Handbook of PARAMETRIC and NONPARAMETRIC STATISTICAL PROCEDURES

David J.Sheskin Western Connecticut State University

CRC Press Boca Raton New York London Tokyo

Table of Contentswith Summary of Topics

Introduction
Descriptive versus inferential statistics; Statistic versus parameter; Levels of measurement; Continuous versus discrete variables; Measures of central tendency; Measures of variability; The normal distribution; Hypothesis testing; Type I and Type II errors in hypothesis testing; Estimation in inferential statistics; Basic concepts and terminology employed in experimental design; Correlational research; Parametric versus nonparametric inferential statistical tests; Selection of the appro- priate statistical procedure
Outline of Inferential Statistical Tests and Measures of
Correlation/Association
Guidelines and Decision Tables for Selecting the Appropriate
Statistical Procedure
2
Inferential Statistical Tests Employed with a Single Sample 31
Test 1. The Single-Sample z Test 33
I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Single-Sample z Test and/or Related Tests
VII. Additional Discussion of the Single-Sample z Test
1. The interpretation of a negative z value
2. The standard error of the population mean and graphical repre-
sentation of results of the single-sample z test 3. Additional examples illustrating the interpretation of a computed z
value
4. The z test for a population proportion
VIII. Additional Examples Illustrating the Use of the Single-Sample z Test

т	Unotherin Evoluated with Test and Palavant Deskaround Information
	Hypothesis Evaluated with Test and Relevant Background Information Example
	Null versus Alternative Hypotheses
	Test Computations
	Interpretation of the Test Results
	Additional Analytical Procedures for the Single-Sample <i>t</i> Test and/or Related Tests
	1. Determination of the power of the single-sample t test and the single-sample z test
	2. Computation of a confidence interval for the mean of a population represented by a sample
VII.	Additional Discussion of the Single-Sample t Test 1. Degrees of freedom
VIII.	Additional Examples Illustrating the Use of the Single-Sample t Test
Test 3.	The Single-Sample Chi-Square Test for a Population Variance 71
I.	Hypothesis Evaluated with Test and Relevant Background Information
II.	Example
III.	Null versus Alternative Hypotheses
IV.	Test Computations
V .	Interpretation of the Test Results
VI.	Additional Analytical Procedures for the Single-Sample Chi-Square Test for a Population Variance and/or Related Tests
	 Large sample normal approximation of the chi-square distribution Computation of a confidence interval for the variance of a popula- tion represented by a sample
	 Computation of the power of the single-sample chi-square test for a population variance
VII.	Additional Discussion of the Single-Sample Chi-Square Test for a Population Variance
VIII.	Additional Examples Illustrating the Use of the Single-Sample Chi- Square Test for a Population Variance
Test 4.	The Wilcoxon Signed-Ranks Test
I.	Hypothesis Evaluated with Test and Relevant Background Information
II.	Example
III.	Null versus Alternative hypotheses
IV.	Test Computations
v .	Interpretation of the Test Results
VI.	Additional Analytical Procedures for the Wilcoxon Signed-Ranks Test and/or Related Tests
	1. The normal approximation of the Wilcoxon T statistic for large sample sizes
	2. The correction for continuity for the normal approximation of the Wilcoxon signed-ranks test

- 3. Tie correction for the normal approximation of the Wilcoxon test statistic
- VII. Additional Discussion of the Wilcoxon Signed-Ranks Test
- VIII. Additional Examples Illustrating the Use of the Wilcoxon Signed-Ranks Test

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Chi-Square Goodness-of-Fit Test and/or Related Tests
 - 1. Comparisons involving individual cells when k > 2
 - 2. The analysis of standardized residuals
 - 3. Computation of a confidence interval for the chi-square goodnessof-fit test
 - 4. Brief discussion of the z test for a population proportion and the single-sample test for the median
 - 5. The correction for continuity for the chi-square goodness-of-fit test
 - 6. Sources for computing of the power of the chi-square goodness-offit test
- VII. Additional Discussion of the Chi-Square Goodness-of-Fit Test
 - 1. Directionality of the chi-square goodness-of-fit test
 - 2. Modification of procedure for computing the degrees of freedom for the chi-square goodness-of-fit test
 - 3. Additional goodness-of-fit tests
- VIII. Additional Examples Illustrating the Use of the Chi-Square Goodness-of-Fit Test

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Binomial Sign Test for a Single Sample and/or Related Tests
 - 1. Test 6a: The z test for a population proportion (with discussion of correction for continuity, computation of a confidence interval; extension of the z test for a population proportion in order to evaluate the performance of m subjects on n trials on a binomially distributed variable)
 - 2. Test 6b: The single-sample test for the median
 - 3. Sources for computing the power of the binomial sign test for single sample

- VII. Additional Discussion of the Binomial Sign Test for a Single Sample
- VIII. Additional Example Illustrating the Use of the Binomial Sign Test for a Single Sample

Test 7. The Single-Sample Runs Test (and Other Tests of Randomness) 135

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Single-Sample Runs Test and/or Related Tests
 - 1. The normal approximation of the single-sample runs test for large sample sizes
 - 2. The correction for continuity for the normal approximation of the single-sample runs test
- VII. Additional Discussion of the Single-Sample Runs Test
 - 1. Alternative tests of randomness (The frequency test; the gap test; the poker test; autocorrelation; the serial test; the coupon collector's test; Von Neumann ratio test on independence/mean square successive difference test; test of trend analysis/time series analysis)

VIII. Additional Examples Illustrating the Use of the Single-Sample Runs Test

Inferential Statistical Tests Employed with Two Independent Samples (and Related Measures of Association/Correlation) 151

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the t Test for Two Independent Samples and/or Related Tests
 - 1. The equation for the t test for two independent samples when a value for a difference other than zero is stated in the null hypothesis
 - 2. Test 8a: Hartley's F_{max} test for homogeneity of variance/F test for two population variances: Evaluation of the homogeneity of variance assumption of the t test for two independent samples
 - 3. Computation of the power of the t test for two independent samples
 - 4. Measure of magnitude of treatment effect for the t test for two independent samples: Test 8b: Omega squared
 - 5. Computation of a confidence interval for the t test for two independent samples
 - 6. Test 8c: The z test for two independent samples

- VII. Additional Discussion of the t Test for Two Independent Samples
 - 1. Unequal sample sizes
 - 2. Outliers
 - 3. Robustness of the t test for two independent samples
- VIII. Additional Examples Illustrating the Use of the t Test for Two Independent Samples

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Mann-Whitney U Test and/or Related Tests
 - 1. The normal approximation of the Mann-Whitney U statistic for large sample sizes
 - 2. The correction for continuity for the normal approximation of the Mann-Whitney U test
 - 3. Tie correction for the normal approximation of the Mann-Whitney U statistic
 - 4. Sources for computing a confidence interval for the Mann-Whitney U test
- VII. Additional Discussion of the Mann-Whitney U Test
 - 1. Power efficiency of the Mann-Whitney U test
 - 2. Alternative nonparametric rank-order procedures for evaluating a design involving two independent samples
- VIII. Additional Examples Illustrating the Use of the Mann-Whitney U_{i} Test

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Siegel-Tukey Test for Equal Variability and/or Related Tests
 - 1. The normal approximation of the Siegel-Tukey test statistic for large sample sizes
 - 2. The correction for continuity for the normal approximation of the Siegel-Tukey test for equal variability
 - 3. Tie correction for the normal approximation of the Siegel-Tukey test statistic
 - 4. Adjustment of scores for the Siegel-Tukey test for equal variability when $\theta_1 \neq \theta_2$

- VII. Additional Discussion of the Siegel-Tukey Test for Equal Variability
 - 1. Analysis of the homogeneity of variance hypothesis for the same set of data with both a parametric and nonparametric test
 - 2. Alternative nonparametric tests of dispersion
- VIII. Additional Examples Illustrating the Use of the Siegel-Tukey Test for Equal Variability

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV.** Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Chi-Square Test for $r \times c$ Tables and/or Related Tests
 - 1. Yates' correction for continuity
 - 2. Quick computational equation for a 2×2 table
 - 3. Evaluation of a directional alternative hypothesis in the case of a 2×2 contingency table
 - 4. Test 11c: The Fisher exact test
 - 5. Test 11d: The z test for two independent proportions
 - 6. Computation of a confidence interval for a difference between proportions
 - 7. Test 11e: The median test for independent samples
 - 8. Extension of the chi-square test for $r \times c$ tables to contingency tables involving more than two rows and/or columns, and associated comparison procedures
 - 9. The analysis of standardized residuals
 - 10. Sources for the computation of the power of the chi-square test for $r \times c$ tables
 - 11. Measures of association for $r \times c$ contingency tables (Test 11f: The contingency coefficient; Test 11g: The phi coefficient; Test 11h: Cramér's phi coefficient; Test 11i: Yule's Q; Test 11j: The odds ratio)
- VII. Additional Discussion of the Chi-Square Test for $r \times c$ Tables 1. Analysis of multidimensional contingency tables
- VIII. Additional Examples Illustrating the Use of the Chi-Square Test for $r \times c$ Tables

	ial Statistical Tests Employed with Two Dependent (and Related Measures of Association/Correlation) 257
Test 12.	The <i>t</i> Test for Two Dependent Samples
I.	Hypothesis Evaluated with Test and Relevant Background Information
II.	Example
ŕ III.	Null versus Alternative Hypotheses

- IV. Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the t Test for Two Dependent Samples and/or Related Tests
 - 1. Alternative equation for the t test for two dependent samples
 - 2. The equation for the t test for two dependent samples when a value for a difference other than zero is stated in the null hypothesis
 - 3. Test 12a: The t test for homogeneity of variance for two dependent samples: Evaluation of the homogeneity of variance assumption of the t test for two dependent samples
 - 4. Computation of the power of the t test for two dependent samples
 - 5. Measure of magnitude of treatment effect for the t test for two dependent samples: Omega squared (Test 12b)
 - 6. Computation of a confidence interval for the t test for two dependent samples
 - 7. Test 12c: Sandler's A test
 - 8. Test 12d: The z test for two dependent samples
- VII. Additional Discussion of the t Test for Two Dependent Samples
 - 1. The use of matched subjects in a dependent samples design
 - 2. Relative power of the t test for two dependent samples and the t test for two independent samples
 - 3. Counterbalancing and order effects
 - 4. Analysis of a before-after design with the t test for two dependent samples
- VIII. Additional Example Illustrating the Use of the t Test for Two Dependent Samples

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Wilcoxon Matched-Pairs Signed-Ranks Test and/or Related Tests
 - 1. The normal approximation of the Wilcoxon T statistic for large sample sizes
 - 2. The correction for continuity for the normal approximation of the Wilcoxon matched-pairs signed-ranks test
 - 3. Tie correction for the normal approximation of the Wilcoxon test statistic
 - 4. Sources for computing a confidence interval for the Wilcoxon matched-pairs signed-ranks test
- VII. Additional Discussion of the Wilcoxon Matched-Pairs Signed-Ranks Test
 - 1. Alternative nonparametric rank-order procedures for evaluating a design involving two dependent samples
- VIII. Additional Examples Illustrating the Use of the Wilcoxon Matched-Pairs Signed-Ranks Test

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Binomial Sign Test for Two Dependent Samples and/or Related Tests
 - 1. The normal approximation of the binomial sign test for two dependent samples with and without a correction for continuity
 - 2. Computation of a confidence interval for the binomial sign test for two dependent samples
 - 3. Sources for computing the power of the binomial sign test for two dependent samples
- VII. Additional Discussion of the Binomial Sign Test for Two Dependent Samples
 - 1. The problem of an excessive number of zero difference scores
 - 2. Equivalency of the Friedman two-way analysis variance by ranks and the binomial sign test for two dependent samples when k = 2
- VIII. Additional Examples Illustrating the Use of the Binomial Sign Test for Two Dependent Samples

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the McNemar Test and/or Related Tests
 - 1. Alternative equation for the McNemar test statistic based on the normal distribution
 - 2. The correction for continuity for the McNemar test
 - 3. Computation of the exact binomial probability for the McNemar test model with a small sample size
 - 4. Additional analytical procedures for the McNemar test
- VII. Additional Discussion of the McNemar Test
 - 1. Alternative format for the McNemar test summary table and modified test equation
 - 2. Extension of McNemar test model beyond 2×2 contingency tables
- VIII. Additional Examples Illustrating the Use of the McNemar Test

Inferential Statistical Tests Employed with Two or More	
Independent Samples (and Related Measures of	
Association/Correlation)	331

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- IV. Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Single-Factor Between-Subjects Analysis of Variance and/or Related Tests
 - 1. Comparisons following computation of the omnibus F value for the single-factor between-subjects analysis of variance (Planned versus unplanned comparisons; Simple versus complex comparisons; Linear contrasts; Orthogonal comparisons; Test 16a: Multiple t tests/Fisher's LSD test; Test 16b: The Bonferroni-Dunn test; Test 16c: Tukey's HSD test; Test 16d: The Newman-Keuls test; Test 16e: The Scheffé test; Test 16f: The Dunnett test; Additional discussion of comparison procedures and final recommendations; The computation of a confidence interval for a comparison)
 - 2. Comparing the means of three or more groups when $k \ge 4$
 - 3. Evaluation of the homogeneity of variance assumption of the singlefactor between-subjects analysis of variance
 - 4. Computation of the power of the single-factor between-subjects analysis of variance
 - 5. Measures of magnitude of treatment effect for the single-factor between-subjects analysis of variance: Test 16g: Omega squared and Test 16h: Eta squared
 - 6. Computation of a confidence interval for the mean of a treatment population
 - 7. The analysis of covariance
- VII. Additional Discussion of the Single-Factor Between-Subjects Analysis of Variance
 - 1. Theoretical rationale underlying the single-factor between-subjects analysis of variance
 - 2. Definitional equations for the single-factor between-subjects analysis of variance
 - 3. Equivalency of the single-factor between-subjects analysis of variance and the t test for two independent samples when k = 2
 - 4. Robustness of the single-factor between-subjects analysis of variance
 - 5. Fixed-effects versus random-effects models for the single-factor between-subjects analysis of variance
- VIII. Additional Examples Illustrating the Use of the Single-Factor Between-Subjects Analysis of Variance

Test 17. The Kruskal-Wallis One-Way Analysis of Variance by Ranks 397

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Kruskal-Wallis One-Way Analysis of Variance by Ranks and/or Related Tests
 - 1. Tie correction for the Kruskal-Wallis one-way analysis of variance by ranks
 - 2. Pairwise comparisons following computation of the test statistic for the Kruskal-Wallis one-way analysis of variance by ranks
- VII. Additional Discussion of the Kruskal-Wallis One-Way Analysis of Variance by Ranks
 - 1. Exact tables of the Kruskal-Wallis distribution
 - 2. Equivalency of the Kruskal-Wallis one-way analysis of variance by ranks and the Mann-Whitney U test when k = 2
 - 3. Alternative nonparametric rank-order procedures for evaluating a design involving k independent samples
- VIII. Additional Examples Illustrating the Use of the Kruskal-Wallis One-Way Analysis of Variance by Ranks

Test 18.	The Single-Factor	Within-Subjects	Analysis of Variance	413

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Single-Factor Within-Subjects Analysis of Variance and/or Related Tests
 - 1. Comparisons following computation of the omnibus F value for the single-factor within-subjects analysis of variance (Test 18a: Multiple t tests/Fisher's LSD test; Test 18b: The Bonferroni-Dunn test; Test 18c: Tukey's HSD test; Test 18d: The Newman-Keuls test; Test 18e: The Scheffé test; Test 18f: The Dunnett test; The computation of a confidence interval for a comparison; Alternative methodology for computing MS_{res} for a comparison)
 - 2. Comparing the means of three or more conditions when $k \ge 4$
 - 3. Evaluation of the sphericity assumption underlying the single-factor within-subjects analysis of variance
 - 4. Computation of the power of the single-factor within-subjects analysis of variance
 - 5. Measure of magnitude of treatment effect for the single-factor within-subjects analysis of variance: Test 18g: Omega squared

- 6. Computation of a confidence interval for the mean of a treatment population
- VII. Additional Discussion of the Single-Factor Within-Subjects Analysis of Variance
 - 1. Theoretical rationale underlying the single-factor within-subjects analysis of variance
 - 2. Definitional equations for the single-factor within-subjects analysis of variance
 - 3. Relative power of the single-factor within-subjects analysis of variance and the single-factor between-subjects analysis of variance
 - 4. Equivalency of the single-factor within-subjects analysis of variance and the t test for two dependent samples when k = 2
- VIII. Additional Examples Illustrating the Use of the Single-Factor Within-Subjects Analysis of Variance

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV.** Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Friedman Two-Way Analysis Variance by Ranks and/or Related Tests
 - 1. Tie correction for the Friedman two-way analysis variance by ranks
 - 2. Pairwise comparisons following computation of the test statistic for the Friedman two-way analysis of variance by ranks
- VII. Additional Discussion of the Friedman Two-Way Analysis Variance by Ranks
 - 1. Exact tables of the Friedman distribution
 - 2. Equivalency of the Friedman two-way analysis variance by ranks and the binomial sign test for two dependent samples when k = 2
 - 3. Alternative nonparametric rank-order procedures for evaluating a design involving k dependent samples
 - 4. Relationship between the Friedman two-way analysis of variance by ranks and Kendall's coefficient of concordance
- VIII. Additional Examples Illustrating the Use of the Friedman Two-Way Analysis of Variance by Ranks

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV.** Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Cochran Q Test and/or Related Tests
 - 1. Pairwise comparisons following computation of the test statistic for the Cochran Q test

- VII. Additional Discussion of the Cochran Q Test
 - 1. Issues relating to subjects who obtain the same score under all of the experimental conditions
 - 2. Equivalency of the Cochran Q test and the McNemar test when k = 2
 - 3. Alternative nonparametric procedures for categorical data for evaluating a design involving k dependent samples
- VIII. Additional Examples Illustrating the Use of the Cochran Q Test

Inferential Statistical Test	Employed with	Factorial Desi	gns
(and Related Measures of	Association/Cor	relation)	

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV.** Test Computations
- V. Interpretation of the Test Results
- VI. Additional Analytical Procedures for the Between-Subjects Factorial Analysis of Variance and/or Related Tests
 - 1. Comparisons following computation of the F values for the between-subjects factorial analysis of variance (Test 21a: Multiple t tests/Fisher's LSD test; Test 21b: The Bonferroni-Dunn test; Test 21c: Tukey's HSD test; Test 21d: The Newman-Keuls test; Test 21e: The Scheffé test; Test 21f: The Dunnett test; Comparisons between the marginal means; Evaluation of an omnibus hypothesis involving more than two marginal means; Comparisons between specific groups that are a combination of both factors; The computation of a confidence interval for a comparison; Analysis of simple effects)
 - 2. Evaluation of the homogeneity of variance assumption of the between-subjects factorial analysis of variance
 - 3. Computation of the power of the between-subjects factorial analysis of variance
 - 4. Measure of magnitude of treatment effect for the between-subjects factorial analysis of variance: Test 21g: Omega squared
 - 5. Computation of a confidence interval for the mean of a population represented by a group
 - 6. Additional analysis of variance procedures for factorial designs
- VII. Additional Discussion of the Between-Subjects Factorial Analysis of Variance
 - 1. Theoretical rationale underlying the between-subjects factorial analysis of variance
 - 2. Definitional equations for the between-subjects factorial analysis of variance
 - 3. Unequal sample sizes
 - 4. Final comments on the between-subjects factorial analysis of variance (Fixed-effects versus random-effects versus mixed-effects models; Nested factors/hierarchical designs and designs involving more than two factors)

- VIII. Additional Examples Illustrating the Use of the Between-Subjects Factorial Analysis of Variance
 - IX. Addendum (Discussion of and computational procedures for additional analysis of variance procedures for factorial designs: Test 21h: The factorial analysis of variance for a mixed design; Test 21i: The within-subjects factorial analysis of variance)

Measures of Association/Correlation	n	537
-------------------------------------	---	-----

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- IV. Test Computations
- V. Interpretation of the Test Results (Test 22a: Test of significance for a Pearson product-moment correlation coefficient; The coefficient of determination)
- VI. Additional Analytical Procedures for the Pearson Product-Moment Correlation Coefficient and/or Related Tests
 - 1. Derivation of a regression line
 - 2. The standard error of estimate
 - 3. Computation of a confidence interval for the value of the criterion variable
 - 4. Computation of a confidence interval for a Pearson product-moment correlation coefficient
 - 5. Test 22b: Test for evaluating the hypothesis that the true population correlation is a specific value other than zero
 - 6. Computation of power for the Pearson product-moment correlation coefficient
 - 7. Test 22c: Test for evaluating a hypothesis on whether there is a significant difference between two independent correlations
 - 8. Test 22d: Test for evaluating a hypothesis on whether k independent correlations are homogeneous
 - 9. Test 22e: Test for evaluating the null hypothesis H_0 : $\rho_{XZ} = \rho_{YZ}$
 - 10. Tests for evaluating a hypothesis regarding one or more regression coefficients (Test 22f: Test for evaluating the null hypothesis $H_0: \beta = 0$; Test 22g: Test for evaluating the null hypothesis $H_0: \beta_1 = \beta_2$)
 - 11. Additional correlational procedures
- VII. Additional Discussion of the Pearson Product-Moment Correlation Coefficient
 - 1. The definitional equation for the Pearson product-moment correlation coefficient
 - 2. Residuals
 - 3. Covariance
 - 4. The homoscedasticity assumption of the Pearson product-moment correlation coefficient
 - 5. The phi coefficient as a special case of the Pearson product-moment correlation coefficient
 - 6. Autocorrelation/serial correlation

- VIII. Additional Examples Illustrating the Use of the Pearson Product-Moment Correlation Coefficient
 - IX. Addendum
 - 1. Bivariate measures of correlation that are related to the Pearson product-moment correlation coefficient (Test 22h: The pointbiserial correlation coefficient (and Test 22h-a: Test of significance for a point-biserial correlation coefficient); Test 22i: The biserial correlation coefficient (and Test 22i-a: Test of significance for a biserial correlation coefficient); Test 22j: The tetrachoric correlation coefficient (and Test 25j-a: Test of significance for a tetrachoric correlation coefficient))
 - 2. Multiple regression analysis

General introduction to multiple regression analysis Computational procedures for multiple regression analysis involving three variables (Test 22k: The multiple correlation coefficient; The coefficient of multiple determination; Test 22k-a: Test of significance for a multiple correlation coefficient; The multiple regression equation; The standard error of multiple estimate; Computation of a confidence interval for Y'; Evaluation of the relative importance of the predictor variables; Evaluating the significance of a regression coefficient; Computation of a confidence interval for a regression coefficient; Partial and semipartial correlation (Test 22l: The partial correlation coefficient and Test 22l-a: Test of significance for a partial correlation coefficient; Test 22m-a: Test of significance for a semipartial correlation coefficient); Final comments on multiple regression analysis

- I. Hypothesis Evaluated with Test and Relevant Background Information
- II. Example
- III. Null versus Alternative Hypotheses
- **IV. Test Computations**
- V. Interpretation of the Test Results (Test 23a: Test of significance for Spearman's rank-order correlation coefficient)
- VI. Additional Analytical Procedures for Spearman's Rank-Order Correlation Coefficient and/or Related Tests
 - 1. Tie correction for Spearman's rank-order correlation coefficient
 - 2. Spearman's rank-order correlation coefficient as a special case of the Pearson product-moment correlation coefficient
 - 3. Regression analysis and Spearman's rank-order correlation coefficient
 - 4. Partial rank correlation

VII. Additional Discussion of Spearman's Rank-Order Correlation Coefficient

- 1. The relationship between Kendall's coefficient of concordance (Test 25), Spearman's rank-order correlation coefficient, and the Friedman two-way analysis of variance by ranks (Test 19)
- 2. Power efficiency of Spearman's rank-order correlation coefficient
- 3. Brief discussion of Kendall's tau (Test 24): An alternative measure of association for two sets of ranks

VIII.	Additional Examples Illustrating the Use of the Spearman's Rank-Order Correlation Coefficient
Test 24.	Kendall's Tau
I.	Hypothesis Evaluated with Test and Relevant Background Information
II.	Example
III.	Null versus Alternative Hypotheses
IV.	Test Computations
V.	Interpretation of the Test Results (Test 24a: Test of significance for Kendall's tau)
VI.	 Additional Analytical Procedures for Kendall's Tau and/or Related Tests 1. Tie correction for Kendall's tau 2. Regression analysis and Kendall's tau 3. Partial rank correlation
	4. Sources for computing a confidence interval for Kendall's tau
VII.	Additional Discussion of Kendall's Tau
	1. Power efficiency of Kendall's tau
	2. Kendall's coefficient of agreement
VIII.	Additional Examples Illustrating the Use of Kendall's Tau
Test 25.	Kendall's Coefficient of Concordance
I.	Hypothesis Evaluated with Test and Relevant Background Information
II.	Example
III.	Null versus Alternative Hypotheses
	Test Computations
V.	Interpretation of the Test Results (Test 25a: Test of significance for Kendall's coefficient of concordance)
VI.	Additional Analytical Procedures for Kendall's Coefficient of Concord- ance and/or Related Tests 1. Tie correction for Kendall's coefficient of concordance
VII.	Additional Discussion of Kendall's Coefficient of Concordance
	1. Relationship between Kendall's coefficient of concordance and Spearman's rank-order correlation coefficient
	2. Relationship between Kendall's coefficient of concordance and the Friedman two-way analysis of variance by ranks
VIII.	Additional Examples Illustrating the Use of Kendall's Coefficient of Concordance
Test 26.	Goodman and Kruskal's Gamma
I.	Hypothesis Evaluated with Test and Relevant Background Information
	Example
	Null versus Alternative Hypotheses
	Test Computations
V.	Interpretation of the Test Results (Test 26a: Test of significance for Goodman and Kruskal's gamma)

VI. Additional Analytical Procedures for Goodman and Kruskal's Gamma and/or Related Tests
1. The computation of a confidence interval for the value of Goodman
and Kruskal's gamma
2. Test 26b: Test for evaluating the null hypothesis $H_0 \gamma_1 \neq \gamma_2$
3. Sources for computing a partial correlation coefficient for Goodman
and Kruskal's gamma
VII. Additional Discussion of Goodman and Kruskal's Gamma
1. Relationship between Goodman and Kruskal's gamma and Yule's Q
2. Somers' delta as an alternative measure of association for an
ordered contingency table
VIII. Additional Examples Illustrating the Use of Goodman and Kruskal's
Gamma
Appendix: Tables
Table A1. Table of the Normal Distribution
Table A2. Table of Student's t Distribution
Table A3. Power Curves for Student's t Distribution
Table A4. Table of the Chi-Square Distribution
Table A5. Table of Critical T Values for Wilcoxon's Signed-Ranks and
Matched-Pairs Signed-Ranks Tests
Table A6. Table of the Binomial Distribution, Individual Probabilities
Table A7. Table of the Binomial Distribution, Cumulative Probabilities
Table A8. Table of Critical Values for the Single-Sample Runs Test
Table A9. Table of the F _{max} Distribution
Table A10. Table of the F Distribution
Table A11. Table of Critical Values for Mann-Whitney U Statistic
Table A12. Table of Sandler's A Statistic
Table A13. Table of the Studentized Range Statistic
Table A14. Table of Dunnett's Modified t Statistic for a Control Group
Comparison
Table A15. Graphs of the Power Function for the Analysis of Variance
Table A16. Table of Critical Values for Pearson r
Table A17. Table of Fisher's z_r Transformation
Table A18. Table of Critical Values for Spearman's Rho
Table A19. Table of Critical Values for Kendall's Tau
Table A20. Table of Critical Values for Kendall's Coefficient of Concordance
Index

·• ·