271–286.

Pesant, G. and Gendreau, M. (1996) A view of local search in constraint programming.
In: E. Freuder, (ed.), Principle and Practice of Constraint Programming—CP’96,

LNCS 1118. Springer-Verlag, Berlin Heidelberg, pp. 353–366.

Pesant, G. and Gendreau, M. (1999) A constraint programming framework for local
search methods. Journal of Heuristics, 5, 255–279.

Pesant, G., Gendreau, M., Potvin, J. and Rousseau, J. (1998) An exact constraint logic
programming algorithm for the travelling salesman problem with lime windows.
Transportation Science, 32, 12–29.

Pesant, G., Gendreau, M. and Rousseau, J.-M. (1997) GENIUS-CP: A generic
single-vehicle routing algorithm. In: G. Smolka (ed.), Principle and Practice of

Constraint Programming—CP’97, LNCS 1330. Springer-Verlag, Berlin Heidelberg,
pp. 420–433.

403Local Search and Constraint Programming

Prais, M. and Ribeiro, C. (1998) Reactive grasp: an application to a matrix decompo-
sition problem in TDMA traffic assignment. Technical report, Catholic University
of Rio de Janeiro, Department of Computer Science.

Prestwich, S. (2000) A hybrid search architecture applied to hard random 3-sat and
low-autocorrelation binary sequences. In: R. Dechter (ed.), Principle and Prac-

tice of Constraint Programming—CP2000, LNCS 1894. Springer-Verlag, Berlin
Heidelberg, pp. 337–352.

Régin, J. (1994) A filtering algorithm for constraints of difference in CSPs. In: Pro-

ceedings of the Twelfth National Conference on Artificial Intelligence—AAAI’94,

pp. 362–367.

Reinelt, G. (1994) The Traveling Salesman: Computational Solutions for TSP

Applications. Springer-Verlag.

Russell, R. (1995) Hybrid heuristics for the vehicle routing problem with time
windows. Transportation Science, 29, 156–166.

Schimpf, J., Novello, S. and Sakkout, H. (1997) IC-Parc ECLiPSe Library Manual.

Selman, B. and Kautz, H. (1993) Domain-independent extension to GSAT: Solv-
ing large structured satisfiability problems. In: Proceedings of IJCAI-93, 13th

International Joint Conference on Artificial Intelligence. Sidney, AU, pp. 290–295.

Selman, B., Levesque, H. and Mitchell, D. (1992) A new method for solving hard
satisfiability problems. In: P. Rosenbloom and P. Szolovits (eds.), Proceedings of

the Tenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park,
California, pp. 440–446.

Shaw, P. (1998) Using constraint programming and local search methods to solve vehi-
cle routing problems. In: M. Maher and J.-F. Puget (eds.), Principle and Practice of

Constraint Programming—CP’98, LNCS 1520. Springer-Verlag, Berlin Heidelberg,
pp. 417–431.

Shaw, P., Furnon, V. and De Backer, B. (2000) A lightweight addition to CP frameworks
for improved local search. In: Proceedings of CP-AI-OR’00. Padderborn, Germany.

Solver (2000) ILOG Solver 5.0 User’s Manual and Reference Manual. ILOG, S.A.

Toth, P. and Vigo, D. (2002) The Vehicle Routing Problem. Monographs on Discrete
Mathematics and Applications. SIAM.

van Hentenryck, P., Saraswat, V. and Deville, Y. (1993) Evaluation of the constraint
language cc(FD). Technical Report CS-93-02, Brown University.

Walser, J. (1999) Integer Optimization by Local Search, Volume 1637 of Lecture Notes

in Artificial Intelligence. Springer Verlag.

Walsh, T. (1997). Depth-bounded discrepancy search. In: Proceedings of the

15th International Joint Conference on Artificial Intelligence—IJCAI. Morgan
Kaufmann.

This page intentionally left blank

Chapter 14

CONSTRAINT SATISFACTION

Eugene C. Freuder and Mark Wallace
University College Cork and Imperial College

Abstract Many problems can be formulated in terms of satisfying a set of constraints. This
chapter focuses on methods for modeling and solving such problems used in artificial intelligence
and implemented in constraint programming languages.

Keywords: Constraint satisfaction, Constraint programming, Optimization, CSP

1 INTRODUCTION

Constraint satisfaction problems are ubiquitous. A simple example that we will use
throughout the first half of this chapter is the following “scheduling problem”: Choose
“employees” A or B for each of three “tasks”, X, Y, Z, subject to the “work rules” that
the same employee cannot carry out both tasks X and Y, the same employee cannot
carry out both tasks Y and Z, and only employee B is allowed to carry out task Z.
(Many readers will recognize this as a simple “coloring problem”.)

This is an example of a class of problems known as Constraint Satisfaction Prob-

lems or CSPs. CSPs consist of a set of variables (e.g., tasks), a domain of values

(e.g., employees) for each variable, and constraints (e.g., work rules) among sets of
variables. The constraints specify which combinations of value assignments are allowed
(e.g., employee A for task X and employee B for task Y); these allowed combinations
satisfy the constraints. A solution is an assignment of values to each variable such that
all the constraints are satisfied [34].

CSPs can be represented as constraint networks, where the variables correspond
to nodes and the constraints to arcs (Figure 14.1). The constraint network for our
sample problem appears below. Constraints involving more than two variables can
be modeled with hypergraphs, but most basic CSP concepts can be introduced with
binary constraints involving two variables, and that is the route we will begin with
in this chapter. We will say that a value for one variable is consistent with a value

406 E.C. Freuder and M. Wallace

for another if the pair of values satisfies the binary constraint between them. (This
constraint could be the trivial constraint that allows all pairs of values; such constraints
are not represented by arcs in the constraint network.) Note that specifying a domain
of values for a variable can be viewed as providing a unary constraint on that single
variable.

We stress that the basic CSP paradigm can be extended in many directions, e.g., vari-
ables can be added dynamically, domains of values can be continuous, constraints can
have priorities, solutions can be optimal, not merely satisfactory.

Many application domains (e.g., design) naturally lend themselves to modeling as
CSPs. Many forms of reasoning (e.g., temporal reasoning) can be viewed as constraint
reasoning. Many disciplines (e.g., operations research) have been brought to bear on
these problems. Many computational “architectures” (e.g., neural networks) have been
utilized for these problems.

This chapter will focus on the methods developed in artificial intelligence and
the approaches embodied in constraint programming languages. Of course, this brief
chapter can only suggest some of the developments in these fields; it is not intended
as a survey, only as an introduction. Rather than beginning with formal definitions,
algorithms, and theorems, we will focus on introducing concepts through examples.

The constraint programming ideal is this: The programming is declarative; we
simply state the problem as a CSP and powerful algorithms, provided by a constraint
library or language, solve the problem. In practice, this ideal has, of course, been only
partially realized, and expert constraint programmers are needed to refine modeling
and solving methods for difficult problems.

2 INFERENCE

Inference methods make implicit constraint information explicit. Inference can reduce
the effort involved in searching for solutions or even synthesize solutions without
search. The most common form of inference is known as arc consistency. In our
sample problem, we can infer that B is not a possible value for Y because there is no

value for Z that, together with B, satisfies the constraint between Y and Z. This can be
viewed as making explicit the fact that the unary constraint on the variable Y does not
allow B.

This inference process can propagate: after deleting B from the domain of Y, there is
no value remaining for Y that together with A for X will satisfy the constraint between
X and Y, therefore we can delete A from the domain of X (see Figure 14.2). If we
repeatedly eliminate inconsistent values in this fashion until any value for any variable
is consistent with some value for all other variables, we have achieved arc consistency.
Many algorithms have been developed to achieve arc consistency efficiently [4,24].

Eliminating inconsistent values by achieving arc consistency can greatly reduce
the space we must search through for a solution. Arc consistency methods can also be

Constraint Satisfaction 407

interleaved with search to dynamically reduce the search space, as we shall see in the
next section.

Beyond arc consistency lies a broad taxonomy of consistency methods. Many of
these can be viewed as some form of (i, j)-consistency. A CSP is (i, j)-consistent if,
given any consistent set of i values for i variables, we can find j values for any other
j variables, such that the i + j values together satisfy all the constraints on the i + j

variables. Arc consistency is (1,1)-consistency. (k – 1 , 1)-consistency, or k-consistency,

for successive values of k constitutes an important constraint hierarchy [13].
More advanced forms of consistency processing often prove impractical either

because of the processing time involved or because of the space requirements. For
example, 3-consistency, otherwise known as path consistency, is elegant because it
can be shown to ensure that given values for any two variables one can find values
that satisfy all the constraints forming any given path between these variables in the
constraint network. However, achieving path consistency means making implicit binary
constraint information explicit, and storing this information can become too costly for
large problems.

For this reason variations on inverse consistency, or (1, j – 1)-consistency, which
can be achieved simply by domain reductions, have attracted some interest [8]. Various
forms of learning achieve partial k-consistency during search [9]. For example, if we
modified our sample problem to allow only A for Z, and we tried assigning B to X
and A to Y during a search for a solution to this problem, we would run into a “dead
end”: no value would be possible for Z. From that we could learn that the constraint
between X and Y should be extended to rule out the pair (B,A), achieving partial path
consistency.

Interchangeability provides another form of inference, which can also eliminate
values from consideration. Suppose we modify our sample problem to add employees
C and D who can carry out task X. Values C and D would be interchangeable for
variable X because in any solution using one we can substitute the other. Thus we can
eliminate one in our search for solutions (and if we want to, just substitute it back
into any solutions we find). Just as with consistency processing there is a local form
of interchangeability that can be efficiently computed. In a sense, inconsistency is an
extreme form of interchangeability; all inconsistent values are interchangeable in the
null set of solutions that utilize them [15].

3 MODELING

Modeling is a critical aspect of constraint satisfaction. Given a user’s understand-
ing of a problem, we must determine how to model the problem as a constraint
satisfaction problem. Some models may be better suited for efficient solution than
others [29].

Experienced constraint programmers may add constraints that are redundant in the
sense that they do not change the set of solutions to the problem, in the hope that adding
these constraints may still be cost effective in terms of reducing problem solving effort.
Added constraints that do eliminate some, but not all, of the solutions, may also be
useful, e.g., to break symmetries in the problem.

Specialized constraints can facilitate the process of modeling problems as CSPs,
and associated specialized inference methods can again be cost-effective. For example,

408 E. C. Freuder and M. Wallace

imagine that we have a problem with four tasks, two employees who can handle each,
but three of these tasks must be undertaken simultaneously. This temporal constraint
can be modeled by three separate binary inequality constraints between each pair of
these tasks; arc consistency processing of these constraints will not eliminate any values
from their domains. On the other hand an “all-different” constraint, that can apply to
more than two variables at a time, not only simplifies the modeling of the problem, but
an associated inference method can eliminate all the values from a variable domain,
proving the problem unsolvable. Specialized constraints may be identified for specific
problem domains, e.g., scheduling problems.

It has even proven useful to maintain multiple complete models for a problem
“channeling” the results of constraint processing between the two [6]. As has been
noted, a variety of approaches have been brought to bear on constraint satisfaction,
and it may prove useful to model part of a problem as e.g., an integer programming
problem. Insight is emerging into basic modeling issues, e.g., binary versus non-binary
models [2].

In practice, modeling can be an iterative process. Users may discover that their
original specification of the problem was incomplete or incorrect or simply impossible.
The problems themselves may change over time.

4 SEARCH

In order to find solutions we generally need to conduct some form of search. One family
of search algorithms attempts to build a solution by extending a set of consistent values
for a subset of the problem variables, repeatedly adding a consistent value for one more
variable, until a complete solution is reached. Another family of algorithms attempts to
find a solution by repairing an inconsistent set of values for all the variables, repeatedly
changing an inconsistent value for one variable, until a complete solution is reached.
(Extension and repair techniques can also be combined.)

Often extension methods are systematic and complete, they will eventually try all
possibilities, and thus find a solution or determine unsolvability, while often repair
methods are stochastic and incomplete. The hope is that completeness can be traded
off for efficiency.

4.1 Extension

The classic extension algorithm is backtrack search. Figure 14.3 shows a backtrack
search tree representing a trace of a backtrack algorithm solving our sample problem.

A depth-first traversal of this tree corresponds to the order in which the algorithm
tried to fit values into a solution. First the algorithm chose to try A for X, then A for Y.
At this point it recognized that the choice of A for Y was inconsistent with the choice
of A for X: it failed to satisfy the constraint between X and Y. Thus there was no need
to try a choice for Z; instead the choice for Y was changed to B. But then B for Z was
found to be inconsistent, and no other choice was available, so the algorithm “backed
up” to look for another choice for Y. None was available so it backed up to try B for X.
This could be extended to A for Y and finally to B for Z, completing the search.

Constraint Satisfaction 409

Backtrack search can prune away many potential combinations of values simply by
recognizing when an assignment of values to a subset of the variables is already incon-
sistent and cannot be extended. However, backtrack search is still prone to “thrashing
behaviour”. A “wrong decision” early on can require an enormous amount of “backing
and filling” before it is corrected. Imagine, for example, that there were 100 other
variables in our example problem, and, after initially choosing A for X and B for Y, the
search algorithm tried assigning consistent values to each of those 100 variables before
looking at Z. When it proved impossible to find a consistent value for Z (assuming the
search was able to get that far successfully) the algorithm would begin trying different
combinations of values for all those 100 variables, all in vain.

A variety of modifications to backtrack search address this problem [22]. They all
come with their own overhead, but the search effort savings can make the overhead
worthwhile.

Heuristics can guide the search order. For example, the “minimal domain size”
heuristic suggests that as we attempt to extend a partial solution we consider the vari-
ables in order of increasing domain size; the motivation there is that we are more likely
to fail with fewer values to choose from, and it is better to encounter failure higher in
the search tree than lower down when it can induce more thrashing behaviour. Using
this heuristic in our example we would have first chosen B for Z, then proceeded to a
solution without having to back up to a prior level in the search tree. While “fail first”
makes sense for the order in which to consider the variables, “succeed first” makes
sense for the order in which to try the values for the variables.

Various forms of inference can be used prospectively to prune the search space.
For example, search choices can be interleaved with arc consistency maintenance. In
our example, if we tried to restore arc consistency after choosing A for X, we would
eliminate B from the domain of Z, leaving it empty. At this point we would know that
A for X was doomed to failure and could immediately move on to B. Even when failure
is not immediate, “look ahead” methods that infer implications of search choices can
prune the remaining search space. Furthermore, “dynamic” search order heuristics can
be informed by this pruning, e.g., the minimal domain size heuristic can be based on

410 E.C. Freuder and M. Wallace

the size of the domains after look-ahead pruning. Maintaining arc consistency is an
extremely effective and widely used technique [30].

Memory can direct various forms of “intelligent backtracking” [10]. For example,
suppose in our example for some reason our search heuristics directed us to start the
search by choosing B for Y followed by A for X. Of course B the only choice for Z
would then fail. Basic backtrack search would back up “chronologically” to then try
B for X. However, if the algorithm “remembers” that failure to find a value for Z was
based solely on conflict with the choice for Y, it can “jump back” to try the alternative
value A at the Y level in the search tree without unnecessarily trying B for X. The
benefits of maintaining arc consistency overlap with those of intelligent backtracking,
and the former may make the latter unnecessary.

Search can also be reorganized to try alternatives in a top-down as opposed to
bottom-up manner. This responds to the observation that heuristic choices made early
in the extension process, when the remaining search space is unconstrained by the
implications of many previous choices, may be most prone to failure. For example,
“limited discrepancy search” iteratively restarts the search process increasing the num-
ber of “discrepancies”, or deviations from heuristic advice, that are allowed, until a
solution is found [19]. (The search effort at the final discrepancy level dominates the
upper bound complexity computation, so the redundant search effort is not as significant
as it might seem.)

Extensional methods can be used in an incomplete manner. As a simple example,
“random restart”, starting the search over as soon as a dead end is reached, with a
stochastic element to the search order, can be surprisingly successful [18].

4.2 Repair

Repair methods start with a complete assignment of values to variables, and work by
changing the value assigned to a variable in order to improve the solution. Each such
change is called a move, and the new assignment is termed a neighbour of the previous
assignment. Genetic algorithms, which create a new assignment by combining two
previous assignments, rather than by moving to a neighbour of a single assignment,
can be viewed as a form of repair.

Repair methods utilize a variety of metaphors, physical (hill climbing, simulated
annealing) and biological (neural networks, genetic algorithms). For example, we might
start a search on our example problem by choosing value A for each variable. Then,
seeking to “hill climb” in the search space to an assignment with fewer inconsistencies,
we might choose to change the value of Y to B; and we would be done. Hill climbing,
is a repair-based algorithm in which each move is required to yield a neighbour with a
better cost than before. It cannot, in general, guarantee to produce an optimal solution
at the point where the algorithm stops because no neighbour has a better cost than the
current assignment.

Repair methods can also use heuristics to guide the search. For example, the min-

conflicts heuristic suggests finding an inconsistent value and then changing it to the
alternative value that minimizes the amount of inconsistency remaining [26].

The classic repair process risks getting “stuck” at a “local maximum”, where com-
plete consistency has not been achieved, but any single change will only increase
inconsistency, or “cycling” through the same set of inconsistent assignments. There

Constraint Satisfaction 411

are many schemes to cope. A stochastic element can be helpful. When an algorithm has
to choose between equally desirable alternatives it may do so randomly. When no good
alternative exists it may start over, or “jump” to a new starting point. Simulated anneal-
ing allows moves to neighbours with a worse cost with a given probability. Memory
can also be utilized to guide the search and avoid cycling (tabu search).

We do not emphasize repair-based approaches here because we expect this will be
the greatest area of overlap with other chapters in this volume.

5 TRACTABILITY

CSPs are in general NP-hard. Analytical and experimental progress has been made in
characterizing tractable and intractable problems. The results have been used to inform
algorithmic and heuristic methods.

5.1 Theory

Tractable classes of CSPs have been identified based on the structure of the constraint
network, e.g., tree structure, and on closure properties of sets of constraints [20],
e.g., max-closed. Tractability has been associated with sets of constraints defining
a specific class of problems, e.g., temporal reasoning problems defined by “simple
temporal networks” [12].

If a constraint network is tree-structured, there will be a width-one ordering for the
variables in which each variable is directly constrained by at most one variable earlier
in the ordering. In our sample problem, which has a trivial tree structure, the ordering
X, Y, Z is width-one: Y is constrained by X and Z by Y; the ordering X, Z, Y is not
width-one: Y is constrained by both X and Z. If we achieve arc consistency and use a
width-one ordering as the order in which we consider variables when trying to extend
a partial solution, backtrack search will in fact be backtrack-free: for each variable we
will be able to find a consistent value without backing up to reconsider a previously
instantiated variable [14].

Max-closure means that if (a b) and (c d) both satisfy the constraint, then
((max (a c)), (max (b d))) will also satisfy the constraint. If all the constraints in a
problem are max-closed, the problem will be tractable. The “less than” constraint is
max-closed, e.g., 4 < 6, 2 < 9 and 4 < 9. Thus if we replaced the inequality con-
straints in our sample problem by less-than constraints, we would ensure tractability,
even if we gave up the tree structure by adding a constraint between X and Z. In fact,
there is a close relationship between the tractability of simple temporal networks and
max closure.

5.2 Experiment

Intuitively it seems natural that many random CSPs would be relatively easy: loosely
constrained problems would be easy to solve, highly constrained problems would be
easy to prove unsolvable. What is more surprising is the experimental evidence that as
we vary the constrainedness of the problems there is a sharp phase transition between
solvable and unsolvable regions, which corresponds to a sharp spike of “really hard”
problems [7]. (“Phase transition” is a metaphor for physical transitions, such as the one
between water and ice.)

412 E. C. Freuder and M. Wallace

6 OPTIMIZATION

6.1 Modeling

6.1.1 Real-world Problems are Optimization Problems

Real-world combinatorial problems, as opposed to puzzles and benchmarks, must be
solved—otherwise the organisations who face them would collapse! Accordingly the
real-world requirement is rarely to find one of a small set of “ideal” solutions to a
problem, but instead to find the best possible solution in the situation at hand. For
example employee rostering, in the real world, involves sick leave and absenteeism as
well as peaks in demand. Flexibility can be gained, at an extra cost, through overtime
working. Thus the real-world rostering problem is an optimization problem, where the
objective is to minimise extra costs such as overtime pay.

6.1.2 Constrained Optimization Problems (COPs)

Constrained optimization problems (COPs) are an extension of constraint satisfaction
problems. The added feature is a cost variable that associates a numeric cost with each
solution. The value of the cost variable is related to the values of the other decision
variables by constraints.

An optimal solution to a COP is a feasible assignment to the decision and cost
variables with optimal cost. The cost is optimal if no other feasible solution has a lower
cost. In real-world practice, truly optimal solutions are rarely found. However whilst
any solution to the underlying CSP is a solution to the COP, solutions with a lower cost
are preferable.1

6.1.3 Mapping CSPs to COPs—Hard and Soft Constraints

It is often useful to weaken a CSP, if it is hard to solve, by modifying one or more
constraints so that they each include a local cost variable. The modified constraint has
local cost zero if, under the same assignment, the original constraint would have been
satisfied; otherwise the local cost takes a value which represents the degree to which
the original constraint would have been violated. As an example, the use of overtime
in an employee rostering problem can be viewed as a weakening of the constraint that
an employee can only be on duty during his/her normal working hours. In this way a
CSP is transformed into a COP. The cost variable of the COP is constrained to be a
function of the local cost variables associated with the individual constraints.

The constraints in a CSP are termed “hard” as they must be satisfied by any feasible
solution to the problem. In the case of a COP, any constraint that has been weakened
by adding a cost variable in the way described above, is termed “soft”.

If the COP cost is the sum of the local costs, then finding the optimal solution of
the COP also solves the CSP. Specifically, the optimal solution to the COP is zero if
and only if the original CSP is satisfiable.

If the local cost of the weakened constraint is exactly one, whenever the original
hard constraint is violated, then the COP cost is the number of constraints violated.

1Naturally there are maximisation COPs where higher cost (or “value”) solutions are preferable, rather
than lower. These can be mapped to a minimisation problem by simply negating the cost value in every
constraint where it appears.

Constraint Satisfaction 413

Solving a CSP by optimising this COP is a powerful technique introduced by Freuder
[16] and Minton [26].

6.1.4 Handling Projection in COPs

Lastly we consider CSP’s whose “solution variables” are a strict subset of the variables
appearing in the CSP. Naturally this can be mapped to a COP with the same solution
variables, plus the cost variable. However in this case a solution—which is an assign-
ment to the solution variables—may not have a uniquely defined cost: the cost may
also depend upon the assignment of the remaining variables. For such problems it is
necessary to introduce new cost variables: one global cost associated with a complete
assignment to all the variables in the problem, and another projected cost associated
with the projection onto the solution variables.

The projected cost (of an assignment to the solution variables) must then be defined
in terms of the global cost of each complete assignment which extends it. A standard
definition is to make the projected cost the minimum of the global costs. However
it is not possible to simply add a binary constraint which relates the projected cost
to the global cost, because the constraint involves different values of the global cost
under different assignments. Thus our mapping of CSPs to COPs cannot be extended
to handle projection.

Instead we simply define two operations on costs: one which defines the global
cost in terms of the local costs, and one which defines the projected cost in terms of
the global cost. Assuming these operations have certain properties, they can be used
to associate a unique cost with any assignment to any subset of the problem variables.
These properties are satisfied if the operations on cost constitute a semi-ring [5].

6.2 Algorithms

6.2.1 Depth-First Branch and Bound

To find the optimal solution to a COP it suffices to find all solutions and pick (one
of) the best. A more efficient way is to impose a new constraint, after each solution is
found, that precludes finding any other solutions with a cost worse than that of the last
solution found. This is termed depth-first “Branch and Bound”.

After finding a solution, during depth-first branch and bound, the search can

1.

2.

either restart from the beginning, with the extra constraint [31], or

backtrack from the current leaf of the search tree, as if no solution had been
found, and continue the search from there, with the new constraint imposed.

Surprisingly the first option often, though not always, yields a smaller search tree.
It is also cleaner to implement.

Typically the rate at which new solutions are found, during both versions of depth-
first branch and bound, is very unstable. A few solutions may be found quickly, and
then there may be a long search before another, better, solution is found. Subsequently
several more solutions may be found quite quickly again. It quite often happens that the
“proof of optimality”, when the search continues looking for a solution better than the
optimal one and finally fails, is shorter than one of the intermediate searches between
one solution and the next.

414 E.C. Freuder and M. Wallace

For this reason it is often very effective to use parallelism to speed up depth-first
branch and bound. As soon as one of the processors has found a solution, all the other
processors are notified and the new constraint is immediately applied to all the parallel
searches. The speed up due to having n processors solving a branch and bound problem
in parallel is often better than n. This kind of speedup is termed super-linear [38].

There are countless ways of implementing depth-first branch and bound search. For
example the maximum time, or backtracks, between solutions may be limited to a fixed
upper bound. After hitting this limit the current best solution may simply be returned,
or another search may be started with a different cost bound.

One important complete search technique is to perform a “binary chop” on the cost
bound. Initially upper and lower bounds on the cost are extracted by some independent
method. The first constraint on the cost in the branch and bound search is that the
cost should be better than the mid-point between the two bounds. If the search finds
a solution (whose cost becomes the new upper bound UB), a new point is selected
halfway between UB and the cost lower bound. On the other hand, if the search fails –
proving there is no solution with cost better than the mid-point (which becomes the
new lower bound LB), then a new point is selected halfway between the upper bound
and LB. The search is now restarted with the cost constrained to be better than the
new point. Clearly as search continues the upper and lower bounds on the cost are
quickly narrowed. To solve the drawback that failed searches are less useful in practise
than successful ones, the point chosen at each stage may be chosen to be nearer the
previous upper bound, for example only one third of the way from the upper to the lower
bound.

6.2.2 Best-First Branch and Bound

A limitation of depth-first branch and bound is that search is not necessarily directed
towards high quality solutions, especially at early stages in the process. As a conse-
quence a great deal of time and search effort may be spent in finding feasible solutions,
which happen to have a very high cost.

If the cost variable is linked to the problem variables via constraints, constraint
propagation can tighten the bounds on the cost variable during search. Indeed some
global constraints have been expressly designed to extract as precise information as
possible about the cost bounds [17]. With this information about cost it is possible, at
an early stage, to select branches in the search tree, which, if they yield solutions, the
solutions should be low cost.

In solving CSPs, in case there are no feasible solutions, the choice of which value
to use first in labelling a variable has no effect on the size of the search tree. In solving
COPs, however, almost all problems have solutions, and the choice of value can be
critical in finding an optimal solution quickly. Finding a good solution first, rather than
a bad one, may dramatically reduce the time and search effort needed to find an optimal
solution and prove optimality.

One approach, which is used widely in the Operations Research community, is
best-first branch and bound. Instead of making a choice at each search step which
adds a branch below the current node of the search tree, best-first branch and bound
examines all the nodes of the tree which have unopened branches. The node selected
is one for which the cost lower bound is minimal. Naturally the first solution found

Constraint Satisfaction 415

by this technique is the one with minimal cost (since none of the other nodes could
be extended to a solution with a smaller cost). This algorithm is known in Artificial
Intelligence circles as A*.

There are, of course many variations on best-first search. Typically Operations
Researchers start with depth-first search, until a solution is found, and only then revert
to best-first search. Moreover the choice of node may use a cost estimate which is not a
lower bound on cost. In this case it is no longer guaranteed that the first solution found
by best-first search is indeed the best. But finding a non-optimal solution first, may still
yield a faster proof of optimality overall.

6.2.3 Search Control

Most real applications cannot be solved to optimality because they are simply too large
and complex. In such cases it is crucial that the algorithm is directed towards areas of
the search space where low-cost feasible solutions are most likely to be found.

Constraint propagation can yield very useful information, which can be used to
guide the search for a solution. Not only can propagation exclude impossible choices
“a priori”, but it can also yield information about which choices would be optimal in
the absence of certain (awkward) constraints.

Because constraint propagation occurs after each search step, the resulting infor-
mation is used to support dynamic heuristics, where the next choice is contingent upon
all the information about the problem gathered during the current search.

Constraint technology has proven that incomplete extension search techniques can
produce high quality solutions to large complex industrial applications in areas such
as transportation and logistics. The advantage, as against repair-based techniques,
is that the solutions respect all the hard constraints and are therefore applicable in
practice.

For example, in limited discrepancy search, while in theory the number of discrep-
ancies can be allowed to grow until the complete search space has been covered, in
practice the number of discrepancies is kept below a small limit, and thus it is typically
used as an incomplete search technique. Specialised search control, such as this, is very
important in obtaining high quality solutions within reasonable, or if necessary short,
timescales.

6.2.4 Repair-Based Algorithms

Repair-based algorithms naturally extend to optimization problems. When all the con-
straints are soft, any complete assignment is a feasible solution to the problem. Basic
hill climbing, for example, in this context would seek to move to a neighbour with a
better cost than before. However, this cannot guarantee an optimal solution. We expect
that repair-based optimization methods will be discussed at length elsewhere in this
volume.

Constraint programmers use repair-based algorithms, in particular in conjunction
with constraint reasoning. Some ways of combining constraint reasoning with repair-
based algorithms are given in the Advanced Topics section below.

416 E.C. Freuder and M. Wallace

7 APPLICATIONS

7.1 Current Areas of Application

Constraint programming is based on logic. Consequently any formal specification of
an industrial problem can be directly expressed in a constraint program. The drawbacks
of earlier declarative programming paradigms have been

that the programmer had to encode the problem in a way that was efficient to
execute on a computer

that the end user of the application could not understand the formal specification.

The first breakthrough of constraint programming has been to separate the logical
representation of the problem form the efficient encoding in the underlying constraint
solvers. This separation of logic from implementation has opened up a range of
applications in the area of control, verification and validation.

The second breakthrough of constraint programming has been in the area of soft-
ware engineering. The constraint paradigm has proven to accommodate a wide variety
of problem solving techniques, and has enabled them to be combined into hybrid
techniques and algorithms, suited to whatever problem is being tackled.

As important as the algorithms to the success of constraint technology, has been the
facility to link models and solutions to a graphical user interface that makes sense to
the end user. Having developers display the solutions in a form intelligible to the end
users, forces the developers to put themselves into the shoes of the users.

Moreover not only are the final solutions displayed to the user: it is also possible to
display intermediate solutions found during search, or even partial solutions. The ability
to animate the search in a way that is intelligible to the end user means the users can
put themselves into the shoes of the developers. In this way the crucial relationship and
understanding between developers and end users is supported and users feel themselves
involved in the development of the software that will support them in the future.

As a consequence, constraint technology has been applied very successfully in
a range of combinatorial problem solving applications, extending those traditionally
tackled using operations research.

The two main application areas of constraint programming are, therefore:

1.

2.

control, verification, and validation,

combinatorial problem solving.

7.2 Applications in Control, Verification and Validation

Engineering relies increasingly on software, not only at the design stage, but also
during operation. Consider the humble photocopier. Photocopiers aren’t so humble as
they used to be—each system comprises a multitude of components, such as feeders,
sorters, staplers and so on. The next generation of photocopiers will have orders of
magnitude more components than now. The challenge of maintaining compatibility
between the different components, and different versions of the components has become
unmanageable.

Xerox has turned to constraint technology to specify the behaviour of the differ-
ent components in terms of constraints. If a set of components are to be combined

Constraint Satisfaction 417

in a system, constraint technology is applied to determine whether the components
will function correctly and coherently. The facility to specify behaviour in terms of
constraints has enabled engineers at Xerox not only to simulate complex systems in
software but also to revise their specifications before constructing anything and achieve
compatibility first time.

Control software has traditionally been expressed in terms of finite state machines.
Proofs of safety and reachability are necessary to ensure that the system only moves
between safe states (e.g., the lift never moves while the door is open) and that required
states are reached (the lift eventually answers every request). Siemens has applied
constraint technology to validate control software, using techniques such as boolean
unification to detect any errors. Similar techniques are also used by Siemens to verify
integrated circuits.

Constraint technology is also used to prove properties of software. For example
abstract interpretation benefits from constraint technology in achieving the performance
necessary to extract precise information about concrete program behaviour.

Finally constraints are being used not only to verify software but to monitor and
restrict its behaviour at runtime. Guardian Agents ensure that complex software, in
medical applications for example, never behaves in a way that contravenes the certain
safety and correctness requirements.

For applications in control, validation and verification, the role of constraints is to
model properties of complex systems in terms of logic, and then to prove theorems
about the systems. The main constraint reasoning used in this area is propositional
theorem proving. For many applications, even temporal properties are represented in
a form such that they can be proved using propositional satisfiability.

Nevertheless the direct application of abstract interpretation to concurrent constraint
programs offers another way to prove properties of complex dynamic systems.

7.3 Combinatorial Problem Solving

Commercially constraint technology has made a huge impact in problem solving areas
such as

transportation

logistics

network optimization

scheduling and timetabling

production control

design

and it is also showing tremendous potential in new application areas such as bio-
informatics and virtual reality systems.

Starting with applications to transportation, constraint technology is used by airline,
bus and railway companies, all over the world. Applications include timetabling, fleet
scheduling, crew scheduling and rostering, stand, slot and platform allocation.

Constraints have been applied in the logistics area for parcel delivery, food, chilled
goods, and even nuclear waste. As in other application areas, the major IT system
suppliers (such as SAP and 12) are increasingly adopting constraint technology.

418 E.C. Freuder and M. Wallace

Constraints have been applied for Internet service planning and scheduling, for
minimising traffic in banking networks, and for optimization and control of distribution
and maintenance in water and gas pipe networks. Constraints are used for network
planning (bandwidth, routing, peering points), optimising network flow and pumping
energy (for gas and water), and assessing user requirements.

Constraint technology appears to have established itself as the technology of choice
in the areas of short-term scheduling, timetabling and rostering. The flexibility and
scalability of constraints was proven tested in the European market (e.g., at Dassault
and Monsanto), but is now used worldwide.

It has been used for timetabling activities in schools and universities, for roster-
ing staff at hospitals, call centres, banks and even radio stations. An interesting and
successful application is the scheduling of satellite operations.

The chemical industry has an enormous range of complex production processes
whose scheduling and control is a major challenge, currently being tackled with
constraints. Oil refineries, and steel plants also use constraints in controlling their pro-
duction processes. Indeed many applications of constraints to production scheduling,
also include production monitoring and control.

The majority of commercial applications of constraint technology have, to date,
used finite domain propagation. Finite domains are a very natural way to represent the
set of machines that can carry out a task, the set of vehicles that can perform a delivery,
or the set of rooms/stands/platforms where an activity can be carried out. Making a
choice for one tasks, precludes the use of the same resource for any other task which
overlaps with it, and propagation captures this easily and efficiently.

Naturally most applications involve many groups of tasks and resources with pos-
sibly complex constraints on their availability (e.g., personnel regulations may require
that staff have two weekends off in three, that they must have a day off after each
sequence of night-shifts, and that they must not work more than 40 hours per week).
For complex constraints like this a number of special constraints have been intro-
duced which not only enable these constraints to be expressed quite naturally, but also
associate highly efficient specialised forms of finite domain propagation with each
constraint.

7.4 Other Applications

Constraints and Graphics. An early use of constraints was for building graphical
user interfaces. Now these interfaces are highly efficient and scalable, allowing a
diagram to be specified in terms of constraints so that it still carries the same impact
and meaning whatever the size or shape of the display hardware. The importance
of this functionality in the context of the Internet, and Mobile Computing, is very
clear, and constrained-based graphics is likely to make a major impact in the near
future. Constraints are also used in design, involving both spatial constraints and,
in the case of real-time systems design, temporal constraints.

Constraint Databases. Constraint databases have not yet made a commercial
impact, but it is a good bet that future information systems will store constraints
as well as data values. The first envisaged application of constraint databases is
to geographical information systems. Environmental monitoring will follow, and

Constraint Satisfaction 419

subsequently design databases supporting both the design and maintenance of
complex artifacts such as airplanes.

8 CONSTRAINT LANGUAGES

8.1 Constraint Logic Programming

The earliest constraint programming languages, such as Ref-Arf and Alice, were
specialised to a particular class of algorithms. The first general purpose constraint
programming languages were constraint handling systems embedded in logic program-
ming [21,36], called Constraint Logic Programming (CLP). Examples are CLP(fd),
HAL, SICStus and ECLiPSe. Certainly logic programming is an ideal host program-
ming paradigm for constraints, and constraint logic programming systems are widely
used in industry and academia.

Logic programming is based on relations. In fact every procedure in a logic pro-
gram can be read as a relation. However the definition of a constraint is exactly the
same thing—a relation. Consequently the extension of logic programming to CLP is
entirely natural. Logic programming also has backtrack search built-in, and this is easily
modified to accommodate constraint propagation. CLP has been enhanced with some
high-level control primitives, allowing active constraint behaviours to be expressed
with simplicity and flexibility. The direct representation of the application in terms
of constraints, together with the high-level control, results in short simple programs.
Since it is easy to change the model and, separately, the behaviour of a program, the
paradigm supports experimentation with problem solving methods. In the context of
a rapid application methodology, it even supports experimentation with the problem
(model) itself.

8.2 Languages for Search

One drawback of the logical basis is that repair-based search methods have not fitted
naturally into the CLP paradigm. Recently a language has been introduced called
Localizer [29] which is designed specifically to support the encoding of repair-based
search algorithms such as Simulated Annealing and GSAT [33]. The fundamental
contribution of Localizer is the concept of an “invariant”, which is a constraint that
retains information used during search. For GSAT, by way of example, an invariant
is used to record, for each problem variable, the change in the number of satisfied
propositions if the variable’s value were to be changed. The invariant is specified as a
constraint, but maintained by an efficient incremental algorithm. Another constraint-
based language for specifying search is SALSA [23].

8.3 Modeling Languages

On the other hand, Operations Researchers have introduced a wide range of highly
sophisticated specialised algorithms for different classes of problems. For many OR
researchers CLP and Localizer are too powerful—they seek a modeling language rather
than a computer programming language in which to encode their problems. Traditional
mathematical modeling languages used by OR researchers have offered little control
over the search and the constraint propagation. OPL [35] is an extension of such a

420 E.C. Freuder and M. Wallace

modeling language to give more control to the algorithm developer. It represents a step
towards a full constraint programming language.

By contrast a number of application development environments (e.g., Visual CHIP)
have appeared recently that allow the developer to define and apply constraints
graphically, rather than by writing a program. This represents a step in the other
direction!

8.4 Global Constraints

One of the most important requirements of a programming system is support for
reusability. Many complex models developed by Operations Researchers have made
very little practical impact, because they are so hard to reuse. The concept of a global
constraint is inherently quite simple. It is a constraint that captures a class of sub-
problems, with any number of variables. Global constraints have built-in algorithms,
which are specialised for treating the problem class. Any new algorithm can be easily
captured as a global constraint and reused. Global constraints have had a major impact,
and are used widely and often as a tool in solving complex real-world problems. They
are, arguably, the most important contribution that constraint programming can bring
to Operations Research.

9 ADVANCED TOPICS

There are many topics that could be addressed in additional detail. This section briefly
samples a few of these. Good starting points for further study include: the Con-
straint Programming conferences, the Constraints journal, and the Constraints Archive
(http://www.4c.ucc.ie/archive).

9.1 Combining Constraint Reasoning with Repair-Based Algorithms

Constraint programmers use repair-based algorithms, in conjunction with constraint
reasoning. One direct approach is to “compile” constraints into a local move operator,
and then apply standard repair-based search [3]. A second approach is to apply repair-
based search to a subset of the problem variables and to use extension search to complete
each assignment and extract the cost. A third approach, which is now widely used, is
to make large moves using extension search. For example in solving a vehicle routing
problem a move may involve changing a delivery from one vehicle to another, and
then replanning the routes of the affected vehicles [32]. Expanding the size of the
neighbourhood is also used as a way of breaking out of local optima. Finding the best
neighbour in a large neighbourhood is nicely handled using extension search [28].

9.2 Combining Constraint Propagation with Linear Programming

Many industrial applications involve several interdependent subproblems, such as
resource allocation and temporal scheduling, or routing and rostering.

Traditionally the subproblems have been solved one at a time, by finding a good
solution to one subproblem and using this solution to constrain the solution of the next.
With the success of constraint technology comes the demand for a more global view
of the problem.

Constraint Satisfaction 421

The consequence for the technology is a major emphasis on techniques for com-
bining different algorithms so as to elicit a global optimum for such many-faceted
problems. An important example of such a hybrid is the combination of

linear programming, and

constraint propagation.

Linear programming is used to generate a solution to a relaxed problem (as it is in
mixed integer programming), and this guides the next choice. After making a choice,
constraint propagation, often involving global constraints with specialised constraint
propagation algorithms, tightens the bounds on variables and detects inconsistencies.

9.3 Knowledge Acquisition and Explanation

As constraint programming becomes increasingly commercialized, increasing atten-
tion is drawn to “human factors”. Issues faced by earlier “knowledge-engineering”
technologies must be faced by constraint technology.

Acquiring domain-specific knowledge is obviously a key application issue. Pro-
vision needs to be made for interactive acquisition, e.g., in electronic commerce
applications. Many problems, e.g., many configuration problems, change over time.
While constraint programmers tout the advantages of their declarative paradigm for
maintaining programs in the face of such change, acquiring and implementing new
knowledge on a large scale still presents challenges.

Users may feel more comfortable when an “explanation” can accompany a solution.
Explanation is particularly important when a problem is unsolvable. The user wants to
know why, and can use advice on modifying the problem to permit a solution [1].

A related set of problems confronts the need constraint programmers have to better
understand the solution process. Explanation and visualization of this process can
assist in debugging constraint programs, computing solutions more quickly, and finding
solutions closer to optimal [11].

9.4 Synthesizing Models and Algorithms

Ideally people with constraints to satisfy or optimize would simply state their problems,
in a form congenial to the problem domain, and from this statement a representation
suited to efficient processing and an appropriate algorithm to do the processing would be
synthesized automatically. In practice, considerable human expertise is often needed to
perform this synthesis. Less ambitiously, tools might be provided to assist the constraint
programmer in this regard. Initial experiments with simple learning methods have
proven surprisingly effective at producing efficient algorithms for specific problem
classes [25].

9.5 Distributed Processing

Distributed constraint processing arises in many contexts. There are parallel algorithms
for constraint satisfaction and concurrent constraint programming languages. There
are applications where the problem itself is distributed in some manner. There are
computing architectures that are naturally “distributed”, e.g., neural networks.

422 E.C. Freuder and M. Wallace

There is considerable interest in the synergy between constraint processing and
software agents. Agents have issues that are naturally viewed in constraint-based terms,
e.g., negotiation. Agents can be used to solve constraint satisfaction problems [42].

9.6 Uncertainty

Real world problems may contain elements of uncertainty. Data may be problematic.
The future may not be known. For example, decisions about fuel purchases may need
to be made based on uncertain demand dependent on future weather patterns. We want
to model and compute with constraints in the presence of such uncertainty [40].

10 PRACTICAL GUIDELINES

We consider a simple one-machine scheduling problem. The requirement is to schedule
a set of tasks on a machine. Each task has a fixed duration, and each has an earliest
start time (the “release date”) and a latest end time (the “due date”). How should we
schedule the tasks so as to finish soonest?

In constraint programming a problem is handled in three stages:

1.

2.

3.

Initialise the problem variables;

Constrain the variables;

Search for values for the variables that satisfy the constraints.

10.1 Initialising Variables

For the one-machine scheduling problem, a variable is declared to represent the start
time of each task. For each task t we introduce a variable St and we declare its lower
bound (the release date) and its upper bound (the due date minus the duration).

For the first model of the problem we impose no further constraints on the start
time, until search begins.

10.2 Search and Propagation

When the search begins one of the tasks, t1 with duration d 1 is chosen to be first. Now
the following constraints are posted:

The start time is constrained to take its lower bound value (in this case, its
release date).

The start times of each of the remaining tasks are constrained to be greater than

As a result, the lower bounds of some or all of the remaining task start times may
be increased.

After having “propagated” the new constraints, by computing the new lower bounds
for all the start times, search resumes. Another task is chosen to be the first of the
remaining tasks, and constraints 1 and 2 are posted as before.

10.3 Branch and Bound

When a solution is found the end time of the last task, end is recorded. The problem
solving process is restarted, but now all tasks are constrained to end before end. This
is captured by a constraint on each task t i that is less than end.

Constraint Satisfaction 423

If at any time the propagation on a start time makes its lower bound larger than
its upper bound, then there is no solution which extends the current task ordering.
The system therefore backtracks and chooses a different task to be first at the previous
choice point.

10.4 Introducing Redundant Constraints

The first way to enhance this algorithm is by adding a global constraint, specialised
for scheduling problems. The new constraint does not remove any solutions: it is
logically redundant. However its powerful propagation behaviour enables parts of the
search space, where no solutions lie, to be pruned. Consequently the number of search
steps is reduced—dramatically for larger problems! This global constraint is called the
edge_finder constraint. It constrains a whole set of tasks, with start times and durations,
not to overlap. A specific algorithm is associated with the global constraint. Whenever
the lower (or upper) bound of any start time is increased (respectively decreased), the
algorithm propagates the effects of this change to the other start times, tightening their
lower and upper bounds in turn. The algorithm was devised by operations researchers,
but it has been encapsulated by constraint programmers as a single constraint.

10.5 Adding Search Heuristics

The next enhancement is to choose at each search step, first the task with the earliest due
date. Whilst this does tend to yield feasible solutions, it does not necessarily produce
good solutions, until the end time constraints become tight. Moreover, once an optimal
end time has been found, the proof of optimality is no quicker than by choosing the
first task at random!

10.6 Using Tentative Assignments for Better Search Heuristics

A more radical change is to focus on bottlenecks. After each search step, the task start
times are tentatively set to their lower bounds, a propagation algorithm then elicits the
biggest bottleneck, which is the start time at which the number of tasks which would
be running at the same time is maximal. This tentative assignment is then dropped, but
the information about bottlenecks is used as a heuristic for controlling the search.

Instead of choosing which task to place first at each search step, the algorithm
simply orders two tasks, constraining one to end before the other starts. At each search
step two tasks are chosen from the tightest bottleneck, and constrained not to overlap,
so as to reduce the bottleneck. After making such a decision, propagation takes place as
before. At an intermediate point during the search many tasks will have been ordered and
propagation which narrows the bounds of one task may enable further propagation to
take place narrowing the bounds of another task, sometimes yielding long “propagation
sequences”.

This search heuristic not only produces good solutions sooner than the previous
one, but it also shortens the proof of optimality.

10.7 Using an Incomplete Search Technique

For very large problems, complete search may not be possible. In this case the backtrack
algorithm may be controlled so as to limit the effort wasted in exploring unpromising
parts of the search space. This can be done simply by limiting the number of times a

424 E.C. Freuder and M. Wallace

non-preferred ordering of tasks is imposed during search and backtracking, using the
LDS algorithm introduced earlier.

The above techniques combine very easily, and the combination is very powerful
indeed. As a result constraint programming is currently the technology of choice for
operational scheduling problems where task orderings are significant.

10.8 Code

A Constraint Logic Program for solving the one-machine scheduling problem is as
follows. This code, written in ECLiPSe [39], implements the naive algorithm:

% Define a data structure to hold info. about jobs

:- local struct(job(start,duration,end,release, due)).

% Load the finite domain solver

:- lib(fd).

% To solve a problem, first state the constraints and

% then encode the search procedure.

% Names starting with upper-case letters are variables.

job_schedule(Jobs,FinalEndTime) :-

constrain(Jobs,FinalEndTime),

minimize(label_starts(Jobs),FinalEndTime).

% Constrain the start and end time of each job

constrain(Jobs,FinalEndTime) :-

(foreach(Job,Jobs),

param(FinalEndTime)

do

% Each Job variable holds a data structure with the job

% details

Job = job with [release:ReleaseTime,

due:DueTime,

duration:Duration,

start:StartTime,

end:EndTime

],

% Constrain the start and end times

EndTime #= StartTime + Duration,

StartTime #>= ReleaseTime,

EndTime #=< DueTime,

% Constrain the final end time to follow the end time of

% each job

FinalEndTime #>= EndTime

).

% Stop when there are no more jobs to handle

label_starts([]) .

% Select a job, make it start as early as possible

% and constrain the remaining jobs to start after it

Constraint Satisfaction 425

label_starts(Jobs):-

choose(Job,Jobs,Rest),

Job = job with [start:StartTime,end:EndTime],

fix_to_min(StartTime),

propagate(EndTime,Rest),

label_starts(Rest).

% Select any job from a non-empty list

choose(Job,[Job|Jobs],Jobs).

choose(Job,[NotThisJob|Jobs],[NotThisJob|Rest]):-

choose(Job,Jobs,Rest).

% Constrain the remaining jobs to start after the given

% previous end time

propagate(PrevEndTime,Jobs):-

(foreach(job with start:StartTime, Jobs),

param(PrevEndTime)

do

StartTime #>= PrevEndTime

).

% Make the variable Time take its smallest possible

% value

fix_to_min(Time):-

mindomain(Time,Earliest),

Time #= Earliest.

The Constraints Archive (http://www.4c.ucc.ie/archive) has pointers to constraint
code libraries and constraint programming languages, both freely available software
and commercial products.

ACKNOWLEDGEMENTS

Eugene Freuder is supported by a Principal Investigator Award from Science Founda-
tion Ireland; some of his contribution to this chapter was prepared while he was at the
University of New Hampshire.

REFERENCES

J. Amilhastre, H. Fargier and P. Marquis (2002) Consistency restoration and expla-
nations in dynamic CSPs—application to configuration. Artificial Intelligence,

135, 199–234.

F. Bacchus, X. Chen, P. van Beek and T. Walsh (2002) Binary vs. non-binary
constraints. Artificial Intelligence.

[1]

[2]

426 E.C. Freuder and M. Wallace

B. De Backer, V. Furnon, P. Prosser, P. Kilby and P. Shaw (1997) Local search in
constraint programming: Application to the vehicle routing problem. Presented
at the CP-97 Workshop on Industrial Constraint-based Scheduling.

C. Bessiere, E. Freuder and J. Regin (1999) Using constraint metaknowledge to
reduce arc consistency computation, Artificial Intelligence, 107, 125–148.

S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaille
(1996) Semiring-based CSPs and valued CSPs: Basic properties. In: M. Jampel,
E.C. Freuder and M. Maher (eds.), Over-Constrained Systems, Volume 1106 of
Lecture Notes in Computer Science. Springer, Berlin, pp. 111–150.

B. Cheng, K. Choi, J. Lee and J. Wu (1999) Increasing constraint propagation by
redundant modeling: an experience report. Constraints, 4, 167–192.

P. Cheeseman, B. Kanefsky and W. Taylor (1991) Where the really hard prob-
lems are. In: Proceedings Twelth International Joint Conference in Artificial

Intelligence. Morgan Kaufmann, San Mateo, pp. 331–337.

R. Debruyne and C. Bessière (2001) Domain filtering consistencies. Journal of

Artificial Intelligence Research, 14, 205–230.

R. Dechter (1990). Enhancement schemes for constraint processing: backjump-
ing, learning, and cutset decomposition. Artificial Intelligence, 41, 273–312.

R. Dechter and D. Frost (2002) Backjump-based backtracking for constraint
satisfaction problems. Artificial Intelligence, 136, 147–188.

P. Deransart, M. Hermenegildo and J. Maluszynski (eds.) (2000) Analysis and

Visualization Tools for Constraint Programming. Lecture Notes in Computer

Science No. 1870. Springer, Berlin.

R. Dechter, I. Meiri and J. Pearl (1991) Temporal constraint networks. Artificial

Intelligence, 49, 61–95.

E. Freuder (1978) Synthesizing constraint expressions. Communications of the

ACM, 11, 958–966.

E. Freuder (1982) A sufficient condition for backtrack-free search. Journal of the

Association for Computing Machinery, 29, 24–32.

E. Freuder (1991) Eliminating interchangeable values in constraint satisfaction
problems. In: Proceedings Ninth National Conference on Artificial Intelligence.

AAAI Press/MIT, Menlo Park/Cambridge, pp. 227–233.

E. Freuder and R. Wallace (1992). Partial constraint satisfaction. Artificial

Intelligence, 58, 1–70.

F. Focacci, A. Lodi and M. Milano (1999) Cost-based domain filtering. In:
J. Jaffar (ed.), Principles and Practice of Constraint Programming Volume 1713
of Lecture Notes in Computer Science. Springer.

C. Gomes, B. Selman and N. Crato (1997) Heavy-tailed Distributions in

Combinatorial Search. Volume 1330 of Lecture Notes in Computer Science.

Springer.

W. Harvey and M. Ginsberg (1995) Limited discrepancy search. In: Proceed-

ings of the Fourteenth International Joint Conference on Artificial Intelligence

(IJCAI-95). Morgan Kaufmann, pp. 607–615.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Constraint Satisfaction 427

P. Jeavons, D. Cohen and M. Gyssens (1997) Closure properties of constraints.
Journal of the ACM, 44, 527–548.

J. Jaffar and J.-L. Lassez (1987) Constraint logic programming. Proceedings of

the Annual ACM Symposium on Principles of Programming Languages (POPL).

ACM, pp. 111–119.

G. Kondrak and P. van Beek (1997) A theoretical evaluation of selected
backtracking algorithms. Artificial Intelligence, 89, 365–387.

F. Laburthe and Y. Caseau (1998) SALSA: a language for search algorithms.
4th International Conference on the Principles and Practice of Constraint

Programming (CP'98). Pisa, Italy, October.

A. Mackworth (1977) Consistency in networks of relations. Artificial Intelligence,

8, 99–118.

S. Minton (1996) Automatically configuring constraint satisfaction programs.
A case study. Constraints, 1, 7–43.

S. Minton, M.D. Johnston, A.B. Philips and P. Laird (1992) Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling. Artificial

Intelligence, 58, 61–205.

L. Michel and P. Van Hentenryck (1999) Localizer: a modeling language for local
search. INFORMS. Journal on Computing.

G. Pesant and M. Gendreau (1996) A view of local search in constraint program-
ming. In: Principles and Practice of Constraint Programming CP96: Proceedings

of the Second International Conference, Volume 1118 of Lecture Notes in

Computer Science. Springer, Berlin, pp. 353–366.

J.-C. Régin (2001) Minimization of the number of breaks in sports scheduling
problems using constraint programming. In: E. Freuder and R. Wallace (eds.),
Constraint Programming and Large Scale Discrete Optimization, volume 57 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, Providence, RI, pp. 115–130.

D. Sabin and E. Freuder (1997) Understanding and Improving the MAC Algo-
rithm. In: Principles and Practice of Constraint Programming—CP97: Proceed-

ings of the Third International Conference, volume 1330 of Lecture Notes in

Computer Science. Springer, Berlin, pp. 167–181.

H.M. Salkin (1970) On the merit of the generalized origin and restarts in implicit
enumeration. Operations Research, 18, 549–554.

P. Shaw (1998) Using constraint programming and local search methods to solve
vehicle routing problems. In: Michael Maher and Jean Francois Puget (eds.), Prin-

ciples and Practice of Constraint Programming CP98, Volume 1520 of Lecture

Notes in Computer Science. Springer. pp. 417–431.

B. Selman, H. Levesque and D. Mitchell (1992) A new method for solving hard
satisfiability problems. Proceedings of the 10th National Conference on Artificial

Intelligence (AAAI-92). San Jose, CA, USA, pp. 440–446.

E. Tsang (1993) Foundations of Constraint Satisfaction. Academic Press,
London.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

428 E. C. Freuder and M. Wallace

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Pascal Van Hentenryck (1999) The OPL Optimization Programming Language.

The MIT Press, Cambridge, MA.

P. Van Hentenryck, H. Simonis and M. Dincbas (1992) Constraint satisfaction
using constraint logic programming. Artificial Intelligence, 58, 113–159.

G. Verfaillie, M. Lemaitre and T. Schiex (1996) Russian doll search for solving
constraint optimization problems. Proceedings of AAAI, pp. 181–187.

A. Veron, K. Schuerman and M. Reeve (1993) Why and how in the ElipSys
OR-parallel CLP system. Proceedings of PARLE.

M. Wallace, S. Novello and J. Schimpf (1997) ECLiPSe—a platform for constraint
programming. ICL Systems Journal 12(1), 159–200.

T. Walsh (2002) Stochastic constraint programming. Proceedings of ECAI-2002.

M. Yokoo (1994) Weak-commitment search for solving constraint satisfaction
problems. Proceedings of AAAI, pp. 313–318.

M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara (1998) The distributed CSP:
Formalization and algorithms. IEEE Transactions on Knowledge and Data

Engineering, 10, 673–685.

W. Zhang (1998) Complete anytime beam search. Proceedings of AAAI,
pp. 425–430.

Chapter 15

ARTIFICIAL NEURAL NETWORKS FOR
COMBINATORIAL OPTIMIZATION

Jean-Yves Potvin
Département d’informatique et de recherche opérationnelle

and Centre de recherche sur les transports

Université de Montréal

C.P. 6128, succursale Centre-ville

Montréal (Québec), Canada H3C 3J7

E-mail: potvin@iro.umontreal. ca

Kate A. Smith
School of Business Systems

Faculty of Information Technology

Monash University

P.O. Box 63B

Victoria 3800, Australia

E-mail: kate.smith@infotech. monash. edu. au

1 INTRODUCTION

Artificial neural networks (ANNs) are extremely simplified models of their biological
counterpart, the network of natural neurons known as the human brain. Consequently,
we are not interested here in the study of the brain, which is the subject of neuroscience.
Rather, we are interested to know what these networks of artificial units are, what
they can do and how. ANNs were originally developed to provide a fundamentally
new and different approach to information processing, when an algorithmic procedure
for solving a problem is not known. As opposed to programmed computing, ANNs
are capable of internally developing information processing capabilities for solving
a problem when fed with appropriate information about the problem. Thus, they are
often referred to as learning or adaptive models.

The history of ANNs dates back to the paper of McCulloch and Pitts (1943), when
simple types of neural networks were shown to be able to learn arithmetic or logical
functions. Important successes were witnessed in the late 50’s and early 60’s, with
the development of the perceptron model and the first neurocomputers (Rosenblatt,
1958). By the end of the 60’s, however, the field collapsed: a book by Minsky and
Papert (1969), demonstrating that even the simple exclusive-or logical function could
not be implemented with a perceptron, was devastating and diverted away research
funding. After a dark period, ANNs emerged again in the early 80’s with the support

430 J.-Y. Potvin and K.A. Smith

of John Hopfield, a renowned scientist, and the publication of an important book
by Rumelhart and McClelland (1986), which introduced the backpropagation neural
network model to the scientific community. This model extended the capabilities of its
ancestor, the perceptron, allowing it to learn a much larger class of functions (including
the exclusive-or logical function). Since that time, the field has continually expanded.

The first successes with ANNs were reported for the most part in pattern recognition,
classification and prediction tasks. Application of ANNs to combinatorial optimization
problems (COPs) dates back to 1985 when Hopfield and Tank solved small instances
of the Traveling Salesman Problem (TSP) with a Hopfield neural network (Hopfield
and Tank, 1985). The TSP is a classical combinatorial optimization problem, which
is simple to state but difficult to solve. Basically, the objective is to find the shortest
possible tour (or Hamiltonian cycle) through a set of N vertices so that each vertex
is visited exactly once. This problem is known to be NP-hard (Garey and Johnson,
1979; Nemhauser and Wolsey, 1988), and cannot be solved exactly in polynomial
time. Because of the simplicity of its formulation, the TSP has always been a fertile
ground for new solution ideas. Consequently, it is not surprising that many problem-
solving approaches inspired by ANNs have been applied to the TSP (Potvin, 1993).
The work of Hopfield and Tank was a first attempt in this direction and it generated
much excitement in the neural network and operations research communities alike.

Many other types of COPs have since been tackled with ANNs in different
application areas: routing and transportation, scheduling, cutting stock and packing,
timetabling, telecommunications, and many others (Burke and Ignizio, 1992). In some
cases, the results obtained are competitive with those reported with alternative tech-
niques. In other cases, the results are not yet convincing. It is clear that the computational
paradigm of ANNs, which is inherently parallel, distributed and adaptive cannot be
fully exploited on current computer hardware. Their behavior must be simulated, thus
leading to excessively large computation times. The development of suitable hardware
for these models (often called neurocomputers) would thus be an important step toward
their full recognition.

The classical backpropagation neural network model, although well suited for many
learning tasks is not really indicated for combinatorial optimization. Consequently,
ANNs applied to COPs are mostly based on three alternative models: Hopfield-Tank
(H–T) and its variants, the elastic net (EN) and the self-organizing map (SOM). H–T
provides a natural way to model many COPs and has been widely applied. EN and
SOM provide an alternative, more efficient, approach for low-dimensional geometrical
problems, like the TSP. These models are reviewed in the following.

2 HOPFIELD NEURAL NETWORKS

In his seminal paper of 1982, John Hopfield described a new way of modeling a sys-
tem of neurons capable of performing computational tasks (Hopfield, 1982). Using a
collection of binary-state neurons and a stochastic updating algorithm, these computa-
tional tasks were initially related to storage and retrieval of embedded memories. The
computational capabilities of Hopfield’s original model were expanded in Hopfield
(1984) when he proposed a continuous version, and proved convergence of the model
by demonstrating that the dynamics of the model minimized a constructed Liapunov
function over time. From here, it became clear that Hopfield networks could be used to

Artificial Neural Networks 431

minimize any function provided the network parameters were set appropriately. The fact
that the continuous version of the Hopfield network was designed to be implemented
using electrical circuits also promised rapid computational ability.

This section first presents the two Hopfield neural network models: the discrete and
stochastic model of 1982, and the continuous and deterministic model of 1984. The
method of Hopfield and Tank (1985) for mapping a combinatorial optimization problem
onto a Hopfield network is then described, using the TSP as an example. The section
continues with a discussion of the criticisms of the approach. We then briefly review
some of the many modifications and extensions that have been made to the original
model and approach in an attempt to overcome these limitations. Finally, the reported
performance of these Hopfield network models for combinatorial optimization across
a range of benchmarked problems is discussed.

2.1 Discrete and Stochastic Hopfield Network

The original Hopfield network, as described in Hopfield (1982) comprises a fully inter-
connected system of n computational elements or neurons. In the following description,
Hopfield’s original notation has been altered where necessary for consistency. The
strength of the connection, or weight, between neuron i and neuron j is determined by

This weight may be positive or negative depending on whether the neurons act in
an excitatory or inhibitory manner (or zero if there is no interaction). Each neuron has
an internal state and an external state While the internal states are continuous
valued, the external states are binary for this discrete model. The relationship between
the internal and external states of the neurons can be shown as:

where is a constant external input to neuron i and f () is the transfer function between
internal and external states. The connection weights W are also constant, and the only
variable elements in the network are the internal and external states of the neurons that
are updated over time. From equations (1) and (2) it is clear that the internal state of
each neuron is calculated as the weighted sum of inputs from its connected neurons,
with an additional constant input. The neuron will “fire” (as evidenced by an external
state of 1), if it receives sufficient stimulation from its connecting neurons, otherwise
the neuron’s external state will be zero representing a dormant or “non-firing” state.

The neurons update themselves over time in a random sequence, thus the model
is said to be discrete and stochastic. As the network updates, and provided the weight
matrix is symmetric with non-negative diagonals, the following energy function is
guaranteed to be minimized until the system converges to one of its stable states.

432 J.-Y. Potvin and K.A. Smith

Using the terminology of operations research, the system of equations (1) and (2)
perform a gradient descent on the energy function (3), with the neuron states con-
verging to one of its local minima. If the values of the weights W and external inputs
I are fixed appropriately, this process can be used to minimize any quadratic function
of binary variables.

2.2 Continuous and Deterministic Hopfield Network

Hopfield’s subsequent modifications to the original 1982 model were driven by con-
siderations of biological plausibility. In the biological system, lags behind the
instantaneous outputs of the other neurons because of the input capacitance
of the cell membrane, the trans-membrane resistance and the finite impedance

between the output and the cell body of neuron i. The external states
of the neurons are now continuous valued between 0 and 1, rather than binary in the
earlier model, and represent an average “firing rate”. Hopfield (1984) modeled this
more biologically based system using the following resistance-capacitance differential
equation to determine the rate of change of and hence the time evolution of the
continuous Hopfield network:

where the transfer function f () is now a continuous sigmoidal function such as:

and T is a parameter used to control the slope of the transfer function. is the value
of the time constant of the amplifiers, and without loss of generality can be assigned a
value of unity, provided the time step of any discrete-time simulation of equation (4)
is considerably smaller than unity. This same set of equations represents a resistively
connected network of electronic amplifiers, and thus the system can be implemented
with electrical circuits. We refer the interested reader to (Hopfield, 1984) for details of
this implementation.

Similar to the original discrete model, the dynamics of this continuous model also
minimize an energy function over time guaranteed to converge to stable states. This
energy function is:

Hopfield (1984) showed that provided the weight matrix is symmetric, this function is
a Liapunov function for the system of equations (4) and (5). Furthermore, if the slope
of the transfer function (6) is particularly high (i.e., T is near zero), then the transfer
function (6) approximates the behavior of the discrete version given by equation (2),
and the integral term of equation (7) vanishes. Consequently, the local minima of
coincide with the local minima of and all these local minima lie at the vertices of the

Artificial Neural Networks 433

unit hypercube resulting in binary values for Thus, for T near zero, the continuous
Hopfield network converges to a 0–1 solution in which minimizes the energy function

given by (3).
Thus, there are two Hopfield neural network models available: a discrete version and

a continuous version. The continuous version can either be implemented using electrical
circuits, or simulated on a digital computer using an approximation to the differential
equation (4) such as the Euler approximation. The accuracy of this approximation
depends on parameters like the time step of the discretization, and affects the degree to
which the discretized dynamics converge on the Liapunov energy function. Clearly, a
small time step will approximate the dynamics well, ensuring gradient descent on the
energy function. This issue is discussed further in Section 4, along with a variety of
other practical issues.

2.3 Adaptation to Solve Combinatorial Optimization Problems

In 1985, John Hopfield teamed together with David Tank to extend the applications of
his model to include solving combinatorial optimization problems (Hopfield and Tank,
1985). Hopfield and Tank (H–T) realized that networks of neurons with this basic
organization could be used to compute solutions to specific optimization problems
by selecting weights and external inputs which appropriately represent the function
to be minimized and the desired states of the problem. The updating of the neurons
according to the differential equations given by (4) and (5) (or even the discrete versions
(1) and (2)) ensures that both the energy function and the optimization problem are
simultaneously minimized over time. The analog nature of the neurons and the hardware
implementation of the updating procedure could be combined to create a rapid and
powerful solution technique.

Using the method proposed by Hopfield and Tank, the network energy function is
made equivalent to the objective function of the optimization problem needing to be
minimized, while the constraints of the problem are included in the energy function as
penalty terms.

Consider the quadratic formulation of the N-city TSP, given the binary decision
variable

and the constant distance matrix representing the distance between cities i and k:

434 J.-Y. Potvin and K.A. Smith

Apart from being a well benchmarked problem, the TSP is a useful problem to
consider since its form is that of a quadratic assignment problem. Thus the methods
used by Hopfield and Tank for mapping the optimization problem onto a Hopfield
neural network can be generalized to a wide range of problems with similar constraint
and objective types.

The first step is to construct an energy function representation of the complete
optimization problem using a penalty parameter approach, so that all objective functions
and constraints are integrated into a single function which needs to be minimized. This
is achieved by observing that a constraint of the form (9) can be enforced by ensuring
minimization of the quantity

That is, a constraint requiring a single “1” in each column can be enforced by mini-
mizing the pairwise product of elements in each column. If there is no more than one
“1” in the column, then this term will be at its minimum value of zero. If there is more
than one “1” in the column, then this term will be greater than zero. A similar term
can be constructed to enforce the row constraint (10). Naturally, these terms will also
be zero if there are no “l”s in each row or column as well. Since we need exactly one
“1” per column and row, we will also need an additional term to force N elements of
the solution matrix X to be “1”.

The complete set of constraints can therefore be enforced through minimization of
penalty terms, and when we add the objective function to these terms, we arrive at the
H–T energy function for the TSP:

The first two terms enforce no more than one “1” per column and row respectively,
the third term ensures that there are N elements “on” in the solution matrix, and the
final term minimizes the tour length. The penalty parameters A, B, C and D need to be
fixed at values that reflect the relative importance of these terms in the minimization
process. If A, B and C are not large enough relative to D, then the resulting solution
may be infeasible. Similarly, if D is not large enough, the solution may be feasible but
the tour length may be larger than the optimal value. Hopfield and Tank (1985) used
values of A = B = D = 500 and C = 200 to balance these terms.

Now that the energy function has been constructed, the next step is to derive the
Hopfield network weights and external inputs so that the energy function is mini-
mized by the network dynamics. For this we need to expand and rearrange the energy

Artificial Neural Networks 435

function (12) so that it is in the same form as the standard Hopfield energyfunction

which has been modified from (3) to reflect the fact that the neurons for our TSP
problem are two dimensional, compared to the linear array of neurons used in the
standard Hopfield network. Once the forms of these two functions (12) and (13) are
similar, the network weights W and external inputs I can be read as the coefficients of
the quadratic and linear terms respectively. To ensure equivalence of the two functions,
the summations of each term in (12) need to be extended across all relevant dimensions
(i,j,k,l for quadratic terms and i, j for linear terms). Thus the Kronecker-Delta symbol
is incorporated into each term of (12) where necessary:

Expanding (12) and rearranging the terms into quadratic, linear, and constant terms,
thus yields:

Comparing (14) to the standard Hopfield energy function (13) then, it is clear that the
network parameters are:

The constant term in equation (14) can be ignored since it merely reflects a shift upwards
and does not affect the location of the minima of the function.

Now that the network weights and external inputs are determined, the Hopfield
network can be initialized (using random values for the initial states), and updated
according to equations (4) and (5) (or equations (1) and (2) for a purely discrete version).
This updating is guaranteed to minimize the Hopfield energy function (13), and since
this function is equivalent to the TSP energy function (12) and (14), then the resulting
solution matrix X will provide a local minima of the TSP energy function. The quality
and feasibility of this solution depends on the choice of penalty parameters A, B, C

and D, as well as the initialization of the neurons, and the accuracy with which the
dynamics of the differential equation (4) can be simulated if the continuous model is
chosen.

436 J.-Y. Potvin and K.A. Smith

The complete procedure is summarized in pseudocode form below:

Step 0: Preliminary Tasks

0.1 Construct an energy function for the optimization

problem using a penalty parameter approach.

0.2 Expand energy function and infer network weights and

external inputs.

Step 1: Initialization Tasks

1.1 Initialize neuron states to random values.

1.2 Select A,B,C,D.

1.3 Select T, the parameter of the continuous transfer

function, and the value of the discrete time step if

simulating the continuous model.

Step 2: If energy function has converged to local minimum

proceed to Step 5, otherwise proceed to step 3

Step 3: Repeat n times:

3.1 Randomly choose a neuron i to update (if using

discrete time dynamics).

3.2 Update and using equations (l)–(2) or (3)–(4).

Step 4: Go back to Step 2.

Step 5: Examine final solution matrix and determine

feasibility and optimality.

Step 6: Adjust parameters A,B,C,D if necessary to obtain a

satisfactory solution, re-initialize neuron states,

and repeat from Step 2.

Clearly, one of the main limitations of the H–T approach to solving combinatorial
optimization is the difficulty in choosing appropriate penalty parameters. In addition
to this difficulty, the dynamics of the Hopfield network perform a gradient descent
on the energy function, and thus converge to the first local minimum they encounter.
Coupling these two issues, it seems likely that the H–T approach may yield solutions
of poor quality. Wilson and Pawley (1988) first published these findings nearly three
years after Hopfield and Tank’s original paper was published. In doing so, they raised
serious doubts as to the validity of the H–T approach to solving optimization problems,
which seemingly served to dampen the enthusiasm surrounding the field.

2.4 Extensions

Since Wilson and Pawley’s results were published, it has been widely recognized that
the H–T formulation is not ideal, even for problems other than the TSP. The problem
of optimally selecting the penalty parameters is not trivial and much work has been
done to try to facilitate this process (Hedge et al., 1988; Kamgar-Parsi, 1992; Lai and
Coghill, 1992). Many other researchers believed that the H–T energy function needed
to be modified before any progress would be made, and considerable effort has also
been spent in this area (Brandt et al., 1988; Van den Bout and Miller, 1988). One
obvious improvement to the H–T approach to solving the TSP is to reduce the number
of terms needed to represent the constraints by using the form to
represent the column constraints, for example. This eliminates the need for the third
term in equation (12), thus the penalty parameter C is also eliminated.

Artificial Neural Networks 437

Perhaps the most important breakthrough in the field, however, came from the valid
subspace approach of Aiyer et al. (1990), and the subsequent work of Gee (1993). Their
idea is to represent the constraint set as a hyperplane, and encourage the solution to
lie upon it. This is achieved by including a single term in the energy function for the
constraints which attempts to minimize the deviation between the solution matrix and
the constraint plane, or valid subspace. A single penalty parameter needs to be selected,
which if large enough, will guarantee the feasibility of the final solution.

Some researchers have also attempted to address the limitations of the H–T approach
by considering alternative representations of constraints, suitable values for penalty
parameters, and other modeling issues. The majority of other researchers in the field,
however, have focused on the limitation of the Hopfield network dynamics. By extend-
ing the network dynamics to include stochasticity and hill-climbing capabilities, various
methods have emerged that attempt to avoid the many local minima of the energy
function.

The variations of the Hopfield network that have been proposed can be broadly
categorized as either deterministic or stochastic. The deterministic approaches include
problem specific enhancements such as the “divide and conquer” method of Foo and
Szu (1989) for solving the TSP, deterministic hill-climbing such as the “rock and roll”
perturbation method of Lo (1992), and the use of alternative neuron models within the
Hopfield network such as the winner-take-all neurons used by Amartur et al. (1992) to
improve the feasibility of the solutions. Stochastic approaches address the problem of
poor solution quality by attempting to escape from local minima. There are basically
four main methods found in the literature to embed stochasticity into the Hopfield
network:

replace sigmoidal transfer function with a stochastic decision-type function;

add noise to the weights of the network;

add noise to the external inputs of the network;

any combination of the above methods.

1.

2.

3.

4.

The Boltzmann machine (Aarts and Korst, 1989; Hinton et al., 1984) utilizes the first
method based on a discrete Hopfield model. The inputs are fixed, but the discrete
transfer function is modified to become probabilistic. Much like simulated annealing
(Kirkpatrick et al., 1983), the consequence of modifying the binary transfer level of
each neuron is evaluated according to the criteria of the Boltzmann probability factor.
This model is able to escape from local minima, but suffers from extremely large
computation times. In order to improve the efficiency and speed of the Boltzmann
machine, Akiyama et al. (1989) proposed Gaussian machines which combine features
of continuous Hopfield networks and the Boltzmann machine. Gaussian machines have
continuous outputs with a deterministic transfer function like the Hopfield network,
but random noise is added to the external input of each neuron. This noise is normally
distributed (or Gaussian) with a mean of zero and a variance controlled by a temperature
parameter T. However, based upon Szu’s fast simulated annealing (Szu and Hartley,
1987) which uses Cauchy noise to generate new search states and requires only a

cooling schedule, the Cauchy machine (Szu, 1988; Takefuji and Szu, 1989)
was proposed as an improvement to solution quality. The Cauchy distribution is thought
to yield a better chance of convergence to the global minimum than the Gaussian
distribution. Furthermore, Cauchy noise produces both local random walks and larger

438 J.-Y. Potvin and K.A. Smith

random leaps in solution space, whereas Gaussian noise produces only local random
walks (Takefuji and Szu, 1989). The noise is incorporated into the transfer function,
while the outputs of the Cauchy machine are binary. In the high-gain limit of the
stochastic transfer function (T near zero), the Cauchy machine approaches the behavior
of the discrete and deterministic Hopfield network. Another stochastic approach which
has been very successful is mean-field annealing (Peterson and Soderberg, 1989; Van
den Bout and Miller, 1989, 1990), so named because the model computes the mean
activation levels of the stochastic binary Boltzmann machine.

2.5 Performance

Hopfield and Tank successfully applied their approach to several optimization prob-
lems including an analog-to-digital converter, a signal decision circuit, and a linear
programming model (Tank and Hopfield, 1986). It was, however, their results for the
combinatorial TSP that attracted the most attention. Hopfield and Tank (1985) sim-
ulated a network of 10 cities (100 neurons), chosen at random on the interior of a
2-dimensional unit square. Their results for small-sized problems were quite encour-
aging. For a 10 city problem, and for 20 random starts, 16 converged to valid tours.
About 50% of the trials produced one of the two known shortest tours. Hopfield and
Tank then studied a 30 city (900 neuron) problem. Since the time required to simulate
the differential equations on a computer scales worse than their results were
fragmentary. They were unable to find appropriate penalty parameters to generate valid
tours, and commented that “parameter choice seems to be a more delicate issue with
900 neurons than with 100”. In fact, their best solution was around 40% away from the
best known solution of Lin and Kernighan (1973) on the same 30 city problem.

Since then, the many modifications to the original H–T approach have seen consid-
erable improvement in these results. A recent fuzzy modification of Aiyer’s subspace
approach yielded nearest-city quality tours for up to 100 randomly generated cities
(Wolfe, 1999). Peterson and Soderberg reported solutions for 200 cities using a mean
field annealing neural network that were only slightly worse than simulated annealing
results (Peterson and Soderberg, 1993). These results are still a long way from those
that can be obtained by well known heuristics. For example, the iterated Lin-Kernighan
heuristic can routinely find solutions within 1 % of optimal for problems with thousands
of cities (Johnson, 1990). Even other neural network approaches such as the deformable
template methods discussed in the next section yield considerably better results than
the Hopfield variations seem capable of.

The advantage of the H–T approach to combinatorial optimization however lies
in its generalization abilities. The H–T approach can be applied to any combinatorial
optimization problem that can be formulated within quadratic terms. It does not rely
on the geometry of the problem like many of the TSP heuristics or the deformable
template methods. The many variations of the Hopfield network that have emerged
over the last decade or so have been applied to a wide range of classical combina-
torial optimization problems including assignment problems, constraint satisfaction
problems, graph problems, integer programming, and scheduling problems to name
a few. We refer the interested reader to Smith (1999) for a survey of these and other
applications. Many of the results are competitive with other metaheuristic approaches.
One of the deficiencies of the literature in this area, however, is the fact that few studies
are established as comparative analyses, aimed to determine the competitiveness of

Artificial Neural Networks 439

the proposed neural network approach with the best known heuristic or metaheuristic
approaches to the same problem. This makes a true evaluation of the performance
of Hopfield-type models difficult. As Looi (1992) noted, “although there is a large
collection of operations research based and other methods for solving all of these prob-
lems, comparisons between neural network methods with existing methods have been
lacking”. Solutions to this problem in the form of guidelines for experiments have now
been published (Barr et al., 1995; Hooker, 1995) and we hope that researchers will soon
provide enough studies of this nature that an accurate evaluation of the performance
and potential of Hopfield-type neural networks on a wide variety of problems can be
established.

3 DEFORMABLE TEMPLATES

Elastic nets (EN) and Self-organizing maps (SOM), often referred to as deformable
templates, provide alternatives for solving low-dimensional problems with a geomet-
ric interpretation, like the Euclidean TSP. These models are fundamentally different
from H–T, as they evolve in a low-dimensional continuous search space. In the follow-
ing, we describe both models for solving the Euclidean TSP. We then establish some
relationships between the two models and present a few extensions.

3.1 Elastic Net

The elastic net (EN) of Durbin and Willshaw (1987), originated from a previous work
by Willshaw and von der Malsburg (1979). It is an iterative procedure where M points,
with M typically larger than the number of vertices (or cities) N, are lying on a circular
ring or “rubber band” originally located at the center of gravity of the vertices. The
rubber band is gradually elongated until it is sufficiently close to each vertex to define
a tour. During that process two forces apply: one for minimizing the length of the ring,
and the other for minimizing the distance between the vertices and the ring. These
forces are gradually adjusted as the procedure evolves.

Figure 15.1 (a)–(c) show how the elastic net typically evolves over time. In the figure,
the small black circles are the points located on the ring which are migrating towards
the vertices in the Euclidean plane. When there is a point on the ring sufficiently close
to each vertex, a solution is obtained, as shown in Figure 15.1(d). This model will now
be presented more formally, using a pseudocode notation. Let be the coordinates of
vertex i, i = 1,..., N, the coordinates of ring point j , j = 1,. . . , M, and the
Euclidean distance between i and j. We have:

Step 0: j = 1 , . . . , M ;

Step 1: Repeat rep times
1.1 Update the coordinates of ring

point j, j = 1, . . . , M ;

1.2 If min then STOP;

Step 2
Step 3: Go back to Step 1.

Step 0 initializes the scale parameter K (see below) and selects an initial location
for the points on the ring. In Step 1, the points migrate towards the vertices through

:

j=1,...,M

440 J.-Y. Potvin and K.A. Smith

an iterative procedure governed by parameter K. After a fixed number of iterations,
related to the size of the problem, the value of parameter K is slightly reduced and
the migration process is pursued with this new value. This is repeated until there is
a point on the ring sufficiently close to each vertex, as specified by the tolerance An
alternative or additional stopping criterion for EN is to iterate until some preset
value is reached and then, to associate each vertex with the closest ring point. Parameter
K is reminiscent of the temperature parameter in the simulated annealing algorithm, as
its value must be progressively reduced according to a prespecified “cooling schedule”
to obtain a good solution to the problem.

In Step 1.1, the coordinates of each ring point j are updated as follows:

where

where are constant parameters and is a normalized measure of the “attraction”
of vertex i on ring point j. In equation (16), the term drives the points on the ring

Artificial Neural Networks 441

towards the vertices, and the term keeps neighboring points on the ring together during
the migration process to produce a short tour (i.e., neighboring points are associated
with vertices that are close in distance). These two forces are illustrated in Figure 15.2.

In this figure, force (1) is derived from the term, and drives point j towards vertex
i. Force (2), which is derived from the term, is more easily understood by considering
the equivalence

It thus defines a tension on the ring that keeps neighboring points together. Through
parameters and the relative strength of the two forces can be regulated.

It is work noting that the update equations (16) can be expressed as the derivative
of an appropriate energy function namely

where

This algorithm thus finds a local minimum of this energy function by perform-
ing a gradient descent in a continuous two-dimensional Euclidean space. When K

approaches 0 and the ratio of M to N approaches infinity, minimizing the energy is
equivalent to minimizing the total length of the ring and, thus, the solution value. Since
the shape of the energy function and its local minima change with K, the function
is gradually modified through a slow reduction of the value of parameter K until the
minima correspond to good TSP tours.

3.2 Self-organizing Map

A self-organizing map is an instance of the so-called competitive neural networks
(Kohonen, 1982, 1988). It is composed of a layer of input units fully connected to
a layer of output units, the latter being organized according to a particular topology,
such as a ring structure. Self-organizing maps basically produce topological mappings

442 J.-Y. Potvin and K.A. Smith

from high-dimensional input spaces to low-dimensional output spaces. In the case of
a ring structure, the p-dimensional input vectors are associated with output units or
1-dimensional positions on the ring. The mapping is such that two input vectors that
are close in the input space will be associated with units that are close on the ring.

In Figure 15.3, a SOM with P = 2 white input units and M = 3 black output units
(indexed from 1 to 3) is illustrated.

In Figure 15.3, and denote the weights on the connections from the two
input units to output unit 1, and is the weight vector associated with
output unit 1. In a TSP context, each input vector corresponds to the coordinates of a
vertex. We then want vertices that are close in distance to be associated with units that
are close on the ring to produce a short tour.

This is obtained through the following iterative adjustment of the connection
weights. Let assume that we have a SOM with two input units and M output units
on a ring, each with weight vector Let

be the coordinates of vertex i, i = 1, . . . , N and the Euclidean
distance between vertex i and output unit j. Then, we have:

Step 0 : Initialization. j = 1, . . . ,M;

Step 1: Competition.
1.1 mod (N + 1) ;

1.2
1.3

Step 2: Weight adjustment.

Step 3: If i = 1, . . . , N, then STOP;
Step 4: Go back to Step 1.

In Step 1, the winning output unit j* is the one with the closest weight vector
(in Euclidean distance) to the current vertex. In Step 2, function f is typically a decreas-
ing function of the lateral distance between output units j and j* on the ring (i.e., if
there are k units on the ring between the two, the lateral distance is k+1) and its range
is the interval [0,1]. Thus, the weight vector of the winning unit j* and the weight
vectors of units that are close to j* on the ring all move towards the current vertex, but

Artificial Neural Networks 443

with decreasing intensity as the lateral distance to the winning unit increases. Typically,
function f is modified as the algorithm unfolds to gradually reduce the magnitude of
the weight adjustment. At the start, all units that are close to the winning unit on the
ring “follow” that unit in order to move in the same area. At the end, only the weight
vector of the winning unit significantly moves towards the current vertex.

This iterative adjustment procedure is repeated, through multiple passes over the
set of vertices (c.f., the modulo operator in Step 1.1) until there is a weight vector
sufficiently close to each vertex. Other or additional stopping criteria may be considered
like a fixed number of passes through the vertices or a stable competition, when it is
observed that the winning unit for each vertex does not change anymore from one pass
to another. The association of each vertex with a weight vector (i.e., an output unit with
an index or position on the ring) produces a tour. If we consider the two-dimensional
weight vector of each output unit on the ring as the location of that unit in the Euclidean
space, Figure 15.1 is still a good way of visualizing the evolution of the SOM with the
output units on the ring migrating towards the vertices.

3.3 Extensions

Since both EN and SOM exploit the geometry of the problem, they have mostly been
applied to the TSP. A few extensions are reported in the literature for the mutiple TSP
(Goldstein, 1990) and vehicle routing problems (Ghaziri, 1991, 1996; Matsuyama,
1991; Vakhutinsky and Golden, 1994; Potvin and Robillard, 1995). In these applica-
tions, mutiple tours are formed through the migration in parallel of multiple rings. In the
case of the VRP, the capacity or time constraints typically break the geometrical nature
of the problem and the algorithm must be modified accordingly. The SOM described
in (Ghaziri, 1991), for example, involves competition for the current vertex at two dif-
ferent levels: one within each ring based on geometric properties and the other among
the rings to take into account the capacity constraints. Some recent papers have also
generalized the SOM for applications in non geometric contexts, like the multidimen-
sional knapsack problem and the generalized quadratic assignment problem (Glover,
1994; Smith, 1995). These approaches depart from the traditional ring structure and
exploit more complex mappings and topologies.

3.4 Performance

Both SOM and EN are closely related. They both involve migration of a ring towards
vertices, although the mechanism for updating the location of the ring points is different.
In the case of EN, the update is defined through the minimization of an appropriate
energy function. The SOM does not require such a function.

It is difficult to get an accurate picture of the performance of the two models from the
current literature. The results are scattered in different journals from different research
area. Computation times are often missing and comparisons with alternative methods
are rare. Furthermore, the problems are not taken from standard benchmarks. Overall,
the literature indicates that both EN and SOM outperform the Hopfield model on the
TSP. For problems with up to a few hundred cities, EN often ends up with slightly better
solutions than SOM (Angeniol et al., 1988). However, it is also more computationally
expensive, as it requires more iterations to converge (c.f., the slow cooling schedule
of scale parameter K). SOM scales up better and has been applied on much larger
problems. In (Favata and Walker, 1991), for example, the authors report results on

444 J.-Y. Potvin and K.A. Smith

problems with up to 10,000 vertices. The solutions obtained were about 5% worse than
those produced by a simulated annealing heuristic.

4 PRACTICAL ISSUES

While the previous sections presented a review of Hopfield neural networks, elastic
nets and self-organizing maps, this section aims to discuss some of the more practical
issues affecting their performance. These have been separated into issues affecting the
efficiency of the models, and further issues that have proven to be problematic for
researchers and need careful consideration.

4.1 Hopfield Model

4.1.1 Efficiency Issues

The efficiency of the Hopfield network for solving combinatorial optimization depends
significantly on the way in which the problem is mapped onto the network. The encoding
of the variables, constraints, and objective function into the Hopfield energy function
and the values of the penalty parameters combine to determine the complexity of the
energy surface. This, in turn, affects the degree to which the Hopfield network dynamics
are able to search for local minima.

Problem Representation It is interesting to note that all of the Hopfield network
applications to the TSP have been based on the formulation used by Hopfield and Tank
which uses a decision variable denoting if a city belongs to a given position in the
tour sequence. The operations research community however has based many of its TSP
methods on another formulation: here the decision variable denotes if city i follows
city j in the tour sequence. This alternative formulation results in a linear objective
function, but some complex constraints are needed to avoid sub-tours. Hopfield and
Tank’s method cannot readily be applied to the linear formulation due to the difficulty
of encoding this constraint (Smith et al., 1996). Nevertheless, this raises the issue of the
existence of alternative formulations for a given problem, and the degree to which this
impacts the efficiency of any resulting Hopfield networks. A recent study of a Hopfield
network application to school timetabling has shown that, where two formulations
exist for a problem, the chosen formulation greatly impacts the dimensionality of the
neurons, the number of constraints needed to represent the problem, and the complexity
of the energy surface (Smith et al., 1999).

Energy Function There are frequently several different ways of enforcing con-
straints in an energy function. As was shown in Section 2.4, Hopfield and Tank’s TSP
row and column constraints can be rewritten to explicitly state that each row and column
must sum to one, thus eliminating the need for their third term in the energy function
(Brandt et al., 1988). For other constraint types also, there are often several different
approaches to incorporating them into the energy function (Peterson and Soderberg,
1993). Other researchers avoid the need for representing constraints in the energy
function by modifying the network dynamics. This is the approach taken by mean field
annealing (Van den Bout and Miller, 1989), where a row constraint stating that the
neurons must sum to one is handled by normalizing the neuron states in each row.
The aim in exploring different representations of constraints is to reduce the number
of terms and parameters needed in the energy function, as well as perhaps to reduce

Artificial Neural Networks 445

the number of local minima generated by these terms. Other terms often added to the
energy function include one of the form which is designed to encour-
age convergence to binary valued neuron states. This term essentially adds a concave
term to the original energy surface, thus altering the convexity and driving the solution
towards the vertices of the unit hypercube.

Penalty Factors The choice of penalty factor values affect the contour of the
energy function surface, and thus greatly affect the ability of the Hopfield network
to find local minima of the optimization problem. For many types of constraints, the
penalty factors can be treated as equivalent (e.g., penalty factors for row and column
constraints in the TSP should be identical, since these constraints are equally important
and equally difficult to satisfy). This observation can often reduce the search space for
the optimal penalty factor combination. Many researchers have attempted to eliminate
the need for trial and error parameter selection by examining the theoretical balancing
of terms in the energy function. For the TSP, Hedge et al. (1988) showed that, while
some regions of parameter space can be identified that yield better quality results, the
size of these regions diminishes rapidly as the problem size increases. Kamgar-Parsi
and Kamgar-Parsi (1992) developed a systematic method for selecting the penalty
factors based on analyzing the dynamical stability of feasible solutions. Trial and error
searching however does not necessarily preclude a systematic method. The efficiency
of searching for optimal penalty parameter values can be improved by adopting the
following systematic approach: first find values for the penalty factors that provide
a feasible solution, holding the objective function penalty factor constant at unity.
Once a combination of penalty factors has been found that consistently yields feasible
solutions, slowly start to increase the objective function factor in an attempt to produce
less expensive feasible solutions. As soon as feasibility is lost, the bounds on this
parameter can be established. This much reduced search space can then be explored in
more detail to obtain the combination of penalty factors that yields consistently feasible
and optimal solutions.

4.1.2 Problematic Issues

There are a number of important issues that researchers should be aware of when
developing Hopfield network models for solving combinatorial optimization prob-
lems. Some of these issues are rarely addressed in the available literature, yet they
dramatically affect the degree to which the Hopfield network follows its theoretical
behavior.

Diagonal Weights A common misconception in the literature is that zero diagonals of
the weight matrix are necessary for the stable states of the continuous model
to coincide with those of the original discrete model. This belief has no doubt evolved
due to Hopfield’s original simplifying assumption that In fact, there are
no restrictive conditions on the diagonals of W for the continuous model to converge
to a minimum of If however, that minimum may lie in the interior of
the hypercube, due to the convexity of the energy function. In this case, annealing
techniques are usually employed to drive the solution trace towards the vertices.

Unlike the continuous model however, non-zero diagonal elements of the discrete
Hopfield network do not necessarily allow Liapunov descent to local minima of

446 J.-Y. Potvin and K.A. Smith

This is because the change in energy due to a change in output level is

Since results in and results in under the discrete
model, the first term on the right-hand side of (22) is always negative. The second term
is positive however for Consequently, is only negative provided

Thus, for non-negative diagonal elements, convergence of the discrete model is guar-
anteed. For negative diagonals, however, convergence may not be possible since
is large for discrete dynamics. The continuous model does not suffer from these prob-
lems if implemented using the differential equation system (4) and (5). When these
equations are simulated on a computer, however, the time discretization means that this
model too may become unstable if the changes to neuron states are too large.

Consequently, it is important to be aware that, for problems with negative diagonals
of the weight matrix (this includes many practical applications, as well as Hopfield and
Tank’s original TSP formulation), strict Liapunov descent for even the continuous
model will become harder to simulate and cannot be guaranteed during simulation in
the extreme high-gain limit (i.e., T near zero) of the continuous transfer function (which
approximates the discrete case). If the best we can do for simulation purposes
is to make sure the gain of the transfer function is not so high that we are approximating
the discrete model too effectively. We can then use an annealing technique to drive the
network towards a vertex solution. Of course, these problems are not encountered in
a hardware implementation where the differential equation (4) does not need to be
simulated.

There is also a relationship worth noting between the diagonal elements of the
weight matrix and the shape of the energy surface. As mentioned above, adding a term
of the form to the energy function serves to encourage convergence
to the vertices of the unit hypercube. The process of hysteretic annealing proposes
starting with a negative value for and slowly increasing to positive so that the energy
surface is converted from convex to concave, driving the solutions out to the vertices.
The idea of slowly decaying away the diagonal weight elements has also been shown
to lead to chaotic dynamics, which have been useful for escaping local minima of the
energy function (Chen and Aihara, 1995).

Simulation While the continuous Hopfield network is designed to be implemented
in hardware, most researchers simulate its behavior on a computer. This involves
using a discrete-time approximation to the differential equation (4), such as the Euler
approximation:

If the time-step is too large, the dynamics of the simulated network will not
closely approximate the continuous model, and Liapunov descent cannot be guaranteed.
This can be seen also by equations (22) and (23) since a large time step produces a large
change in neuron states If the time-step is too small, convergence can be guaranteed

Artificial Neural Networks 447

but the time required to simulate the network will be increased. For a TSP with N

cities, it has been shown (Kamgar-Parsi and Kamgar-Parsi, 1987) that a time-step for
the simulation of (4) as small as is required, slowing down simulations
immensely for large problem sizes, and making the discretization of the continuous
model quite ineffective. The value chosen for the transfer function parameter T also
needs to be selected with care, since it too can produce large changes in neuron states

and result in oscillations. Kamgar-Parsi and Kamgar-Parsi (1987) have proposed
a discrete-time Hopfield network model with continuous dynamics that satisfies the
condition in (23) and produces quick convergence.

Initial States Since the Hopfield network is a gradient descent technique, the ini-
tial states of the neurons play a large role in determining the final solution quality.
Certainly, the discrete-time versions of the networks incorporate some stochasticity
since neurons are selected for updating at random (only the continuous model imple-
mented in hardware is truly deterministic). Nevertheless, this degree of stochasticity is
rarely enough to avoid the high dependence of the solution on the initial states. Most
researchers report their results based on multiple random and unbiased initializations
to avoid this dependence. Some work has been conducted to identify heuristic methods
for more effective initializations (Lai and Coghill, 1994; Naphade and Tuzun, 1995;
Schwartz et al., 1991).

Updating Mode For any discrete-time version of the Hopfield network (discrete
model or simulated continuous model), there are two ways of updating the neurons:
asynchronously (sequentially) or synchronously (in parallel). Asynchronous updating
is the method described in Section 2, whereby a neuron is chosen at random and
its internal and external states are updated before the next random neuron is chosen.
Liapunov descent is guaranteed under these conditions (provided equation (23) holds
true). For synchronous updating however, all neurons update their internal states, and
then the updated values are used to simultaneously update the external states. Under
this updating mode, convergence cannot be guaranteed and the network may become
trapped in a 2-cycle (Bruch, 1990). Most researchers use the asynchronous mode of
updating to avoid such oscillations.

Solution Integrality For combinatorial optimization problems the final solution
needs to be binary, even if the method used approaches this solution from within the
unit hypercube. Using the discrete Hopfield model is appropriate for ensuring binary
solutions, but the problems with convergence for many practical problems where

have resulted in most researchers turning to the continuous model. There
are several approaches to encouraging binary solutions within the continuous model.
Firstly, we can use a gradient of the transfer function with T near zero (which approxi-
mates the discrete transfer function (2)), but this risks producing convergence problems
like the discrete model, as discussed above. Secondly, we can add an additional term to
the energy function to drive towards the vertices. While this introduces another para-
meter to select, some additional advantages can be found due to the chaotic effect on
the dynamics and the hill-climbing this creates (Chen and Aihara, 1995). Other meth-
ods have been proposed including a variety of rounding approaches and heuristics for
interpretation of final non-integer solutions (Wolfe, 1999).

Termination Criteria One of the factors that has made it difficult for researchers
to reproduce Hopfield and Tank’s original results is that they omitted certain critical
details in their paper about the method used to simulate the differential equation, and
the termination criteria. Wilson and Pawley (1988) experimented with three different

448 J.-Y. Potvin and K.A. Smith

termination criteria in an effort to reproduce the results: the network simulation was
terminated if (i) a valid tour was found, (ii) the network had frozen as measured by no
neuron values changing by more than since the last update, and (iii) more than
1000 updating iterations had elapsed (a “time-out” test, useful for catching cyclic and
oscillatory convergence). Wilson and Pawley found that 1000 iterations were sufficient
for their experiments, and increasing the “time-out” range to 10,000 iterations did not
produce any improvement in results. It is important to be aware, however, that the
quality of the reported results is usually affected greatly by the termination criteria
selected, and researchers need to be sure to report these accurately.

4.2 Elastic Net

4.2.1 Efficiency Issues

In the EN algorithm, updating the position of the ring points is computationally expen-
sive, as the update of a single point depends on the position of every vertex, through
the attraction coefficients Furthermore, these coefficients must be recomputed at
each iteration. For the complexity of each iteration is thus Different
approaches have been proposed to reduce this burden.

Filtering A natural way of addressing the problem without degrading too much solu-
tion quality is to consider only vertices that have a significant impact on the ring points
(Boeres et al., 1992; Vakhutinsky and Golden, 1995). In other words, attraction coef-
ficients that are not of sufficient magnitude, because their vertices are too far from
the corresponding ring points, are filtered out. A large number of coefficients may be
eliminated in this way because the function decreases quickly as the square of
the distance grows.

Hierarchical EN The idea of the hierarchical EN (Vakhutinsky and Golden, 1995)
is to divide the area containing the vertices into smaller subareas and to replace the
vertices in each subarea by a single vertex located at their center of gravity. As the
algorithm unfolds, the subareas are progressively reduced until each subarea contains
a single vertex. It is reported that working on smaller aggregated problems at the start
allows the algorithm to find the general shape of the solution more quickly.

4.2.2 Problematic Issues

When implementing an elastic net algorithm, the following issues should be taken
care of:

Normalization of Coordinate Vectors The behavior of EN may be quite different
from one problem instance to another. Some authors have noted that a more robust
algorithmic behavior is obtained by normalizing the coordinate vectors of the vertices
(Favata and Walker, 1991).

Initial Ring The number of ring points M to be used is clearly related to the
number of vertices N. However, using too many points leads to a loss of efficiency. In
the literature, M is usually set around 2.5N. The initial position of the ring is typically
around the center of gravity of the vertices. Good results are also reported when the
points on the ring correspond to the convex hull of the vertex set (Burke, 1994).

Ring Migration When the value of parameter K is large, the energy function is
rather smooth, but as this value is reduced a multimodal energy landscape emerges,

Artificial Neural Networks 449

where good local minima should correspond to good tours. In order to obtain this result,
parameter K must be slowly reduced to avoid some form of twisting or crossover of
the ring (which typically leads to long tours). For example, a problem with 100 vertices
was solved in (Durbin and Willshaw, 1987) by setting K to an initial value of 0.2 and by
reducing it by 1% every 25 iterations until a value in the range 0.01–0.02 was obtained.

Interpretation of the Final Configuration Two or more different ring points may
be associated with the same vertex if they are all within the tolerance of that vertex (this
is sometimes referred to as a spike). Conversely, a ring point may be associated with
two or more vertices. In such cases, the solution is not well defined. In Figure 15.4(a),
two ring points are within the tolerance of vertex 2, and two different sequences 1-2-3-
4-5 and 1-3-4-2-5 are obtained depending of the ring point chosen. In Figure 15.4(b), a
single ring point is associated with vertices 2 and 3. Hence, it is impossible to know if
vertex 2 is visited before or after vertex 3. One possible way of solving these problems
is through postprocessing. For example, all valid solutions obtainable with the current
configuration can be considered and the best overall solution is taken. Trying to avoid
this phenomenon during the course of the algorithm is rather difficult. Some theoretical
studies indicate that an appropriate setting of the ratio (so that it is about one-half of
the average inter-point distance on the ring) is likely to lead to fully-specified solutions
(Simmen, 1991).

4.3 Self-organizing Map

4.3.1 Efficiency Issues

As noted by different authors (Burke and Damany, 1992; Favata and Walker, 1991),
significant gains in efficiency are obtained by reducing the number of ring points that
move towards the current vertex (i.e., those that are close the the winning point) and also
by reducing the magnitude of the move. In Step 2, the update mechanism is governed
by function f (j , j*) which has a form like:

where

otherwise

450 J.-Y. Potvin and K.A. Smith

In this definition, is the lateral distance on the ring between point j and winning
point j* (assuming that the points on the ring are indexed from 1 to M), and is
the absolute value of x. This function is such that it always returns a value of 1 for
the winning point, and this value decreases as the lateral distance from the winning
point increases; when the lateral distance goes beyond parameter L, the points do
not move at all. The value of parameter is increased from one pass to another to
progressively reduce the magnitude of the move of neighboring units. At the end,
when is sufficiently large, only the winning unit moves towards the current vertex
and separates from its neighbors to fix the solution.

4.3.2 Problematic Issues

Since the SOM is closely related to EN, many issues mentioned above for EN still hold
here. We thus focus on a specific issue, which is related to the mechanics of the SOM
for updating the ring location.

Ring Point Freezing Solution ambiguity can occur, either because many ring points
fall within the tolerance of a given vertex or a single ring point falls within the tolerance
of two or more vertices. However, due to the specific methodology adopted for stretch-
ing the ring, which is based on a competition between ring points, it may also happen
that a number of points will freeze at their initial location, because they never win any
competition. Consequently, partially-defined tours are obtained, where a number of
vertices are (i.e., do not have any close ring points). Different techniques
have been proposed to alleviate this problem:

In Angeniol et al. (1988), the implementation is based on the distinctive feature
that ring points are dynamically created and deleted. A point is duplicated if it
wins for two different vertices after a complete pass through the set of vertices. It
is deleted, if it does not win after three complete passes. Through this mechanism,
vertices are less likely to end up alone. Starting with a single point on the ring, the
authors report that up to twice as many points as vertices may be created during
the procedure.

In Burke and Damany (1992), a conscience mechanism proposed by Desieno
(1988) replaces the dynamic creation and deletion of ring points. A penalty is
added to the distance between a ring point and a vertex, based on the number
of times that point has won the competition in the past. Consequently, frequent
winners are heavily penalized in favor of other units. Basically, Step 1.2 (com-
petition) in the SOM algorithm of Section 3.2 is modified as follows for a given
vertex i and ring point j:

where is the penalty or bias associated with ring point j. This penalty is
typically the fraction of competitions won by ring point j in the past. Good
results are reported with a number of ring points now equal to the number of
vertices, leading to substantial savings in computation time.

Parameter that weighs the penalty with respect to the true distance in the con-
science mechanism, is reportedly difficult to tune. In (Burke, 1994), a vigilant net
is proposed where ring points are turned off if they win too often to let others win.
Basically, the number of wins is recorded for each unit and that unit is turned off

Artificial Neural Networks 451

for the remaining of the pass through the set of vertices, if this number exceeds
some threshold value (known as the vigilant parameter). At the start of the next
pass, the winning score of all units is reset to zero. The vigilance parameter is
large initially, to allow the vertices to win freely at the start, and is progressively
reduced until it reaches a value of one, to let the ring points separate and converge
towards distinct vertices.

5 CONCLUDING REMARKS

This chapter has reviewed the two main types of neural network models that can be
used for combinatorial optimization: Hopfield networks and the deformable template
models of elastic nets and self-organizing maps. The review has covered both the
theoretical aspects of their application to combinatorial optimization problems, as well
as discussing a variety of practical considerations that affect the performance of the
models.

From a metaheuristics viewpoint, neural networks can be seen as an alternative tech-
nique with the current potential to match the performance of better known algorithms
such as tabu search and simulated annealing. This potential relies on due considera-
tion of the aforementioned range of issues affecting the success and efficiency of the
methods. The deformable template methods are well suited to solving low dimensional
problems with geometric interpretation like the TSP. The Hopfield network method
generalizes to a broad range of combinatorial problems, but the cost of this general-
ization is a reduction in efficiency and scalability. Certainly, current developments in
hardware implementation of neural architectures should see some of these limitations
relaxed in future years. The advantage of neural networks over other metaheuristic
techniques could then be more fully demonstrated.

ACKNOWLEDGMENTS

This work was partly supported by the Canadian Natural Sciences and Engineering
Research Council (NSERC) and the Quebec Fonds pour la Formation de Chercheurs
et l’ Aide a la Recherche (FCAR). This support is gratefully acknowledged.

REFERENCES

Aarts, E.H.L. and Korst, J. (1989) Simulated Annealing and Boltzmann Machines.

John Wiley & Sons., Essex.

Aiyer, S.V.B., Niranjan, M. and Fallside, F. (1990) A theoretical investigation into
the performance of the Hopfield model. IEEE Transactions on Neural Networks, 1,
204–215.

Akiyama, Y., Yamashita, A., Kajiura, M. and Aiso, H. (1989) Combinatorial optimiza-
tion with gaussian machines. Proceedings IEEE International Joint Conference on

Neural Networks, 1, 533–540.

Amartur, S.C., Piraino, D. and Takefuji, Y. (1992) Optimization neural networks for
the segmentation of magnetic resonance Images. IEEE Transactions on Medical

Imaging, 11, 215–220.

452 J.-Y. Potvin and K.A. Smith

Angeniol, B., Vaubois, G. and Le Texier, J.Y. (1988) Self-organizing feature maps and
the travelling salesman problem. Neural Networks, 1, 289–293.

Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C. and Stewart, W.R. (1995)
Designing and reporting on computational experiments with heuristic methods.
Journal of Heuristics, 1, 9–32.

Boeres, M.S.C., de Carvalho, L.A.V. and Barbosa, V.C. (1992) A faster elastic net
algorithm for the traveling salesman problem. In: Proceedings of the International

Joint Conference on Neural Networks. Baltimore, U.S.A., II-215-220.

Brandt, R.D., Wang, Y., Laub, A.J. and Mitra, S.K. (1988) Alternative networks for
solving the travelling salesman problem and the list-matching problem. Proceedings

International Conference on Neural Networks Vol. 2, 333–340.

Bruch, J. (1990) On the convergence properties of the Hopfield model. Proceedings

of the IEEE, 78(10), 1579–1585.

Burke, L.I. (1994) Adaptive neural networks for the traveling salesman problem:
insights from operations research. Neural Networks, 7, 681–690.

Burke, L.I. and Damany, P. (1992) The guilty net for the traveling salesman problem.
Computers & Operations Research, 19, 255–265.

Burke, L.I. and Ignizio, J.P. (1992) Neural networks and operations research: an
overview. Computers & Operations Research, 19, 179–189.

Chen, L. and Aihara, K. (1995) Chaotic simulated annealing by a neural network
model with transient chaos. Neural Networks, 8(6), 915–930.

Desieno, D. (1988) Adding a conscience mechanism to competitive learning. In: Pro-

ceedings of the IEEE International Conference on Neural Networks, San Diego,
U.S.A., I-117-124.

Durbin, R. and Willshaw, D.J. (1987) An analogue approach to the traveling salesman
problem using an elastic net method. Nature, 326, 689–691.

Favata, F. and Walker, R. (1991) A study of the application of Kohonen-type neural
networks to the traveling salesman problem. Biological Cybernetics, 64, 463–468.

Foo, Y.P.S. and Szu, H. (1989) Solving large-scale optimization problems by divide-
and-conquer neural networks. Proceedings IEEE International Joint Conference on

Neural Networks, 1, 507–511.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability. W.H. Freeman,
New York.

Gee, A.H. (1993) Problem Solving with Optimization Networks, Ph.D. Dissertation,
Queen’s College, Cambridge University, U.K.

Ghaziri, H. (1991) Solving routing problems by a self-organizing map. In: T. Kohonen,
K. Makisara, O. Simula and J. Kangas (eds.), Artificial Neural Networks. North-
Holland, Amsterdam, pp. 829–834.

Ghaziri, H. (1996) Supervision in the self-organizing feature map: application to the
vehicle routing problem. In: I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics:

Theory & Applications. Kluwer, Boston, pp. 651–660.

Glover, F. (1994) Optimization by ghost image processes in neural networks.
Computers & Operations Research, 21, 801–822.

Artificial Neural Networks 453

Goldstein, M. (1990) Self-organizing feature maps for the multiple traveling salesmen
problem. In: Proceedings of the International Neural Network Conference. Paris,
France, pp. 258–261.

Hegde, S., Sweet, J. and Levy, W. (1988) Determination of parameters in a hopfield/
tank computational network. Proceedings IEEE International Conference on Neural

Networks, 2, 291–298.

Hinton, G.E., Sejnowski, T.J. and Ackley, D.H. (1984) Boltzmann machines: con-
straint satisfaction networks that learn. Carnegie Mellon University Technical
Report CMU-CS-84-119.

Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–
2558.

Hopfield, J.J. (1984) Neurons with Graded response have collective computational
properties like those of two-state neurons. Proceedings of the National Academy of

Sciences, 81, 3088–3092.

Hopfield, J.J. and Tank, D.W. (1985) Neural computation of decisions in optimization
problems. Biological Cybernetics, 52, 141–152.

Hooker, J.N. (1995) Testing heuristics: we have it all wrong. Journal of Heuristics, 1,
33–42.

Johnson, D.S. (1990) Local optimization and the traveling salesman problem. In: G.
Goos and J. Hartmanis (eds.), Automata, Languages and Programming, Lecture

Notes in Computer Science 443. Springer-Verlag, Berlin, pp. 446–461.

Kamgar-Parsi, B. and Kamgar-Parsi, B. (1987) An efficient model of neural networks
for optimization. Proceedings IEEE International Conference on Neural Networks,

3, 785–790.

Kamgar-Parsi, B. and Kamgar-Parsi, B, (1992) Dynamical stability and parameter
selection in neural optimization. Proceedings IEEE International Conference on

Neural Networks, 4, 566–571.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science, 220, 671–680.

Kohonen, T. (1982) Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43, 59–69.

Kohonen, T. (1988) Self-Organization and Associative Memory. Springer, Berlin.

Lai, W.K. and Coghill, G.G. (1992) Genetic breeding of control parameters for the
Hopfield/Tank neural net. Proceedings International Joint Conference on Neural

Networks, 4, 618–623.

Lai, W.K. and Coghill, G.G. (1994) Initialising the continuous Hopfield net.
Proceedings IEEE International Conference on Neural Networks, 7, 4640–4644.

Lin, S. and Kernighan, B.W. (1973) An effective heuristic algorithm for the travelling
salesman problem. Operations Research, 21, 498–516.

Lo, J.T.-H. (1992) A new approach to global optimization and its applications to neural
networks. Proceedings IEEE International Joint Conference on Neural Networks,

4, 600–605.

454 J.-Y. Potvin and K.A. Smith

Looi, C.K. (1992) Neural network methods in combinatorial optimization. Computers

& Operations Research, 19, 191–208.

Matsuyama, Y. (1991) Self-organization via competition, cooperation and catego-
rization applied to extended vehicle routing problems. In: Proceedings of the

International Joint Conference on Neural Networks. Seattle, U.S.A., I-385-390.

McCulloch, W.S. and Pitts, W. (1943) A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Minsky, M. and Papert, S. (1969) Perceptrons. MIT Press, Cambridge, MA.

Naphade, K. and Tuzun, D. (1995) Initializing the Hopfield–Tank network for the
TSP using a convex hull: a computational study. Intelligent Engineering Systems

Through Artificial Neural Networks. vol. 5. ASME Press, New York, pp. 399–404.

Nemhauser, G.L. and Wolsey, L.A. (1988) Integer and Combinatorial Optimization.

John Wiley & Sons, Canada.

Peterson, C. and Soderberg, B. (1989) A new method for mapping optimization
problems onto neural networks. International Journal of Neural Systems, 1, 3–22.

Peterson, C. and Soderberg, B. (1993) Artificial neural networks. In: C.R. Reeves
(ed.), Modern Heuristic Techniques for Combinatorial Optimisation, Chapter 5.
Blackwell Scientific Publishers, Oxford, UK.

Potvin, J.Y. (1993) The traveling salesman problem: a neural network perspective.
ORSA Journal on Computing, 5, 328–348.

Potvin, J.Y. and Robillard, C. (1995) Clustering for vehicle routing with a competitive
neural network model. Neurocomputing, 8, 125–139.

Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65, 386–408.

Rumelhart, D.E. and McClelland, J.L. (1986) Parallel distributed processing:

explorations in the microstructure of cognition, I & II. MIT Press, Cambridge, MA.

Schwartz, B.L., Das, P. and Koch, J.B. (1991) Initialization in Hopfield networks.
Neurocomputing, 3(3), 135–145.

Simmen, M. W. (1991) Parameter sensitivity of the elastic net approach to the traveling
salesman problem. Neural Computation, 3, 363–374.

Smith, K.A. (1995) Solving the generalized quadratic assignment problem using a
self-organizing process. In: Proceedings IEEE International Conference on Neural

Networks 4, Perth, Australia, pp. 1876–1879.

Smith, K.A. (1999) Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS Journal on Computing, 11, 15–34.

Smith, K.A., Abramson, D. and Duke, D. (1999) Efficient timetabling formulations
for Hopfield neural networks. In: C. Dagli et a), (eds.), Smart Engineering System

Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining,

and Complex Systems, vol. 9. ASME Press, pp. 1027–1032.

Smith, K.A., Palaniswami, M., Krishnamoorthy, M. (1996) A hybrid neural approach
to combinatorial optimization. Computers & Operations Research, 23, 597–610.

Szu, H. and Hartley, R. (1987) Fast simulated annealing. Physics Letters A, 122,
157–162.

Artificial Neural Networks 455

Szu, H. (1988) Fast TSP algorithm based on binary neuron output and analog input
using zero-diagonal interconnect matrix and necessary and sufficient conditions
of the permutation matrix. Proceedings IEEE International Conference on Neural

Networks, 2, 259–266.

Takefuji, Y. and Szu, H. (1989) Design of parallel distributed Cauchy machines
Proceedings IEEE International Joint Conference on Neural Networks, 1, 529–532.

Tank, D.W. and Hopfield, J.J. (1986) Simple neural optimization networks: an
A/D converter, signal decision circuit and a linear programming circuit. IEEE

Transactions on Circuit Systems, 33, 533–541.

Vakhutinsky, A.I. and Golden, B.L. (1994) Solving vehicle routing problems using
elastic nets. Proceedings of the IEEE International Conference on Neural Networks,

7, 4535–4540.

Vakhutinsky, A.I. and Golden, B.L. (1995) A hierarchical strategy for solving traveling
salesman problems using elastic nets. Journal of Heuristics, 1, 67–76.

Van Den Bout, D.E. and Miller, T.K. (1988) A travelling salesman objective function
that works. Proceedings IEEE International Conference on Neural Networks, 2,
299–303.

Van Den Bout, D.E. and Miller, T.K. (1989) Improving the performance of the
Hopfield–Tank neural network through normalization and annealing. Biological

Cybernetics, 62, 129–139.

Van Den Bout, D.E. and Miller, T.K. (1990) Graph partitioning using annealed neural
networks. IEEE Transactions on Neural Networks, 1, 192–203.

Willshaw, D.J. and von der Malsburg, C. (1979) A marker induction mechanism for
the establishment of ordered neural mappings: its application to the retinotectal
problem. Philosophical Transactions of the Royal Society, Series B, 287, 203–243.

Wilson, G. V. and Pawley, G.S. (1988) On the stability of the TSP algorithm of Hopfield
and Tank. Biological Cybernetics, 58, 63–70.

Wolfe, W.J. (1999) A fuzzy Hopefield–Tank traveling salesman problem model.
INFORMS Journal on Computing, 11(4), 329–344.

This page intentionally left blank

Chapter 16

HYPER-HEURISTICS: AN EMERGING DIRECTION
IN MODERN SEARCH TECHNOLOGY

Edmund Burke, Graham Kendall and Jim Newall
The University of Nottingham, UK

Emma Hart, Peter Ross and Sonia Schulenburg
Napier University, UK

Abstract This chapter introduces and overviews an emerging methodology in search and
optimisation. One of the key aims of these new approaches, which have been termed hyper-

heuristics, is to raise the level of generality at which optimisation systems can operate. An
objective is that hyper-heuristics will lead to more general systems that are able to handle
a wide range of problem domains rather than current meta-heuristic technology which tends
to be customised to a particular problem or a narrow class of problems. Hyper-heuristics are
broadly concerned with intelligently choosing the right heuristic or algorithm in a given situ-
ation. Of course, a hyper-heuristic can be (often is) a (meta-)heuristic and it can operate on
(meta-)heuristics. In a certain sense, a hyper-heuristic works at a higher level when compared
with the typical application of meta-heuristics to optimisation problems, i.e., a hyper-heuristic
could be thought of as a (meta)-heuristic which operates on lower level (meta-)heuristics. In this
chapter we will introduce the idea and give a brief history of this emerging area. In addition, we
will review some of the latest work to be published in the field.

Keywords: Hyper-heuristic, Meta-heuristic, Heuristic, Optimisation, Search

1 INTRODUCTION

Meta-heuristics have played a key role at the interface of Artificial Intelligence and
Operational Research over the last 10–15 years or so. The investigation of meta-
heuristics for a wide and diverse range of application areas has strongly influenced
the development of modern search technology. Indeed, applications of meta-heuristic
development can be found in such diverse areas as scheduling, data mining, stock
cutting, medical imaging and bio-informatics, and many others. However, while such
developments have deepened our scientific understanding of the search process and
the automatic solution of large complex problems, it is true to say that the practical
impact in commercial and industrial organisations has not been as great as might have
been expected some years ago. Many state-of-the-art meta-heuristic developments are

E. Burke et al.

too problem-specific or too knowledge-intensive to be implemented in cheap, easy-
to-use computer systems. Of course, there are technology provider companies that
have brought such developments to market but such products tend to be expensive
and their development tends to be very resource intensive. Often, users employ simple
heuristics which are easy to implement but whose performance is often rather poor.
There is a spectrum which ranges from cheap but fragile heuristics at one extreme and
knowledge-intensive methods that can perform very well but are hard to implement and
maintain at the other extreme. Many small companies are not interested in solving their
optimisation problems to optimality or even close to optimality. They are more often
interested in “good enough—soon enough—cheap enough” solutions to their problems.
There is a current school of thought in meta-heuristic and search technology that con-
tends that one of the main goals of the discipline over the next few years is to raise
the level of generality at which meta-heuristic and optimisation systems can operate.
This would facilitate the development of easy to implement (and cheap to implement)
systems that can operate on a range of related problems rather than on one narrow
class of problems. Of course, many papers in the literature discuss meta-heuristic and
heuristic development on just one problem instance. Such papers provide a valuable
insight into meta-heuristic development but they offer little assistance to a small com-
pany that simply cannot afford the significant amount of resources that are required to
tailor make special purpose meta-heuristics for the company’s own version of whatever
optimisation problem it has.

This chapter is concerned with hyper-heuristics which is an emerging search tech-
nology that is motivated, to a large extent, by the goal of raising the level of generality at
which optimisation systems can operate. The term has been defined to broadly describe
the process of using (meta-)heuristics to choose (meta-)heuristics to solve the problem
in hand. The majority of papers in the (meta-)heuristics area investigate the use of
such approaches to operate directly on the problem. For example, most of the papers
on Evolutionary Computation in timetabling consider populations of timetables and
the basic idea is that the population will evolve over a number of generations with
the aim of generating a strong population. However, a hyper-heuristic Evolutionary
approach to timetabling [1,18] would deal with a population of (meta-)heuristics for
the timetabling problem and, over a number of generations, it is these (meta-)heuristics
that would evolve. Another example of the use of hyper-heuristics is presented in [2]
where a genetic algorithm evolves the choice of heuristic (in open shop scheduling)
whenever a task is to be added to the schedule under construction. Of course, in 1994,
the term hyper-heuristic did not exist and the process was called “evolving heuristic
choice.” These examples are discussed in more detail later in the chapter. There are
many more examples of such approaches and indeed one of the main purposes of this
chapter is to give an overview of them.

One of the main motivations for studying hyper-heuristic approaches is that they
should be cheaper to implement and easier to use than problem specific special purpose

methods and the goal is to produce good quality solutions in this more general frame-
work. Of course, the overall aim of the hyper-heuristic goal goes beyond meta-heuristic
technology. Indeed, there is current work which is investigating the development of
machine learning approaches (such as case-based reasoning) to intelligently select
heuristics according to the situation in hand [3,4]. Such an approach is very much
concerned with the same goal that motivates hyper-heuristic development. Actually,

458

Hyper-heuristics: An Emerging Direction 459

there is considerable scope for hybridising meta-heuristics with such machine learning
approaches to intelligent heuristic selection [4].

This chapter is not intended to be an intensive survey of all the scientific papers
which are related to the basic hyper-heuristic definition and that seek to satisfy the
same objective. Rather, it is intended to give a brief overview of the idea and to set it
within the context of the current state-of-the-art in meta-heuristic technology.

2 THE EMERGENCE OF HYPER-HEURISTICS

2.1 The Concept and its Origins

This section builds on the concept of hyper-heuristics and describes some early
examples.

For many real-world problems, an exhaustive search for solutions is not a practical
proposition. The search space may be far too big, or there may not even be a convenient
way to enumerate the search space. For example, there may be elaborate constraints
that give the space of feasible solutions a very complex shape. It is common then to
resort to some kind of heuristic approach, sacrificing a guarantee of finding an opti-
mal solution for the sake of speed and perhaps also a guarantee of obtaining at least a
certain level of solution quality. Enormous numbers of heuristics have been developed
over the years, each typically justified either by experimental results or by an argu-
ment based on the specific problem class for which the heuristic in question had been
tailored.

The term ‘heuristic’ is sometimes used to refer to a whole search algorithm and is
sometimes used to refer to a particular decision process sitting within some repetitive
control structure. Viewing heuristics as search algorithms, some authors have occa-
sionally tried to argue for the absolute superiority of one heuristic over another. This
practice started to die out when in 1995 Wolpert and MacReady [5] published their “No
Free Lunch Theorem” which showed that, when averaged over all problems defined on
a given finite search space, all search algorithms had the same average performance.
This is an intuitively natural result since the vast majority of possible problems have
no exploitable structure whatsoever, such as some form of global or local continuity,
differentiability or regularity. They can only be defined by a complete lookup table.
The “No Free Lunch Theorem” helped to focus attention on the question of what sorts
of problems any given algorithm might be particularly useful for.

Long before the theorem was published it was clear that individual heuristics, how-
ever valuable, could have interesting quirks and limitations. Consider, for example, the
topic of one-dimensional bin-packing. In its simplest incarnation there is an unlimited
supply of identical bins and there is a set of objects to be packed into as few bins as
possible. Each object has an associated scalar (think of it as the object’s weight) and a
bin cannot carry more than a certain total weight. The general task of finding an optimal
assignment of objects to bins is NP-hard. A commonly used heuristic is ‘largest first,
first fit’: sort the objects into decreasing order of weight, then, taking them in this order,
put each object into the first bin into which it will fit (the bins in use are ordered too,
according to when they first came into use). This heuristic has the benefits of simplicity
and cheapness; it may not produce a solution that uses the minimal number M of bins,
but it is known that it will not use more than 11M/9+4 bins [6]. See [7] for a good survey
of such results. A worst-case performance guarantee of this sort can be very reassuring

460 E. Burke et al.

if, for example, money is at stake. However, the following example due to Ron Graham
of AT&T Labs shows that even this simple heuristic contains surprises. In this problem,
the bins have capacity 524 and the 33 objects have the weights shown in Table 16.1.

You can easily verify that the ‘largest first, first fit’ heuristic will produce a solution
that uses seven bins, exactly filling all of them. However, if the object of weight 46 is
removed from the problem, leaving only 32 objects to pack, the algorithm now uses
eight bins. It is counter-intuitive that the heuristic should produce a worse result on a
sub-problem than it does on the strictly larger problem.

As an example of heuristics that are tailored to specific types of problem, consider
another one-dimensional bin-packing heuristic due to Djang and Finch [8], called by
them ‘Exact Fit’. The heuristic fills one bin at a time, as follows. Objects are taken
largest first, and placed in the bin until the bin is at least one-third full. It then sets an
allowable wastage initially The heuristic searches for one object that fills the
bin to within of its capacity. If this fails it searches for any two objects that fill the bin
to within If this fails it searches for any three objects that fill the bin towithin If
this also fails it sets and repeats. As reported by the authors, this outperforms
a variety of earlier heuristics on a large set of benchmark problems. However, these
benchmark problems are of a particular sort: all the objects have a weight that is a
significantly large fraction of a bin’s capacity. Benchmark problems tend not to involve
many objects with very small weights, because those objects can be treated as a form
of ‘sand’ that can be used to fill up otherwise wasted space. It should be clear that the
‘Exact Fit’ heuristic can perform very badly on problems in which the objects are all
very small. For example, consider a problem in which the bins have capacity 100 and
there are 1000 objects each of weight 1. In the optimal solution ten bins are needed; the
‘Exact Fit’ heuristic will put at most 37 objects in any one bin and so will use 28 bins.

It would be plausible to argue that any self-respecting bin-packing heuristic should
not start a new bin if there were existing partially-filled bins still capable of holding
further items. Such heuristics would never use more than 2M bins because, if they did,
there would be at least two bins whose combined contents fitted into one bin and so the
heuristic should have at least been able to combine their contents or otherwise ensure
that at least one of them was better filled. So there is a large class of heuristics whose
worst-case performance on a large class of problems is better than that of ‘Exact Fit’,
even though ‘Exact Fit’ is very successful on benchmark problems that are generally
acknowledged to be hard (but see [9] for a dissenting view).

2.2 The Concept of Hyper-heuristics

Since different heuristics have different strengths and weaknesses, it makes sense to see
whether they can be combined in some way so that each makes up for the weaknesses
of another. A simplistic way of doing this would be as shown in Figure 16.1.

Hyper-heuristics: An Emerging Direction 461

One logical extreme of such an approach would be an algorithm containing an
infinite switch statement enumerating all finite problems and applying the best known
heuristic for each. There are many more practical problem-solving frameworks than
this, such as the greedy randomised adaptive search procedure GRASP [10] which
repeatedly fabricates a candidate solution C from parts on a so-called ‘restricted candi-
date list’, conducts a local search starting from C to find a locally optimal answer, and
uses that to update information about desirability of parts and thus revise the restricted
candidate list.

The key idea in hyper-heuristics is to use members of a set of known and reasonably
understood heuristics to transform the state of a problem. The key observation is a
simple one: the strength of a heuristic often lies in its ability to make some good
decisions on the route to fabricating an excellent solution. Why not, therefore, try
to associate each heuristic with the problem conditions under which it flourishes and
hence apply different heuristics to different parts or phases of the solution process? For
example, it should be clear from the preceding discussion that in bin-packing, some
combination of the ‘Exact Fit’ procedure and the ‘largest first, first fit’ procedure should
be capable of outperforming either of them alone.

The alert reader will immediately notice an objection to this whole idea. Good
decisions are not necessarily easily recognizable in isolation. It is a sequence of deci-
sions that builds a solution, and so there can be considerable epistatis involved—that is,
a non-linear interdependence between the parts. However, many general search proce-
dures such as evolutionary algorithms can cope with a considerable degree of epistasis,
so the objection is not necessarily fatal. And, on the positive side, there are some real
potential benefits as far as real-world use is concerned. For example, in attempting to
find a way to combine heuristic ingredients it can be possible to start from a situation
in which a single, pure and unalloyed heuristic is used throughout the solution process.
If it fails to survive the search process that is attempting to combine ingredients from
different heuristics, it is because it wasn’t good enough; the process has discovered
something better.

Here, therefore, is one possible framework for a hyper-heuristic algorithm:

1.

2.

3.

4.

start with a set H of heuristic ingredients, each of which is applicable to a problem
state and transforms it to a new problem state. Examples of such ingredients in
bin-packing are a single top-level iteration of ‘Exact Fit’ or a single top-level
iteration of ‘largest first, first fit’;

let the initial problem state be

if the problem state is then find the ingredient that is in some sense most
suitable for transforming that state. Apply it, to get a new state of the problem

if the problem is solved, stop. Otherwise go to 3.

462 E. Burke et al.

There could be many variants of this, for example in which the set H varies as the
algorithm runs or in which suitability estimates are updated across the iterations or in
which the size of a single state transformation varies because the heuristic ingredients
are dynamically parameterised. There is very considerable scope for research here.

2.3 Some Historical Notes

Intellectually, the concept of hyper-heuristics owes a debt to work within the field of
Artificial Intelligence on automated planning systems. The earliest of such systems
tried to devise a series of actions to achieve a given goal, usually a goal composed of a
conjunct of required state features, by finding actions which would reduce the difference
between the current state of the world and the desired state. This hill-climbing approach
suffered all the familiar problems of such a method. Later systems such as the DART
logistical planning system [11] were much more sophisticated; DART was used in the
Gulf War and was later judged by the US Chamber of Commerce to have saved more
money than the US Government had spent on funding all forms of AI research over
the previous 30 years. The focus eventually turned towards the problem of learning
control knowledge; perhaps the best-known example is Minton’s PRODIGY system
[12] which used explanation-based learning to learn what action would be best to apply
at each decision point.

This thread of AI research on planning and scheduling led to one of the earliest
examples of a hyper-heuristic approach, the LR-26 scheduler within the COMPOSER
system [13] was used for planning satellite communication schedules involving a num-
ber of earth-orbiting satellites and three ground stations. The problems involved are far
from trivial. For example, certain satellites must communicate at some length with a
ground station several times per day, with a predetermined maximum interval between
communications, and yet the communication windows and choice of ground stations
are constrained by the satellites’ orbits. LR-26 treats the problem as a 0–1 integer pro-
gramming problem involving hundreds of variables and thousands of linear constraints.
The system handles many of the constraints by Langrangian relaxation, i.e., by con-
verting them to weighted components of the objective function that is to be maximised,
so that if a constraint is violated the consequence is that the objective function value
will be reduced by some amount that depends on the associated weight. The sched-
uler works by finding a partial schedule that may not satisfy all constraints, finding
uncommitted variables within unsatisfied constraints and proposing values for them,
and searching through a stack of such proposals to find good extensions to the partial
schedule.

There are various possible heuristics used for each of several decision steps in this
process. In particular, there are four different weight-adjustment heuristics, 9 primary
and 9 secondary heuristic methods of ordering the set of unsatisfied constraints, 2
heuristic methods for proposing possible solutions to unsatisfied constraints and 4
heuristic methods for stacking these proposals for consideration. There are thus 4 ×
9 × 9 × 2 × 4 = 2592 possible strategies. To evaluate any one strategy properly meant
testing it on 50 different problems which, the authors calculate, would have meant
spending around 450 CPU days to evaluate all the strategies. Instead, COMPOSER
applied a simple hill-climbing strategy thus restricting the search to 4 + 2 + (9 ×
4) + 9 = 51 strategies, at a tolerable cost of 8.85 CPU days. The outcome was “a
significant improvement in performance”, in terms of solution speed and quality and

Hyper-heuristics: An Emerging Direction 463

in the number of problems that could be solved at all, compared to the originally-
used strategy. A potential disadvantage of the approach lies in the assumption that the
training set is in some way representative of future problems. In the area of satellite
communication scheduling this is unlikely to be true—new satellites can have new orbits
and different and potentially less demanding communication window requirements, for
example.

A second example of the use of a hyper-heuristic approach concerns open-shop
scheduling problems. In such problems there are, say, j jobs each consisting of a
certain number of tasks. A task consists of visiting a certain machine for a certain task-
specific length of time. The tasks associated with a job can be done in any order—if it
was a fixed job-specific order then it would be a job-shop problem instead. Fang et al.
[2] used a genetic algorithm which built solutions as follows. A chromosome was a
series of pairs of integers interpreted from left to right and meaning,
for each ‘consider the uncompleted job (regarding the list of uncompleted jobs
as circular, so that this is always meaningful) and use heuristic to select a task to
insert into the schedule in the earliest place where it will fit’. Examples of heuristics
used included:

choose the task with largest processing time;

choose the task with shortest processing time;

of those tasks which can be started as early as possible, choose the one with
largest processing time;

among those operations which can be inserted into any gap in the schedule, pick
the one that best fills a gap (that is, leaves as little idle time as possible);

and so on.

This approach, termed evolving heuristic choice, provided some excellent results
on benchmark problems including some new best results at that time. Nevertheless,
there are some caveats. First, what is the nature of the space being searched? It is
likely that in many cases, several heuristics might lead to the same choice of task,
so it may be that the search space is not nearly as large as it might first seem. Sec-
ond, is the genetic algorithm necessary or might some simpler, non-population-based
search algorithm do as well? Third, if there are n tasks then there are effectively
n – 1 pairs of genes (there is no choice when it comes to inserting the very last
task), so if n is large the chromosome will be very long and there is a real risk that
genetic drift will have a major impact on the result. Fourth, the process evolves
solutions to individual problems rather than creating a more generally applicable
algorithm.

Schaffer [14] carried out an early investigation into the use of a genetic algorithms
which select heuristics. The paper describes the Philips FCM SMD robot and the
heuristic selection genetic algorithm.

In Hart and Ross [15] considered job-shop scheduling problems. The approach
there relies on the fact that there is an optimal schedule which is active—an active
schedule is one in which, to get any task completed sooner you would be forced to alter
the sequence in which tasks get processed on some machine, and to do that you would
force some other task to be delayed. The optimal schedule might even be non-delay,

that is, not only active but also such that no machine is ever idle when there is some

464 E. Burke et al.

task that could be started on it. There is a widely-used heuristic algorithm due to Giffler
and Thompson [16] that generates active schedules:

1.

2.

3.

4.

5.

let C = the set of all tasks that can be scheduled next

let t = the minimum completion time of tasks in C, and let m = machine on
which it would be achieved

let G = the set of tasks in C that are to run on m whose start time is < t

choose a member of G, insert it in the schedule

go to 1.

Note that step 4 involves making a choice. This algorithm can be simplified so as
to generate non-delay schedules by only looking at the earliest-starting tasks:

1.

2.

3.

4.

let C = the set of all tasks that can be scheduled next

let G = the subset of C that can start at the earliest possible time

choose a member of G, insert it in the schedule

go to 1.

Note that step 3 also involves making a choice. The idea in [15] is to use a chro-
mosome of the form where the chromosome is again read from
left to right and is 0 or 1 and indicates whether to use an iteration of the Giffler
and Thompson algorithm or an iteration of the non-delay algorithm to place one more
task into the growing schedule, and indicates which of twelve heuristics to use to
make the choice involved in either algorithm. Again, this produced very good results
on benchmark problems when tested on a variety of criteria. The authors looked at
the effective choice at each stage and found that fairly often, there were only one or
two tasks to choose between, and never more than four. The space being searched
is thus much smaller than the chosen representation would suggest; many different
chromosomes represent the same final schedule. The authors also observed that, in
constructing a schedule, it is the early choices that really matter. For example, if the
first 50% of choices are made according to what the evolved sequence of heuristic
choices suggests, but the other 50% are made at random, then the result is still a very
satisfactory schedule. This suggests at least a partial answer to the worry raised above
about using very long chromosomes: quite simply, do not do it. Instead, use a much
shortened chromosome just to evolve the early choices and then resort to using a fixed
heuristic to complete the construction.

A real-world example of using a hyper-heuristic approach is described in [17],
where the problem is to schedule the collection and delivery of live chickens from
farms all over Scotland and Northern England to one of two processing factories, in
order to satisfy the set of orders from supermarkets and other retailers. The customer
orders would change week by week and sometimes day by day. The task was to schedule
the work done by a set of ‘catching squads’ who moved around the country in mini-
buses, and a set of lorries who would ferry live chickens from each farm back to one of
the factories. The principal aim was to keep the factories supplied with work without
requiring live chickens to wait too long in the factory yard, for veterinary and legal
reasons. This was complicated by many unusual constraints. For example, there were
several types of catching squad, differentiated by which days they worked, when they
started work, what guaranteed minimum level of work they had been offered and what

Hyper-heuristics: An Emerging Direction 465

maximal amount they could do. There were constraints on the order in which farms
could be visited, to minimise potential risks of spreading diseases of chickens. There
were constraints on the lorry drivers and on how many chickens could be put into a single
‘module’ (a tray-like container) and variations in the number of such modules different
lorries could carry, and so on. Overall, the target was not to produce optimal schedules
in cost terms, because the work requirements could anyway change at very short notice
but it was not generally practicable to make very large-scale changes to staff schedules
at very short notice. Instead, the target was to create good schedules satisfying the many
constraints, that were also generally similar to the kinds of work pattern that the staff
were already familiar with, and to do so quickly and reliably. The eventual solution used
two genetic algorithms. One used a heuristic selection approach to decompose the total
set of customer orders into individual tasks and assign those tasks to catching squads.
The other started with these assignments and evolved the schedule of lorry arrivals at
each factory; from such schedules it was possible to reason backwards to determine
which squad and lorry had to arrive at each farm at which times, and thus construct a full
schedule for all participants. In the first genetic algorithm, the chromosome specified
a permutation of the customer orders and then two sequences of heuristic choices.
The first sequence of choices worked through the permutation and split each order
into loads using simple heuristics about how to partition the total customer order into
convenient workload chunks; the second sequence of choices suggested how to assign
those chunks to catching squads. The end result did meet the project’s requirements
but, like many other practically-inspired problems, it was not feasible to do a long-term
study to determine just how crucial each of the ingredients was to success. However, the
authors report that a more conventional permutation-based genetic algorithm approach
to this scheduling task had not been successful.

In the above examples (apart from the hill-climbing approach used in the LR-26
satellite communication scheduler), a genetic algorithm was used to evolve a fine-
grained sequence of choices of heuristics, with one choice per step in the process of
constructing a complete solution. Although the end results were generally good, this
is still somewhat unsatisfactory because the method evolves solutions only to specific
instances of problems and may not handle very large problems well. A different kind
of hyper-heuristic approach that begins to tackle such objections is described in [18].
That paper is concerned with solving large-scale university exam timetabling problems.
There are a number of fixed time-slots at which exams can happen, and there are rooms
of various sizes. Two exams cannot happen at the same time if there is any student who
takes both; more than one exam can happen in a room at the same time if no student
takes both and the room is large enough. Certain exams may be constrained to avoid
certain time-slots when, for example, an appropriate invigilator is unavailable. There
are also some ‘soft’ constraints which it would be good to respect but which can be
violated if necessary. For example, it is desirable that no student should have to sit
exams in consecutive time-slots on the same day and it is often desirable that very large
exams should happen early so as to permit more time for marking them before the end
of the whole exam period. Such problems can involve thousands of exams and tens of
thousands of students.

The approach taken in [18] is to suppose that there is an underlying timetable
construction algorithm of the general sort shown in Figure 16.2.

The idea is to use a genetic algorithm to evolve the choices of H1, H2, H3 and
H4 and the condition X which determines when to switch from the first phase to the

466 E. Burke et al.

second. Some of the heuristics and possible conditions involved further parameters,
such as whether and how much to permit backtracking in making a choice, or switching
to phase 2 after placing N events. The rationale for using such an algorithm is that many
timetabling problems necessitate solving a certain sort of problem initially (for example,
a bin-packing problem to get the large exams well packed together if room space is
in short supply) but a different sort of problem in the later stage of construction. Soft
constraints are handled within the heuristics, for example, in order to cut down the
chances of a student having exams in adjacent time-slots an heuristic might consider
time-slots in some order that gave adjacent slots a very low priority.

A chromosome was evaluated by constructing the timetable and assessing the qual-
ity of the result. Interestingly, this method solved even very large timetabling problems
very satisfactorily in under 650 evaluations. The authors also conducted a brute-force
search of the space of chromosomes in order to check whether the genetic algorithm
was delivering very good-quality results (at least as far as the chosen representation
would permit) whilst visiting only a tiny proportion of the search space, and were able
to confirm the truth of this. However, they did not also examine whether the discovered
instances of the framework described in Figure 16.2 could be applied successfully to
other problems originating from the same university; this is a topic for further research.

3 HYPER-HEURISTIC FRAMEWORK

This section describes a particular hyper-heuristic framework that has been presented
in [19,20,25–28]. As has been discussed earlier, a metaheuristic typically works on
the problem directly, often with domain knowledge incorporated into it. However, this
hyper-heuristic framework operates at a higher level of abstraction and often has no
knowledge of the domain. It only has access to a set of low level heuristics that it can
call upon, but with no knowledge as to the purpose or function of a given low level
heuristic. The motivation behind this suggested approach is that once a hyper-heuristic
algorithm has been developed then new problem domains can be tackled by only having

Hyper-heuristics: An Emerging Direction 467

to replace the set of low level heuristics and the evaluation function, which indicates
the quality of a given solution.

A diagram of a general hyper-heuristic framework is shown in Figure 16.3.
The figure shows that there is a barrier between the low level heuristics and the

hyper-heuristic. Domain knowledge is not allowed to cross this barrier. Therefore, the
hyper-heuristic has no knowledge of the domain under which it is operating. It only
knows it has n low level heuristics on which to call and it knows it will be passed the
results of a given solution once it has been evaluated by the evaluation function.

There is, of course, a well defined interface between the hyper-heuristic and the
low level heuristics. The reasons for this are two-fold

1. It allows the hyper-heuristic to communicate with the low level heuristics using
a standard interface, otherwise the hyper-heuristic would need a separate inter-
face for each low level heuristic which is obviously nonsensical. In addition, it
facilitates the passing of non-domain data between the low level heuristics and
the hyper-heuristic (and vice versa). For example, the interface developed in [25]
includes components such as the result of the evaluation function and the CPU
time taken by the low level heuristic (which, equally, could be calculated by the
hyper-heuristic). In addition, we have also included a component that allows us
to “tell” a low level heuristic how long it has to run. The motivation behind this
idea is that we call each heuristic in turn giving it a specified amount of time and
the heuristic that performs the best, in the time allowed, is the one that is applied
to the current solution. In conjunction with this component, the interface also
defines if the low level heuristic should apply its changes to the current solution
or if it should just report what effect it would have if it did apply those changes.
The idea is that the hyper-heuristic can ask each low level heuristic how well
it will do against a given solution. The hyper-heuristic can then decide which
heuristic (or set of heuristics) should be allowed to update the solution. We have

468 E. Burke et al.

2.

not fully explored these ideas yet but the interface will allow us to investigate
them at an appropriate time.

It allows rapid development for other domains. When implementing a new prob-
lem, the user has to supply a set of low level heuristics and a suitable evaluation
function. If the low level heuristics follow a standard interface the hyper-heuristic
does not have to be altered in any way. It is able to simply start solving the new
problem as soon as the user has supplied the low level heuristics and the evalua-
tion function. That is, as stated above, we aim for a hyper-heuristic to operate at
a higher level of abstraction than a meta-heuristic approach.

An example of a hyper-heuristic operating at a higher level of abstraction can be
seen in the work of Cowling, Kendall and Soubeiga [19,25–27]. In [25] a hyper-
heuristic approach was developed and applied to a sales summit problem (a problem
of matching suppliers to potential customers at a sales seminar). In [25] the hyper-
heuristic had access to 10 low level heuristics which included removing a delegate

from a meeting with a particular supplier, adding a delegate to supplier to allow them

to meet and remove meetings from a supplier who has more than their allocation.

In [26] the hyper-heuristic was modified so that it automatically adapted some of its
parameters but, again, the sales summit problem was used as a test bench. In [27],
the hyper-heuristic remained the same but a new problem was introduced. This time,
the problem was scheduling third year undergraduate project presentations for a UK
university. Eight low level heuristics were developed, which included replace a staff

member in a given session, move one presentation from one session to another and
swap the 2nd marker for a given session. The changes were such that only the low level
heuristics and the evaluation function was changed. The hyper-heuristic remained the
same in the way that it chose which low level heuristic to call next. Good quality
solutions were produced for this different problem domain.

This idea was further developed in [19] when the same hyper-heuristic approach
was applied to nurse rostering.

The only information that the hyper-heuristic has access to in this framework is
data which is common to all problem types and which it decides to record as part of its
internal state. For example, the hyper-heuristic might store the following:

How much CPU time a given heuristic used when it was last called?

The change in the evaluation function when the given heuristic was called?

How long (possibly in CPU time) has elapsed since a given heuristic has not been
called?

The important point is that the hyper-heuristic has no knowledge as to the function
of each heuristic. For example, it will not know that one of the heuristics performs 2-opt
for the Traveling Salesman Problem. Indeed, it does not even know that the problem
being optimised is the Traveling Salesman Problem.

Of course, the hyper-heuristic designer is allowed to be as imaginative as he/she
wishes within the constraints outlined above. For example, the internal state of the
hyper-heuristic could store how well pairs of heuristics operate together. If the hyper-
heuristic calls one heuristic followed by another, does this lead to a worsening of the
evaluation function after the first call but a dramatic (or even slight) improvement after
the second heuristic has been called? Therefore, one hyper-heuristic idea might be to

Hyper-heuristics: An Emerging Direction 469

store data about pairs (triples etc.) of heuristics that appear to work well when called
consecutively but, if called in isolation, each heuristic, in general, performs badly.

Using its internal state, the hyper-heuristic has to decide which low level heuristic(s)
it should call next. Should it call the heuristic that has led to the largest improvement
in the evaluation function? Should it call the heuristic that runs the fastest? Should it
call the heuristic that has not been called for the longest amount of time? Or, and more
likely, should it attempt to balance all these factors (and more) to make an informed
decision as to which low-level heuristic (or pairs, triples etc.) it should call next.

The internal state of the hyper-heuristic is a matter for the designer, as is the process
to decide on which heuristic to call next, but once a suitable hyper-heuristic is in place
then the hope is that it will perform reasonably well across a whole range of problems
and not just the one for which it was originally implemented.

The hyper-heuristic framework described above is the framework adopted in
[25,26,27], where the hyper-heuristic maintains an internal state which is accessed
by a choice function to decide which low level heuristic to call next. The choice func-
tion is a combination of terms which considers recent performance of each low level
heuristic (denoted by), recent performance of pairs of heuristics (denoted by) and
the amount of time since a given heuristic has been called (denoted by). Thus we have

where is the kth heuristic, and are weights which reflect the importance of
each term. It is these weights that are adaptively changed in [26], is the recent
performance of heuristic is the recent performance of heuristic pair

and is a measure of the amount of time since heuristic was called.
and are aiming to intensify the search while attempts to add a degree of

diversification. The maximal value, dictates the heuristic which is called next.
A different type of hyper-heuristic is described in [28] where a genetic algorithm

is used to evolve a sequence of calls to the low level heuristics. In effect, the genetic
algorithm replaces the choice function described above and each member of the popu-
lation (that is, each chromosome) is evaluated by the solution it returns when applying
the heuristics in the order denoted by the chromosome. In later work by Han, Kendall
and Cowling [20] the chromosome length is allowed to adapt and longer chromosomes
are penalised on the basis that they take longer to evaluate.

However, in [20] and [28] the concept of the domain barrier remains and the genetic
algorithm has no knowledge of the problem. It simply tries to evolve a good sequence
of heuristic calls.

4 MODERN HYPER-HEURISTIC APPROACHES

There has been much recent research directed to the various aspects of Hyperheuristics.
An example that follows the framework described in Section 2.2 can be found in [21].
The focus here is on learning solution processes applicable to many problem instances
rather than learning individual solutions. Such process would be able to choose one
of various simple, well-understood heuristics to apply to each state of a problem,
gradually transforming the problem from its initial state to a solved state. The first use
of such model has been applied to the one-dimensional bin-packing problem described

470 E. Burke et al.

in Section 2.1. In this work, an accuracy-based Learning Classifier System (XCS) [22]
has been used to learn a set of rules that associates characteristics of the current state
of a problem with, in this case, eight different heuristics, two of which have been
explained in Section 2.1 (largest-first-first-fit and exact-fit). The set of rules is used as
follows: given the initial problem characteristics P, a heuristic H is chosen to pack a
bin, gradually altering the characteristics of the problem that remains to be solved. At
each step, a rule appropriate to the current problem state P’ is chosen, and the process
repeats until all items have been packed.

The approach is tested using 890 benchmark bin-packing problems, of which 667
were used to train the XCS and 223 for testing. The combined set provides a good
test of whether the system can learn from a very varied collection of problems. The
method (HH) achieved optimal results on 78.1% of the training problems, and 74.6%
of the remaining test solutions. This compares well with the best single heuristic (the
author’s improved version of exact-fit) which achieved optimality 73% of the time.
Largest-first-first-fit, for instance, achieves optimality in 62.2%, while another one of
the heuristics used named ‘next-fit’ reaches optimality in 0% of the problems. Even
though the results of the best heuristic might seem close to HH, it is also noteworthy
that when HH is trained purely on some of the harder problems (which none of the
component heuristics could solve to optimality alone), it manages to solve seven out
of ten of these problems to optimality.

Improvements over this initial approach are reported in [23], where a new heuristic
(R) that uses a random choice of heuristics has been introduced to compare results
of HH. R solves only 56.3% of the problems optimally, while HH reaches 80%. This
work also looks more closely at the individual processes evolved arising from two
different reward schemes presented during the learning process of HH. The behaviour
of HH is further analysed and compared to the performance of the single heuristics. For
instance, in HARD9, one of the very difficult problems used in the set, HH learned that
the combination of only two of the eight single heuristics (here called h1 to h8) reaches
optimality when none of the heuristics used individually achieved it. The solution found
by HH used only 56 bins, while the best of the individual heuristics used alone needs
58 bins. The best reported result, using a method not included in any of the heuristics
used by HH, used 56 bins (see [24], Data Set 3). Improvements of this type were found
in a large number of other problems, including all the HARD problems. The approach
looks promising and further research is being carried out to evaluate it in other problem
domains.

Cowling, Han, Kendall and Soubeiga (previous section) propose a hyper-heuristic
framework existing at a higher level of abstraction than meta-heuristic local search
methods, where different neighbourhoods are selected according to some “choice func-
tion”. This choice function is charged with the task of determining which of these
different neighbourhoods is most appropriate for the current problem. Traditionally
the correct neighbourhoods are selected by a combination of expert knowledge and/or
time consuming trial and error experimentation, and as such the automation of this task
offers substantial potential benefits to the rapid development of algorithmic solutions.
It naturally follows that an effective choice function is critical to the success of this
method, and this is where most research has been directed [19,25–27]. See the previous
section for a more detailed discussion.

The approach of Cowling, Kendall and Han to a trainer scheduling problem [28]
also fits into this class of controlling the application of low level heuristics to construct

Hyper-heuristics: An Emerging Direction 471

solutions to problems. In this approach a “Hyper-genetic algorithm” is used to evolve
an ordering of 25 low-level heuristics which are then applied to construct a solution.
The fitness of each member of the genetic algorithm population is determined by the
quality of the solution it constructs. Experimental results show that the method outper-
formed the tested conventional genetic and memetic algorithm methods. It also greatly
outperformed any of the component heuristic methods, albeit in a greatly multiplied
amount of CPU time.

Another approach proposed by Burke and Newall to examination timetabling prob-
lems [29] uses an adaptive heuristic to try and improve on an initial heuristic ordering.
The adaptive heuristic functions by first trying to construct a solution by initially
scheduling exams in an order dictated by the original heuristic. If using this order-
ing means that an exam cannot be acceptably scheduled, it is promoted up the order
in a subsequent construction. This process continues either until the ordering remains
static (all exams can be scheduled acceptably), or until a pre-defined time limit expires.
The experiments showed that the method can substantially improve quality over that
of the original heuristic. The authors also show that even when given a poor initial
heuristic acceptable results can still be found relatively quickly.

Other approaches that attempt to harness run-time experience include the con-
cept of Squeaky wheel optimisation proposed by Joslin and Clements [30]. Here a
greedy constructor is applied to a problem, followed by an analysis phase that iden-
tifies problematic elements in the produced solution. A prioritiser then ensures that
the greedy constructor concentrates more on these problematic elements next time, or
as the authors phrase it: “The squeaky wheel gets the grease”. This cycle is iterated
until some stopping criteria are met. Selman and Kautz propose a similar modifica-
tion to their GSAT procedure [31]. The GSAT procedure is a randomised local search
procedure for solving propositional satisfiability problems. It functions by iteratively
generating truth assignments and then successively “flips” the variable that leads the
greatest increase in clauses satisfied, in a steepest descent style. The proposed modi-
fication increases the “weight” of clauses if they are still unsatisfied at the end of the
local search procedure. This has the effect that on subsequent attempts the local search
element will concentrate more on satisfying these clauses and hopefully in time lead
to full satisfaction of all clauses.

Burke et al. [3] investigate the use of the case based reasoning paradigm in a hyper-
heuristic setting for selecting course timetabling heuristics. In this paper, the system
maintains a case base of information about which heuristics worked well on previous
course timetabling instances. The training of the system employs knowledge discovery
techniques. This work is further enhanced by Petrovic and Qu [4] who integrate the
use of Tabu Search and Hill Climbing into the Case Based Reasoning system.

5 CONCLUSIONS

It is clear that hyper-heuristic development is going to play a major role in search tech-
nology over the next few years. The potential for scientific progress in the development
of more general optimisation systems, for a wide variety of application areas, is signif-
icant. For example, Burke and Petrovic [32] discuss the scope for hyper-heuristics for
timetabling problems and this is currently an application area that is seeing significant
research effort [1,3,4,18,25,29,32]. Indeed, in 1997, Ross et al. [1] said, “However,

472 E. Burke et al.

all this naturally suggests a possibly worthwhile direction for timetabling research
involving Genetic Algorithms. We suggest that a Genetic Algorithm might be better
employed in searching for a good algorithm rather than searching for a specific solution
to a specific problem.” Ross, Hart and Corne’s suggestion has led to some important
research directions in timetabling. We think that this suggestion can be generalised fur-
ther and we contend that a potentially significant direction for metaheuristic research is
to investigate the use of hyper-heuristics for a wide range of problems. As this chapter
clearly shows, this work is already well underway.

ACKNOWLEDGEMENTS

The authors are grateful for support from the UK Engineering and Physical Sciences
Research Council (EPSRC) under grants GR/N/36660, GR/N/36837 and GR/M/95516.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

P. Ross, E. Hart and D. Corne (1997) Some observations about GA-based exam
timetabling. In: E.K. Burke and M. Carter (eds.), LNCS 1408, Practice and

Theory of Automated Timetabling II: Second International Conference, PATAT

1997, Toronto, Canada, selected papers. Springer-Verlag, pp. 115–129.

H.-L. Fang, P.M. Ross and D. Corne (1994) A promising hybrid GA/heuristic
approach for open-shop scheduling problems. In: A. Cohn (ed.), Proceedings of

ECAI 94: 11th European Conference on Artificial Intelligence. John Wiley and
Sons Ltd, pp. 590–594.

E.K. Burke, B.L. MacCarthy, S. Petrovic and R. Qu (2002) Knowledge discovery
in a hyper-heuristic for course timetabling using case based reasoning. In: Pro-
ceedings of the Fourth International Conference on the Practice and Theory of

Automated Timetabling (PATAT’02), Ghent, Belgium (to appear).

S. Petrovic and R. Qu (2002) Case-Based Reasoning as a Heuristic Selector in
a Hyper-Heuristic for Course Timetabling. In: Proceedings of the Sixth Interna-

tional Conference on Knowledge-Based Intelligent Information & Engineering

Systems (KES’2002), Crema, Italy (to appear).

D. Wolpert and W.G. MacReady (1997) No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

D.S. Johnson (1973) Near-optimal Bin-packing Algorithms. Ph.D. thesis. MIT
Department of Mathematics, Cambridge, MA.

E.G. Coffman, M.R. Garey and D.S. Johnson (1996) Approximation algorithms
for bin packing: a survey. In: D. Hochbaum (ed.), Approximation Algorithms for

NP-Hard Problems. PWS Publishing, Boston, pp. 46–93.

P.A. Djang and P.R. Finch. Solving one dimensional bin packing problems.
Available as http: //www.zianet.com/pdjang/binpack/paper.zip.

I.P. Gent (1998) Heuristic solution of open bin packing problems. Journal of

Heuristics, 3(4), 299–304.

Hyper-heuristics: An Emerging Direction 473

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

L.S. Pitsoulis and M.G.C. Resende (2001) Greedy randomized adaptive search
procedures. In: P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied
Optimization. OUP, pp. 168–181.
S.E. Cross and E. Walker (1994) Dart: applying knowledge-based planning
and scheduling to crisis action planning. In: M. Zweben and M.S. Fox (eds.),
Intelligent Scheduling. Morgan Kaufmann.
S. Minton (1998) Learning Search Control Knowledge: An Explanation-based

Approach. Kluwer.

J. Gratch, S. Chein and G. de Jong (1993) Learning search control knowledge
for deep space network scheduling. In: Proceedings of the Tenth International
Conference on Machine Learning. pp. 135–142.

J.D. Schaffer (1996) Combinatorial optimization by genetic algorithms: the
value of the phenotype/genotype distinction. In: E.D. Goodman, V.L. Uskov,
W.F. Punch III (eds.), First International Conference on Evolutionary Computing
and its Applications (EvCA’96), Russian Academy of Sciences, Moscow, Russia,
June 24–27, Institute for High Performance Computer Systems of the Russian
Academy of Sciences, Moscow, Russia, pp. 110–120.
E. Hart and P.M. Ross (1998) A heuristic combination method for solving job-shop
scheduling problems. In: A.E. Eiben, T. Back, M. Schoenauer and H.-P. Schwefel
(eds.), Parallel Problem Solving from Nature V, LNCS 1498, Springer-Verlag,
pp. 845–854.
B. Giffler and G.L. Thompson (1960) Algorithms for solving production
scheduling problems. Operations Research, 8(4), 487–503.
E. Hart, P.M. Ross and J. Nelson (1998) Solving a real-world problem using an
evolving heuristically driven schedule builder. Evolutionary Computation, 6(1),
61–80.
H. Terashima-Marín, P.M. Ross and M. Valenzuela-Rendón (1999) Evolution of
constraint satisfaction strategies in examination timetabling. In: W. Banzhaf et al.
(eds.), Proceedings of the GECCO-99 Genetic and Evolutionary Computation
Conference. Morgan Kaufmann, pp. 635–642.
P. Cowling, G. Kendall and E. Soubeiga (2002) Hyperheuristics: a robust
optimisation method applied to nurse scheduling. Technical Report NOTTCS-
TR-2002-6 (submitted to PPSN 2002 Conference), University of Nottingham,
UK, School of Computer Science & IT.
L. Han, G. Kendall and P. Cowling (2002) An adaptive length chromosome
hyperheuristic genetic algorithm for a trainer scheduling problem. Technical
Report NOTTCS-TR-2002-5 (submitted to SEAL 2002 Conference), University
of Nottingham, UK, School of Computer Science & IT.
P. Ross, S. Schulenburg, J.G. Marín-Blázquez and E. Hart (2002) Hyper-
heuristics: learning to combine simple heuristics in bin-packing problems.
Accepted for Genetic and Evolutionary Computation Conference (GECCO

20020) 2002, July 9–13, New York.

S. Wilson (1998) Generalisation in the XCS classifier system. In: J. Koza (ed.),
Proceedings of the Third Genetic Programming Conference. Morgan Kaufmann,
pp. 665–674.

474 E. Burke et al.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Schulenburg, P. Ross, J.G. Marín-Blázquez and E. Hart. A hyper-heuristic
approach to single and multiple step environments in bin-packing problems. Pro-

ceedings of the Fifth International Workshop on Learning Classifier Systems 2002

(IWLCS-02) (to appear).

http://bwl.tu-darmstadt.de/bwl3/forsch/projekte/binpp.

P. Cowling, G. Kendall, E. Soubeiga (2000) A hyperheuristic approach to
scheduling a sales summit. In: E.K. Burke and W. Erben (eds.), LNCS 2079, Prac-

tice and Theory of Automated Timetabling III: Third International Conference,

PATAT 2000, Konstanz, Germany, August, selected papers, Springer-Verlag,
pp. 176–190.

P. Cowling, G. Kendall and E. Soubeiga (2001) A parameter-free hyperheuristic
for scheduling a sales summit. In: Proceedings of 4th Metahuristics International

Conference (MIC 2001), Porto Portugal, 16–20 July, pp. 127–131.

P. Cowling, G. Kendall and E. Soubeiga (2002) Hyperheuristics: a tool for rapid
prototyping in scheduling and optimisation. In: S. Cagoni, J. Gottlieb, E. Hart,
M. Middendorf and R. Günther (eds.), LNCS 2279, Applications of Evolutionary

Computing: Proceedings of Evo Workshops 2002, Kinsale, Ireland, April 3–4,
ISSN 0302-9743, ISBN 3-540-43432-1, Springer-Verlag, pp. 1–10.

P. Cowling, G. Kendal and L. Han (2002) An investigation of a hyperheuristic
genetic algorithm applied to a trainer scheduling problem. In: Proceedings of

Congress on Evolutionary Computation (CEC2002), Hilton Hawaiian Village
Hotel, Honolulu, Hawaii, May 12–17, pp. 1185–1190, ISBN 0-7803-7282-4.

E.K. Burke and J.P. Newall (2002) A new adaptive heuristic framework for exam-
ination timetabling problems. Technical Report NOTTCS-TR-2001-5 (submitted
to Annals of Operations Research), University of Nottingham, UK, School of
Computer Science & IT.

D.E. Joslin and D.P. Clements (1999) Squeaky wheel optimization. Journal of

Artificial Intelligence Research, 10, 353–373.

B. Selman and H. Kautz (1993) Domain-independent extensions to GSAT:
Solving large structured satisfiability problems. In: Proceedings of the 13th

International Joint Conference on Artificial Intelligence, pp. 290–295.

E.K. Burke and S. Petrovic (2002) Recent Research Directions in Automated
Timetabling. European Journal of Operational Research (to appear).

Chapter 17

PARALLEL STRATEGIES FOR META-HEURISTICS

Michel Toulouse
Department of computer science

University of Manitoba

Winnipeg (MB) Canada R3T 2N2

E-mail: toulouse@cs.umanitoba.ca

Abstract We present a state-of-the-art survey of parallel meta-heuristic developments and
results, discuss general design and implementation principles that apply to most meta-heuristic
classes, instantiate these principles for the three meta-heuristic classes currently most extensively
used—genetic methods, simulated annealing, and tabu search, and identify a number of trends
and promising research directions.

Keywords: Parallel computation, Parallelization strategies, Meta-heuristics, Genetic methods,
Simulated annealing, Tabu search, Co-operative search

1 INTRODUCTION

Meta-heuristics are widely acknowledged as essential tools to address difficult problems
in numerous and diverse fields, as this volume eloquently demonstrates. In fact, meta-
heuristics often offer the only practical approach to solving complex problems of
realistic scale.

Even using meta-heuristics, the limits of what may be solved in “reasonable” com-
puting times are still reached rapidly, however, at least much too rapidly for the growing
needs of research and industry alike. Heuristics do not, in general, guaranty optimality.
Moreover, the performance often depends on the particular problem setting and data.
Consequently, a major issue in meta-heuristic design and calibration is not only how to
build them for maximum performance, but also how to make them robust, in the sense
of offering a consistently high level of performance over a wide variety of problem
settings and characteristics.

Teodor Gabriel Crainic
Département de management et technologie

Université du Québec à Montréal and Centre de recherche sur les transports

Université de Montréal

C.P. 6128, Succursale Centre-ville

Montréal (QC) Canada H3C 3J7

E-mail: theo@crt.umontreal.ca

476 T.G. Crainic and M. Toulouse

Parallel meta-heuristics aim to address both issues. Of course, the first goal is to
solve larger problem instances in reasonable computing times. In appropriate settings,
such as co-operative multi-thread strategies, parallel meta-heuristics also prove to be
much more robust than sequential versions in dealing with differences in problem
types and characteristics. They also require less extensive, and expensive, parameter
calibration efforts.

The objective of this paper is to paint a general picture of the parallel meta-heuristic
field. Specifically, the goals are to (1) present a state-of-the-art survey of parallel meta-
heuristic developments and results, (2) discuss general design and implementation
principles that apply to most meta-heuristic classes, (3) instantiate these principles
for the three meta-heuristic classes currently most extensively used: genetic methods,
simulated annealing, and tabu search, and (4) identify a number of trends and promising
research directions.

The parallel meta-heuristic field is a very broad one, while the space available for
this paper imposes hard choices and limits the presentation. In addition to the references
provided in the following sections, a number of surveys, taxonomies, and syntheses
have been proposed and may prove of interest: Greening (1990), Azencott (1992),
Mühlenbein (1992), Shonkwiler (1993), Voß (1993), Lin et al. (1994), Pardalos et al.
(1995), Ram et al. (1995), Verhoeven and Aarts (1995), Laursen (1996), Crainic et al.
(1997), Glover and Laguna (1997), Holmqvist et al. (1997), Cantù-Paz (1998), Crainic
and Toulouse (1998), Crainic (2002), Cung et al. (2002).

The paper is organized as follows. Section 2 introduces the notation, describes
a generic meta-heuristic framework, and sets genetic, simulated annealing, and tabu
search methods within this framework. Section 3 is dedicated to a brief introduction to
parallel computing and the presentation of three main strategies used to build parallel
meta-heuristics. Sections 4, 5, and 6 are dedicated to the survey and discussion of
issues related to the parallelization of genetic approaches, simulated annealing, and
tabu search, respectively. Section 7 briefly treats a number of other meta-heuristic
approaches, draws a number of general conclusions, and points to research directions
and challenges.

2 HEURISTICS AND META-HEURISTICS

Sequential and parallel meta-heuristics are used in many disciplines—mathematics,
operations research, artificial intelligence—and numerous applications: design, plan-
ning, and operation of complex systems and networks (e.g., production, transportation,
telecommunication, etc.); management, allocation, scheduling, and utilization of
scarce resources; speech and image recognition and enhancement; VLSI design;
and so on. To simplify the presentation, and with no loss of generality, in the
following we adopt the notation and vocabulary of combinatorial optimization

formulations.
Given a set of objects, the value associated to each, and the rules specifying how

objects may be joined together, the combinatorial optimization formulation aims to
select a subset of objects such that the sum of their contributions is the highest/
lowest among all possible combinations. Many problems of interest may be cast as
combinatorial optimization formulations, including design, location, routing, and
scheduling. In most cases, such formulations are extremely difficult to solve for

Parallel Strategies for Meta-heuristics 477

realistically-sized problem instances, the main issue being the number of feasible
solutions—combinations of objects—that grows exponentially with the number of
objects in the initial set.

Combinatorial optimization problems are usually formulated as (mixed) integer
optimization programs. To define notation, assume that one desires to minimize (or
maximize) a function subject to The objective function may
be linear or not. The set summarizes constraints on the decision variables x and
defines the feasible domain. Decision variables are generally non-negative and all or
part of the elements of x may be compelled to take discrete values. One seeks a globally
optimal solution such that for all

Once various methods have been applied to re-formulate the problem and to bound
the region where the optimal solution is to be found, most solution methods are based
on some form of exploration of the set of feasible solutions. Explicit enumeration
is normally out of the question and the search for the optimal solution proceeds by
implicit enumeration. Branch-and-bound (and price, and cut, ...) methods are both
typical of such approaches and one of the methods of choice used in the search for
optimal solutions to combinatorial problems. Unfortunately, these methods fail for
many instances, even when parallel implementations are used. Thus, heuristics have
been, and continue to be, an essential component of the methodology used to address
combinatorial optimization formulations.

A heuristic is any procedure that identifies a feasible solution Of course,
one would like to be identical to x* (if the latter is unique) or to be equal to

For most heuristics, however, one can only hope (and for some, prove) that
is “close” to Heuristics have a long and distinguished track record in

combinatorial optimization. Often, heuristics are the only practical alternative when
dealing with problem instances of realistic dimensions and characteristics.

Many heuristics are improving iterative procedures that move from a given solution
to a solution in its neighbourhood that is better in terms of the objective function value
(or some other measure based on the solution characteristics). Thus, at each iteration,
such a local search procedure identifies and evaluates solutions in the neighbourhood
of the current solution, selects the best one relative to given criteria, and implements
the transformations required to establish the selected solution as the current one. The
procedure iterates until no further improvement is possible.

Formally, let represent the set of neighbours of a given solution that
may be reached by a simple transformation (e.g., complement the value of an integer-
valued variable) or a given sequence of operations (e.g., modifications of routes
in a vehicle routing problems). Let denote the application that corresponds to
these moves and that yields a solution Then, Figure 17.1 illustrates a simple
steepest descent heuristic where the objective function value is the only neighbour
evaluation criterion.

A major drawback of classical heuristic schemes is their inability to continue past
the first encountered local optimum. Moreover, such procedures are unable to react
and adapt to particular problem instances. Re-starting and randomization strategies, as
well as combinations of simple heuristics offer only partial and largely unsatisfactory
answers to these issues. The class of modern heuristics known as meta-heuristics aims
to address these challenges.

Meta-heuristics have been defined as master strategies (heuristics) to guide and
modify other heuristics to produce solutions beyond those normally identified by local

478 T.G. Crainic and M. Toulouse

search heuristics (Glover, 1986; see also Glover and Laguna, 1993). Compared to exact
search methods, such as branch-and-bound, meta-heuristics cannot generally ensure a
systematic exploration of the entire solution space. Instead, they attempt to examine
only parts thereof where, according to certain criteria, one believes good solutions
may be found. Well-designed meta-heuristics avoid getting trapped in local optima
or sequences of visited solutions (cycling) and provide reasonable assurance that the
search has not overlooked promising regions.

Meta-heuristics for optimization problems may be described summarily as a “walk
through neighbourhoods”, a search trajectory through the solution domain of the prob-
lem at hand. Similar to classical heuristics, these are iterative procedures that move

from a given solution to another solution in its neighbourhood. Thus, at each iteration,
one evaluates moves towards solutions in the neighbourhood of the current solution, or
in a suitably selected subset. According to various criteria (objective value, feasibility,
statistical measures, etc.), a number of good moves are selected and implemented.
Unlike classical heuristics, the solutions implemented by meta-heuristics are not nec-
essarily improving, however. Tabu search and simulated annealing methods usually
implement one move at each iteration, while genetic methods may generate several
new moves (individuals) at each iteration (generation). Moves may belong to only one
type (e.g., add an element to the solution) or to several quite different categories (e.g.,
evaluate both add and drop moves). Moves may marginally modify the solution or dras-
tically inflect the search trajectory. The first case is often referred to as local search.

The diversification phase of tabu search or the application of mutation operators in an
evolutionary process are typical examples of the second alternative. This last case may
also be described as a change in the “active” neighbourhood.

Each meta-heuristic has its own behaviour and characteristics. All, however, share
a number of fundamental components and perform operations that fall within a limited
number of categories. To facilitate the comparison of parallelization strategies for
various meta-heuristic classes, it is convenient to define these common elements:

1.

2.

3.

Initialization. A method to create an initial solution or set of problem configura-
tions that may be feasible or not.

Neighbourhoods. To each solution corresponds a set of neighbourhoods and
associated moves: where
i =1, . . . ,q .

A neighbourhood selection criterion is defined when more than one neighbour-
hood is included. This criterion must specify not only what neighbourhood to
choose but also when to select it. Alternatives range from “each iteration” (e.g.,

Parallel Strategies for Meta-heuristics 479

genetic methods) to “under given conditions” (e.g., the diversification moves of
tabu search).

4.

5.

6.

Candidate selection. Neighbourhoods may be very large. Then, often, only a
subset of moves are examined at each iteration. The corresponding candidate list

may be permanent and updated from iteration to iteration (e.g., tabu
search) or it may be constructed at each new iteration (e.g., genetic methods). In
all cases, a selection criterion specifies how solutions are picked for inclusion in
the candidate list.

Acceptance criterion. Moves are evaluated by applying a function g(x, y) based
on one or several attributes of the two solutions: objective function value, distance
from certain constraints, penalties for violating some others, etc. External factors,
such as random terms or biases from aggregated characteristics of past solutions
may also be included in the evaluation. The best solution with respect to this
criterion

is selected and implemented (unless forbidden by cycling-prevention
mechanisms).

Stopping criteria. Meta-heuristics may be stopped on a variety of criteria:
computing time, number of iterations, rate of improvement, etc. More than
one criterion may be defined to control various phases of the search (usually
corresponding to various neighbourhoods).

With these definitions, we introduce a generic meta-heuristic procedure illustrated
in Figure 17.2 and use it to describe the three main classes of meta-heuristics: genetic

methods, simulated annealing, and tabu search. These methodologies have been, and
continue to be, most oftenly used and parallelized. They are therefore treated in more
detail in the following sections. Other methods, such as scatter search, GRASP, ant

colony systems, and variable neighbourhood search have also been proposed and we
briefly discuss related parallelization issues in Section 7.

Genetic algorithms belong to the larger class of evolutionary methods and were
inspired by the evolution processes of biological organisms. In biology, when natural
populations are studied over many generations, they appear to evolve according to the
principles of natural selection and survival of the fittest to produce “well adapted”
individuals. Genetic algorithms mimic this process, attempting to evolve solutions to

480 T.G. Crainic and M. Toulouse

optimization problems (Holland, 1975; Goldberg, 1989; Whitley, 1994; Fogel, 1994;
Michalewicz, 1992; Michalewicz and Fogel, 2000). In recent years, the genetic algo-
rithm paradigm was considerably enriched, as it evolved to include hybridization with
local improvement heuristics and other meta-heuristics. Although the specialized litera-
ture is frequently replacing the term “genetic algorithms” with “evolutionary methods”,
we use the former in this paper to distinguish these methods from other strategies where
a population of solutions evolves through an iterative process (e.g., scatter search and
most co-operative parallel methods described later in this paper).

Genetic methods work on a population of solutions that evolves by generating new
individuals out of combinations of existing individuals. At each iteration a selection

operator applied to the current population identifies the parents to be used for the
generation of new individuals. Thus, in a genetic context, the candidate selection and
move evaluation is based solely on the value g(x), the fitness, of the parents (this may be
contrasted to the evaluations used in, for example, simulated annealing, tabu search, and
scatter search). Crossover operators are used to generate the new individuals. Mutation

and hill climbing (local search) operators modify the definition or characteristics of the
new individuals to improve their fitness and the diversity of the population. In several
variants, especially so for parallel genetic methods, the implementation of the move is
completed by a survival operation that determines which of the parents and offspring
advances to the next generation. Figure 17.3 displays the functions of the classical
genetic operators, while Figure 17.4 summarizes the main steps of a generic genetic
algorithm.

Simulated annealing methods are inspired by the annealing process of cooling mate-
rials in a heat bath. Here, solid materials are first heated past melting point. They are
then gradually cooled back to a solid state, the rate of cooling directly influencing on the

Parallel Strategies for Meta-heuristics 481

structural properties of the final product. The materials may be represented as systems
of particles and the whole process of heating and cooling may be simulated to evaluate
various cooling rates and their impact on the properties of the finished product. The
simulated annealing metaphor attempts to use similar statistical processes to guide
the search through feasible space (Metropolis et al., 1953; Kirkpatrick et al., 1983;
Laarhoven and Aarts, 1989; Aarts and Korst, 1989, 2002; etc.). A randomized scheme,
the temperature control, determines the probability of accepting non-improving solu-
tions. This mechanism aims to allow escaping from local optima. The cooling schedule

determines how this probability evolves: many non-improving solutions are accepted
initially (high temperature) but the temperature is gradually reduced such that few
(none) inferior solutions are accepted towards the end (low temperature). A generic
simulated annealing procedure is displayed in Figure 17.5.

One of the most appropriate tabu search metaphors is the capability of the human
brain to store, recall, and process information to guide and enhance the efficiency
of repetitive processes. Memory and memory hierarchy are major concepts in tabu
search, as are the memory-based strategies used to guide the procedure into various
search phases. Here, as elsewhere, a heuristic locally explores the domain by moving
from one solution to the best available solution in its neighbourhood. Inferior quality
solutions are accepted as a strategy to move away from local optima. Short-term tabu

status memories record recent visited solutions or their attributes to avoid repeating or
inverting recent actions. The tabu status of a move may be lifted if testing it against
an aspiration criterion signals the discovery of a high quality solution (typically, the
best one encountered so far). Medium to long-term memory structures record various
informations and statistics relative to the solutions already encountered (e.g., frequency
of certain attributes in the best solutions) to “learn” about the solution space and guide
the search. Intensification of the search around a good solution and its diversification

towards regions of the solution space not yet explored are two main ingredients in
tabu search. These two types of moves are based on medium and long-term memories
and are implemented using specific neighbourhoods. More details on the basic and
advanced features of tabu search may be found in Glover (1986, 1989, 1990, 1996),
Glover and Laguna(1993, 1997), Gendreau (2002). Figure 17.6 displays a generic tabu
search procedure.

482 T.G. Crainic and M. Toulouse

This very brief summary of three major meta-heuristics emphasizes the similari-
ties of the main activities used by the various methodologies to explore the solution
space of given problems. This similarity translates into “similar” requirements when
strategies for parallelization are contemplated. For example, all meta-heuristic proce-
dures encompass a rather computationally heavy stage where the neighbourhood (or
the population) is explored. Fortunately, the computational burden may be reduced

Parallel Strategies for Meta-heuristics 483

by performing the exploration in parallel and most implementations of the first paral-
lelization strategy discussed in the following section address this issue. This observation
explains our choice of discussing parallelization strategies not according to particular
meta-heuristic characteristics but rather following a few general principles.

3 PARALLEL COMPUTATION

The central goal of parallel computing is to speed up computation by dividing the
work load among several processors. From the view point of algorithm design, “pure”
parallel computing strategies exploit the partial order of algorithms (i.e., the sets of
operations that may be executed concurrently in time without modifying the solution
method and the final solution obtained) and thus correspond to the “natural” parallelism
present in the algorithm. The partial order of algorithms provides two main sources of
parallelism: data and functional parallelism.

To illustrate, consider the multiplication of two matrices. To perform this operation,
one must perform several identical operations executing sums of products of numbers.
It is possible to overlap the execution of these identical operations on different input
data. Among computer architectures with several arithmetic and logic units (ALUs),
Single Instruction stream, Multiple Data stream (SIMD) computers are particularly
suited to this type of parallelism as they can load the same operation on all ALUs
(single flow of instructions) and execute it on different input data (multiple flows of
data). The total number of computer operations required to compute the matrix product
is not reduced, but given the concurrency of several operations, the total wall-clock
computation time is reduced proportionally to the average number of overlapping sets
of operations during the computation. This is data parallelism.

Computations may also be overlapped even when operations are different. It is usu-
ally inefficient to exploit this parallelism at the fine-grain level of a single instruction.
Rather, the concurrent execution of different operations typically occurs at the coarse-
grain level of procedures or functions. This is functional parallelism. For example, one
process can compute the first derivative vector of a function while another computes
the second derivative matrix. The two processes can overlap at least partially in time.
When computations are complex and dimensions are large, this partial overlap may
yield interesting speedups. Parallel computers that are well adapted to perform func-
tional parallelism usually follow a MIMD (Multiple Instructions stream, Multiple Data

stream) architecture where both data and instructions flow concurrently in the system.
MIMD computers are often made up of somewhat loosely connected processors, each
containing an ALU and a memory module.

Parallel computation based on data or functional parallelism is particularly efficient
when algorithms manipulate data structures that are strongly regular, such as matrices
in matrix multiplications. Algorithms operating on irregular data structures, such as
graphs, or on data with strong dependencies among the different operations remain
difficult to parallelize efficiently using only data and functional parallelism. Meta-
heuristics generally belong to this category of algorithms that are difficult to parallelize.
Yet, as we will see, parallelizing meta-heuristics offers opportunities to find new ways
to use parallel computers and to design parallel algorithms.

484 T.G. Crainic and M. Toulouse

3.1 Parallelizing Meta-heuristics

From a computational point of view, meta-heuristics are just algorithms from which
we can extract functional or data parallelism. Unfortunately, data and functional
parallelism are in short supply for many meta-heuristics. For example, the local search
loop (Steps 3–7) of the generic tabu search in Figure 17.6 displays strong data dependen-
cies between successive iterations, particularly in the application of the tabu criterion
and the update of memories and tabu status. Similarly, the passage from one genera-
tion to another in standard genetic methods is essentially a sequential process, while
the replacement of the current solution of the generic simulated annealing procedure
(Step 5 in Figure 17.5) cannot be done in parallel, forcing the sequential execution of
the inner loop (Steps 4–6). As in other types of algorithms, however, operations inside
one step may offer some functional or data parallelism. Moreover, the exploration of
the solution space based on random restarts can be functionally parallelized since there
are no dependencies between successive runs. The set of visited solutions, as well as
the outcome of the search made up of random restarts are identical to those obtained
by the sequential procedure provided the set of initial solutions is the same for both the
sequential and parallel runs.

Meta-heuristics as algorithms may have limited data or functional parallelism but,
as problem solving methods, they offer other opportunities for parallel computing.
To illustrate, consider the well-known Branch-and-Bound technique. The branching
heuristic is one of the main factors affecting the way Branch-and-Bound algorithms
explore the search tree. Two Branch-and-Bound algorithms, each using a different
branching heuristic, will most likely perform different explorations of the search tree of
one problem instance. Yet, both will find the optimum solution. Thus, the utilization of
different Branch-and-Bound search patterns does not prevent the technique from finding
the optimal solution. This critical observation may be used to construct parallel Branch-
and-bound methods. For example, the parallel exploration of the search tree based on
distributing sub-trees will modify the data available to the branching heuristic and thus,
for the same problem instance, the parallel and sequential search patterns will differ.
Yet, the different search strategies will all find the optimal solution. Consequently,
the exploration of sub-trees may be used as a source of parallelism for Branch-and-
Bound algorithms. This source of parallelism is not related to data parallelism, since the
data (the variables of the optimization problem) is not partitioned. It is not functional
parallelism either, because the two computations, sequential and parallel, are different.
Although this difference makes comparative performance analyzes more difficult to
perform (since the parallel implementation does not do the same work as the sequential
one), sub-tree distribution remains a valuable and widely used parallelization strategy
for Branch-and-Bound algorithms.

Similar observations can be made relative to new sources of parallelism in meta-
heuristics. A meta-heuristic algorithm started from different initial solutions will almost
certainly explore different regions of the solution space and return different solutions.
The different regions of the solution space explored can then become a source of paral-
lelism for meta-heuristic methods. However, the analysis of parallel implementation of
meta-heuristic methods becomes more complex because often the parallel implemen-
tation does not return the same solution as the sequential implementation. Evaluation
criteria based on the notion of solution quality (i.e., does the method find a better

Parallel Strategies for Meta-heuristics 485

solution?) have then to be used to qualify the more classical acceleration (speedup)
measures.

We have classified the parallelization strategies applied to meta-heuristics according
to the source of parallelism used:

Type 1: This source of parallelism is usually found within an iteration of the heuris-
tic method. The limited functional or data parallelism of a move evaluation is
exploited or moves are evaluated in parallel. This strategy, also called low-level

parallelism, is rather straightforward and aims solely to speed up computations,
without any attempt at achieving a better exploration (except when the same
total wall-clock time required by the sequential method is allowed to the parallel
process) or higher quality solutions.

Type 2: This approach obtains parallelism by partitioning the set of decision variables.
The partitioning reduces the size of the solution space, but it needs to be repeated
to allow the exploration of the complete solution space. Obviously, the set of
visited solutions using this parallel implementation is different from that of the
sequential implementation of the same heuristic method.

Type 3: Parallelism is obtained from multiple concurrent explorations of the solution
space.

Type 1 parallelism Type 1 parallelizations may be obtained by the concurrent exe-
cution of the operations or the concurrent evaluation of several moves making up an
iteration of a search method. Type 1 parallelization strategies aim directly to reduce
the execution time of a given solution method. When the same number of iterations are
allowed for both sequential and parallel versions of the method and the same opera-
tions are performed at each iteration (e.g., the same set of candidate moves is evaluated
and the same selection criterion is used), the parallel implementation follows the same
exploration path through the problem domain as the sequential implementation and
yields the same solution. As a result, standard parallel performance measures apply
straightforwardly. To illustrate, consider the computation of the average fitness of a
population for genetic methods. Because the sequence used to compute the fitness of
the individuals is irrelevant to the final average fitness of the population, it can be
spartitioned and the partial sums of each subpopulation can be computed in paral-
lel. Both the parallel and sequential computations yield the same average fitness, the
parallel implementation just runs faster.

Some implementations modify the sequential method to take advantage of the extra
computing power available, but without altering the basic search method. For example,
one may evaluate in parallel several moves in the neighbourhood of the current solution
instead of only one. In Figure 17.5, one can choose several y variables in Step 4 and then
perform Step 5 in parallel for each selected y. In tabu search, one may probe for a few
moves beyond each immediate neighbour to increase the available knowledge when
selecting the best move (Step 4 of Figure 17.6). The resulting search patterns of the serial
and parallel implementations are different in most cases. Yet, under certain conditions,
the fundamental algorithmic design is not altered, therefore these approaches still
qualify as Type 1 parallelism.

Type 2 parallelism In Type 2 strategies, parallelism comes from the decomposition
of the decision variables into disjoint subsets. The particular heuristic is applied to each

486 T.G. Crainic and M. Toulouse

subset and the variables outside the subset are considered fixed. Type 2 strategies are
generally implemented in some sort of master-slave framework:

A master process partitions the decision variables. During the search, the master
may modify the partition. Modifications may be performed at intervals that are
either fixed before or determined during the execution, or, quite often, are adjusted
when restarting the method.

Slaves concurrently and independently explore their assigned partitions. Moves
may proceed exclusively within the partition, the other variables being considered
fixed and unaffected by the moves which are performed, or the slaves may have
access to the entire set of variables.

When slaves have access to the entire neighbourhood, the master must perform
a more complex operation of combining the partial solutions obtained from each
subset to form a complete solution to the problem.

Note that a decomposition based on partitioning the decision variables may leave
large portions of the solution space unexplored. Therefore, in most applications, the
partitioning is repeated to create different segments of the decision variable vector and
the search is restarted.

Type 3 parallelism The first two parallelization strategies yield a single search path.
Parallelization approaches that consist of several concurrent searches in the solu-
tion space are classified as Type 3 strategies. Each concurrent thread may or may
not execute the same heuristic method. They may start from the same or different
initial solutions and may communicate during the search or only at the end to iden-
tify the best overall solution. The latter are known as independent search methods,
while the former are often called co-operative multi-thread strategies. Communica-
tions may be performed synchronously or asynchronously and may be event-driven or
executed at predetermined or dynamically decided moments. These strategies belong
to the p-control class according to the taxonomy proposed by Crainic, Toulouse,
and Gendreau (1997), and are identified as multiple-walks by Verhoeven and Aarts
(1995).

To speed up computation by using a multi-thread strategy, one generally tries to
make each thread perform a shorter search than the sequential procedure. This tech-
nique is implemented differently for each class of meta-heuristic. Let p be the number
of processors. For tabu search, each thread performs T / p iterations, where T is the
number of iterations of the corresponding sequential procedure. For simulated anneal-
ing, the total number of iterations of the inner loop (Steps 4 to 6 in Figure 17.5) is
reduced proportionally from L to L / p. For genetic algorithms, it is not the number of
generations which is generally reduced. Rather, the size N of the sequential population
is reduced to N / p for each genetic thread.

Type 3 parallelization strategies are often used to perform a more thorough explo-
ration of the solution space. Several studies have shown that multi-thread procedures
yield better solutions than the corresponding sequential meta-heuristics, even when the
exploration time permitted to each thread is significantly lower than that of the sequen-
tial computation. Studies have also shown that the combination of several threads that
implement different parameter settings increases the robustness of the global search

Parallel Strategies for Meta-heuristics 487

relative to variations in problem instance characteristics. We review some of these
results in Sections 4–6.

It is noteworthy that the application of classical performance measures (e.g., Barr
and Hickman, 1993) to multi-thread, parallel meta-heuristics is somewhat problem-
atic. For example, it is generally difficult to eliminate or control the overlap between
the search paths (to adequately control the search overlap would involve such high
levels of search synchronization and information exchanges that all benefits of paral-
lelization would be lost). Thus, one cannot measure correctly the search efficiency in
terms of the work performed. Moreover, many Type 3 parallelizations are based on
asynchronous interactions among threads. As asynchronous computations are time
dependent, such computations can produce different outputs for the same input.
Classical speedup measures are ill-defined to compare the performances of asyn-
chronous parallel meta-heuristics with sequential ones. In fact, several asynchronous
Type 3 parallel meta-heuristics are so different from the original sequential proce-
dure that one can hardly consider the two implementations to belong to the same
meta-heuristic class.

3.2 Other Taxonomies

The classification described above is sufficiently general to apply to almost any meta-
heuristic and parallelization strategy. Moreover, the lessons learned by comparing
within the same class the implementations and performances of particular meta-
heuristics are of general value and may be extended to search methods not covered
in depth in this paper. Most taxonomies proposed in the literature are, however, related
to a specific type of meta-heuristic.

Greening (1990) divides simulated annealing parallelization strategies according
to the degree of accuracy in the evaluation of the cost function associated with a move.
Parallel algorithms that provide an error-free evaluation are identified as synchronous

while the others are asynchronous. The synchronous category is divided further between
parallel simulated annealing algorithms that maintain the convergence properties of the
sequential method (serial-like) and those that have an accurate cost evaluation but differ
from the sequential computation in the search path generation (altered generation).
Type 1 parallelism completely covers the serial-like category. The altered generation
category overlaps with the Type 1 and Type 2 strategies. Asynchronous algorithms are
those that tolerate some error in the cost function in order to get better speedups and
correspond to a subset of the Type 2 category. No Type 3 algorithms are considered in
this work.

Cantù-Paz (1995) provides a classification of parallel genetic algorithms. The first
category, called global parallelization is identical to the Type 1 parallelization. Two
other categories classify genetic algorithms according to the size of the populations that
evolve in parallel, the so-called coarse-grained and fine-grained parallelization strate-
gies. There is also a class for hybrid genetic algorithm parallelizations. For example,
global parallelization applied to subpopulations of a coarse-grained parallel algorithm
is one instance of an hybrid algorithm. The union of these three groups forms the Type 3
category described in this paper. No Type 2 strategies are considered in Cantù-Paz’s
taxonomy.

Verhoeven and Aarts (1995) define local search as the class of approximation meth-
ods based on the exploration of neighbourhoods of solutions, including tabu search,

488 T.G. Crainic and M. Toulouse

simulated annealing, and genetic algorithms. Their taxonomy divides parallel methods
between single-walk and multiple-walk strategies. The former corresponds to Type 1
and Type 2 parallelism. The latter includes multiple independent walks and multi-

ple interacting walks and thus corresponds to the Type 3 parallelism of this paper.
Single-walk methods are further classified as single-step or multiple-step strategies.
The former corresponds to the simple parallel neighbourhood evaluation of Type 1. The
latter includes probing and Type 2 strategies. The taxonomy explicitly distinguishes
between synchronous and asynchronous approaches. Cung et al. (2002) present a clas-
sification of parallel meta-heuristic strategies based on that of Verhoeven and Aarts
(1995).

Currently, the most comprehensive taxonomy of parallel tabu search methods is
offered by Crainic et al. (1997) and Crainic (2002). The classification has three dimen-
sions. The first dimension, control cardinality, explicitly examines how the global
search is controlled, by a single process (as in master-slave implementations) or
collegially by several processes. The four classes of the second dimension indicate
the search differentiation: do search threads start from the same or different solu-
tions and do they make use of the same or different search strategies? Finally, the
control type dimension addresses the issue of information exchange and divides meth-
ods into four classes: rigid synchronization (e.g., simple neighbourhood evaluation
in Type 1 strategies), knowledge synchronization (e.g., probing in Type 1 strategies
and synchronous information exchanges in Type 3 methods), and, finally, collegial

and knowledge collegial. The last two categories correspond to Type 3 strategies
but attempt to differentiate methods according to the quantity and quality of infor-
mation exchanged, created, and shared. Although introduced for tabu search, this
classification applies to many other meta-heuristics and may form the basis for a
comprehensive taxonomy of meta-heuristics. It refines, in particular, the classifica-
tion used in this paper, which is based on the impact of parallelization on the search
trajectory.

4 GENETIC ALGORITHMS

At each iteration k, genetic algorithms compute the average fitness
of the N strings in the current population (Step 3 in Figure 17.4). The

time-consuming part of this operation is performing the summation Obvi-
ously, this computation can be distributed over several processors and, since there are
no dependencies among operations, it is a good candidate for efficient data, Type 1 par-
allelization. This summation has indeed been the first component of genetic algorithms
to be parallelized (Grefenstette, 1981).

Intuitively, one expects almost linear speedups from this parallelization of the
average fitness evaluation. Surprisingly, however, most experiments report signifi-
cant sub-linear speedups due to the latencies of low-speed communication networks
(Fogarty and Huang, 1990; Hauser and Männer, 1994; Chen et al., 1996; Abramson
and Abela, 1992; Abramson et al., 1993). The implementations of the selection and
crossover operators are also based on simple iterative loops, but each involves relatively
few computations. Therefore, considering the impact of the communication overhead

Parallel Strategies for Meta-heuristics 489

on a time-consuming operation like the fitness evaluation, Type 1 parallelization of the
genetic operators has received little attention.

Genetic algorithms are acknowledged to be inherently parallel. This inherent par-
allelism is limited to Type 1, however. We are not aware of any Type 2 parallelization
strategy for genetic algorithms and, although many known parallel genetic algorithms
are of Type 3, most of them are not strictly derived from the standard genetic paradigm.
Standard genetic methods are based on single panmictic population, and computation
is usually initiated on a new generation only after the old one has died out, thus pre-
venting the occurrence of parallelism across generations. Parallel genetic models, on
the other hand, find more opportunities for parallelism such as, concurrent computa-
tions across different generations or among different subpopulations. The literature on
parallel genetic methods often identifies two categories of Type 3 approaches: coarse-

grained and fine-grained. However, some Type 3 parallel genetic algorithms do not
display such clear cut characterization (e.g., Moscato and Norman, 1992).

Coarse-grained parallelizations usually refer to methods where the same sequen-
tial genetic algorithm is run on p subpopulations (each of size N / p), although some
researchers (e.g., Schlierkamp-Voosen and Mühlenbein, 1994; Herdy, 1992) have
pondered the possibility of using different strategies for each subpopulation. In such
models, each subpopulation is relatively small in comparison with the initial popu-
lation. This has an adverse impact on the diversity of the genetic material, leading
to premature convergence of the genetic process associated to each subpopulation. To
favor a more diversified genetic material in each subpopulation, a new genetic operator,
the migration operator, is provided.

The migration operator defines strategies to exchange individuals among subpop-
ulations. This operator has several parameters: the selection process that determines
which individuals will migrate (e.g., best-fit, randomly, randomly among better than
average individuals), the migration rate that specifies the number of strings migrated,
the migration interval that determines when migration may take place (usually defined
in terms of a number of generations), and the immigration policy that indicates how
individuals are replaced in the receiving subpopulation. Information exchanges are
further determined by the neighbourhood structure. In the island model, individuals
may migrate towards any other subpopulation, while in the stepping-stone model only
direct neighbours are reachable. Often the connection structure of the parallel com-
puter determines how subpopulations are logically linked. Finally, migration may be
performed either synchronously or asynchronously.

Since a genetic algorithm is associated with each subpopulation, coarse-grained
parallel strategies can exploit parallelism across generations, provided each generation
is related to a different subpopulation, And, it is always possible to combine Type 1 and
Type 3 parallelism by computing the average fitness within each subpopulation using
the Type 1 strategy as described above. MIMD computers are well adapted to coarse-
grained parallel genetic methods. Migration rate and frequency are such that, in general,
the quantity of data exchanged is small and can be handled efficiently even by low-
speed interconnection networks. Furthermore, since the workload of each processor is
significant (running a sequential genetic algorithm), latencies due to communications
(if any) can be hidden by computations in asynchronous implementations. Therefore,
linear speedups could be expected. Yet, few reports detail the speedups of coarse-
grained parallel genetic algorithms. To some extent, this is explained by the fact that
speedups do not tell the whole story regarding the performance of coarse-grained

490 T.G. Crainic and M. Toulouse

parallelizations, since one also needs to consider the associated convergence behavior.
Therefore, to this day, most efforts regarding coarse-grained parallelizations have been
focused on studying the best migration parameter settings. Most studies conclude that
migration is better than no migration, but that the degree of migration needs to be
controlled.

Schnecke and Vornberger (1996) analyze the convergence behaviour of coarse-
grained parallel genetic algorithms using a Type 3 strategy where a different genetic
algorithm is assigned to each subpopulation and search strategies, rather than solutions,
are migrated between subpopulations. At fixed intervals, the different genetic methods
are ranked (using the response to selection method of Mühlenbein and Schlierkamp-
Voosen, 1994) and the search strategies are adjusted according to the “best” one by
importing some of the “best” one’s characteristics (mutation rate, crossover rate, etc).
The paper contains references to several other works where self-adapting parallel
genetic evolution strategies are analyzed. Lis (1996), in particular, applies self-
adaptation to the mutation rate. The author implements a farming model where a master
processor manages the overall population and sends the same set of best individuals
to slave processors, each of which has a different mutation probability. Periodically,
according to the mutation rate of the process that obtained the best results, the muta-
tion rates of all slave processors are shifted one level up or down and populations are
recreated by the master processor using the best individuals of the slave processors.
Starkweather et al. (1991; see also Whitley and Starkweather, 1990a,b) also suggest
that an adaptive mutation rate might help achieve better convergence for coarse-grained
parallel genetic algorithms.

A more conceptually focused approach to improve the convergence of coarse-
grained parallel genetic strategies may be derived from co-evolutionary genetic
algorithm ideas. Schlierkamp-Voosen and Mühlenbein (1994), e.g., use competing
subpopulations as a means to adapt the parameters controlling the genetic algorithm
associated with each subpopulation. In the general setting of co-evolutionary genetic
methods, each subpopulation may have a different optimization function that either
competes with other subpopulations (as in a prey-predator or host-parasite relationship,
Hillis, 1992) or may co-operate with the other subpopulations by specializing on sub-
problems that are later combined to yield the full solution (Potter and De Jong, 1994).
In the competitive scheme proposed by Hillis, a population of solutions competes with
a population of evolving problems (test cases). Fitness and selection pressure favors
individuals that make life difficult in the other population. For example, fit individuals
in the population of solutions are those that can solve many test cases, while fit test
cases are those that only few individuals in the solution population can solve correctly.
In the co-operative scheme, the selection pressure favors individuals that co-operate
well to solve the global problem. The co-evolutionary setting provides the concept of
complementary sub-problems as a way to improve the convergence of coarse-grained
parallel genetic algorithms. To this day, however, this avenue has not been widely
explored.

Fine-grained strategies for parallel genetic algorithms divide the population into a
large number of small subsets. Ideally, subsets are of cardinality one, each individ-
ual being assigned to a processor. Each subset is connected to several others in its
neighbourhood. Together, a subset and its neighbouring subsets form a subpopulation
(or deme). Genetic operators are applied using asynchronous exchanges between indi-
viduals in the same deme only. Demes may be defined according to a fixed topology

Parallel Strategies for Meta-heuristics 491

(consisting of individuals residing in particular processors), obtained by a random walk
(applying a given Hamming distance among individuals), etc. Neighbourhoods overlap
to allow propagation of individuals or individual characteristics and mutations across
subpopulations. This overlapping plays a similar role to that of the migration operator
for coarse-grained parallel genetic algorithms. Fine-grained parallel genetic algorithms
are sometimes identified as cellular algorithms, because a fine-grained method with
fixed topology deme and relative fitness policy may be shown to be equivalent to finite
cellular automata with probabilistic rewrite rules and an alphabet equal to the set of
strings in the search space (see Whitley, 1993).

Fine-grained parallel genetic algorithms evolve a single population that spawns
over several generations. This enables parallelism across generations. A “generation
gap” (signaled by different iteration counts) tends to emerge in the population because
the selection and crossover operators in one deme are not synchronized with the other
demes. In effect, it is still a single population, due to the overlap among demes. Yet,
the global dynamics of fine-grained parallel genetic algorithms are quite different from
those of general genetic methods. In a single panmictic population, individuals are
selected based on a global average fitness value and the selected individuals have the
same probability of interacting with each other through the crossover operator. In
fine-grained parallel strategies, average fitness values (or whatever stand for them)
are local to demes. Consequently, individuals in the population do not have the same
probability to mate and the genetic information can only propagate by diffusion through
overlapping demes.

Diffusion is channeled by the overlapping structure of the demes, which is often
modeled on the interconnection network of the parallel computer. Consequently, net-
work topology is an important issue for fine-grained parallelization strategies, because
the diameter of the network (the maximum shortest path between two nodes) deter-
mines how long it takes for good solutions to propagate over all of the demes. Long
diameters isolate individuals, giving them little chance of combining with other good
individuals. Short diameters prevent genotypes (solution vectors) from evolving, since
good solutions rapidly dominate, which leads to premature convergence. Individual
fitness values are relative to their deme and thus individuals on processing units not
directly connected may have no chance to be involved together in the same crossover
operator. Schwehm (1992) implemented a fine-grained parallel genetic algorithm on
a massively parallel computer to investigate which network topology is best-suited
to fine-grained parallel genetic algorithms. Compared with a ring and three cubes of
various dimensions, a torus yielded the best results. Baluja (1993) conducted studies
regarding the capability of different topologies to prevent demes of fine-grained parallel
genetic algorithms to be dominated by the genotype of strong individuals. Three differ-
ent topologies were studied and numerical results suggest that 2D arrays are best suited
to fine-grained parallel genetic algorithms. See also the recent work of Kohlmorgen
et al. (1999).

Fine-grained parallel genetic methods have been hybridized with hill-climbing
strategies. Mühlenbein et al. (1987, 1988), among others, have designed hybrid
strategies for several optimization problems and obtained good performance. Memetic
algorithms (e.g., Moscato, 1989; Moscato and Norman, 1992) belong to the same cat-
egory. Hybrid schemes construct selection and crossover operators in a similar manner
to regular fine-grained parallelizations but a hill-climbing heuristic is applied to each
individual. When the computational cost of the hill-climbing heuristic (or any other

492 T.G. Crainic and M. Toulouse

heuristic) is substantial (in Memetic algorithms, for example), the population size has
to be small and the computing units powerful. Such hybrids appear to be closer to
coarse-grained parallelism, except that the selection and crossover operators are those
usually associated with fine-grained parallelization mechanisms. Interesting comments
about fine-grained parallel genetic strategies, their design and application as well as
the role of hill-climbing heuristics, can be found in Mühlenbein (1991, 1992, 1992a).

Research on parallel genetic algorithms is still active and prolific. Unlike other
meta-heuristics, parallelizations of Type 1, that exploit the inherent parallelism of stan-
dard genetic methods, are still quite competitive in terms of performance, degree of
parallelism, adaptation to current parallel computer architectures, and ease of imple-
mentation. In terms of research directions, innovation in algorithmic design, and
capacity for hybridization with other search methods, Type 3 parallelism is currently
the most active area. However, good models to compare the performance of different
Type 3 parallel strategies for genetic algorithms are still missing.

5 SIMULATED ANNEALING

A simulated annealing iteration consists of four main steps (Steps 4 to 6 in Figure 17.5):
select a move, evaluate the cost function, accept or reject the move, update (replace)
the current solution if the move is accepted. Two main approaches are used to obtain
Type 1 parallel simulated annealing algorithms: single-trial parallelism where only
one move is computed in parallel, and multiple-trial strategies where several moves
are evaluated simultaneously.

The evaluation of the cost function for certain applications may be quite computa-
tionally intensive, thus suggesting the possible exploitation of functional parallelism.
Single-trial strategies exploit functional parallelism by decomposing the evaluation
of the cost function into smaller problems that are assigned to different processors.
Single-trial strategies do not alter the algorithmic design nor the convergence proper-
ties of the sequential simulated annealing method. The resulting degree of parallelism
is very limited, however, and thus single-trial parallelization strategies do not speedup
computation significantly.

Multiple-trial parallelizations distribute the iterations making up the search among
different processors. Each processor fully performs the four steps of each iteration
mentioned above. This distribution does not raise particular issues relative to the first
three steps since these tasks are essentially independent with respect to different poten-
tial moves. Solution replacement is, however, a fundamentally sequential operation.
Consequently, the concurrent execution of several replacement steps may yield erro-
neous evaluations of the cost function because these evaluations could be based on
outdated data.

Type 1 multiple-trial strategies for simulated annealing enforce the condition that
parallel trials always result in an error-free cost function evaluation. This may be
achieved when solution updating is restricted to a single accepted move or to moves
that do not interact with each other. The latter approach, referred to as the serializ-

able subset method, accepts only a subset of moves that always produces the same
result when applied to the current state of the system, independent of the order of
implementation (a trivial serializable subset contains only rejected moves). To imple-
ment the former approach, one processor is designated to be the holder of the current

Parallel Strategies for Meta-heuristics 493

solution. Once a processor accepts a move, it sends the new solution to the holder,
which then broadcasts it to all processors. Any new move accepted during the update
of the current solution is rejected. Performance varies with the temperature parame-
ter. At high temperatures, when many potential moves are accepted, communications,
synchronization, and rejection of moves generate substantial overheads. At low tem-
peratures, fewer moves are accepted and speedups improve. Yet, performance is not
very satisfactory in most cases.

Most multiple-trial parallelization strategies for simulated annealing follow a Type 2
approach and partition the variables into subsets. A master-slave approach is generally
used, as illustrated in Figure 17.7. To initiate the search, the master processor partitions
the decision variables into p initial sets. The appropriate set is sent to each processor
together with the initial values for the temperature and the number of iterations to
be executed. In Step 2, each slave processor i executes the simulated annealing search
at temperature on its set of variables and sends its partial configuration of the
entire solution to the master processor. Once the information from all slaves has been
received, the master processor merges the partial solutions into a complete solution and
verifies the stopping criterion. If the search continues, it generates a new partition of
the variables such that and sends it to the slave processors together with
new values for and

Felten et al. (1985) applied this strategy to a 64-city travelling salesman problem

(TSP) using up to 64 processors of a hypercube computer. An initial tour was randomly
generated and partitioned into p subsets of adjacent cities, which were assigned to
p processors. Each processor performed local swaps on adjacent cities for a given
number of iterations, followed by a synchronization phase where cities were rotated
among processors. Parallel moves did not interact due to the spatial decomposition
of the decision variables. Moreover, each synchronization ensured the integrity of the
global state. Hence, there was no error and almost linear speedups were observed.

In most cases, however, error-free strategies cannot be efficiently implemented. It
is often difficult, for example, to partition variables such that parallel moves do not

494 T.G. Crainic and M. Toulouse

interact. Therefore, the two main issues in Type 2 parallel simulated annealing are
“how important is the error?” and “how can errors be controlled?”.

Algorithms executed on shared-memory systems can regularly and quite efficiently
update the global state of the current solution so that errors do not accumulate dur-
ing the computation. However, the issue is significantly more difficult for distributed
memory systems because each processor has its own copy of the data, including the
“current” solution, and global updates are costly in communication time. Trade-offs,
therefore, must be made between the frequency of the global state updates and the level
of error one is ready to tolerate during the parallel simulated annealing computation,
while acknowledging the possibility that significant errors might accumulate locally.
It has been observed, however, that errors tend to decrease as temperatures decrease,
because solution updates occur less frequently at low temperatures. Jayaraman and
Darema (1988) and Durand (1989) specifically address the issue of error tolerance for
parallel simulated annealing. As expected, they conclude that the error increases as
the frequency of synchronizations decreases and the number of processors increases.
In their studies, the combined error due to synchronization and parallelism had a sig-
nificant impact on the convergence of the simulated annealing algorithm. Of the two
factors, parallelism emerged as the most important.

One of the reasons for partitioning variables among processors is to prevent the
same variable from being simultaneously involved in more than one move. This goal
can also be achieved by locking the variables involved in a move. A locking mechanism
permits only the processor that owns the lock to update a given variable. Any other
processor that attempts to execute a move involving a locked variable must either wait
for the variable to become available or attempt a different move. However, the use
of locks results in a communication overhead which increases with the number of
processors (e.g., Darema et al., 1987).

Rather than having several processors execute moves from the same current solution
or subset of decision variables, processors could work independently using different
initial solutions and cooling schedules, or simply using the probabilistic nature of sim-
ulated annealing to obtain different search paths. This is Type 3 parallelism. Numerous
efforts to develop Type 3 parallel simulated annealing strategies using independent or
co-operative search threads are reported in the literature. An interesting recent devel-
opment involves the systematic inclusion of principles and operators from genetic
algorithms in simulated annealing multi-thread procedures. This hybrid approach tends
to perform very well.

The first Type 3 parallelizalion strategy to emerge was the division strategy pro-
posed by Aarts et al. (1986). Let L be the number of iterations executed by a sequential
simulated annealing program before reaching equilibrium at temperature The divi-
sion strategy executes L / p iterations on p processors at temperature Here, a single
initial solution and cooling strategy is used and it is assumed that the search paths will
not be the same due to the different probabilistic choices made by each processor. At the
L / p-th iteration, processors can either synchronize and choose one of the solutions as
the initial configuration for the next temperature, or continue from their last configura-
tions at the preceding temperature level. When synchronization is used, the procedure
corresponds to a synchronous co-operative scheme with global exchange of informa-
tion (otherwise, it is equivalent to an independent search approach). Unfortunately, the
length of the chain can not be reduced arbitrarily without significantly affecting the con-
vergence properties of the method. This is particularly true at low temperatures, where

Parallel Strategies for Meta-heuristics 495

many steps are required to reach equilibrium. To address this problem, the authors clus-
tered the processors at low temperatures and applied multi-trial parallelism of Type 1
within each cluster. Kliewer and Tschöke (2000) have addressed practical issues such
as the proper length of parallel chains and the best time to cluster processors.

An alternative to the division strategy is to run each processor with its own cooling
schedule in an independent search framework. The Multiple Independent Runs (MIR,
Lee 1995) and the Multiple Markov Chains (MMC, Lee and Lee 1996) schemes are
Type 3 parallelizations based on this approach. When there are no interactions among
processors, performance is negatively affected by idle processors which are waiting
for the longest search path to terminate. The MIR strategy addresses this problem by
calculating estimates of the total run length, and then using these estimates to end
computation on all processing units. The MMC scheme addresses the same issue by
allowing processes to interact synchronously and asynchronously at fixed or dynamic
intervals. The authors of this co-operating multi-thread strategy observe that commu-
nication overheads from co-operation are largely compensated for by the reduction of
processor idle time.

A different Type 3 initiative to increase the degree of parallelism of simulated
annealing algorithms consists of moving the methodology closer to genetic algorithms
by considering a population of simulating annealing threads. Laursen (1994) proposed
such a population scheme based on the selection and migration operators of parallel
genetic algorithms. Each processor concurrently runs k simulated annealing procedures
for a given number of iterations. Processors are then paired and each processor migrates
(copies) its solutions to its paired processor. Thus, after the migration phase, each
processor has 2k initial solutions and this number is reduced to k by selection. These
new k solutions become the initial configurations of the k concurrent simulated anneal-
ing threads, and the search restarts on each processor. Pairing is dynamic and depends
on the topology of the parallel machine. For example, in a grid topology, processors can
pair with any of their corner neighbours. Because processors are dynamically paired
and neighbourhoods overlap, information propagates in the network of processors sim-
ilar to the stepping-stone coarse-grained model for parallel genetic methods. Mahfoud
and Goldberg (1995) also propose to evaluate concurrently a population of n Markov
chains. The general idea proceeds as follows: after n / 2 iterations, two parents are
selected from the population of the n current solutions. Two children are generated
using a genetic crossover operator, followed by a mutation operator. Probabilistic trial
competitions are held between children and parents and the replacement step is per-
formed according to the outcome of the competition. The temperature is lowered when
the population reaches equilibrium. There are different ways to parallelize this algo-
rithm. The asynchronous parallelization described in Mahfoud and Goldberg (1995)
follows the Type 3 coarse-grained parallel genetic algorithm approach. The population
of n Markov chains is divided into p subpopulations of n / p Markov chains. Crossover,
mutation, and probability trials are applied to individuals of each local subpopulation.
Asynchronous migration enables sharing of individuals among subpopulations.

The literature on parallel simulated annealing methods has continued to flourish in
recent years. Recent research focuses on applying parallel simulated annealing to new
problems and developing software packages, rather than on discovering new paral-
lelization strategies. The relatively poor performance of Type 1 and Type 2 approaches
have been noticed and, consequently, there have been few applications of these strate-
gies. The most actively applied parallelization strategies are of Type 3: hybridation

496 T.G. Crainic and M. Toulouse

with hill-climbing (e.g., Du et al., 1999) or with genetic methods (e.g., Kurbel et al.,
1995); co-operative multi-threads (e.g., Chu et al., 1999); and massive parallelism (e.g.,
Mahfoud and Goldberg, 1995; Bhandarkar et al., 1996). We believe methods of Type 3
will continue to offer the best performance for parallel simulated annealing.

6 TABU SEARCH

Tabu search has proved a fertile ground for innovation and experimentation in the
area of parallel meta-heuristics. Most parallel strategies introduced in Section 3 have
been applied to tabu search for a variety of applications, and a number of interesting
parallelization concepts have been introduced while developing parallel tabu search
methods.

Similar to most other meta-heuristics, low-level, Type 1 parallelism has been the first
strategy to be applied to tabu search methods. The usual target in this case is the
acceleration of the neighbourhood exploration (Step 4 of Figure 17.6). Following the
ideas summarized in Section 3, most Type 1 implementations correspond to a master
process that executes a sequential tabu procedure and dispatches, at each iteration, the
possible moves in the neighbourhood of the current solution to be evaluated in parallel
by slave processes. Slaves may either evaluate only the moves in the set they receive
from the master process, or may probe beyond each move in the set. The master receives
and processes the information resulting from the slave operations and then selects and
implements the next move. The master also gathers all the information generated during
the tabu exploration, updates the memories, and decides whether to activate different
search strategies or stop the search.

The success of Type 1 strategies for tabu search appears more significant than for
genetic or simulated annealing methods. Indeed, very interesting results have been
obtained when neighbourhoods are very large and the time to evaluate and perform
a given move is relatively small, such as in quadratic assignment (QAP: Chakrapani
and Skorin-Kapov, 1992, 1993, 1995; Taillard (1991, 1993a), travelling salesman

(Chakrapani and Skorin-Kapov, 1993a) and vehicle routing (VRP: Garcia et al., 1994)
applications. For the same quality of solution, near-linear speedups are reported using
a relatively small number of processors. Moreover, historically (the first half of the
90’s), Type 1 parallel tabu search strategies permitted improvements to the best-known
solutions to several problem instances proposed in the literature.

Similarly to the other meta-heuristics, Type 1 tabu search implementations depend
heavily upon the problem characteristics. Thus, performance results are less interesting
when the time required by one serial iteration is relatively important compared to the
total solution time, resulting in executions with only a few hundred moves compared
to the tens of thousands required by a typical VRP tabu search procedure. This was
illustrated by the comparative study of several synchronous tabu search parallelization
strategies performed by Crainic, Toulouse, and Gendreau (1995a) for the location-
allocation problem with balancing requirements. With respect to Type 1 parallelization
approaches, two variants were implemented: (1) slaves evaluate candidate moves only;
(2) probing: slaves also perform a few local search iterations. The second variant per-
formed marginally better. However, both variants were outperformed by co-operative
multi-thread (Type 3) implementations, which attempt a more thorough exploration of
the solution space.

Parallel Strategies for Meta-heuristics 497

Typical tabu search implementations of Type 2 parallelization strategies partition
the vector of decision variables and perform a search on each subset. This approach
was part of the preliminary experimentation in the study by Crainic, Toulouse, and
Gendreau (1995a). It performed poorly, mainly because of the nature of the class of
problems considered; multicommodity location with balancing requirements requires
a significant computation effort to evaluate and implement moves, resulting in a limited
number of moves that may be performed during the search.

As with Type 1 implementations, Type 2 parallel methods were more successful for
problems for which numerous iterations may be performed in a relatively short time and
restarting the method with several different partitions does not require unreasonable
computational efforts. TSP and VRP formulations belong to this class of applications.
Fiechter (1994) proposed a method for the TSP that includes an intensification phase
during which each process optimizes a specific slice of the tour. At the end of the
intensification phase, processes synchronize to recombine the tour and modify (shift
part of the tour to a predetermined neighbouring process) the partition. To diversify,
each process determines from among its subset of cities a candidate list of most promis-
ing moves. The processes then synchronize to exchange these lists, so that all build
the same final candidate list and apply the same moves. Fiechter reports near-optimal
solutions to large problems (500, 3000 and 10000 vertices) and almost linear speedups
(less so for the 10000 vertex problems). Porto and Ribeiro (1995, 1996) studied the
task scheduling problem for heterogeneous systems and proposed several synchronous
parallel tabu search procedures where a master process determines and modifies parti-
tions, synchronizes slaves, and communicates best solutions. Interesting results were
reported, even for strategies involving a high level of communications. Almost lin-
ear speedups were observed, better performances being observed for larger problem
instances.

Taillard (1993) studied parallel tabu search methods for vehicle routing problems. In
Taillard’s approach, the domain is decomposed into polar regions, to which vehicles are
allocated, and each subproblem is solved by an independent tabu search. All processors
synchronize after a certain number of iterations (according to the total number of
iterations already performed) and the partition is modified: tours, undelivered cities, and
empty vehicles are exchanged between adjacent processors. Taillard reports very good
results for the epoch. However, enjoying the benefit of hindsight, the main contribution
of this paper is to mark the evolution towards one of the most successful sequential
meta-heuristics for the VRP: a tabu search method called adaptive memory (Rochat
and Taillard, 1995; Glover, 1996).

According to an adaptive memory approach, cities are initially separated into sev-
eral subsets, and routes are built using a construction heuristic. Initial routes are then
stored in a structure called an adaptive memory. Then, a combination procedure builds a
complete solution using the routes in the memory, and the solution is further improved
using a tabu search method. The routes of “good” solutions are then deposited into
the same memory, which thus adapts to reflect the current state of knowledge of the
search. The process then re-starts with a new solution built from the routes stored in the
adaptive memory. The method stops when a pre-specified number of calls to the adap-
tive memory have been performed. This approach clearly implements the principles of
Type 2 decomposition using a serial procedure; See also the interesting developments
in vocabulary building strategies for tabu search proposed by Glover (1996). Adap-
tive memory principles have now been successfully applied to other problem classes

498 T.G. Crainic and M. Toulouse

and are opening interesting research avenues (Glover, 1996). However, interestingly,
most parallel applications of this approach are now found in co-operative multi-thread
strategies (Type 3).

Type 3 parallelizations for tabu search methods follow the same basic pattern
described in Section 3: p threads search through the same solution space, starting
from possibly different initial solutions and using possibly different tabu (or other)
search strategies. Historically, independent and synchronous co-operative multi-thread
methods were proposed first. However, currently, asynchronous procedures are being
increasingly developed. Consequently, one observes an increased awareness of the
issues related to the definition and modelling of co-operation.

Battiti and Tecchiolli (1992, for the QAP) and Taillard (the main study is found in
his 1994 paper on parallel tabu methods for job shop scheduling problems) studied inde-
pendent multi-thread parallelization schemes, where the independent search processes
start the exploration from different, randomly generated, initial configurations. Both
studies empirically established the efficiency of independent multi-thread procedures
when compared to the best heuristics proposed at the time for their respective prob-
lems. Both studies also attempted to establish some theoretical justifications for the
efficiency of independent search. Battiti and Tecchiolli derived probability formulas
that tended to show that the probability of “success” increases, while the correspond-
ing average time to “success” decreases, with the number of processors (provided the
tabu procedure does not cycle). On the other hand, Taillard showed that the conditions
required for the parallel method to be “better” than the sequential one are rather strong,
where “better” was defined as “the probability the parallel algorithm achieves success
with respect to some condition (in terms of optimality or near-optimality) by time t

is higher than the corresponding probability of the sequential algorithm by time pt”.
However, the author also mentions that, in many cases, the empirical probability func-
tion of iterative algorithms is not very different from an exponential one, implying that
independent multi-thread parallelization is an efficient strategy. The results for the job
shop problem seemed to justify this claim. Similar results may also be found in Eikelder
et al. (1999).

Malek et al. (1989, for the TSP), De Falco et al. (1994, for the QAP), and De Falco
et al. (1995, for the mapping problem) proposed co-operative parallel strategies where
the individual search threads are rather tightly synchronized. The implementation
proposed by Malek et al. (1989) proceeds with one main process that controls the
co-operation, and four child processes that run serial tabu search algorithms with dif-
ferent tabu conditions and parameters. The child processes are stopped after a specified
time interval, solutions are compared, bad areas of solution space are eliminated, and
the searches are restarted with a good solution and an empty tabu list. This implementa-
tion was part of a comparative study of serial and parallel simulated annealing and tabu
search algorithms for the TSP. The authors report that the parallel tabu search imple-
mentation outperformed the serial one and consistently produced comparable or better
results than sequential or parallel simulated annealing. De Falco and colleagues imple-
mented a multi-thread strategy, where each process performs a local search from its
best solution. Then, processes synchronize and best solutions are exchanged between
processes that run on neighbouring processors. Local best solutions are replaced with
imported ones only if the latter are better. The authors indicate that better solutions
were obtained when co-operation was included compared to an independent thread
strategy. Super-linear speedups are reported.

Parallel Strategies for Meta-heuristics 499

Rego and Roucairol (1996) proposed a tabu search method for the VRP based
on ejection chains and implemented an independent multi-thread parallel version, each
thread using a different set of parameter settings but starting from the same solution. The
method is implemented in a master-slave setting, where each slave executes a complete
sequential tabu search. The master gathers the solutions found by the threads, selects
the overall best, and reinitializes the threads for a new search. Low-level (Type 1)
parallelism accelerates the move evaluations of the individual searches, as well as
the post-optimization phase. Experiments show the method to be competitive on the
standard VRP problem set (Christofides et al., 1979).

Asynchronous co-operative multi-thread search methods are being proposed in
continuously increasing numbers. All such developments we have identified use some
form of central memory for inter-thread communications. Each individual search thread
starts from a different initial solution and generally follows a different search strategy.
Exchanges are performed asynchronously and are done through the central memory.
One may classify co-operative multi-thread search methods according to the type of
information stored in the central memory: complete or partial solutions. In the latter
case, one often refers to adaptive memory strategies, while central memory, pool of

solutions, or solution warehouse methods are used for the former.
Very successful Type 3 co-operative multi-thread parallel tabu search methods are

based on adaptive memory concepts. This strategy has been particularly used for real-
time routing and vehicle dispatching problems (Gendreau et al., 1999), as well as for
VRP with time window restrictions (Taillard et al., 1997; Badeau et al., 1997). A gen-
eral implementation framework of adaptive memory strategies begins with each thread
constructing an initial solution and improving it through a tabu search or any other
procedure. Each thread deposits the routes of its improved solution into the adaptive
memory. Each thread then constructs a new initial solution out of the routes in the
adaptive memory, improves it, communicates its routes to the adaptive memory, and
repeats the process. A “central” process manages the adaptive memory and oversees
communication among the independent threads. It also stops the procedure based on
the number of calls to the adaptive memory, the number of successive calls which show
no improvement in the best solution, or a time limit. In an interesting development,
Gendreau et al. (1999) also exploited parallelism within each search thread by decom-
posing the set of routes along the same principles proposed in Taillard’s work (1993).
Good results have been obtained by using this approach on a network of workstations,
especially when the number of processors is increased. Another interesting variant on
the adaptive memory idea may be found in the work of Schulze and Fahle (1999).
Here, the pool of partial solutions is distributed among processes to eliminate the need
for a “master”. The elements of the best solutions found by each thread are broadcast
to ensure that each search has still access to all the information when building new
solutions. Implemented on a limited number of processors, the method performed well
(it is doubtful, however, that it would perform equally well for a larger number of
processors).

As far as we can tell, Crainic, Toulouse, and Gendreau (1997) proposed the first
central memory strategy for tabu search as part of their taxonomy. The authors also
presented a thorough comparison of various parallelization strategies based on this
taxonomy (Crainic et al., 1995a,b). The authors implemented several Type 1 and 2
strategies, one independent multi-thread approach, and a number of synchronous
and asynchronous co-operative multi-thread methods. They used the multicommodity

500 T.G. Crainic and M. Toulouse

location problem with balancing requirements for experimentation. The authors report
that the parallel versions achieved better quality solutions than the sequential ones
and that, in general, asynchronous methods outperformed synchronous strategies. The
independent threads and the asynchronous co-operative approaches offered the best
performance.

Crainic and Gendreau (2001) proposed a co-operative multi-thread parallel tabu
search for the fixed cost, capacitated, multicommodity network design problem. In their
study, the individual tabu search threads differed in their initial solution and parameter
settings. Communications were performed asynchronously through a central memory
device. The authors compared five strategies of retrieving a solution from the pool
when requested by an individual thread. The strategy that always returns the overall
best solution displayed the best performance when few (4) processors were used. When
the number of processors was increased, a probabilistic procedure, based on the rank of
the solution in the pool, appears to offer the best performance. The parallel procedure
improves the quality of the solution and also requires less (wall clock) computing
time compared to the sequential version, particularly for large problems with many
commodities (results for problems with up to 700 design arcs and 400 commodities
are reported). The experimental results also emphasize the need for the individual
threads to proceed unhindered for some time (e.g., until the first diversification move)
before initiating exchanges of solutions. This ensures that local search histories can
be established and good solutions can be found to establish the central memory as an
elite candidate set. By contrast, early and frequent communications yielded a totally
random search that was ineffective. The authors finally report that the co-operative
multi-thread procedure also outperformed an independent search strategy that used the
same search parameters and started from the same initial points. Other implementations
of asynchronous co-operative multi-thread parallel tabu search methods are presented
by Andreatta and Ribeiro (1994; see also Aiex et al., 1996; Martins et al., 1996) for the
problem of partitioning integrated circuits for logical testing as well as by Cavalcante
et al. (2002) for labor scheduling problems.

Crainic and Gendreau (1999) report the development of a hybrid search strategy
combining their co-operative multi-thread parallel tabu search method with a genetic
engine. The genetic algorithm initiates its population with the first elements from the
central memory of the parallel tabu search. Asynchronous migration (migration rate =
1) subsequently transfers the best solution of the genetic pool to the parallel tabu
search central memory, as well as solutions of the central memory towards the genetic
population. The hybrid appears to perform well, especially on larger problems where
the best known solutions are improved. It is noteworthy that the genetic algorithm
alone was not performing well and that it was the parallel tabu search procedure that
identified the best results once the genetic method contributed to the quality of the
central memory.

Recently, Le Bouthiller and Crainic (2001) took this approach one step further and
proposed a central memory parallel meta-heuristic for the VRP with time windows
where several tabu search and genetic algorithm threads co-operate. In this model,
the central memory constitutes the population common to all genetic threads. Each
genetic algorithm has its own parent selection and crossover operators. The offspring
are returned to the pool to be enhanced by a tabu search procedure. The tabu search
threads follow the same rules as in the work of Crainic and Gendreau (2001). Only
preliminary results are currently available, but they are extremely encouraging. Without

Parallel Strategies for Meta-heuristics 501

any particular calibration, the parallel meta-heuristic obtains solutions whose quality
is comparable to the best meta-heuristics available, and demonstrates almost linear
speedups.

To conclude, Type 1 (and in some cases Type 2) parallelization strategies may
still prove of value, especially for the evaluation of large neighbourhoods, or when
used in hierarchical implementations to speedup computations of meta-heuristics
involved in co-operative explorations. As illustrated above, Type 3, co-operative
multi-thread strategies offer the most interesting perspectives. They do require, how-
ever, some care when they are designed and set up as will be discussed in the next
section.

7 PERSPECTIVES AND RESEARCH DIRECTIONS

We have presented the main meta-heuristic parallelization strategies and their instan-
tiation in the context of three major classes of methods: genetic algorithms, simulated
annealing, and tabu search. Beyond the peculiarities specific to each methodology class
and application domain, a number of general principles emerge:

Meta-heuristics often have strong data dependencies. Therefore, straightforward
data or functional parallelization techniques can identify only limited parallelism.

Nevertheless, parallelization is very often beneficial. The evaluation of neigh-
bouring solutions is a prime example of meta-heuristic algorithmic components
that permit significant computational gains. Moreover, the concurrent exploration
of the solution space by co-operating meta-heuristics often yields gains in solution
quality, computational efficiency, and robustness of the search.

Type 1 parallelization techniques are particularly useful for computation-intensive
tasks, such as the evaluation of potential moves in the neighbourhood of a given
solution. Moreover, such strategies may be advantageously incorporated into hier-
archical parallel schemes where the higher level either explores partitions of the
solution domain (Type 2 parallelism) or implements a co-operating multi-thread
search (Type 3 parallelism).

Hybridization, the incorporation of principles and strategies proper to one class of
meta-heuristics into the algorithmic design of another, may improve performance
of sequential and parallel meta-heuristics alike.

When implemented properly, co-operating multi-thread parallel meta-heuristics
appear to be the most promising strategy.

We have focussed on genetic methods, simulated annealing, and tabu search to
reflect their wide-spread utilization in both sequential and parallel settings. Several
other meta-heuristics have also been proposed in the literature, and some have proven
quite successful for certain problem types. They include scatter search (Glover, 1994;
Glover and Laguna, 1997), GRASP (Feo and Resende, 1995; Festa and Resende, 2002),
variable neighbourhood search (Hansen and Mladenovic, 1997, 1999, 2002), ant

colony systems (Colorni et al., 1991; Dorigo et al., 1996; Maniezzo and Carbonaro,
2002), as well as a host of ad-hoc methods based on neighbourhood exploration, which,
in some surveys, are lumped together under the “local search” heading. Several of

502 T.G. Crainic and M. Toulouse

these methods also implement some sort of hybridization scheme where, typically, the
current incumbent solution is enhanced by a local improvement procedure. In most
cases, the basic working principle of the method may be cast in the generic meta-
heuristic framework illustrated in Figure 17.2. Thus, the main principles and strategies
described in this paper apply to the parallelization of these meta-heuristics as well, as
illustrated by the parallelization efforts that have been reported for these methods (e.g.,
Kindervater et al., 1993; Pardalos et al., 1995; Sondergeld and Voß, 1999; Verhoeven
and Severens, 1999). Of course, the most efficient applications of these principles and
strategies to each of these meta-heuristics have yet to be established, which constitutes
a most interesting research subject.

Co-operation and multi-thread parallelization appear to offer the most interesting
perspectives for meta-heuristics. However, several issues and challenges remain to be
addressed.

Synchronous implementations, where information is exchanged at regular inter-
vals, have been reported for the three classes of meta-heuristics examined in this paper.
In general, these implementations outperform the serial methods in solution quality.
For tabu search (Crainic et al., 1995) and simulated annealing (Graffigne, 1992), syn-
chronous co-operative methods appear to be outperformed, however, by independent
search procedures. Yet, the study by Lee and Lee (1992) contradicts this trend. Their
results show the independent thread approach to be outperformed by two strategies of
synchronous co-operating parallel threads. Similar finds have been reported for genetic
algorithms: Cohoon et al. (1987) and Cohoon et al. (1991a,b) report that parallel search
with migration operators applied at regular intervals outperforms the same method with-
out migration. These results point to interesting research issues that should be further
investigated, especially since Lee and Lee used a dynamically adjusted synchronization
interval that modified the traditional synchronous parallelism paradigm.

Asynchronous co-operative multi-thread search strategies appear to have been less
studied but are being increasingly proposed. In fact, this strategy is probably the
strongest current trend in parallel meta-heuristics, as illustrated by the development
of memetic algorithms, of methods that evolve populations of simulated annealing
threads, of the adaptive and central memory concepts initiated within the tabu search
community but displaying general applicability characteristics. The results reported in
the literature seem to indicate that asynchronous co-operative multi-thread paralleliza-
tion strategies offer better results than synchronous and independent searches. More
theoretical and empirical work is still required in this field, however.

An important issue for parallel meta-heuristic development and success concerns
the definition of co-operation schemes and their impact on search behaviour and
performance. A number of basic communication issues in designing multi-thread par-
allel meta-heuristics are discussed by Toulouse et al. (1996). More thorough analysis
(Toulouse et al., 1997, 1999, 2000; Toulouse et al., 1998) shows that co-operative
parallel meta-heuristics form dynamic systems and that the evolution of these systems
may be more strongly determined by the co-operation scheme than by the optimization
process. The selection of the information exchanged, and the part of it that is propa-
gated past the initial exchange, significantly impacts the performance of co-operating
procedures. The determination for each search thread of both when to import external
information and how to use it (e.g., restart from the imported solution and clean up
all history contrasted to the use of imported global information to bias local selection

Parallel Strategies for Meta-heuristics 503

mechanisms) are equally important ingredients in the design of co-operating multi-
thread parallel schemes. The application of these principles forms the basis of a new
co-operation scheme, called multi-level co-operative search (Toulouse et al., 1999;
see also Toulouse et al., 1998; Ouyang et al., 2000, 2000a), which has proven very
successful for graph partitioning problems.

The solutions exchanged by co-operating search threads form populations that do
not evolve according to genetic principles, but rather follow the information exchange
mechanisms that define the co-operation. Of course, genetic operators may be used
to control this evolution, as seen in some co-operative simulated annealing schemes.
Scatter search and ant colony systems offer alternate co-operation mechanisms. In this
respect, it is noteworthy that ant systems and, more generally, swarm-based meth-
ods (Bonabeau et al., 1999) appear as one of the first nature-inspired co-operation
mechanisms. Yet, for now, despite the interest of its fundamental idea of trend enforce-
ment/dilution, the co-operation principle underlying these methods appears much too
rigid to offer a general purpose method. Scatter search, on the other hand, offers
context-related combination mechanisms and memories for medium and long term
steering of the evolution of the population. New mechanisms need to be developed,
however, to relate this information to the search threads that make up the co-operating
parallel algorithm. In fact, we believe that no single mechanism may adequately cover
all possibilities and hybrid mechanisms will have to be defined.

Parallel co-operating methods do not have to include strategies belonging to only
one meta-heuristic class. In fact, a number of recent studies (e.g., Le Bouthillier and
Crainic, 2001) tend to demonstrate that combining different meta-heuristics yields
superior results. At the parallel computing level, this approach generalizes the trend
towards hybrid development observed in meta-heuristic communities. It also opens up
an exciting field of enquiry. What meta-heuristics to combine? What role can each
type of meta-heuristic play? What information is exchanged and how it is used in this
context? These are only a few of the questions that need to be answered.

Last but not least, recall an earlier remark that co-operating parallel mechanisms
bear little, if any, resemblance to the initial meta-heuristic one attempts to parallelize.
This remark is even more true when different meta-heuristics combine their efforts.
In fact, more and more authors argue that co-operating multi-thread parallel methods
should form a “new”, very broadly defined, class of meta-heuristics. If true, which
we believe it is, we are left with the challenge of properly defining this meta-heuristic
class. For example, memory mechanisms appear appropriate to record statistics on both
the attributes of the solutions exchanged (or present in the solution population) and the
performance of individual searches. How can this information be used to globally direct
the search? What interactions are most appropriate between global and local (for each
thread) information (memories)? These are among the most interesting challenges we
face in this respect.

To conclude, parallel meta-heuristics offer the possibility to address problems
more efficiently, both in terms of computing efficiency and solution quality. A
rather limited number of strategies exist and this paper aims to both put these
strategies into perspective and to briefly describe them. The study of parallel meta-
heuristics design and performance still constitutes an exciting and challenging research
domain with much opportunity for experimentation and development of important
applications.

504 T.G. Crainic and M. Toulouse

ACKNOWLEDGMENTS

Funding for this project has been provided by the Natural Sciences and Engineering
Council of Canada, and by the Fonds F.C.A.R. of the Province of Québec.

REFERENCES

Aarts, E. and Korst, J. (2002) Selected topics in simulated annealing. In: C. Ribeiro
and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Norwell, MA, pp. 1–57.

Aarts, E.H.L, de Bont, F.M.J., Habers, J.H.A. and van Laarhoven, P.J.M. (1986)
Parallel implementations of statistical cooling algorithms. Integration, The VLSI

Journal, 3, 209–238.

Aarts, E.H.L. and Korst, J.H.M. (1989) Simulated Annealing and Boltzmann Machines.

John Wiley & Sons, New York, NY.

Abramson, D. and Abela, J. (1992) A parallel genetic algorithm for solving the school
timetabling problem. In: G. Gupta and C. Keen (eds.), 15th Australian Computer

Science Conference. Department of Computer Science, University of Tasmania,
pp. 1–11.

Abramson, D., Mills, G. and Perkins, S. (1993) Parallelization of a genetic algorithm
for the computation of efficient train schedules. In: D. Arnold, R. Christie, J. Day
and P. Roe (eds.), Proceedings of the 1993 Parallel Computing and Transputers

Conference. IOS Press, pp. 139–149.

Aiex, R.M., Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Asynchro-
nous parallel strategies for tabu search applied to the partitioning of VLSI circuits.
Monografias em ciência da computação, Pontifícia Universidade Católica de Rio de
Janeiro.

Andreatta, A. A. and Ribeiro C.C. (1994) A graph partitioning heuristic for the parallel
pseudo-exhaustive logical test of VLSI combinational circuits. Annals of Operations

Research, 50, 1–36.

Azencott, R. (1992) Simulated Annealing Parallelization Techniques. John Wiley &
Sons, New York, NY.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y. and Taillard, É.D. (1997) A par-
allel tabu search heuristic for the vehicle routing problem with time windows.
Transportation Research C: Emerging Technologies, 5(2), 109–122.

Baluja, S. (1993) Structure and performance of fine-grain parallelism in genetic algo-
rithms. In: S. Forrest (ed.), Proceedings of the Fifth International Conference on

Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 155–162.

Barr, R.S. and Hickman, B.L. (1993) Reporting computational experiments with paral-
lel algorithms: issues, measures, and experts opinions. ORSA Journal on Computing,

5(1), 2–18.

Battiti, R. and Tecchiolli, G. (1992) Parallel based search for combinatorial optimiza-
tion: genetic algorithms and TABU. Microprocessors and Microsystems, 16(7),
351–367.

Parallel Strategies for Meta-heuristics 505

Bhandarkar, S.M. and Chirravuri, S. (1996) A study of massively parallel simulated
annealing algorithms for chromosome reconstruction via clone ordering. Parallel

Algorithms and Applications, 9, 67–89.

Bonabeau, E., Dorigo, M. and Theraulaz, G. (eds.) (1999) Swarm Intelligence—From

Natural to Artificial Systems. Oxford University Press, New York, NY.

Cantú-Paz, E. (1995) A summary of research on parallel genetic algorithms. Report
95007, University of Illinois at Urbana-Champain.

Cantú-Paz, E. (1998) A survey of parallel genetic algorithms. Calculateurs Parallèles,

Réseaux et Systèmes répartis, 10(2), 141–170.

Cavalcante, C.B.C., Cavalcante, V.F., Ribeiro, C.C. and de Souza, C.C. (2002) Parallel
cooperative approaches for the labor constrained scheduling problem. In: C. Ribeiro
and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Norwell, MA, pp. 201–225.

Chakrapani, J. and Skorin-Kapov, J. (1992) A connectionist approach to the
quadratic assignment problem. Computers & Operations Research, 19(3/4),
287–295.

Chakrapani, J. and Skorin-Kapov, J. (1993) Massively parallel tabu search for the
quadratic assignment problem. Annals of Operations Research, 41, 327–341.

Chakrapani, J. and Skorin-Kapov, J. (1993a) Connection machine implementation of
a tabu search algorithm for the traveling salesman problem. Journal of Computing

and Information Technology, 1(1), 29–36.

Chakrapani, J. and Skorin-Kapov, J. (1995) Mapping tasks to processors to mini-
mize communication time in a multiprocessor system. In: The Impact of Emerging

Technologies of Computer Science and Operations Research. Kluwer Academic
Publishers, Norwell, MA, pp. 45–64.

Chen, Y.-W., Nakao, Z. and Fang, X. (1996) Parallelization of a genetic algorithm for
image restoration and its performance analysis. In: IEEE International Conference

on Evolutionary Computation, pp. 463–468.

Christofides, N., Mingozzi A. and Toth, P. (1979) The vehicle routing problem.
In: N. Christofides, A. Mingozzi, P. Toth and C. Sandi (eds.), Combinatorial

Optimization. John Wiley, New York, pp. 315–338.

Chu, K., Deng, Y. and Reinitz, J. (1999) Parallel simulated annealing algorithms by
mixing states. Journal of Computational Physics, 148, 646–662.

Cohoon, J., Hedge, S., Martin, W. and Richards, D. (1987) Punctuated equilibria:
a parallel genetic algorithm. In: J. Grefenstette (ed.), Proceedings of the Second

International Conference on Genetic Algorithms and their Applications. Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 148–154.

Cohoon, J., Martin, W. and Richards, D. (199la) Genetic algorithm and punctuated
equilibria in VLSI. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem

Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag,
Berlin, pp. 134–144.

Cohoon, J., Martin, W. and Richards, D. (1991b) A multi-population genetic algorithm
for solving the k-partition problem on hyper-cubes. In: R. Belew and L. Booker

506 T. G. Crainic and M. Toulouse

(eds.), Proceedings of the Fourth International Conference on Genetic Algorithms.

Morgan Kaufmann, San Mateo, CA, pp. 134–144.

Colorni, A., Dorigo, M. and Maniezzo, V. (1991) Distributed optimization by ant
colonies. In: Proceedings of the 1991 European Conference on Artificial Life.

North-Holland, Amsterdam, pp. 134–142.

Crainic, T.G. (2002) Parallel computation, co-operation, tabu search. In: C. Rego and
B. Alidaee (eds.), Adaptive Memory and Evolution: Tabu Search and Scatter Search.

Kluwer Academic Publishers, Norwell, MA (forthcoming).

Crainic, T.G. and Gendreau, M. (1999) Towards an evolutionary method—cooperating
multi-thread parallel tabu search hybrid. In: S. Voß, S. Martello, C. Roucairol and
I.H. Osman (eds.), Mela-Heuristics 98: Theory & Applications. Kluwer Academic
Publishers, Norwell, MA, pp. 331–344.

Crainic, T.G. and Gendreau, M. (2001) Cooperative parallel tabu search for capacitated
network design. Journal of Heuristics (forthcoming).

Crainic, T.G. and Toulouse, M. (1998) Parallel metaheuristics. In: T.G. Crainic and
G. Laporte (eds.), Fleet Management and Logistics. Kluwer Academic Publishers,
Norwell, MA, pp. 205–251.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1995a) Parallel asynchronous tabu
search for multicommodity location–allocation with balancing requirements. Annals

of Operations Research, 63, 277–299.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1995b) Synchronous tabu search
parallelization strategies for multicommodity location–allocation with balancing
requirements. OR Spektrum, 17(2/3), 113–123.

Crainic, T.G., Toulouse, M. and Gendreau, M. (1997) Towards a taxonomy of parallel
tabu search algorithms. INFORMS Journal on Computing, 9(1), 61–72.

Cung, V.-D., Martins, S.L., Ribeiro, C.C. and Roucairol, C. (2002) Strategies for the
parallel implementations of metaheuristics. In: C. Ribeiro and P. Hansen (eds.),
Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, Norwell, MA,
pp. 263–308.

Darema, F., Kirkpatrick, S. and Norton, V.A. (1987) Parallel algorithms for chip
placement by simulated annealing. IBM Journal of Research and Development, 31,
391–102.

De Falco, I., Del Balio, R. and Tarantino, E. (1995) Solving the mapping prob-
lem by parallel tabu search. Report, Istituto per la Ricerca sui Sistemi Informatici
Paralleli-CNR.

De Falco, I., Del Balio, R., Tarantino, E. and Vaccaro, R. (1994) Improving search
by incorporating evolution principles in parallel tabu search. In: Proceedings

International Conference on Machine Learning, pp. 823–828.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) The ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics—Part B, 26(1), 29–41.

Du, Z., Li, S., Li, S., Wu, M. and Zhu, J. (1999) Massively parallel simulated
annealing embedded with downhill—a SPMD algorithm for cluster computing.

Parallel Strategies for Meta-heuristics 507

In: Proceedings of the 1st IEEE Computer Society International Workshop on

Cluster Computing. IEEE Computer Society Press, Washington, DC.

Durand, M.D. (1989) Parallel simulated annealing: accuracy vs. speed in placement.
IEEE Design & Test of Computers, 6(3), 8–34.

Durand, M.D. (1989a) Cost function error in asynchronous parallel simu-
lated annealing algorithms. Technical Report CUCS-423–89, University of
Columbia.

Felten, E., Karlin, S. and Otto, S. W. (1985) The traveling salesman problem on a hyper-
cube, MIMD computer. In Proceedings 1985 of the International Conference on

Parallel Processing, pp. 6–10.

Feo, T.A. and Resende, M.G.C. (1995) Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2), 109–133.

Festa, P. and Resende, M.G.C. (2002) GRASP: an annotated bibliography. In:
C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 325–367.

Fiechter, C.-N. (1994) A parallel tabu search algorithm for large travelling salesman
problems. Discrete Applied Mathematics, 51(3), 243–267.

Fogarty, T.C. and Huang, R. (1990) Implementing the genetic algorithm on transputer
based parallel systems. In: H.-P. Schwefel and R. Männer (eds.), Proceedings of the

1st Workshop on Parallel Problem Solving from Nature. Springer-Verlag, Berlin,
pp. 145–149.

Fogel, D.B. (1994) Evolutionary programming: an introduction and some current
directions. Statistics and Computing, 4, 113–130.

Garcia, B.L., Potvin, J.-Y. and Rousseau, J.M. (1994) A parallel implementation of
the tabu search heuristic for vehicle routing problems with time window constraints.
Computers & Operations Research, 21(9), 1025–1033.

Gendreau, M. (2002) Recent advances in tabu search. In: C. Ribeiro and P. Hansen
(eds.), Essays and Surveys in Metaheuristics. Kluwer Academic Publishers,
Norwell, MA, pp. 369–377.

Gendreau, M., Guertin, F., Potvin, J.-Y. and Taillard, É.D. (1999) Tabu search
for real-time vehicle routing and dispatching. Transportation Science, 33(4),
381–390.

Glover, F. (1986) Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 1(3), 533–549.

Glover, F. (1989) Tabu search—part I. ORSA Journal on Computing, 1(3),
190–206.

Glover, F. (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.

Glover, F. (1994) Genetic algorithms and scatter search: unsuspected potentials.
Statistics and Computing, 4, 131–140.

Glover, F. (1996) Tabu search and adaptive memory programming—advances, appli-
cations and challenges. In: R. Barr, R. Helgason and J. Kennington (eds.), Interfaces

in Computer Science and Operations Research. Kluwer Academic Publishers,
Norwell, MA, pp. 1–75.

508 T.G. Crainic and M. Toulouse

Glover, F. and Laguna, M. (1993) Tabu search. In: C. Reeves (ed.), Modern Heuristic

Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford,
pp. 70–150.

Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers,
Norwell, MA.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Reading, MA.

Graffigne, C. (1992) Parallel annealing by periodically interacting multiple searches:
an experimental study. In: R. Azencott (ed.), Simulated Annealing Parallelization

Techniques. John Wiley & Sons, New York, NY, pp. 47–79.

Greening, D.R. (1990) Parallel simulated annealing techniques. Physica D, 42,

293–306.

Grefenstette, J. (1981) Parallel adaptive algorithms for function optimization.
Technical Report CS-81–19, Vanderbilt University, Nashville.

Hansen, P. and Mladenovic, N. (1997) Variable neighborhood search. Computers &

Operations Research, 24, 1097–1100.

Hansen, P. and Mladenovic, N. (1999) An introduction to variable neighborhood
search. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.), Meta-Heuristics

98: Theory & Applications. Kluwer, Norwell, MA, pp. 433–458.

Hansen, P. and Mladenovic, N. (2002) Developments of variable neighborhood search.
In: C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 415–439.

Hauser, R. and Männer, R. (1994) Implementation of standard genetic algorithm
on MIMD machines. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Par-

allel Problem Solving from Nature III, Lecture Notes in Computer Science 866.

Springer-Verlag, Berlin, pp. 504–514.

Herdy, M. (1992) Reproductive isolation as strategy parameter in hierarchical orga-
nized evolution strategies. In: R. Männer and B. Manderick (eds.), Parallel Problem

Solving from Nature, 2. North-Holland, Amsterdam, pp. 207–217.

Hillis, D.W. (1992) Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In: C.E.A. Langton (ed.), Artificial Life II. Addison-Wesley,
pp. 313–324.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Holmqvist, K. and Migdalas, A. and Pardalos, P.M. (1997) Parallelized heuristics
for combinatorial search. In: A. Migdalas, P. Pardalos and S. Storoy (eds.), Par-

allel Computing in Optimization. Kluwer Academic Publishers, Norwell, MA,
pp. 269–294.

Jayaraman, R. and Darema, F. (1988) Error tolerance in parallel simulated tech-
niques. In: Proceedings of the IEEE International Conference on Computer-

Aided Design: ICCAD-88. IEEE Computer Society Press, Washington, DC,
pp. 545–548.

Parallel Strategies for Meta-heuristics 509

Kindervater, G.A.P, Lenstra, J.K. and Savelsberg, M.W.P. (1993) Sequential and par-
allel local search for the time constrained traveling salesman problem. Discrete

Applied Mathematics, 42, 211–225.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science, 220, 671–680.

Kliewer, G. and Tschoke, S. (2000) A general parallel simulated annealing library
and its application in airline industry. In: Proceedings of the 14th International

Parallel and Distributed Processing Symposium (IPDPS 2000). Cancun, Mexico,
pp. 55–61.

Kohlmorgen, U., Schmeck, H. and Haase, K. (1999) Experiences with fine-grained
parallel genetic algorithms. Annals of Operations Research, 90, 203–219.

Kurbel, K., Schneider, B. and Singh, K. (1995) VLSI standard cell placement by paral-
lel hybrid simulated annealing and genetic algorithm. In: D.W. Pearson, N.C. Steele
and R. F. Albrecht (eds.), Proceedings of the Second International Conference

on Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, Berlin,
pp. 491–494.

Laarhoven, P. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and Applica-

tions. Reidel, Dordrecht.

Laursen, P.S. (1994) Problem-independent parallel simulated annealing using selection
and migration. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Paral-

lel Problem Solving from Nature III, Lecture Notes in Computer Science 866.

Springer-Verlag, Berlin, pp. 408–417.

Laursen, P.S. (1996) Parallel heuristic search—introductions and a new approach.
In: A. Ferreira and P. Pardalos (eds.), Solving Combinatorial Optimization Prob-

lems in Parallel, Lecture Notes in Computer Science 1054. Springer-Verlag, Berlin,
pp. 248–274.

Le Bouthillier, A. and Crainic, T.G. (2001) Parallel co-operative multi-thread meta-
heuristic for the vehicle routing problem with time window constraints. Publication,
Centre de recherche sur les transports, Université de Montréal, Montréal, QC,
Canada.

Lee, F.-H.A. (1995) Parallel Simulated Annealing on a Message-Passing Multi-

Computer. Ph.D. thesis, Utah State University.

Lee, K.-G. and Lee, S.-Y. (1992a) Efficient parallelization of simulated annealing
using multiple markov chains: an application to graph partitioning. In: T. Mudge
(ed.), Proceedings of the International Conference on Parallel Processing, volume
III: Algorithms and Applications. CRC Press, pp. 177–180.

Lee, K.-G. and Lee, S.-Y. (1995) Synchronous and asynchronous parallel simulated
annealing with multiple markov chains. Lecture Notes in Computer Science 1027,

pp. 396–408.

Lin, S.-C., Punch, W. and Goodman, E. (1994) Coarse-grain parallel genetic algo-
rithms: categorization and new approach. In: Sixth IEEE Symposium on Parallel

and Distributed Processing. IEEE Computer Society Press, pp. 28–37.

Lis, J. (1996) Parallel genetic algorithm with the dynamic control parameter. In: IEEE

1996 International Conference on Evolutionary Computation, pp. 324–328.

510 T.G. Crainic and M. Toulouse

Mahfoud, S.W. and Goldberg, D.E. (1995) Parallel recombinative simulated annealing:
a genetic algorithm. Parallel Computing, 21, 1–28.

Malek, M., Guruswamy, M., Pandya, M. and Owens, H. (1989) Serial and parallel
simulated annealing and tabu search algorithms for the traveling salesman problem.
Annals of Operations Research, 21, 59–84.

Maniezzo, V. and Carbonaro, A. (2002) Ant colony optimization: an overview. In:
C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 469–492.

Martins, S.L., Ribeiro, C.C. and Rodriguez, N.R. (1996) Parallel programming tools
for distributed memory environments. Monografias em Ciência da Computação
01/96, Pontifícia Universidade Católica de Rio de Janeiro.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953)
Equation of state calculation by fast computing machines. Journal of Chemical

Physics, 21, 1087–1092.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, Berlin.

Michalewicz, Z. and Fogel, D.B. (2000) How to Solve It: Modern Heuristics.

Springer-Verlag, Berlin.

Moscato, P. (1989) On evolution, search, optimization, genetic algorithms and mar-
tial arts: towards memetic algorithms. Publication Report 790, Caltech Concurrent
Computation Program.

Moscato, P. and Norman, M.G. (1992) A “memetic” approach for the traveling
salesman problem. Implementation of a computational ecology for combinator-
ial optimization on message-passing systems. In: M. Valero, E. Onate, M. Jane, J.
Larriba and B. Suarez (eds.), Parallel Computing and Transputer Applications. IOS
Press, Amsterdam, pp. 187–194.

Mühlenbein, H. (1991) Evolution in time and space—the parallel genetic algorithm. In:
G. Rawlins (ed.), Foundations of Genetic Algorithm & Classifier Systems. Morgan
Kaufman, San Mateo, CA, pp. 316–338.

Mühlenbein, H. (1992) Parallel genetic algorithms in combinatorial optimization.
In: O. Balci, R. Sharda and S. Zenios (eds.), Computer Science and Operations

Research. Pergamon Press, New York, NY, pp. 441–56.

Mühlenbein, H. (1992a) How genetic algorithms really work: mutation and hill-
climbing. In: R. Manner and B. Manderick (eds.), Parallel Problem Solving from

Nature, 2. North-Holland, Amsterdam, pp. 15–26.

Muhlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1987) New solutions to the
mapping problem of parallel systems—the evolution approach. Parallel Computing,

6, 269–279.

Mühlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1988) Evolution algorithms
in combinatorial optimization. Parallel Computing, 7(1), 65–85.

Mühlenbein, H. and Schlierkamp-Voosen, D. (1994) The science of breeding and its
application to the breeder genetic algorithm BGA. Evolutionary Computation, 1(4),
335–360.

Parallel Strategies for Meta-heuristics 511

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000a)
Multi-level cooperative search: application to the netlist/hypergraph partitioning
problem. In: Proceedings of International Symposium on Physical Design. ACM
Press, pp. 192–198.

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F. and Deogun, J.S. (2000b)
Multilevel cooperative search for the circuit/hypergraph partitioning problem. IEEE

Transactions on Computer-Aided Design, (to appear).

Pardalos, P.M., Pitsoulis, L., Mavridou, T., and Resende, M.G.C. (1995) Parallel
search for combinatorial optimization: genetic algorithms, simulated annealing, tabu
search and GRASP. In: A. Ferreira and J. Rolim (eds.), Proceedings of Workshop on

Parallel Algorithms for Irregularly Structured Problems, Lecture Notes in Computer

Science 980. Springer-Verlag, Berlin, pp. 317–331.

Pardalos, P.M., Pitsoulis, L. and Resende, M.G.C. (1995) A parallel GRASP imple-
mentation for the quadratic assignment problem. In: A. Ferreira and J. Rolim
(eds.), Solving Irregular Problems in Parallel: State of the Art. Kluwer Academic
Publishers, Norwell, MA.

Porto, S.C.S. and Ribeiro, C.C. (1995) A tabu search approach to task scheduling
on heteregenous processors under precedence constraints. International Journal of

High-Speed Computing, 7, 45–71.

Porto, S.C.S. and Ribeiro, C.C. (1996) Parallel tabu search message-passing syn-
chronous strategies for task scheduling under precedence constraints. Journal of

Heuristics, 1(2), 207–223.

Potter, M. and De Jong, K. (1994) A cooperative coevolutionary approach to function
optimization. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel Problem

Solving from Nature III, Lecture Notes in Computer Science 866. Springer-Verlag,
Berlin, pp. 249–257.

Ram, D.J., Sreenivas, T.H. and Subramaniam, K.G. (1996) Parallel simulated
annealing algorithms. Journal of Parallel and Distributed Computing, 37,

207–212.

Rego, C. and Roucairol, C. (1996) A parallel tabu search algorithm using ejection
chains for the VRP. In: I. Osman and J. Kelly (eds.), Meta-Heuristics: Theory &

Applications. Kluwer Academic Publishers, Norwell, MA, pp. 253–295.

Rochat, Y. and Taillard, É.D. (1995) Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1(1), 147–167.

Schlierkamp-Voosen, D. and Mühlenbein, H. (1994) Strategy adaptation by competing
subpopulations. In: Y. Davidor, H.-P. Schwefel and R. Männer (eds.), Parallel

Problem Solving from Nature III, Lecture Notes in Computer Science 866. Springer-
Verlag, Berlin, pp. 199–208.

Schnecke, V. and Vornberger, O. (1996) An adaptive parallel genetic algorithm for
VLSI-layout optimization. In: Y. Davidor, H.-P. Schwefel and R. Manner (eds.),
Parallel Problem Solving from Nature III, Lecture Notes in Computer Science 866.
Springer-Verlag, Berlin, pp. 859–868.

Schulze, J. and Fahle, T. (1999) A parallel algorithm for the vehicle routing problem
with time window constraints. Annals of Operations Reseach, 86, 585–607.

512 T.G. Crainic and M. Toulouse

Schwehm, M. (1992) Implementation of genetic algorithms on various intercon-
nection networks. In: M. Valero, E. Onate, M. Jane, J. Larriba and B. Suarez
(eds.), Parallel Computing and Transputers Applications. IOS Press, Amsterdam,
pp. 195–203.

Shonkwiler, R. (1993) Parallel genetic algorithms. In: S. Forrest (ed.), Proceedings

of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 199–205.

Sondergeld, L. and Voß, S. (1999) Cooperative intelligent search using adaptive mem-
ory techniques. In: S. Voß, S. Martello, C. Roucairol and I.H. Osman (eds.),
Meta-Heuristics 98: Theory & Applications. Kluwer, Norwell, MA, pp. 297–312.

Starkweather, T., Whitley, D. and Mathias, K. (1991) Optimization using distributed
genetic algorithms. In: H.-P. Schwefel and R. Männer (eds.), Parallel Problem

Solving from Nature, Lecture Notes in Computer Science 496. Springer-Verlag,
Berlin, pp. 176–185.

Taillard, É.D. (1991) Robust taboo search for the quadratic assignment problem.
Parallel Computing, 17, 443–455.

Taillard, É.D. (1993a) Parallel iterative search methods for vehicle routing problems.
Networks, 23, 661–673.

Taillard, É.D. (1993b) Recherches itératives dirigées parallèles. Ph.D. thesis, École
Polytechnique Fédérate de Lausanne.

Taillard, É.D. (1994) Parallel taboo search techniques for the job shop scheduling
problem. ORSA Journal on Computing, 6(2), 108–117.

Taillard, É.D., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997) A
tabu Search heuristic for the vehicle routing problem with soft time windows.
Transportation Science, 31, 170–186.

ten Eikelder, H.M.M., Aarts, B.J.M., Verhoeven, M.G.A. and Aarts, E.H.L. (1999)
Sequential and parallel local search for job shop scheduling. In: S. Voß, S. Martello,
C. Roucairol and I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications.

Kluwer, Norwell, MA, Montréal, QC, Canada, pp. 359–371.

Toulouse, M., Crainic, T.G. and Gendreau, M. (1996) Communication issues in design-
ing cooperative multi thread parallel searches. In: I.H. Osman and J.P. Kelly (eds.),
Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers, Norwell,
MA, pp. 501–522.

Toulouse, M., Crainic, T.G. and Sansó, B. (1997) Systemic behavior of cooperative
search algorithms. Publication CRT-97-55, Centre de recherche sur les transports,
Université de Montréal, Montréal, QC, Canada.

Toulouse, M., Crainic, T.G. and Sansó, B. (1999a) An experimental study of systemic
behavior of cooperative search algorithms. In: S. Voß, S. Martello, C. Roucairol and
I.H. Osman (eds.), Meta-Heuristics 98: Theory & Applications. Kluwer Academic
Publishers, Norwell, MA, pp. 373–392.

Toulouse, M., Crainic, T.G., Sansó, B. and Thulasiraman, K. (1998a) Self-organization
in cooperative search algorithms. In: Proceedings of the 1998 IEEE International

Conference on Systems, Man, and Cybernetics. Omnipress, pp. 2379–2385.

Parallel Strategies for Meta-heuristics 513

Toulouse, M., Crainic, T.G. and Thulasiraman, K. (2000) Global optimization
properties of parallel cooperative search algorithms: a simulation study. Parallel

Computing, 26(1), 91–112.

Toulouse, M., Glover, F. and Thulasiraman, K. (1998b) A multi-scale cooperative
search with an application to graph partitioning. Report, School of Computer
Science, University of Oklahoma, Norman, OK.

Toulouse, M., Thulasiraman, K. and Glover, F. (1999b) Multi-level cooperative search.
In: P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud and D. Ruiz
(eds.), 5th International Euro-Par Parallel Processing Conference, volume 1685 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 533–542.

Verhoeven, M.G.A. and Severens, M.M.M. (1999) Parallel local search for steiner
trees in graphs. Annals of Operations Research, 90, 185–202.

Verhoeven, M.G.A. and Aarts, E.H.L (1995) Parallel local search. Journal of

Heuristics, 1(1), 43–65.

Voß, S. (1993) Tabu search: applications and prospects. In: D.-Z. Du and P. Pardalos
(eds.), Network Optimization Problems. World Scientific Publishing Co., Singapore,
pp. 333–353.

Whitley, D. (1993) Cellular genetic algorithms. In: S. Forrest (eds.), Proceedings

of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, pp. 658–658.

Whitley, D. and Starkweather, T. (1990a) Optimizing small neural networks using a
distributed genetic algorithm. In: Proceedings of the International Conference on

Neural Networks. IEEE Press, pp. 206–209.

Whitley, D. and Starkweather, T. (1990b) GENITOR II: a distributed genetic algorithm.
Journal of Experimental and Theoretical Artificial Intelligence, 2(3), 189–214.

Whitley, L.D. (1994) A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.

This page intentionally left blank

Chapter 18

METAHEURISTIC CLASS LIBRARIES

Andreas Fink and Stefan Voß
Technische Universität Braunschweig

Institut für Wirtschaftswissenschaften

Abt-Jerusalem-Straße 7

D-38106 Braunschweig, Germany
E-mail: stefan.voss@tu-bs.de

David L. Woodruff
Graduate School of Management

University of California at Davis

Davis, California 95616, USA

E-mail: dlwoodruff@ucdavis.edu

Abstract Just as metaheuristics provide flexible and extensible methods of solving optimiza-
tion problems, class libraries provide flexible and extensible building blocks for creating software
to implement metaheuristics. In this chapter we provide a brief introduction to the class libraries
and object oriented programming techniques. We also provide a short summary of some of the
more general metaheuristics class libraries and the literature that describes them. We conclude
with a detailed example of library design.

1 INTRODUCTION

The period of development of modern metaheuristics approximately coincided with the
extensive deployment of object oriented programming techniques (OOP) [23,25,27].
A key feature of programming languages that support OOP is the ability to specify
classes of objects using a mixture of abstract interface specification and concrete oper-
ational and data storage details. The object class specifications for a particular family
of tasks are often organized as a library for subsequent use and reuse.

In a library, each class or template corresponds to a component of the methods for
the task at hand. For example, a library for local search would provide one or more
class definitions that capture the data and functionality associated with a neighborhood.
The classes are instantiated as objects that encapsulate data and executable code.

Classes in a library are typically organized in a hierarchy with more abstract defin-
itions at the top of the hierarchy and at the bottom more specific classes. The abstract
classes may not define all necessary executable code or data structures. Instead, they
provide interfaces and may provide some default code and data structures. More spe-
cific classes can provide details left out of the abstract class definitions and may also

516 A. Fink et al.

override definitions. A local search library, to continue the example, would contain
abstract class definitions that provide information about the interface to a neighbor-
hood object while a more specific class would provide implementation details for this
interface for a neighborhood induced by 2-opt moves.

Libraries facilitate combinations of classes instantiated as objects to form an exe-
cutable problem. Most class libraries also provide for extensibility, which means that
some or all of the executable code and data structure implementation can be overridden
by programmers who make use of all or part of the original object class specifications.
Thus, OOP provides extreme levels of flexibility in the combination of components
provided by a library.

At the highest levels of abstraction, a class library provides a unifying framework
for the problem at hand. At the lowest level, a mixable set of extensible components is
provided. Metaheuristic algorithms are a particularly ripe area for each aspect of OOP.
After even a brief study of melaheuristics, one cannot help but notice that a unifying
framework is lurking. OOP techniques provide a way of expressing the concepts and
their interconnections, which captures the framework in an extremely useful way. An
important aspect of modem metaheuristics is the flexibility that they offer that facilitates
tailoring them for the task at hand. Metaheuristic class libraries enable exploitation of
problem-specific knowledge or new ideas for algorithmic components by allowing the
library classes to be extended or replaced.

To illustrate the class library concepts that we have introduced, Figure 18.1 shows
a simplified version of the class hierarchy described in [36]. The figure illustrates the
relationships between some of the classes provided in the library. Of course, most
metaheuristic libraries are much more complex, but Figure 18.1 illustrates some of the
important concepts. If class B is connected to class A by a line with an open triangle
pointing toward A, then B is derived from A. We say that B “is” an A. We might also
say that B is a child of A. Children inherit the interface and properties of their base
classes. For example, in Figure 18.1, TABU_SEARCH is a LOCAL_SEARCH, which is a
child of METAHEURISTIC.

If class A has a filled arrow pointing to class B, then an instance of class A “has” one
or more instances of an object of class B. For example, in Figure 18.1, LOCAL_SEARCH

has a NEIGHBORHOOD. The properties of a neighborhood are defined in the class shown
as NEIGHBORHOOD and these properties are exploited by local search algorithms. How-
ever, the functionality must be provided by classes derived from NEIGHBORHOOD for
a particular type of problem. Such a derived class would inherit the interface properties
of a neighborhood and would supply implementation details as well as, perhaps, some
additional interface definition. We have shown abstract classes in rectangles, and less
abstract (i.e., instantiable) classes in squares with rounded corners which conforms the
well-known UML notation.

The interplay between abstract and specific permeates both OOP and metaheuristics,
which is why the connection between the two is so natural. As illustrated in Figure 18.1,
a class library can capture at various levels the concepts shared by metaheuristics. It
also enables creation of new code and data structures to implement novel extensions
of the methods as well as application-specific details.

To be a little more specific, consider the sub-hierarchy in Figure 18.1 that begins
with the abstract class PROBLEM. The class PROBLEM would provide interface specifi-
cations that would apply to any problem, such as a function to compute an objective
function value. These specifications would be assumed to be available to the class

Metaheuristic Class Libraries 517

METAHEURISTIC and, by inheritance, all of its child classes. Of course, it is not possible
to specify how the objective function value would be computed without specifying the
problem of interest. However, the existence of an interface can be exploited by writers
of classes that are children of the base class METAHEURISTIC and that can access specific
instantiations of children of the base class PROBLEM.

A class for a particular problem such as the Traveling Salesman Problem (TSP)
would specify how the objective function would be computed along with methods for
storing and accessing the data that describes the problem. The TSP is the problem of
finding the shortest tour that visits a list of cities exactly once. Hence, a TSP problem
class would describe methods for storing and accessing distances between cities as well
for computing the length of a particular tour.

To keep Figure 18.1 simple, we show TSP as a direct descendent of PROBLEM.
In a sophisticated library, some of the direct descendents of PROBLEM might be for
classes that share important characteristics such as problems based on graphs. The
TSP would then be a direct descendent of the graph problem class. The act of finding
the commonalities in a group of objects and then creating a parent class that defines
the common components is referred to as factoring. In Figure 18.1, e.g., the elements
common to local search metaheuristics such as tabu search and simulated annealing
have been factored into the class LOCAL_SEARCH.

Decisions regarding the proper construction of a hierarchy are intellectually stim-
ulating, as are many other aspects of the design of class libraries. The discovery and
articulation of abstractions and hierarchies is particularly rewarding when it results in
software constructs that can be assembled into a functioning program. The allure of
the library design process explains some of the appeal of creating a new class library
as opposed to using one that has previously been created.

A design methodology primarily devoted to the goal of achieving a higher degree
of reuse is the framework approach; see, e.g., [4,9,22]. Taking into account that for
the development of application systems for given domains quite similar software is
needed, it is reasonable to implement such common aspects by a generic design and

518 A. Fink et al.

embedded reusable software components. Here, one assumes that reuse on a large scale
cannot only be based on individual components, but there also must be some reuse of
design. Thus, the components have to be embedded in an architecture, which defines the
collaboration between the components. Such a framework, or frame may be defined as a
set of classes that embody an abstract design for solutions to a family of related problems
(e.g., heuristics for discrete optimization problems), and thus provides us with abstract
applications in a particular domain, which may be tailored for individual applications.
A framework establishes a reference application architecture (“skeleton”), providing
not only reusable software elements but also some type of reuse of architecture and
design patterns [5,14], which may simplify software development considerably. Thus,
frameworks represent implementation-oriented generic models for specific domains.

There is no clear dividing line between class libraries and frameworks. Whereas
class libraries may be more flexible, frameworks often impose a broader structure on
the whole system. Frameworks, which are sometimes called component libraries, may
be subtly differentiated from class libraries by the “activeness” of components, i.e.,
components of the framework define application logic and call application-specific
code. This generally results in a bi-directional flow of control.

We should mention that the phrase frame is also frequently used in the area of meta-
heuristics. For instance, the phrase adaptive memory programming (AMP) was coined
to encompass a general approach (or philosophy) within heuristic search focusing on
exploiting a col lection of memory components [17,29]. That is, iteratively constructing
(new) solutions based on the exploitation of some sort of memory may be viewed as
an AMP process, especially when combined with learning mechanisms, that helps to
adapt the collection and use of the memory. Based on the simple idea of initializing
the memory and then iteratively generating new solutions (utilizing the given memory)
while updating the memory based on the search, most of the metaheuristics described
can be subsumed by the AMP approaches. This also includes the idea of exploiting
provisional solutions in population based methods that are improved by a local search
approach.

In the next section we give a brief overview of class libraries that have been made
available for metaheuristics. Generally, the users of a library follow a path of adoption
that leads to full exploitation of the capabilities and flexibility afforded. The adoption
path is sketched in section 3. In order to provide readers with a more specific sense
of what is involved in the design and use of a class library, some of the metaheuristic
components of one particular library are described in Section 4. The chapter concludes
with remarks on the outlook for future developments.

2 REVIEWS OF SELECTED LIBRARIES

In this section, we provide brief reviews of some of the prominent general class libraries
for metaheuristics to give the reader a sense of the current state of the art. References
are given to enable further study or use of the libraries. Readers interested in a book
length overview of class libraries for optimization should consult [33].

2.1 HotFrame

HOTFRAME, a Heuristic OpTimization FRAMEwork implemented in C++, pro-
vides both adaptable components that incorporate different metaheuristics and an

Metaheuristic Class Libraries 519

architectural description of the collaboration among these components and problem-
specific complements. All typical application-specific concepts are treated as objects
or classes: problems, solutions, neighbors, solution and move attributes. On the other
side, metaheuristics concepts such as different methods and their building-blocks such
as tabu criteria and diversification strategies are also treated as objects, HOTFRAME uses
genericity as the primary mechanism to make these objects adaptable. That is, com-
mon behavior of metaheuristics is factored out and grouped in generic classes, applying
static type variation. Metaheuristic template classes are parameterized by aspects such
as solution spaces and neighborhood structures.

HOTFRAME defines an architecture for the interplay between heuristic classes and
application-specific classes, and provides several such classes, which implement classic
methods that are applicable to arbitrary problem types, solution spaces and neighbor-
hood structures. All heuristics are implemented in a consistent way, which facilitates
easy embedding of arbitrary methodss into application systems. New metaheuristics
as well as new applications can be added to the framework. HOTFRAME includes built-
in support for solution spaces representable by binary vectors or permutations, in
connection with corresponding standard neighborhood structures, solution and move
attributes, and recombination operators. Otherwise, the user may derive specialized
classes from suitable built-in classes or implement corresponding classes from scratch
according to a defined interface.

Metaheuristics included in HotFrame include (iterated) local search, simulated
annealing (and variations), tabu search, some candidate list strategies, evolutionary
methods and the pilot method. For further information about HOTFRAME see [11,19].

2.2 Templar

The Templar framework, implemented in C++, provides a method, and software com-
ponents, for constructing systems to solve optimization problems. An important feature
of the system is that it provides support for distribution using a variant of the Message
Passing Interface (MPI) standard. This allows users of the library to distribute the
search across heterogenous computers. The asynchronous message passage supported
by Templar is ideal for creating hybrid strategies based on cooperation between objects
implementing a variety of search methods.

The Templar framework is based on problem classes and engine classes. The
engine’s source code is representation and problem-independent. The problem class is
an abstract base class, which is used to derive specific problem classes. These specific
problem classes embody the characteristics of the problem type and are capable of
loading problem instances. Problems make operators, such as neighborhood operators
or genetic operators, available for use by an engine. The representation used by the
problem (e.g., permutation) also provides its own operators. Engines can then use these
operators to produce good solutions to a given problem instance.

The abstract base engine class is also used for deriving specific engine classes.
Examples include simulated annealing engines, tabu search engines, and genetic algo-
rithm engines. Although a single instance of an engine is connected to a particular
problem, each specific engine class is problem, and representation, independent. As
well as being easy to control, engines are designed so that a driving process can make
a group of engines work cooperatively. For further information, see [30].

520 A. Fink et al.

2.3 EasyLocal

EasyLocal [8] is a C++ class library that supports metaheuristics based on local search
such as tabu search and simulated annealing. The library provides explicit support for
so-called kick moves. A local search is typically based on a particular neighborhood
structure induced by a corresponding type of move. A kick move may be made at
strategically defined epochs by temporarily adopting a different neighborhood.

Another important feature of the library is inclusion of classes to support algorithmic
testing. A batch control language EXPSPEC is supported by classes that collect run-time
statistics. The output is generated both in machine- and human-readable format.

2.4 NeighborSearcher

NeighborSearcher [2] is an object-oriented framework for local search heuristics. The
main goal is to provide an architectural basis for the implementation and comparison
of different local search heuristics. Accordingly, a coarse-grained modularization is
defined. The library is based on abstract classes that encapsulate concepts such as
the construction of the initial solution, the local search algorithm, the solution, or the
movement model. With this, one may implement a specific search strategy by selecting
derived classes that provide the respective functionality. This provides an adaptation
mechanism to the higher level client code.

2.5 iOpt

The Java class library iOpt [34] has support for population based evolutionary algo-
rithms (EA) as well as local search based methods. Such libraries facilitate hybrid
algorithms, e.g., the use of tabu search as a mutation operator (this is sometimes
referred to as “learning” by EA researchers who yearn for metaphor). Classes for some
problem domains such as scheduling are also provided.

A key distinguishing feature of iOpt is built-in support for propagation of one-way
constraints [37]. Thus the library provides connections between metaheuristics and
constraint logic programming. A one-way constraint is based on a general function C,
which is a function of one or more variables and whose value constrains the value of
some other variable. For example,

fixes the value of as a function of some other variables whose values are not directly
affected by the constraint. The iOpt library supports sophisticated methods of propa-
gating changes in variables taking advantage of the fact that if there are many one-way
constraints, a change in one variable can result in cascading changes in many variables.
The use of one-way constraints requires some modeling sophistication, but the result
is that local search neighborhoods involving changes in a single variable become much
more powerful.

2.6 ILOG Local Search Classes

The ILOG Solver [20] is a sophisticated, commercially available class library with
modeling and solution support [21]. The main focus of the library is constraint logic

Metaheuristic Class Libraries 521

programming and the bulk of the classes in the library support modeling and clas-
sic tree based solution methodologies. Recently, classes to support local search and
metaheuristics have been added. An important feature is the ability to integrate the meta-
heuristics with a tree based search so that provably optimal solutions can be obtained.
As was the case with iOpt, the ability to propagate constraints adds significantly to the
power of local search methods. For a detailed description of the combination of meta-
heuristics and constraint programming, see the chapter “Local Search and Constraint
Programming” in this Handbook by Focacci, Laburthe, and Lodi.

2.7 Evolutionary Algorithms

There exist several libraries for genetic algorithms; surveys, as well as software, can be
found in [18]. In principle, an advantage of using classic genetic algorithm libraries such
as [15] or [13] is that no neighborhood must be specified. If the built-in genomes of a
genetic algorithm library adequately represent one’s problem, a user-specified objective
function may be the only problem-specific code that must be written. Unfortunately,
genetic algorithms without a local search component have not generally proven to be
very effective. For a comprehensive overview of genetic algorithm libraries the reader
is referred to [24].

As an example we briefly discuss the functionality of the GAlib library, a C++
library, which provides the application programmer with a set of genetic algorithms
objects; cf. [13]. GAlib is flexible with respect to arbitrary data representations and stan-
dard or custom selection, crossover, mutation, scaling, replacement, and termination
methods. Overlapping (steady-state GA) and non-overlapping (simple GA) populations
are supported. Built-in selection methods include rank, roulette wheel, tournament, sto-
chastic remainder sampling, stochastic uniform sampling, and deterministic sampling.
One can use chromosome types built-in to the library (bit-string, array, list, tree) or
derive a chromosome based on user-defined objects. All chromosome initialization,
mutation, crossover, and comparison methods can be customized. Built-in mutation
operators include random flip, random swap, Gaussian, destructive, swap subtree, swap
node. Built-in crossover operators include arithmetic, blend, partial match, ordered,
cycle, single point, two point, even, odd, uniform, node- and subtree-single point.

3 AN INCREMENTAL ADOPTION PATH

To fully grasp the rules and mechanisms to apply a framework one may have to navigate
a long learning curve. Therefore, software libraries and frameworks should enable an
incremental application process, or adoption path; cf. [10]. That is, the user may start
with a simple scenario, which can be successively extended, if needed, after having
learned about more complex application mechanisms. Such an evolutionary problem
solving approach corresponds to the general tendency of a successive diffusion of
knowledge about a new technology and its application; see [1,26].

In the following we sketch a typical adoption path for the case that some of the
problem-specific standard components are appropriate for the considered application.
In this process, we quickly—after completing the first step—arrive at being able to
apply several kinds of metaheuristics for the considered problem, while efficiently
obtaining high-quality results may require following the path to a higher level.

522 A. Fink et al.

1.

2.

3.

4.

Objective Function: After selecting an appropriate solution component, one has
to derive a new class and to code the computation of the objective function.
Of course, one also needs some problem component, which provides problem
instance data. All other problem-specific components may be reused without
change.

Efficient Neighborhood Evaluation: In most cases, the system that results from
step 1 has significant potential for improvement in its run-time efficiency. In
particular, one should implement an adaptive move evaluation (which replaces the
default evaluation by computing objective function values for neighbor solutions
from scratch). In this context, one may also implement some move evaluation that
differs from the default evaluation (which is the implied change of the objective
function value).

Problem-Specific Adaptation: Obtaining high-quality solutions may require the
exploitation of problem-specific knowledge. For example, this may entail defin-
ing and implementing a new neighborhood structure or an adapted tabu criterion
in relation to specific solution information or attribute components.

Extension of Metaheuristics: While the preceding steps only involve problem-
specific adaptations, one may eventually want to extend or combine some
metaheuristics.

4 HOTFRAME METAHEURISTIC IMPLEMENTATIONS

In Section 2, we provided a broad overview of extant class libraries for metaheuristics.
To provide a deeper view of some aspects of library design and use, we borrow from
the description of HOTFRAME provided by [12].

4.1 Metaheuristic Concepts

The HOTFRAME class library provides a rich framework for applying a very wide range
of metaheuristics. In order to provide some depth to our exposition we must limit
our scope significantly. We provide descriptions only of iterated local search and tabu
search. We ignore many potentially important features such as candidate lists. Even with
this narrow scope, we must limit ourselves to pseudo-code sketches of the algorithms
in the library. However, these sketches enable us to convey many important aspects
of the design of the library and its use. Of particular importance is the articulation of
common and variable constructs.

We rely on some notation concerning optimization problems in metaheuris-
tics, which is developed before we proceed with the algorithm sketches. For every
problem P, there is (at least) one

solution space S

with

Solutions are evaluated by an

solutions

objective function

523Metaheuristic Class Libraries

We generally formulate problems as minimization problems; i.e., we seek to
minimize

To efficiently manage information about solutions (in connection with some tabu
search method), we may need a function

that maps solutions to elements of a suitable set With respect to efficiency, one
mostly uses non-injective (“approximate”) functions (e.g., hash-codes).

For every solution space S, there are one or more

neighborhoods

which define for each solution an ordered set of neighboring solutions

From a transformation point of view every neighbor of a solution
corresponds to a

move

So we can also define a neighborhood as

Moves are evaluated by a

move evaluation

which is often defined as f(s)– f (n (s)). Other kinds of move evaluations, e.g., based on
measures indicating structural differences between solutions, are possible. In general,
positive values should indicate “improving” moves. Move evaluations provide the basis
for guiding of the search process.

Both solutions and moves can be decomposed into

attributes

with representing some attribute set, which may depend on the neighborhood.
A solution s corresponds to a set

There are two kinds of variabilities to be considered for metaheuristics. On the one
hand, metaheuristics are generic regarding the type of problem. On the other hand,
metaheuristics usually encompass some variation in their subordinate algorithms (e.g,
move selection rules or cooling schedules) and simple parameters (e.g., to control the
termination criterion). Accordingly, a configuration C of a metaheuristic H is com-
posed of a definition of a subset of the problem-specific abstractions
discussed in the previous subsection, and of a configuration that is specific to the
metaheuristic. Given such a configuration C, a metaheuristic defines a transformation
that maps an initial solution s to a solution

524 A. Fink et al.

To provide a clear exposition, we use straightforward pseudo-code with simple
data structures in our algorithm statements. In the interest of efficiency and flexibility,
the actual implementations are somewhat more complicated. A simple example is that
many lists that are implemented as general containers are shown here as fixed length
structures.

In the pseudo-code description of algorithms, we generally denote a parameteri-
zation by to define algorithmic variation points, and we use to
define simple value parameters (e.g., the initial solution or numeric parameters). When
appropriate, we specify standard definitions, which allows using algorithms without
explicitly defining all variation points. By the symbol we denote non-relevance or
invalidity. To simplify the presentation, we use to denote an additional termination
criterion, which is implicitly assumed to be checked after each iteration of the local
search process. By we include a means to specify external termination, which is use-
ful, e.g., in online settings. Using our notation, the interface of a metaheuristic H may
be defined by H < C > Such a metaheuristic with configuration C

transforms an initial solution s into a series of successor solutions, given a maximum
computation time a maximum iteration number andan external termination
criterion

In our discussion of the algorithms we make use of feature diagrams that are based
on a concise methodology for describing the variation points of concepts in a manner
independent from any implementation concerns. Conventions are introduced as needed.
For a full description of feature diagrams see [6] or [28].

4.1.1 Iterated Local Search

Figure 18.2 shows a feature diagram for simple local search methods (IteratedLocal-

Search). In principle, S and N are mandatory features (denoted by the filled circles).
The crowsfeet indicate that S and N are considered to be abstract features, which have
to be instantiated by specific definitions/implementations. A critical feature of any
iteration of a local search procedure is the mechanism for selecting a neighbor. The
diagram shows that there are four alternatives for instantiating this feature (denoted by
the arc): select the best neighbor out of N(s) with a positive move evaluation, select

Metaheuristic Class Libraries 525

the best neighbor even if its evaluation is non-positive, select the first neighbor with a
positive move evaluation, or select a random neighbor. The diversification feature is
optional (denoted by the open circle), since we do not need a diversification mechanism,
e.g., when we specialize IteratedLocalSearch as a one-time application of a greedy
local search procedure. The termination criterion is a mandatory feature, which has
to be defined in a general way. Finally, there is a feature that allows specification of
whether the search procedure should return the best solution found or the last solution
traversed. The latter option is useful, e.g., when we use a local search procedure with a
random neighbor selection rule as a subordinate diversification component of another
metaheuristic.

A sketch of the library’s implementation of IteratedLocalSearch is shown by Algo-
rithm 1. We do not provide formal statements of all the features, but Algorithm 2
provides a sketch of one sub-algorithm. By using BestPositiveNeighbor, instantiate
IteratedLocalSearch can be instantiated to generate SteepestDescent (as shown in
Algorithm 3). In a similar manner, a RandomWalk procedure can be used to generate
a more complex procedure as shown in Algorithm 4.

4.1.2 Tabu Search

A feature diagram of tabu search as implemented in HOTFRAME is shown in Figure 18.3.
Besides S and N, the primary features of tabu search are the tabu criterion and the rule
to select neighbors. Moreover, there may be an explicit diversification scheme. We
explicitly model the strict tabu criterion (i.e., defining a move as tabu if and only if
it would lead to an already traversed neighbor solution), the static tabu criterion (i.e.,

Algorithm 1 IteratedLocalSearch

IteratedLocalSearch

s' = NeighborSelection < S, N >(s);

s = s';

< S, N, NeighborSelection, Diversification >

for r = 1 to

if r > 1
Diversification(s);

i = 0;
do

i = i + l;

if is valid

if

while (s' is valid) and

if returnBest

or

526 A. Fink et al.

Algorithm 2 BestPositiveNeighbor

BestPositiveNeighbor < S, N > (s):

Algorithm 3 SteepestDescent

SteepestDescent < S, N >

Algorithm 4 IteratedSteepestDescentWithPerturbationRestarts

IteratedSteepestDescentWithPerturbationRestarts < S, N >

storing attributes of performed moves in a tabu list of a fixed size and prohibiting these
attributes from being inverted), and the reactive tabu criterion according to [3].

The factors common to tabu search metaheuristic are shown in Algorithm 5. In clas-
sic tabu search approaches the search is controlled by dynamically classifying neighbors
and corresponding moves as tabu. To implement tabu criteria, one uses information
about the search history: solutions visited and/or attributes of moves performed. Using
such information, a tabu criterion defines whether neighbors and corresponding moves
are classified as tabu. A move is admissible if it is not tabu or an aspiration criterion
is fulfilled. That is, aspiration criteria may invalidate a tabu classification (e.g., if the
move under consideration leads to a neighboring solution with a new best objective
function value). The tabu criterion may also signal that an explicit diversification seems
to be reasonable. In such a case, a diversification procedure is applied (e.g., a random
walk).

A simple approach for applying the tabu criterion as part of the neighbor selection
procedure is to choose the best admissible neighbor (Algorithm 6). Alternatively, some
measure of the tabu degree of a neighbor can be used to compute a penalty value that is
added to the move evaluation (Algorithm 7). With regard to the latter option, the tabu
criterion provides for each move a tabu degree value (between 0 and 1). Multiplying
the tabu degree with a parameter results in the penalty value.

Some tabu criteria are defined in Algorithms 8–11. In each case, the tabu memory
is modeled by state variables using simple container data structures such as lists or

if
return

else

return

IteratedLocalSearch < S, N, BestPositiveNeighbor, >

IteratedLocalSearch

< S, N, BestPositiveNeighbor,

RandomWalk < S, N > >

Metaheuristic Class Libraries 527

Algorithm 5 TabuSearch

if TabuCriterion.escape()
Diversification(s);

sets, which are parameterized by the type of the respective objects. If lists are defined
as having a fixed length, objects are inserted in a first-in first-out manner. Not all
tabu criteria implement all functions. For instance, most of the tabu criteria do not
possess means to detect and signal situations when an explicit diversification seems to
be reasonable.

The strict tabu criterion can be implemented by storing information about all tra-
versed solutions (using the function h). In Algorithm 8, we do not apply frequency
or recency information to compute a relative tabu degree but simply use an absolute

TabuCriterion >(s);

TabuCriterion.add(s, i);
if

i = i + 1;
while

i = 0;

< S, N, TabuCriterion, TabuNeighborSelection, Diversification >
‘

TabuSearch

or

528 A. Fink et al.

Algorithm 6 BestAdmissibleNeighbor

BestAdmissibleNeighbor < Aspiration >< S, N, TabuCriterion > (s):

Algorithm 7 BestNeighborConsideringPenalties

BestNeighborConsideringPenalties < Aspiration, >

< S, N, TabuCriterion > (s):

if TabuCriterion)

else

return

Algorithm 8 StrictTabuCriterionByTrajectory

StrictTabuCriterionByTrajectory < S, h >:

State: Set trajectory;

trajectory.insert(h(s));

if trajectory

return true;
else

if

else

return RandomNeighbor < S, N >(s);

trajectory

return 1;
else

return 0;

return false;

if

or

return

or

Metaheuristic Class Libraries 529

Algorithm 9 REMTabuCriterion

REMTabuCriterion

(tabuDuration, rcsLengthParameter):

State: List runningList;
Set< (Set Integer) > tabuList;

for j = 1 to

for j = |runningList|downto 1
if

else

RCS.insert(runningList[j]);
if

if and was set tabu not longer than
tabuDuration iterations before

return true;
else

return false;

tabuDegree

if and was set tabu not longer than
tabuDuration iterations before

return (remaining tabu duration of
else

return 0;

tabu classification. In principle, the strict tabu criterion is a necessary and sufficient
condition to prevent cycling in the sense that it classifies exactly those moves as tabu
that would lead to an already traversed neighbor. However, as one usually applies a
non-injective (approximate) function h, moves might unnecessarily be set tabu (when
collisions occur); see [35].

As an alternative implementation of the strict tabu criterion, the reverse elimination
method (REM, Algorithm 9) exploits logical interdependencies among moves, their
attributes and respective solutions (see [7,16,31,32]). A running list stores the sequence
of the attributes of performed moves (i.e., the created and destroyed solution attributes).
In every iteration, a residual cancelation sequence (RCS) is computed, which includes
those attributes that separate the current solution from a formerly traversed solution. If
the RCS exactly constitutes a move, the corresponding inverse move must be classified
as tabu (for one iteration). It should be noted that it is not quite clear how to generally
implement the REM tabu criterion for multi-attribute moves in an efficient way. For

530 A. Fink et al.

Algorithm 10 StaticTabuCriterion

StaticTabuCriterion

State: List tabuList;

for j = 1 to

k = 0;
for j = 1 to

if tabuList

if

return true;
else

return false;

for to

if tabuList

return min

this reason, the REM component of HOTFRAME is restricted to single attribute moves
that can be coded by natural numbers.

The strict tabu criterion is often too specific to provide a sufficient search diversi-
fication. We consider two options to broaden the tabu criterion of the REM. The first
alternative uses the parameter tabuDuration to define a tabu duration longer than one
iteration. The second uses the parameter rcsLengthParameter to define a threshold for
the length of the RCS, so that all possibilities to combine (subsets of) the attributes of
the RCS of a corresponding maximum length as a move are classified as tabu.

The static tabu criterion is defined in Algorithm 10. The parameter represents
the decomposition of moves into attributes. The parameter defines the capacity of the
tabu list (as the number of attributes). The parameter defines the number of attributes
of a move, for which there must be inverse correspondents in the tabu list to classify
this move as tabu. Furthermore, is also the reference value to define a proportional
tabu degree.

Algorithm 11 shows the mechanism of the tabu criterion for reactive tabu search.
With respect to the dynamic variation of the length of the tabu list, a history stores
information about the moves that have been made. This includes the iteration number
of the last visit and the frequency. The actual tabu status/degree is defined in the
same way as for the static tabu criterion using the parameter The tabu list length is

Metaheuristic Class Libraries 531
Algorithm 11 ReactiveTabuCriterion

ReactiveTabuCriterion

State: List tabuList;
Set< > trajectory;
movingAverage = lastReaction = 0;

for j = 1 to

add(s, i):
if h(s) trajectory (with corresponding iteration k)

extend length l of tabuList to min
lastReaction = i;

update iteration to i and increment frequency of h(s);
if there are solutions in trajectory

that have been traversed times or more
trigger escape;

else

trajectory.insert(h(s), i, 1);
if i – lastReaction > movingAverage

lastReaction = i;

k = 0;
for j = 1 to

if tabuList

k = k + 1;
if return true;
else return false;

k = 0;
for j = 1 to

if tabuList

k = k +1;
return min{k/v, 1};

computed in dependence of the parameters and When a solution is revisited, the
list is enlarged provided it has not reached its a maximum length .

The length of the tabu list is reduced if there has not been any re-visit for some
number of iterations which is a function of the parameter and an exponentially
smoothed average number of iterations between re-visits. If there are solutions that
each have been visited at least times, the need for an explicit diversification is
signalled.

532 A. Fink et al.

Algorithm 12 StrictTabuSearch

StrictTabuSearch < S, N >

TabuSearch < S, N, StrictTabuCriterionByTrajectory < S, id >,
BestAdmissibleNeighbor

Algorithm 13 REMpen

REMpen < S, N, >

TabuSearch < S, N,
REMTabuCriterion

< S, N, > (tabuDuration,rcsLengthParameter),
BestNeighborConsideringPenalties < ø, >, ø >

Algorithm 14 StaticTabuSearch

StaticTabuSearch < S, N, >

TabuSearch < S, N, StaticTabuCriterion < S, N, >
BestAdmissibleNeighbor < ø >, ø >

Algorithm 15 ReactiveTabuSearch

ReactiveTabuSearch

TabuSearch

< S, N, ReactiveTabuCriterion < S, N, , h >
BestAdmissibleNeighbor

RandomWalk < S, N >

TabuSearch and the modules it uses are parameterized so as to enable various
possibilities for constructing specific tabu search heuristics. For example, Algorithm 12
(StrictTabuSearch) encodes the simplest form of strict tabu search: All solutions visited
are stored explicitly (id represents the identity function), which means that they are
classified as tabu in the subsequent search process. Algorithm 13 (REMpen) shows the
enhanced reversed elimination method in combination with the use of penalty costs.
Static tabu search is shown in Algorithm 14. Algorithm 15 defines reactive tabu search
in combination with the use of RandomWalk as diversification mechanism, with most
of the parameter values at reasonable default settings.

Metaheuristic Class Libraries 533

5 CONCLUSIONS AND OUTLOOK

Class libraries capture the connections between various metaheuristics in a way that
is both intellectually interesting and practically useful. From a research perspective
libraries can be thought of as providing a concrete taxonomy for heuristic search. So
concrete, in fact, that they be compiled into machine code. These taxonomies shed
light on the relationships between metaheuristic methods for optimization and on ways
in which they can be combined.

From a practical and empirical research perspective, the libraries provide vehicles
for using and testing metaheuristics. A user of a library need only provide a problem
definition and perhaps a neighborhood structure in order to have available a number
of techniques. The classes in the library can be extended and/or combined to produce
new search strategies. For application domains such as optimization metaheuristics,
OOP techniques provide an excellent means of organizing the software components in
a way that encourages reuse without sacrificing flexibility. A class library environment
enhances the testing of metaheuristic components by providing a framework for varying
some aspects of an algorithm while holding all other aspects constant. For example,
multiple neighborhood structures can be tested by simply using a different class for
each neighborhood while all other classes, such as the problem class and metaheuristic
class, remain fixed. Conversely, a number of metaheuristic strategies can be tested with
the neighborhood and all other components fixed.

Just as metaheuristics provide flexible and extensible methods of solving opti-
mization problems, class libraries provide flexible and extensible building blocks for
creating software to implement metaheuristics. We have undertaken to give a sense of
the intellectual challenges and the rich potential of this burgeoning field, and of the
state-of-the-art that underlies some of the more general metaheuristics class libraries.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

M. Allard (1998) Object technology: overcoming cultural barriers to the adoption
of object technology. Information Systems Management, 15(3), 82–85.

A.A. Andreatta, S.E.R. Carvalho and C.C. Ribeiro (1998) An object-oriented
framework for local search heuristics. In: Proceedings of the 26th Conference on

Technology of Object-Oriented Languages and Systems (TOOLS USA’98). IEEE,
Piscataway, pp. 33–45.

Roberto Battiti and Giampietro Tecchiolli (1994) The reactive tabu search. ORSA

Journal on Computing, 6 126–140.

J. Bosch, P. Molin, M. Mattsson, P. Bengtsson, and M.E. Fayad (1999) Framework
problems and experiences. In: M.E. Fayad, D.C. Schmidt and R.E. Johnson (eds.),
Building Application Frameworks: Object-Oriented Foundations of Framework

Design. Wiley, Chichester, pp. 55–82.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal (1996) Pattern-

Oriented Software Architecture. Wiley, Chichester.

K. Czarnecki and U.W. Eisenecker (2000) Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, Reading.

534 A. Fink et al.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

F. Dammeyer and S. Voß (1993) Dynamic tabu list management using the reverse
elimination method. Annals of Operations Research, 41, 31–46.

Luca Di Gaspero and Andrea Schaerf (2002) Writing local search algorithms
using EASYLOCAL++. In: Stefan Voß and David L. Woodruff (eds.), Optimization

Software Class Libraries, OR/CS Interfaces Series. Kluwer Academic Publishers,
Boston, pp. 155–175.

M.E. Fayad and D.C. Schmidt (eds.) (1997), Special Issue: Object-Oriented

Application Frameworks. Communications of the Association of Computing
Machinery 40(10), 32–87. ACM.

A. Fink, S. Voß and D. L. Woodruff (1999) An adoption path for intelligent heuris-
tic search componentware. In: E. Rolland and N.S. Umanath (eds.), Proceedings

of the 4th INFORMS Conference on Information Systems and Technology.

INFORMS, Linthicum, pp. 153–168.

Andreas Fink and Stefan Voß (1999) Generic metaheuristics application to
industrial engineering problems. Computers & Industrial Engineering, 37,
281–284.

Andreas Fink and Stefan Voß (2002) HOTFRAME: a heuristic optimization frame-
work. In: Stefan Voß and David L. Woodruff (eds.), Optimization Software

Class Libraries, OR/CS Interfaces Series. Kluwer Academic Publishers, Boston,
pp. 81–154.

GAlib (2001) A C++ Library of Genetic Algorithm Components,
http://lancet.mit.edu/ga/.

E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) Design Patterns—
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading.

Genitor (2001) A genetic algorithm library, http://www.cs.colostate.edu/~genitor/.

F. Glover (1990) Tabu search—Part II. ORSA Journal on Computing, 2, 4–32.

F. Glover (1997) Tabu search and adaptive memory programming—Advances,
applications and challenges. In: R.S. Barr, R.V. Helgason and J.L. Kennington
(eds.), Interfaces in Computer Science and Operations Research: Advances in

Metaheuristics, Optimization, and Stochastic Modeling Technologies. Kluwer,
Boston, pp. 1–75.

Jörg Heitkötter and David Beasley (2001) The hitch-hiker’s guide to evolu-
tionary computation (FAQ for comp.ai.genetic), Issue 9.1, 12 April 2001,
http://surf.de.uu.net/encore/www/.

HotFrame (2001) Heuristic OpTimization FRAMEwork. http://www.winforms.
phil.tu-bs.de/winforms/research/hotframe.html.

ILOG (2000) ILOG Solver User’s Manual, Version 5.1. ILOG S.A., 9, Rue de
Verdun, Gentilly, France.

ILOG (2001) Constraint logic programming libraries, http://www.ilog.com.

R.E. Johnson and B. Foote (1988) Designing reusable classes. Journal of Object-

Oriented Programming, 1(2), 22–35.

B. Meyer (1997) Object-Oriented Software Construction. Prentice Hall.

Metaheuristic Class Libraries 535

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

Andrew R. Pain and Colin R. Reeves (2002) Genetic algorithm optimization
software class libraries. In Stefan Voß and David L. Woodruff (eds.), Optimization

Software Class Libraries, OR/CS Interfaces Series. Kluwer Academic Publishers,
Boston, pp. 295–329.

Arthur J. Riel (1996) Object-oriented Design Heuristics. Addison-Wesley,
Reading, MA.

E.M. Rogers (1995) Diffusion of Innovations, 4th edition. The Free Press,
New York.

J. Rumbaugh (1995) OMT: The object model, Journal of Object Oriented

Programming, 7 21–27.

M. Simos and J. Anthony (1998) Weaving the model web: a multi-modeling
approach to concepts and features in domain engineering. In: P. Devanbu and
J. Poulin (eds.), Proceedings of the Fifth International Conference on Software

Reuse. IEEE Computer Society Press, Los Alamitos, pp. 94–102.

E.D. Taillard, L.M. Gambardella, M. Gendreau and J.-Y. Potvin (2001) Adaptive
memory programming: a unified view of meta-heuristics. European Journal of

Operational Research, 135, 1–16.

Templar (2001) The Templar Framework, http://www.sys.uea.ac.uk/~msj/
templar/.

S. Voß (1993) Intelligent search. Manuscript, Technische Hochschule Darmstadt.

S. Voß (1995) Solving quadratic assignment problems using the reverse elim-
ination method. In: S.G. Nash and A. Sofer (eds.), The Impact of Emerging

Technologies on Computer Science and Operations Research. Kluwer, Boston,
pp. 281–296.

Stefan Voß and David L. Woodruff (2002) Optimization Software Class Libraries,

OR/CS Interfaces Series. Kluwer Academic Publishers, Boston.

Christos Voudouris and Raphaël Dorne (2002) Integrating heuristic search and
one-way constraints in the iOpt toolkit. In: Stefan Voß and David L. Woodruff
(eds.), Optimization Software Class Libraries, OR/CS Interfaces Series. Kluwer
Academic Publishers, Boston, pp. 177–191.

D.L. Woodruff and E. Zemel (1993) Hashing vectors for tabu search. In: F. Glover,
E.D. Taillard, M. Laguna and D. de Werra (eds.), Tabu Search, Annals of
Operations Research 41. Baltzer, Amsterdam, pp. 123–137.

David L. Woodruff (1997) A class library for heuristic search optimization.
INFORMS Computer Science Technical Section Newsletter, 18(2), 1–5.

B.V. Zanden, B.A. Myers and D. Giuse P. Szekely (1994) Integrating pointer vari-
ables into one-way constraint models. ACM Transactions on Computer–Human

Interaction, 1, 161–213.

This page intentionally left blank

Chapter 19

ASYNCHRONOUS TEAMS

Sarosh Talukdar
Carnegie Mellon University

Sesh Murthy and Rama Akkiraju
T. J. Watson Labs, IBM

1 INTRODUCTION

Obtaining a good solution to a complex problem, such as the operation of an electric grid
or the scheduling of a job-shop, can require a large and diverse set of skills. (An electric
grid has millions of devices that must be controlled and coordinated. In job-shop-
scheduling, much of the problem can often be solved by a single optimization procedure,
such as linear programming. But the remainder invariably requires a variety of situation-
specific heuristics and insights.) The questions for the designer of a problem-solving
system are which skills to include and how to package them.

In an Asynchronous Team (A-Team), skills are packaged as agents. More specif-
ically, an A-Team is a multi-population, multi-agent system for solving optimization
problems. The calculation process is as follows: The problem-to-be-solved is decom-
posed into sub-problems. A population of candidate-solutions is maintained for each
sub-problem. These populations are iteratively changed by a set of agents. Also, solu-
tions are made to circulate among the populations. Under conditions to be discussed,
some of the solutions in each population will improve. The calculation process is
terminated when the improvements cease.

The agents in an A-Team are identical in two respects. First, they are all com-
pletely autonomous (they work without any supervision). Second, they all have the
same work-cycle (in every iteration, every agent performs the same three steps: select
a solution from a population; modify the selected solution; then insert the modified
solution in a population). In all but these two respects, the agents can, and usually
should, be diverse. For instance, some may be computer programs while others are
human. Some may iterate quickly while others are slow. Some may make small
improvements while others make radical or even innovative changes to the candidate-
solutions.

S. Talukdar et al.

Design and assembly: How much effort will be needed to produce and upgrade
the system?

Solution-quality: How close will the solutions obtained by the system be to the
best possible solutions?

Solution-speed: How quickly will the system complete its calculations?

Robustness: How will solution-quality and speed be affected by failures and
disturbances?

2 OPTIMIZATION TERMINOLOGY

Optimization is not the best language for expressing every problem, but it is rela-
tively simple and quite general (all problems can, at least in principle, be expressed as
optimization problems). It is used here for these reasons.

An optimisation problem is a search specified in terms of three components—
objectives, constraints and decision variables. The objectives specify the goals of the
search, the constraints specify the limits of the search, and the decision variables specify
the space over which the search is to be conducted. In other words, an optimisation
problem has the form: where is a set of objectives, C is a set of constraints,

In designing a problem-solving system there are four conflicting issues of concern:

A qualitative assessment of the principal relationships between the structural
features of A-Teams and these issues-of-concern is given in Figure 19.1.

The remainder of the chapter is organized as follows. Section 2 lists the terminology
that will be used in describing problems and their solutions. Sections 3–6 elaborate on
the cause–effect-relationships indicated in Figure 19.1. Section 7 describes the structure
of an A-Team. Section 8 describes how the quality of the solutions produced by an
A-Team can, when necessary, be improved. Section 9 contains some guidelines for
designing A-Teams. And, Section 10 describes an A-Team that is used for solving
job-shop-scheduling problems from paper mills.

538

Asynchronous Teams 539

and X is a set of decision variables. The values that the decision variables can take
constitute a space, S, that is called decision- or solution-space. As an example, consider
the problem: simultaneously solve the equations, and x = y. One of many
ways of expressing this problem in optimisation terms, is:

Here, “x” and “y” are decision variables, is an objective, “x = y” is
a constraint, and the solution-space is the plane whose axes are the decision-variables,
x and y.

The solution space can be divided into three subsets: infeasible solutions (those
violating one or more constraints), feasible solutions (those meeting all the constraints),
and optimal solutions (the best of the feasible solutions).

Real problems often contain either no objectives or multiple conflicting objectives.
In the former case, all the feasible solutions are optimal, in the latter case, the Pareto
solutions are optimal. (Two objectives conflict—as opposed to being commensurate—
when one objective cannot be improved without degrading the other. A Pareto solution
is a feasible solution that is not dominated by any other feasible solution. Solution-X
dominates solution-Y, if X is at least as good as Y with respect to all the objectives,
and X is better than Y with respect to at least one objective.)

Two optimization problems are coupled if they share decision variables, constraints
or objectives.

Consider a set of coupled optimization problems, The point
X is a Pareto solution of this set, if X is feasible (with respect to the constraints of all the
problems) and X is not dominated (with respect to the objectives of all the problems)
by any other feasible point.

Suppose that the problem-to-be-solved, is decomposed into B, a set of coupled
sub-problems. Suppose that a set of agents, V, is assigned the task of iteratively solving
the sub-problems. The result is a dynamic system: where is the
assignment of agents to sub-problems, is the schedule of communications among
the agents, and is the schedule of the iterations by the agents. If the results of this
dynamic system converge, they will do so, not to optimal solutions of but rather,
to equilibria and other attractors of the dynamic system. (These attractors are features,
such as points and limit cycles, in the solution space of the) Note: changing any of
the five components of the dynamic system will change its attractors.

If: is one-to-one (sub-problem-m is assigned to agent-m),

prescribes sequential iterations (the agents take turns working, each completing
one iteration per turn),

V contains only optimizing agents (each agent solves its sub-problem to
optimality in each iteration),

prescribes information broadcasts (each agent sends the results of each of its
iterations to all the other agents), and

the iteration-results converge to a single point in the solution space of

x, y

subject to x = y

540 S. Talukdar et al.

then: this point, is called a Nash equilibrium. Note: a Nash equilibrium represents a
stalemate (once all the agents get there, no agent can leave without suffering a
degradation of its objective or a violation of its constraints). Also, the Pareto
solutions of the Pareto solutions of B, and the Nash equilibria may all be
distinct and quite different.

3 POPULATION METHODS

Consider the problem with solution space S. A population method, when applied
to this problem, generates a sequence, where is a population (set) of
candidate solutions, and is calculated from with k < n. The calculations cease
when at least one member of the latest population is found to have come acceptably
close to an optimal solution.

The original population method, called the Simplex method, was proposed by
Spendley et al. [1]. The name comes from the method’s use of a simplex to search
the solution-space. A simplex in a space of dimension m, is a set of m + 1 points
that can be thought of as the vertices of a body with planar faces. The method obtains

from by replacing the worst vertex in by its reflection in the centroid
of the other vertices. Many variations of this method have been proposed, including
methods called “swarms” that claim insect societies as their inspiration, but have more
in common with simplex methods than insects. On the plus side, simplex-like methods
have wide applicability and easy implementation; on the minus side, simplex-like
methods can be very slow and tend not to handle constraints well.

Genetic algorithms are better known examples of population methods than the
Simplex method. In the basic genetic algorithm, solutions are represented by binary
strings. is calculated from First, a “fitness function” is used to select the
fittest members of Next, “crossover” and “mutation,” two operators that mimic
processes in natural reproduction, are repeatedly applied to the fittest members to
produce the new population. On the plus side, genetic algorithms tend to produce good
solutions and are fairly robust. On the minus side, they are painfully slow and are often
difficult to apply—a consequence of using only string-representations and synchronous
calculations (must be calculated from and the faster operators to have to wait
for the slowest to finish.) A-Teams attempt to eliminate the disadvantages of Simplex-
like methods and Genetic algorithms by packaging skills in autonomous agents rather
than in mathematical operators, such as “crossover”and “mutation.”

4 AUTONOMOUS AGENTS

Agents are the modules from which problem-solving systems can be built. Structurally,
an agent can be thought of as a bundle of sensors, decision-makers and actuators.
Behaviorally, an agent can be thought of as a mapping from an in-space (all the things
the agent can sense) to an out-space (all the things the agent can affect). These spaces
may overlap. (Note that by these definitions, a great many, very different things qualify
as agents, including thermostats, computer programs, mobile robots, insects, people,
societies and corporations.)

An agent is autonomous to the extent that it is unsupervised. A non-autonomous
agent does only what its supervisors tell it to do; it makes no decisions for itself. In

Asynchronous Teams 541

No supervisory structure need be constructed.

The mistakes and failures of an agent do not affect its supervisees (there are none).

The speed of an agent’s reactions are limited only by its capabilities, not by the
delays in a chain-of-command.

The agents can work asynchronously (in parallel, each at its own speed).

The agents can improve themselves through learning (converting experiences into
competence).

where and are mappings representing the selection and modification processes
of the j-th agent, and and are sequences of the populations in this agent’s
input and output memories.

The agents can be divided into two categories, creators and destroyers, by differ-
ences in the way they perform the second step. Creators add solutions to the populations
in their output memories (is non-empty); destroyers remove solutions from the
populations in their input memories (is empty). The creators can be further
divided into constructors and improvers. The constructors produce new solutions from
scratch (is empty); the improvers modify existing solutions (is non-empty).

Note that the output memory of an agent may be the same as its input memory, and
several agents may share memories, resulting in configurations of the sort shown in
Figure 19.2.

5 ASYNCHRONOUS WORK

Synchronous iteration schedules dictate when agents must work and when they must
remain idle. They do this by specifying the order in which iterations are to occur, for

contrast, a completely autonomous agent has no supervisors, rather, it decides entirely
for itself what to do and when.

The exclusive use of completely autonomous agents has some advantages:

However, the work of completely autonomous agents cannot be externally
coordinated. Unless such agents are self-coordinating, they will tend to work at
cross-purposes, creating pandemonium rather than progress.

In an A-Team, self-coordination results from the agents’ selection mechanisms.
(These mechanisms are part of the first step of the work-cycle of each agent. This work-
cycle is outlined below. The selection mechanisms and other details are described in
later sections.)

The agents of an A-Team work on populations of candidate-solutions. These pop-
ulations are stored in computer memories. Consider the j-th agent. In each of its
iterations, this agent performs three steps: (a) it reads the incumbent population in
its input-memory, selects some candidate-solutions, and removes the selected solutions
from (b) it modifies the selected solutions; and (c) it inserts the modified solutions
into the incumbent population in its output-memory. Symbolically:

542 S. Talukdar et al.

instance, “no agent will begin iteration m +1 till all the agents have completed iteration
m.” Asynchronous schedules do not constrain the order of iterations. Rather, they allow
all the agents to work in parallel all the time, each at its own speed. In other words,
asynchronous schedules allow completely autonomous agents, if they so choose, to
reduce their idle times to zero.

The relationship between idle times and overall performance is neither obvious nor
monotone. But in certain circumstances, reducing idle times does increase performance.
A qualitative explanation follows.

Consider a synchronous schedule in which the iterations of all the agents occur
in lock-step, and there is just one memory that serves as both the input and the out-
put memory for all the agents. Suppose that in its n-th iteration, each agent selects
and modifies some members from the latest population, in this memory, and the
aggregate of these modifications produces the next population, In other words:

where

Asynchronous Teams 543

and J is the set of agents. In this synchronous schedule, all the agents must wait till
the slowest one has finished.

This synchronous schedule can be converted to an asynchronous schedule by relax-
ing the constraint that the agents work in lock-step and allowing each to iterate as fast
as it can. As a result, one agent may be performing its 100-th iteration while another is
just on its 10-th. Symbolically, the m-th iteration for the j-th agent is:

where is the latest population when agent-j starts its m-th iteration, and is the
latest population when agent-j completes its m-th iteration.

It happens that sufficient conditions for (4)–(7) to converge to a unique solution are
only slightly less restrictive than sufficient conditions for (8)–(10) to converge to the
same solution [2]. Therefore, one may expect that the reductions in idle time obtained
through the use of asynchronous schedules will often leave solution-quality unaffected.
What about solution-speed? It seems that populations are able to transmute reductions-
in-idle-time into increases in solution-speed when many agents are involved. We do
not understand the mechanism, but populations seem to be especially helpful when the
agents differ considerably in speed.

Fast agents, such as those using hill-climbing techniques, iterate quickly and tend to
be good at refining solutions through a succession of many incremental improvements.
Slower agents, such as humans, are often better at making radical changes. These two
types of changes can be combined by constraining the fast and slow agents to work
in series, so a few iterations of a slow agent are always followed by many iterations
of a fast agent. Populations provide a better way to combine fast and slow agents.
Specifically, they free agents to work in parallel, each as fast as it can. In other words,
populations seem to provide for the automatic blending of incremental and radical
changes. (For experiments with mixes of very different software agents, see [3,4], for
mixes of software and human agents, see [4,16].)

6 COMPETITION AND COOPERATION

In 1776, Adam Smith made a case for markets and competition [5]. His insight was that
good solutions to certain large and difficult problems could be obtained by dividing the
problem among a number of autonomous agents, and making these agents compete.
This insight has become an article of faith for some designers of autonomous-agent-
systems, particularly, designers of markets. But autonomy and competition do not,
by themselves, guarantee optimality. Rather, a number of other, quite impractical
conditions must also be met, such as the availability of perfect information and the
absence of externalities [6]. These other conditions are invariably violated by real
systems. Consequently, competitive arrangements often produce very poor solutions,
such as the shortages and high prices of the California energy market of 2001.

Of course, agents do not have to compete. They can, instead, cooperate.

544 S. Talukdar et al.

Competition requires conflicting goals. In optimization terms, two agents can
compete if they are assigned distinct but coupled problems with conflicting objec-
tives. Cooperation requires commensurate goals. In optimization terms, two agents
can cooperate if they are assigned coupled problems with commensurate or almost
commensurate objectives.

In other words, whether agents cooperate or compete depends, at least in part, on
the problems they are assigned.

Let be the problem-to-be-solved; and let be a decomposi-
tion of into sub-problems, such that and B have the same Pareto solutions. If B
is a competitive decomposition then, on rare occasions, its Nash equilibria will be the
same as the Pareto solutions of More often, the Nash equilibria of B will be quite
inferior to the Pareto solutions of In contrast, if B is a cooperative decomposition,
its Nash equilibria will invariably be the same as the Pareto solutions of

In other words, cooperative decompositions produce better Nash equilibria than
competitive decompositions. The generalization of this observation is: cooperation
makes possible solutions of higher quality than can be obtained from competition. We
suspect that this generalization is valid.

The structure of an A-Team allows for cooperation at two levels. First, the problem
to be solved is decomposed into sub-problems. The team’s designer can choose to
make this a cooperative decomposition. Second, multiple agents are assigned to each
sub-problem. These agents select and modify solutions from a population of candidate-
solutions that is maintained for the sub-problem. The agents work asynchronously, each
using its own methods for deciding when to work, which solutions to select, and how to
modify them. The agents do not explicitly coordinate their activities with one another,
nor is there a central controller. Rather, the agents cooperate through the products of
their work—by modifying solutions that have been worked on by other agents. The
final solution is invariably the result of contributions from many agents. (This form of
cooperation was inspired by the work-styles of social insects—bees, ants and certain
wasps. Although these insects live in close-knit colonies, they have no supervisors.
Certainly there is a queen, but her function is strictly reproductive; she does not lead
the other colony members, nor does she issue orders to the workers. Although different
castes exist within the colony—drones, soldiers and workers, for instance—there is
no hierarchical relationship among them. Rather, they act as autonomous agents and
cooperate through the products of their work. For instance, the construction of the nest
proceeds without centralized control or the benefit of a blueprint to show what the
finished result should be; instead, “it is the product of work previously accomplished,
rather than direct communication among nestmates, that induces the insects to perform
further labor. Even if the work force is constantly renewed, the nest structure already
completed determines, by its location, its height, its shape and probably also its odor,
what further work will be done” [19].)

7 ORGANIZATIONS, SUPER-AGENTS AND
ORGANIZATION SPACE

The previous sections have covered some aspects of the structure of A-Teams. This
section specifies their structure more precisely, and lists the decisions that the designers
of A-Teams must make.

Asynchronous Teams 545

Lesser agents can be organized into greater (super) agents, which can be organized
into still greater agents, and so on, just as cells are organized into organs, which are
organized into humans, which are organized into societies and nations. The capabilities
of a super-agent depend on its organization, and can range from much less than the
sum of the capabilities of its constituent-agents, to very much more. In other words,
the design of the organization is at least as important as the choice of agents.

An organization is the “glue” that binds the constituent–agents together. Its pur-
pose is two-fold: to divide the labor among the agents, and to coordinate their labor.
Structurally, an organization can be thought of as a stack of five networks (Figure 19.3):

1. Control Flow: a tree-like network that divides the agents into layers, showing
a) supervisory relationships (who reports to whom), and b) how much auton-
omy each agent has. Nodes in this network denote agents. Directed arcs denote
supervisory relationships. A number from zero to one is appended to each arc to
denote the degree of control the supervisor exercises over the “supervisee” (the
larger this number, the greater the degree of control).

2. Problem Decomposition: a network that shows the results of decomposing
the problem-to-be-solved, into B, a set of sub-problems. Nodes represent the
sub-problems. Arcs represent the couplings among the sub-problems.

3. Sub-Problem Assignment: a bi-partite network that shows which agent is
assigned to which sub-problem. Nodes are of two types; one type represents
agents, the other, sub-problems. Arcs connect agents to the sub-problems they
have been assigned.

4. Data Flow: a directed, bipartite network that shows who can “talk” to whom and
how. There are two types of nodes; one type represents agents, the other, data
stores. Arcs represent directed communication channels over which the agents
can send messages to one another, post messages in the data stores, or obtain
messages from the data stores. (These stores serve as bulletin boards for the
agents connected to them.)

5. Work Schedule: a network that shows the order in which the agents’ tasks—
iterations and communications—are to be performed. Nodes in this network
represent the tasks. Arcs represent the precedence constraints among the tasks.

546 S. Talukdar et al.

The problem of designing an organization has a very large solution space, namely,
the set of all the possible five-network-stacks of the sort shown in Figure 19.3. Of course,
other problems, such as aircraft and computer design, also have large solution spaces.
But many of these other problems benefit from extensive simulation and verification
facilities. They can use “generate and test strategies,” i.e., strategies that rely on the
quick and accurate evaluation of many candidate-solutions. However, such simulation
and verification facilities are not available for organizations. Therefore, it is necessary
to prune their space, leaving a smaller and more easily searched sub-space. The set of
A-Teams is one such sub-space. It is obtained from organization space by:

Setting the control flow network to “null” (the agents in an A-Team are completely
autonomous).

Assigning multiple agents to each sub-problem.

Eliminating all the arcs from the data flow that connect pairs of agents (the agents
in an A-Team communicate only with computer memories, not other agents, and
cooperate only by modifying one another’s work).

Making the data flow strongly cyclic, i.e., establishing paths, through agents, by
which solutions can circulate among the memories.

Setting the work schedule network to “null” (the agents in an A-Team work
asynchronously).

Note that each memory in an A-Team contains a population of solutions. All the
solutions in a population are expressed in the same representational form. This rep-
resentation can vary from one memory to another. A memory used by humans may
express solutions in diagrams, while a memory used by optimization software may
use vectors. One way to allow for agents that require different representations but must
work on the same population, is to maintain copies of the population, each in a different
representation and memory.

8 SOLUTION-QUALITY AND CONVERGENCE

The following thought experiment helps explain how A-Teams work and how solution-
quality can be improved.

Consider an A-Team that contains only one memory which is dedicated to storing
a population of solutions to the problem, This memory is shared by C, a set of
construction agents, I, a set of improvement agents, and D, a set of destruction agents.
Suppose that the improvement agents may select solutions randomly, but make only
deterministic modifications to the selected solutions. Suppose that the construction
agents create an initial population of solutions, from which the agents in I and D,
working asynchronously, produce a sequence of populations, Suppose
that the work is stopped when a population is obtained, such that no agent in I can
improve the quality of the best solution in . What is the quality of And, is N

finite?
To address these questions, we define a distance metric in terms of iterations by

improvement agents. Consider: a trajectory in S, the solution space
of Each step, in this trajectory is produced by one iteration of an
agent drawn from I. Thus, we can think of the trajectory as being M iterations long.

Asynchronous Teams 547

Of course, there may be other trajectories from to We define the distance from
to as the length, in iterations, of the shortest trajectory from to Note that

the distance from to is: (a) infinite, if there is no trajectory from to and
(b) dependent on I.

Let:

be a calculable, scalar measure of the quality of every possible
solution, s, with q(s) = 1 if s is an optimal solution, and q(s) = 0 if s is very
different from an optimal solution.

be the quality of population

G(Q) be the set of all the solutions of quality Q or better, that is,

f(s,g, I) be the distance, in iterations, from to Note: f(s, g, I)
is infinite if there is no trajectory from s to g; and if

be the distance, in iterations,
from to G(Q). Note: is infinite when I does not contain the
skills necessary to transform any point in into a solution of quality Q or
better.

is finite;

the improvers select solutions randomly, with a bias for solutions of higher quality
(the biasing details are given in [13]);

the destroyers select solutions randomly, with a bias towards solutions of lower
quality (the biasing details are given in [13]);

is made non-decreasing with n by saving a copy of the best solution in

then, G(Q) is reachable (the expected value of N is finite, and the expected value of
is Q or better.). The proof can be found in [13,18].

The problem of calculating the distance, is intractable. Therefore, the
above result cannot be used to predict the quality of the solutions that will be produced
by an A-Team. But it does tell us that G(Q) will be reachable, if the agents use relatively
simple and random strategies for selection, and if there is at least one trajectory from a
point in to a point in G(Q). Furthermore, the lack of such a trajectory can be remedied
by adding construction agents (thereby, changing) or adding improvement agents
(thereby, increasing the number of trajectories emanating from points in and the
chances that one of them will pass through a point in G(Q). For instance, if I allows for
trajectories: and and if we happen to augment I with an agent that can
bridge the gap from a to b, then a trajectory will be obtained). In other words,
solution-quality tends to increase as the number and diversity of the construction and
improvement agents increases.

Solution-quality can also be increased by using better destroyers. (We suspect that
creation—construction together with improvement—and destruction are duals, and
that adept destruction can compensate for inept creation, and vice-versa.)

If:

S. Talukdar et al.

Of course, increasing the number of agents could increase the total computing
time. But the agents work asynchronously. Therefore, providing more computers, so
the additional agents can work in parallel with all the other agents, is likely to make
any increases in total computing time slight, if not negligible.

In other words, one might expect, from the above analysis, that A-Teams are scale-
effective: adding agents to an A-Team tends to improve its solution-quality, and adding
computers tends to improve its solution-speed. There is some empirical evidence in
support of this conclusion [3], but not enough has to be completely convincing.

9 DESIGN GUIDELINES

The design of A-Teams, like the design of many artifacts, is a craft whose procedural
knowledge does not extend beyond very general guidelines. In such situations, the
designer has little choice but to build, test and modify prototypes, till one with accept-
able behavior is found. Since A-Teams tend to be scale effective, it makes sense to start
with a small team, adding agents when solution-quality is to be improved, and adding
computers when solution-speed is to be improved.

Some guidelines and observations for designers to keep in mind are:

Problem decomposition: The decomposition of the problem-to-be-solved is crit-
ical; only the number and diversity of the agents assigned to each sub-problem
affects overall performance to a greater extent. Let be the problem to be solved,
and be a sub-problem. Then, can be of three types:

1.

2.

3.

(Notice that the A-Team of Figure 19.2 contains sub-problems of all three types,
while the team of Figure 19.4 contains only types 1 and 3.) All A-Teams should
contain at least one sub-problem of type-1 so that solutions to are automatically
available. The quality of the final solutions to this sub-problem can usually be
improved by adding sub-problems of types 2 and 3.

Agent assignment: The greater the variety of skills that are brought to bear on
a sub-problem, the greater the quality of the solutions that will be obtained for
it. In other words, the solution-quality of an A-Team can be improved by adding
agents with new and relevant skills. In making these additions, one should keep
in mind that creation and destruction appear to be duals: adept destruction can
probably compensate for inept creation, and vice-versa. In other words, adding
adept destroyers is as good as adding adept creators.

Data flow: Empirical evidence suggests that the circulation of solutions among
the populations has a beneficial effect on both solution-quality and speed.

Population size: In our experience, solution-quality increases with population
size, but at a rapidly diminishing rate.

is related to just as the 1-Tree problem is related to the traveling
salesman problem (Figure 19.2).

is a component of that is, where
is a set of objectives, C is a set

of constraints and X is a set of decision variables.

548

Asynchronous Teams 549

550 S. Talukdar et al.

Selection strategies: We have experimented with only two selection strategies for
improvement agents: (a) randomly select solutions with a bias that makes the
better solutions more likely to be selected, and (b) randomly select solutions with
a bias towards solutions the agent is more likely to be able to improve. Both seem
to work well. For destroyers, we have also tried two strategies: (a) randomly select
solutions with a bias towards the poorer solutions, and (b) select duplicates. Both
seem to work.

10 A CASE STUDY

This section describes an A-Team, developed at IBM, for scheduling the production
and distribution of paper products.

Paper production is a complex task involving multiple objectives: maximize profit,
maximize customer satisfaction, and maximize production efficiency. These objectives
are often in conflict and their relative importance varies with the state of the produc-
tion environment and with market conditions. Process interactions further increase the
difficulty of the problem [9]. For instance, a scheduling improvement in one stage of
the production process may negatively impact downstream processes.

In paper production and distribution, the key decisions are:

(a) Order allocation: Allocating orders to paper machines across multiple paper mills
in different geographical locations

(b) Run formation and sequencing: Forming and sequencing batches of similar types
of paper on each paper machine

(c) Trimming: Cutting large reels of paper produced by paper machines into smaller
rolls of customer-specified widths and diameters

(d) Load planning: Loading paper rolls onto vehicles for shipment

The traditional approach to paper mill scheduling is to schedule each stage in the process
independently. Typically, paper manufacturers allocate orders to paper machines and
sequence them manually. Then they use one software-package for trim scheduling and
another package for outbound logistics scheduling, and so on. Each of these packages
focuses on a single process-step and attempts to create an optimized schedule based
on local objectives. Since there is no interaction between applications, the complete
schedule obtained by combining the sub-schedules is usually of very low quality. For
example, a trim schedule that minimizes trim-loss may cause vehicles to be loaded
inefficiently, unacceptably increasing shipping costs. This piecemeal approach presents
schedulers1 with a single take-it-or-leave-it choice and does not illustrate the tradeoffs
between competing objectives that are needed to make well informed decisions.

Realizing the shortcomings of the existing approaches, we at IBM Research, have
built a new scheduling system that considers all stages of paper production and distribu-
tion simultaneously, and generates multiple enterprise-wide schedules. These schedules
are created by algorithms that take into account the interactions between the process
stages and focus on enterprise-wide objectives. The algorithms that we have developed
use approaches such as linear programming, integer programming with and without

1 Schedulers are the people who perform the task of scheduling in an organization. The software in our
model assists these schedulers in performing their tasks.

Asynchronous Teams 551

randomized rounding, network flow and various heuristic methods. We combine these
multiple problem-solving approaches in an A-Team to achieve iterative improvements
in the solutions.

For scheduling as well as other manufacturing applications, we have found four
categories of attributes to be important: Timeliness, Product-Quality, Profitability, and
Disruptions. Not coincidentally, these categories reflect the concerns of the people
affected by the schedules: customer service representatives, quality engineers, accoun-
tants and manufacturing supervisors. As the iterations by the software agents proceed,
the schedules with the best tradeoffs among the categories are displayed to the sched-
uler. By examining these schedules, the human scheduler gains an understanding of
the tradeoffs. She can select schedules, drastically modify them, and return them to the
populations being worked on by software agents. Thereby, she can dramatically alter
the course of the software agents’ calculations. She can also negotiate compromises
with other interested parties. When she sees a solution she feels is acceptable, she
terminates the calculations.

We cannot overemphasize the importance of intimately involving human schedules
in the calculations. The asynchronous mode of work and a number of filters make
such involvements possible and practical. Specifically, asynchronous work allows fast
software agents to work in parallel with much slower humans. The filters allow only
the solutions with the best tradeoffs to be viewed by humans, thereby, keeping the
humans from being overloaded with information. The filter most often used allows
only non-dominated solutions to pass through it.

10.1 An Application

This section describes the construction of an A-Team for solving an instance of a
paper-manufacturing problem. This problem consists of more than 5000 orders (which
constitute about 8 weeks of production for 15 product types) to be scheduled on 9
machines that are located in 4 different mills.2 Once orders are allocated to machines
and grouped according to their grades, these groupings (known as runs) have to be
trimmed to fit the roll size requirements of the orders. The efficiency of trimming is
dependent on the order composition in the groups. However, orders may not be grouped
solely to increase trim efficiency, since such groupings may incur unacceptable delays
of orders with tight deadlines.

A partial set of evaluation metrics used in our implementation, and some of their
values, are presented in columns 2–10 of Table 19.1. These evaluation metrics are
customer dependent and are configurable. We obtained these metrics during the initial
design study and incorporated them into the system during the benchmarking process.

The manufacturing process contains two distinct stages: (1) run formation and
sequencing, and (2) trimming.3 These stages are coupled: the quality of trim optimiza-
tion depends on how the runs are formed and sequenced. Therefore, it is important to
consider the overall global optimization problem while generating schedules.

The A-Team we use is depicted in Figure 19.4. First, we create a run formation

team with its own set of constructors, improvers and destroyers for creating runs and

2The data were provided by one of the largest paper manufacturers in the U.S.
3A third optimization problem, namely transportation scheduling or load planning, is eliminated from this

analysis for simplicity. A more detailed description of the problem and our solution approach can be found
in [16].

552 S. Talukdar et al.

Asynchronous Teams 553

sequencing the orders within those runs. This team generates a set of non-dominated
schedules4 that serve as starting points for trim optimization. While these solutions can
be evaluated at a high level based on transportation cost, due dates, and order-machine
restrictions, the goodness of these solutions cannot be determined until each run in
each schedule is trimmed and the amount of waste is compared. However, trimming
in itself is a multi-objective optimization. Therefore, we next construct a trim team for
trim optimization with suitable constructors, improvers and destroyers. This trim team
creates near optimal trim solutions, given a single run and a sequence of orders within
that run. This trim team can be invoked multiple times to trim each run in a given
schedule. However, there are many such schedules, generated by the run formation
team, that need to be explored for overall trim efficiency. Therefore, in order to explore
the best possible solutions, we employ a third team, the global optimization team,

that changes the run formation and sequencing in an effort to achieve better overall
solutions (including better trim) as defined by the evaluation metrics. In essence, the
run formation and sequencing team and trim team are super-agents within the global
optimization team.5 Trimming is computationally intensive. Therefore, it is important
to be judicious in selecting the schedules for trimming. Below, we briefly describe
the algorithms that we used in the run formation and sequencing team and the trim
team. The global optimization team uses a combination of constructors, improvers and
destroyers from the run formation team and the trim team.

10.2 Run Formation and Initial Sequencing Stage

In our system, orders are allocated to machines based on considerations such as
transportation cost, due dates, trim preferences and order-machine restrictions. The
constructors, improvers and destroyers used in run formation team are:

Constructors: Many approaches such network flow, dispatch algorithms, lin-
ear programming models, and greedy approaches can be used to create initial
population of solutions for order sequencing in an A-Team. In solving NP hard
problems such as these, the A-Team framework encourages the use of multiple
approaches for generating initial solutions in the population. Multiple approaches
could potentially cover more search space than one approach. In our implemen-
tation, we use dispatch algorithms for order allocation. The idea is to select one
order at a time from the sorted list of remaining orders (several sorting heuris-
tics could be used) and schedule it as the next order on a given machine. These
methods create partial solutions that have order allocation information, and some-
times an initial sequencing of the orders (and hence a sequence of runs) on each
machine.

Improvers: Improvement algorithms take an existing schedule and try to improve
it in several different dimensions. For example, an improver may move orders
between runs to reduce tardiness and improve trim efficiency, may merge runs
in order to decrease the number of small runs, may resequence runs by moving
subsets of orders in a run to improve the solution of a downstream problem (e.g.,

4A schedule at this point is a sequence of runs in which each run is a grouping of similar orders in a
specific sequence.

5The same approach can be extended to include additional down-stream processes, such as sheeting and
transportation planning.

554 S. Talukdar et al.

moving a set of orders to a different run to improve trim efficiency) etc. Since

improvers have inherent knowledge about what aspects of a solution they intend

to improve, they are programmed to pick those solutions that exhibit weakness

in those specific aspects. For example, an improver that intends to improve the

tardiness of a solution would pick solutions that have many late orders.

Destroyers: In our A-Team we used a simple “delete duplicates” destruction

approach. More intelligent destruction agents could be created as well.

Further details on the algorithms can be found in [8].

10.3 Trim Stage

A paper machine produces large reels of paper. The process of cutting the reels into

rolls of paper (based on customer specifications) is called trimming. The main objective

in trimming is to minimize the trim loss (the unused portion of the reel that cannot be

used to fill an order) while considering other manufacturing objectives such as on-

time delivery and customer satisfaction. This again, is a multi-objective optimization

problem. The constructors, improvers and destroyers used in the trim team are:

Constructors: Trimming paper rolls can be cast as a one-dimensional cutting

stock problem (CSP). This problem has been studied by Gilmore and Gomory in

1961 in their seminal work [11]. Past work in this area [10,12,13] indicates that

linear and integer-programming models work fairly well for generating initial

trim patterns. Therefore, we use linear programming and integer-programming

approaches to generate initial trim solutions. However, these solutions can be

improved further by using iterative heuristic techniques.

Improvers: Trim efficiency can be improved by modifying the sequence of orders

within a run or by exchanging orders with other runs in the schedule. This can be

done either randomly or based on some heuristics that have specific information

about the required widths that could improve trim. For example, if a paper mill

knows that there is a constant demand for certain standard widths such as 25" and

30", it may not mind making rolls of that size and stocking them, if it improves

the trim efficiency, and even if there are no immediate orders for those rolls

(these are sometimes called “help rolls”). Trim efficiency improvement heuristics

can embody these types of domain details to improve overall trim efficiency.

In deciding which solutions to improve, we use simple selection mechanisms

such as random selection with a bias. For example, improvers that specialize in

improving trim efficiency are programmed to randomly pick those solutions from

the populations that do not have perfect trim.

Destroyers: In our trim team we used a simple “delete duplicates” destruction

approach. More intelligent destruction agents could be created as well.

More details on the algorithms can be found in [14].

The global A-Team in this application consisted of 15 constructors and 5 improvers.

Each agent (constructor or an improver) is an embodiment of the algorithms described

above (run with various parameter settings). For our sample problem, an A-Team

invocation of of CPU time on a single processor IBM RS/6000 Model 591 (256MB

of memory generated approximately 100 solutions; of these solutions, 10 solutions were

non-dominated. Table 19.1 shows the evaluations for these 10 solutions illustrating

Asynchronous Teams 555

the tradeoffs among the objectives. For example, solutions 3 and 4 have the same
transportation cost, which suggests that they have almost the same allocation of orders
to mills. However, they differ significantly in their tardiness and trim efficiencies.
Solution 3 sacrifices order tardiness for better trim while solution 4 sacrifices trim for
better on-time order delivery.

Comparison of solution 10 with the schedule generated by our customer by their
traditional methods showed that our system could provide significant reductions in
costs (6% savings in transportation costs and improvements in customer satisfaction
through reduced tardiness were reported). In this company, as in many other paper
companies, an experienced team of schedulers worked on generating the traditional
schedules. They allocated and sequenced orders manually or by using a stand-alone
scheduling program, and used another computer program for trimming. For fine-tuning
the schedules, they used numerous heuristics they had developed over the years.

10.4 Business Impact

Our paper mill scheduling system has been fielded at several paper mills in the United
States and is being used in their day-to-day operations. The system significantly
improves the scheduling and decision making process for our customers, giving them
substantial monetary returns. Improvements come both from the higher quality of the
solutions that our system generates and from positive changes in the business processes
that our approach to decision support fosters. In terms of solution quality, one of our
customers, Madison Paper Industries, reports a reduction in trim loss by 6 tons per day
and a 10% reduction in freight costs [17]. Each of these savings amounts to millions
of dollars per year.

Adam Stearns of Madison Paper Industries, our pilot customer, reports “We would
use our old trim package, throw orders into it and let it trim them the best it could.
Then we would let the IBM module take the same orders and manipulate them to
come up with a trim. We saw that the IBM package was consistently saving over two
inches [of trim loss]—just an incredible amount.” [17, page 74] “Testing shows that
we are getting about 10% savings annually on distribution costs from the load planning
piece alone, which amounts to millions of dollars... .We expected the system’s GUI
[graphical user interface] to make load planning easier, but we didn’t expect to gain
these efficiencies.” [17].

By 1999, 31 mills were either using or were in the process of implementing the IBM
mill scheduling system. The users are primarily roll manufacturers in the corrugated
and publishing paper markets.

In summary, we have developed a system for enterprise-wide scheduling of paper
manufacturing and distribution using the iterative improvement framework facilitated
by Asynchronous Teams. The A-Team architecture facilitated cooperation between the
various computer algorithms and the human scheduler, resulting in better solutions
than any one of the implemented algorithms could have achieved by working alone.

REFERENCES

[1] P.E. Gill and W. Murray (eds.) (1974) Numerical Methods for Constrained

Optimization. Academic Press.

556 S. Talukdar et al.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S.S. Pyo (1985) Asynchronous Procedures for Distributed Processing. Ph.D.
dissertation, CMU.

P.S. deSouza (1993) Asynchronous Organizations for Multi-Algorithm Problems.
Ph.D. dissertation, CMU.

S. Sachdev (1998) An exploration of A-teams. Ph.D. dissertation, CMU.

A. Smith (1776) The Wealth of Nations.

G. Debreu (1959) The Theory of Value. Wiley, New York.

S.N. Talukdar (1999) Collaboration rules for autonomous software agents. The

International Journal of Decision Support Systems, 24, 269–278.

R. Akkiraju, P. Keskinocak, S. Murthy and F. Wu (1998) An agent-based approach
for multi-machine scheduling. Proceedings of the Tenth Annual Conference on

Innovative Applications of Artificial Intelligence, Menlo Park, CA.

C. Biermann (1993) Essentials of Pulping and Papermaking. Academic Press,
San Diego.
H. Dyckhoff (1990) A typology of cutting and packing problems. European

Journal of Operational Research, 44, 145–159.

P.C. Gilmore and R.E. Gomory (1961) A linear programming approach to the
cutting stock problem. Operations Research, 9, 849–859.

R.W. Haessler (1980) A note on the computational modifications to the Gilmore-
Gomory cutting stock algorithm. Operations Research, 28, 1001–1005.

R.W. Haessler and P.E. Sweeney (1991) Cutting stock problems and solution
procedures. European Journal of Operational Research, 54, 141–150.
P. Keskinocak, F. Wu, R. Goodwin, S. Murthy, R. Akkiraju, S. Kumaran and
A. Derebail (2002) Scheduling solutions for the paper industry. Operations

Research, 50(2), 249–259.

S. Murthy (1992) Synergy in cooperating agents: designing manipulators
from task specifications. Ph.D. thesis. Carnegie Mellon University, Pittsburgh,
Pennsylvania.

S. Murthy, R. Akkiraju, R. Goodwin, P. Keskinocak, J. Rachlin, F. Wu,
S. Kumaran, J. Yeh, R. Fuhrer, A. Agarwal, M. Sturzenbecker, R. Jayaraman
and R. Daigle (1999) Cooperative multi-objective decision-support for the paper
industry. Interfaces, 29, 5–30.

M. Shaw (1998) Madison streamlines business processes with integrated infor-
mation system. Pulp & Paper, 72(5), 73–81.

S. Talukdar, L. Baerentzen, A. Gove and P. deSouza (1998) Asynchronous teams:
cooperation schemes for autonomous agents. Journal of Heuristics, 4, 295–321.

P.P. Grassé (1967) Nouvelle expériences sur le termite de Muller (macrotermes
mülleri) et considérations sur la théorie de la stigmergie. Insectes Sociaux, 14(1),
73–102.

SUBJECT INDEX

Acceptance Criterion 332, 479
Ant Colony Optimization 251
Arc Routing Problem 18
Aspiration Criteria 44
Asychronous Teams 537

Bin Packing Problem 460
Bipartite Drawing Problem 8

Candidate List 45, 221, 275, 376
Capacitated Plant Location Problem 38
Constraint Programming 151, 369
Constraint Satisfaction 405
Continuous Optimization 167
Cooling Schedule 303
Crossover 58, 480

Diversification 46

EasyLocal 520
Ejection Chains 398
Elastic Net 439, 448

Frequency Assignment Problem 209

Generalized Assignment Problem 265
Generating Diverse MIP Solutions 26
Genetic Algorithm 55, 189, 301, 481, 488
Genetic Programming 83
Global Optimization 337
Graph Coloring 9
Graphs and Networks 159
GRASP 151, 219, 358
Guided Local Search 186

HotFrame 518, 522
Hyper-Heuristics 457

Intensification 45
iOpt 520
Iterated Local Search 321, 524

Job Shop Scheduling 17

Knapsack Problem 72

Linear Ordering Problem 7, 363
Location and Clustering Problems 155

Max-cut 161
Max-SAT 191, 344
Maximum Clique 12, 160
Memetic Algorithm 107
Metaheuristic Class Libraries 515
Multicommodity Network Design 11
Multi-Start Methods 355
Mutation 58, 70, 480

Neighborhood Structure 41
NeighborSearcher 520
Neural Networks 429
Noising Methods 300

Parallel Strategies 475
Path Relinking 5, 27, 231, 359
Permutation Problems 74, 329
Propagation 382, 406
Proximate Optimality Principle 231

Quadratic Assignment Problem 156, 204, 334

Repair Methods 410
Resource Constrained Project Scheduling 21

SAT 191
Scatter Search 3
Scheduling Problems 164, 341
Search Space 41
Set Covering Problem 266
Simulated Annealing 287, 482, 492
Synthesis of Antennas 94
Synthesis of Controllers 91
Synthesis of Metabolic Pathways 95

Tabu Search 37, 40, 150, 189, 301, 482, 496, 525
Templar 519
Tournament Selection 67
Traveling Salesman Problem 152, 190, 202, 253,

334, 339, 433

Variable Neighborhood Search 145
Vehicle Routing Problem 38, 152, 192

Workforce Scheduling 206

