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Theory and Algorithms





Chapter 1

A History of Satisfiability
John Franco and John Martin

with sections contributed by Miguel Anjos, Holger Hoos, Hans Kleine Büning, Ewald
Speckenmeyer, Alasdair Urquhart, and Hantao Zhang

1.1. Preface: the concept of satisfiability

Interest in Satisfiability is expanding for a variety of reasons, not in the least
because nowadays more problems are being solved faster by SAT solvers than
other means. This is probably because Satisfiability stands at the crossroads
of logic, graph theory, computer science, computer engineering, and operations
research. Thus, many problems originating in one of these fields typically have
multiple translations to Satisfiability and there exist many mathemtical tools
available to the SAT solver to assist in solving them with improved performance.
Because of the strong links to so many fields, especially logic, the history of
Satisfiability can best be understood as it unfolds with respect to its logic roots.
Thus, in addition to time-lining events specific to Satisfiability, the chapter follows
the presence of Satisfiability in logic as it was developed to model human thought
and scientific reasoning through its use in computer design and now as modeling
tool for solving a variety of practical problems. In order to succeed in this, we
must introduce many ideas that have arisen during numerous attempts to reason
with logic and this requires some terminology and perspective that has developed
over the past two millennia. It is the purpose of this preface to prepare the
reader with this information so as to make the remainder of the chapter more
understandable and enlightening.

Logic is about validity and consistency. The two ideas are interdefinable if
we make use of negation (¬): the argument from p1, . . . , pn to q is valid if and
only if the set {p1, . . . , pn,¬q} is inconsistent. Thus, validity and consistency are
really two ways of looking at the same thing and each may be described in terms
of syntax or semantics.

The syntactic approach gives rise to proof theory. Syntax is restricted to
definitions that refer to the syntactic form (that is, grammatical structure) of the
sentences in question. In proof theory the term used for the syntactic version
of validity is derivability. Proofs are derived with respect to an axiom system
which is defined syntactically as consisting of a set of axioms with a specified
grammatical form and a set of inference rules that sanction proof steps with



specified grammatical forms. Given an axiom system, derivability is defined as
follows: q is derivable from p1, . . . , pn (in symbols, p1, . . . , pn ⊢ q) if and only if
there is a proof in the axiom system of q (derivable) from p1, . . . , pn. Because
the axioms and rules are defined syntactically, so is the notion of derivability.
The syntactic version of consistency is simply called consistency, and is defined
as follows: {p1, . . . , pn} is consistent if and only if it is not possible to derive a
contradiction from {p1, . . . , pn}. It follows that {p1, . . . , pn} is inconsistent if and
only if there is some contradiction q ∧ ¬q such that {p1, . . . , pn} ⊢ q ∧ ¬q. Since
derivability has a definition that only makes reference to the syntactic shapes, and
since consistency is defined in terms of derivability, it follows that consistency too
is a syntactic concept, and is defined ultimately in terms of grammatical form
alone. The inference rules of axiom systems, moreover, are always chosen so that
derivability and consistency are interdefinable: that is, p1, . . . , pn ⊢ q if and only
if {p1, . . . , pn,¬q} is inconsistent.

The semantic approach gives rise to model theory. Semantics studies the
way sentences relate to “the world.” Truth is the central concept in semantics
because a sentence is said to be true if it “corresponds to the world.” The concept
of algebraic structure is used to make precise the meaning of “corresponds to the
world.”

An algebraic structure, or simply structure, consists of a non-empty set of
objects existing in the world w, called the domain and denoted below by D, and
a function, called an interpretation and denoted below by R, that assigns to each
constant an entity in D, to each predicate a relation among entities in D, and to
each functor a function among entities in D. A sentence p is said to be true in w
if the entities chosen as the interpretations of the sentence’s terms and functors
stand to the relations chosen as the interpretation of the sentence’s predicates.
We denote a structure by 〈D,R〉. Below we sometimes use A to stand for 〈D,R〉
by writing A = 〈D,R〉. A more traditional, algebraic notation for structure
is stated in the glossary, Page 61, and used in Section 1.6. We will speak of
formulas instead of sentences to allow for the possibility that a sentence contains
free variables. The customary notation is to use A |= p to say p is true in the
structure A.

The semantic versions of validity and consistency are defined in terms of the
concept of structure. In model theory validity is just called validity. Intuitively,
an argument is valid if whenever the premises are true, so is the conclusion. More
precisely, the argument from p1, . . . , pn to q is valid (in symbols, p1, . . . , pn |= q)
if and only if, for all structures A, if A |= p1, . . . ,A |= pn, then A |= q.

We are now ready to encounter, for the first time, satisfiability, the central
concept of this handbook. Satisfiability is the semantic version of consistency.
A set of formulas is said to be satisfiable if there is some structure in which all
its component formulas are true: that is, {p1, . . . , pn} is satisfiable if and only if,
for some A, A |= p1 and . . . and A |= pn. It follows from the definitions that
validity and satisfiability are mutually definable: p1, . . . , pn |= q if and only if
{p1, . . . , pn,¬q} is unsatisfiable.

Although the syntactic and semantic versions of validity and consistency -
namely derivability and consistency, on the one hand, and validity and satisfia-
bility, on the other - have different kinds of definitions, the concepts from the two



branches of logic are systematically related. As will be seen later, for the lan-
guages studied in logic it is possible to devise axiom systems in such a way that
the syntactic and semantic concepts match up so as to coincide exactly. Deriv-
ability coincides with validity (i.e. p1, . . . , pn ⊢ q if and only if p1, . . . , pn |= q),
and consistency coincides with satisfiability (i.e. {p1, . . . , pn} is consistent if and
only if {p1, . . . , pn} is satisfiable). Such an axiom system is said to be complete.

We have now located satisfiability, the subject of this handbook, in the
broader geography made up of logic’s basic ideas. Logic is about both valid-
ity and consistency, which are interdefinable in two different ways, one syntac-
tic and one semantic. Among these another name for the semantic version of
consistency is satisfiability. Moreover, when the language possesses a complete
axiom system, as it normally does in logic, satisfiability also coincides exactly
with syntactic consistency. Because of these correspondences, satisfiability may
then be used to “characterize” validity (because p1, . . . , pn |= q if and only if
{p1, . . . , pn,¬q} is unsatisfiable) and derivability (because p1, . . . , pn ⊢ q if and
only if {p1, . . . , pn,¬q} is unsatisfiable).

There is a further pair of basic logical ideas closely related to satisfiability:
necessity and possibility. Traditionally, a sentence is said to be necessary (or
necessarily true) if it is true in all possible worlds, and possible (or possibly true)
if it is true in at least one possible world. If we understand a possible world to
be a structure, possibility turns out to be just another name for satisfiability. A
possible truth is just one that is satisfiable. In logic, the technical name for a
necessary formula is logical truth: p is defined to be a logical truth (in symbols,
|= p) if and only if, for all A, A |= p. (In sentential logic a logical truth is called a
tautology.) Moreover, necessary and possible are predicates of the metalanguage
(the language of logical theory) because they are used to describe sentences in
the “object” language (the language that refers to entities in the world that is
the object of investigation in logical theory).

There is one further twist. In the concept of consistency we have already
the syntactic version of satisfiability. There is also a syntactic version of a logical
truth, namely a theorem-in-an-axiom-system. We say p is a theorem of the system
(in symbols |= p) if and only if p is derivable from the axioms alone. In a complete
system, theorem-hood and logical truth coincide: ⊢ p if and only if |= p. Thus,
in logical truth and theorem-hood we encounter yet another pair of syntactic and
semantic concepts that, although they have quite different sorts of definitions,
nevertheless coincide exactly. Moreover, a formula is necessary if it is not possibly
not true. In other words, |= p if and only if it is not the case that p is unsatisfiable.
Therefore, satisfiability, theorem-hood, logical truths and necessities are mutually
“characterizable.”

This review shows how closely related satisfiability is to the central concepts
of logic. Indeed, relative to a complete axiom system, satisfiability may be used
to define, and may be defined by, the other basic concepts of the field - valid-
ity, derivability, consistency, necessity, possibility, logical truth, tautology, and
theorem-hood.

However, although we have taken the trouble to clearly delineate the distinc-
tion between syntax and semantics in this section, it took over 2000 years before
this was clearly enunciated by Tarski in the 1930s. Therefore, the formal notion



of satisfiability was absent until then, even though it was informally understood
since Aristotle.

The early history of satisfiability, which will be sketched in the next sections,
is the story of the gradual enrichment of languages from very simple languages
that talk about crude physical objects and their properties, to quite sophisticated
languages that can describe the properties of complex structures and computer
programs. For all of these languages, the core concepts of logic apply. They all
have a syntax with constants that stand for entities and with predicates that
stand for relations. They all have sentences that are true or false relative to
possible worlds. They all have arguments that are valid or invalid. They all have
logical truths that hold in every structure. They all have sets that are satisfiable
and others that are unsatisfiable. For all of them, logicians have attempted to
devise complete axiom systems to provide syntactic equivalents that capture, in
the set of theorems, exactly the set of logical truths, that replicate in syntactic
derivations exactly the valid arguments, and provide derivations of contradictions
from every unsatisfiable set. We shall even find examples in these early systems
of attempts to define decision procedures for logical concepts. As we shall see, in
all these efforts the concept of satisfiability is central.

1.2. The ancients

It was in Athens that logic as a science was invented by Aristotle (384-322 B.C.).
In a series of books called the Organon, he laid the foundation that was to guide
the field for the next 2000 years. The logical system he invented, which is called
the syllogistic or categorical logic, uses a simple syntax limited to subject-predicate
sentences.

Aristotle and his followers viewed language as expressing ideas that signify
entities and the properties they instantiate in the “world” outside the mind. They
believed that concepts are combined to “form” subject-predicate propositions in
the mind. A mental thought of a proposition was something like being conscious
of two concepts at once, the subject S and the predicate P . Aristotle proposed
four different ways to capture this notion of thought, with respect to a given
“world” w, depending on whether we link the subject and predicate universally,
particularly, positively, or negatively: that is, every S is P , no S is P , some S is
P , and some S is not P . These categorical propositions were called, respectively,
A (universal affirmative), E (universal negative), I (particular affirmative), and O
(particular negative) propositions. Their truth-conditions are defined as follows:

A:
Every S is P
is true in w

iff
Everything in w signified by S is
something signified in w by S and P

E:
No S is P
is true in w

iff Some S is P is false in w

I:
Some S is P
is true in w

iff
There is some T such that everything
signified in w by S and P is something
that is signified in w by P and T



O:
Some S is not P
is true in w

iff Every S is P is false in w

These propositions have the following counterparts in set theory:

S ⊆ P iff S = S ∩ P
S ∩ P = ∅ iff ¬(S ∩ P 6= ∅)
S ∩ P 6= ∅ iff ∃T : S ∩ P = P ∩ T
S ∩ P̄ 6= ∅ iff ¬(S = S ∩ P )

The resulting logic is two-valued: every proposition is true or false. It is true
that Aristotle doubted the universality of this bivalence. In a famous discussion
of so-called future contingent sentences, such as “there will be a sea battle to-
morrow,” he pointed out that a sentence like this, which is in the future tense, is
not now determined to be either true or false. In modern terms such a sentence
“lacks a truth-value” or receives a third truth-value. In classical logic, however,
the law of excluded middle (commonly known as tertium non datur), that is, p
or not p is always true, was always assumed.

Unlike modern logicians who accept the empty set, classical logicians as-
sumed, as a condition for truth, that a proposition’s concepts must signify at
least one existing thing. Thus, the definitions above work only if T is a non-
empty set. It follows that A and E propositions cannot both be true (they are
called contraries), and that I and O propositions cannot both be false. The def-
initions are formulated in terms of identity because doing so allowed logicians
to think of mental proposition formulation as a process of one-to-one concept
comparison, a task that conciousness seemed perfectly capable of doing.

In this theory of mental language we have encountered the first theory of
satisfiability. A proposition is satisfiable (or possible, as traditional logicians
would say) if there is some world in which it is true. A consistent proposition is
one that is satisfiable. Some propositions were recognized as necessary, or always
true, for example: every S is S.

Satisfiability can be used to show that propositions p1, . . . , pn do not logically
imply q: one only needs to show that there is some assignment of concepts to the
terms so that all the propositions in {p1, . . . , pn,¬q} come out true. For example,
consider the statement:

(some M is A ∧ some C is A) → every M is C.

Aristotle would show this statement is false by replacing the letters with familiar
terms to obtain the requisite truth values: some man is an animal and some cow
is an animal are both true, but every man is a cow is false. In modern terms, we
say the set

{ some M is A, some C is A,¬( every M is C ) }

is satisfiable.
The means to deduce (that is, provide a valid argument) was built upon

syllogisms, using what is essentially a complete axiom system for any conditional
(p1, . . . , pn) → q in which p1, . . . , pn, and q are categorical propositions (205). A



syllogism is defined as a conditional (p ∧ q) → r in which p,q, and r are A, E, I,
or O propositions. To show that propositions are valid, that is (p1∧ . . .∧pn) → q,
Aristotle would create syllogisms (p1∧p2) → r1, (r1∧p3) → r2, . . . , (rn−2∧pn) →
q, then repeatedly reduce valid syllogisms to one of

A1: ( every X is Y ∧ every Y is Z ) → every X is Z
A2: ( every X is Y ∧ no Y is Z ) → no X is Z

The reduction, when viewed in reverse, is an axiom system where A1 and A2 are
axiom schemata, from which are deduced the valid syllogisms, and from the valid
syllogisms are deduced all valid conditionals. The system used four inference
rules:

R1: From (p ∧ q) → r infer (¬r ∧ q) → ¬p
R2: From (p ∧ q) → r infer (q ∧ p) → r
R3: From no X is Y infer no Y is X
R4: From (p ∧ q) → no X is Y infer (p ∧ q) → some X is not Y

For example, to prove

( every P is M ∧ no S is M ) → some S is not P

one would deduce

1. ( every P is M ∧ no M is S ) → no P is S Axiom A2
2. ( every P is M ∧ no S is M) → no S is P Rule R3
3. ( every P is M ∧ no S is M) → some S is not P Rule R4

The logic of the Stoics (c. 300s-200s BC) developed into a sophisticated sen-
tential logic, using operators →, ∧, ¬, and ∨, where a proposition is the meaning
of a sentence that expresses it and the truth of a proposition may change over
time. They combined this with the standard definition of validity to discover a
series of propositional inferences that have remained part of logical lore ever since:

p, p→ q |= q (modus ponens)
¬q, p→ q |= ¬p (modus tollens)
¬q, p ∨ q |= p (disjunctive syllogism)
p→ q, q → r |= p→ r (hypothetical syllogism)

1.3. The medieval period

Logicians of the medieval period knew all of the logic of Aristotle and the Stoics,
and much more. The syntax of the languages they used was rich, incorporat-
ing combined categorical propositions (with and without modal and epistemic
operators), other quantifiers, restrictive and non-restrictive relative clauses, and
the propositional connectives into complex sentences. Moreover, although they



did not have set theory, they described interpretions of predicates using set-like
notions such as “group” or “collection.”

The development of concepts open to decision by an effective process (such
as a mechanical process) was actually an important goal of early modern logic,
although it was not formulated in those terms. A goal of symbolic logic is to make
epistemically transparent judgments that a formula is a theorem of an axiom
system or is deducible within an axiom system. An effective process ensures this
transparency because it is possible to know with relative certainty that each stage
in the process is properly carried out.

The work of Ramon Lull (1232-1315) was influential beyond the medieval
period. He devised the first system of logic based on diagrams expressing truth
and rotating wheels to achieve some form of deduction. It had similarities to
important later work, for example Venn circles, and greatly influenced Leibniz in
his quest for a system of deduction that would be universal.

1.4. The renaissance

In the 17th century Descartes and Leibniz began to understand the power of
applying algebra to scientific reasoning. To this end, Leibniz devised a language
that could be used to talk about either ideas or the world. He thought, like we
do, that sets stand to one another in the subset relation ⊆, and that a new set
can be formed by intersection ∩. He also thought that concepts can be combined
by definitions: for example the concepts animal and rational can be combined to
form the concept rational+animal, which is the definition of the concept man, and
the concept animal would then be a “part” of the concept man. The operator �,
called concept inclusion, was introduced to express this notion: thus, animal �
man.

Leibniz worked out dual Boolean interpretations of syllogistic propositions
joined with the propositional connectives. The first (intensional) interpretation
assigns terms to “concepts” within a structure of concepts ordered by � and
organized by operations that we would call meet and join. The dual (extensional)
interpretation is over a Boolean algebra of sets.

The logical operations of multiplication, addition, negation, identity, class in-
clusion, and the null class were known at this time, well before Boole, but Leibniz
published nothing on his ideas related to formal logic. In addition to � his logic
is rooted in the operators of identity (=), and a conjunction-like operator (⊕)
called real addition, which obeys the following:

t⊕ t = t (idempotency)
t⊕ t′ = t′ ⊕ t (commutativity)
t⊕ (t′ ⊕ t′′) = (t⊕ t′) ⊕ t′′ (associativity)

where t, t′, and t′′ are terms representing substance or ideas. The following, Leib-
niz’s equivalence, shows the tie between set inclusion and real addition that is the
basis of his logics.

t � t′ if and only if t⊕ t′ = t′



Although Leibniz’s system is simplistic and ultimately implausible as an account
of science, he came very close to defining with modern rigor complete axiom
systems for well-defined formal languages that also possessed decision procedures
for identifying the sentences satisfied in every interpretation. It would be 250
years before modern logic accomplished the same for its more complex languages.
His vision is relevant to modern times in other ways too. As examples, he invented
binary arithmetic, and his calculus ratiocinator is regarded by some as a formal
inference engine, its use not unlike that of a computer programming language,
and by others as referring to a “calculating machine” that was a forerunner to
the modern digital computer. In fact, Leibniz constructed a machine, called a
Stepped Reckoner, for mathematical calculations. Yet, at this point in history,
the notion of satisfiability still had not been enunciated.

1.5. The first logic machine

According to Gardner (118) the first logic machine, that is the first machine able
to solve problems in formal logic (in this case syllogisms), was invented by Charles
Stanhope, 3rd Earl Stanhope (1753-1816). It employed methods similar to Venn
circles (Section 1.6) and therefore can in some sense be regarded as Boolean.
However, it was also able to go beyond traditional syllogisms to solve numerical
syllogisms such as the following: 8 of 10 pigeons are in holes, and 4 of the 10
pigeons are white (conclude at least 2 holes have white pigeons). See (118) for
details.

1.6. Boolean algebra

George Boole (1815-1864) advanced the state of logic considerably with the intro-
duction of the algebraic structure that bears his name1: a structure 〈B,∨,∧,¬, 0, 1〉
is a Boolean algebra if and only if ∨ and ∧ are binary operations and ¬ is a unary
operation on B under which B is closed, 1, 0 ∈ B, and

x ∧ y = y ∧ x; x ∨ ¬x = 1;
x ∨ y = y ∨ x; 1 ∧ x = x;
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z); 0 ∨ x = x;
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z); x ∧ ¬x = 0;

Boole’s main innovation was to develop an algebra-like notation for the el-
ementary properties of sets. His own objective, at which he succeeded, was to
provide a more general theory of the logic of terms which has the traditional
syllogistic logic as a special case. He was one of the first to employ a symbolic
language. His notation consisted of term variables s,t,u,v,w,x,y,z etc., which he
interpreted as standing for sets, the standard “Boolean” operators on sets (com-
plementation indicated by −, union indicated by +, intersection indicated by ·),
constants for the universal and empty set (1 and 0), and the identity sign (=) used
to form equations. He formulated many of the standard “laws” of Boolean alge-
bra, including association, commutation, and distributions, and noted many of

1The structures we call ’Boolean algebras’ were not defined by Boole but by Jevons (see
below) who advocated the use of the inclusive or.



the properties of complementation and the universal and empty sets. He symbol-
ized Aristotle’s four categorical propositions, relative to subject y and predicate
x, by giving names of convenience V (V 6= 0) to sets that intersect appropriately
with y and x forming subsets:

Boole Sets
Every x is y: x = x · y x ⊆ y
No x is y: 0 = x · y x ⊆ ȳ
Some x is y: V = V · x · y x ∩ y 6= ∅
Some x is not y: V = V · x · (1 − y) x ∩ ȳ 6= ∅

Boole was not interested in axiom systems, but in the theory of inference. In
his system it could be shown that the argument from p1, . . . , pn to q is valid (i.e.
p1, . . . , pn |= q) by deriving the equation q from equations p1, . . . , pn by applying
rules of inference, which were essentially cases of algebraic substitution.

However, Boole’s algebras needed a boost to advance their acceptance. Gard-
ner (118) cites John Venn (1834-1923) and William Stanley Jevons (1835-1882)
as two significant contributors to this task. Jevons regarded Boole’s work as
the greatest advance since Aristotle but saw some flaws that he believed kept
it from significantly influencing logicians of the day, particularly that it was too
mathematical. To fix this he introduced, in the 1860’s, the “method of indirect
inference” which is an application of reductio ad absurdum to Boolean logic. For
example, to handle ‘All x is y’ and ‘No y is z’ Jevons would write all possible
“class explanations” as triples

xyz, xy¬z, x¬yz, x¬y¬z, ¬xyz, ¬xy¬z, ¬x¬yz, ¬x¬y¬z,

where the first represents objects in classes x, y, and z, the second represents
objects in classes x and y but not in z, and so on2. Then some of these triples
would be eliminated by the premises which imply they are empty. Thus, x¬yz
and x¬y¬z are eliminated by ‘All x is y’ and xyz and ¬xyz are eliminated by
‘No y is z’. Since no remaining triples contain both x and z, one can conclude
‘No x is z’ and ‘No z is x’.

Although Jevons’ system is powerful it has problems with some statements:
for example, ‘Some x is y’ cannot eliminate any of the triples xyz and xy¬z since
at least one but maybe both represent valid explanations. Another problem is
the exponential growth of terms, although this did not seem to be a problem at
the time3. Although the reader can see x, y and z taking truth values 0 or 1,
Jevons did not appreciate the fact that truth-value logic would eventually replace
class logic and his attention was given only to the latter. He did build a logic
machine (called a “logic piano” due to its use of keys) that can solve five term
problems (164) (1870). The reader is refered to (118) for details.

What really brought clarity to Boolean logic, though, was the contribution
of Venn (287) (1880) of which the reader is almost certainly acquainted since it
touches several fields beyond logic. We quote the elegantly stated passage of (118)
explaining the importance of this work:

2Jevons did not use ¬ but lower and upper case letters to distinguish inclusion and exclusion.
3Nevertheless, Jevons came up with some labor saving devices such as inked rubber stamps

to avoid having to list all possibilities at the outset of a problem.



It was of course the development of an adequate symbolic notation that reduced the
syllogism to triviality and rendered obsolete all the quasi-syllogisms that had been so
painfully and exhaustively analyzed by the 19th century logicians. At the same time
many a controversy that once seemed so important no longer seemed so. ... Perhaps
one reason why these old issues faded so quickly was that, shortly after Boole laid
the foundations for an algebraic notation, John Venn came forth with an ingenious
improvement to Euler’s circles4. The result was a diagrammatic method so perfectly
isomorphic with the Boolean class algebra, and picturing the structure of class logic
with such visual clarity, that even a nonmathematically minded philosopher could “see”
what the new logic was all about.

As an example, draw a circle each for x, y, and z and overlap them so all possible
intersections are visible. A point inside circle x corresponds to x and a point
outside circle x corresponds to ¬x and so on. Thus a point inside circles x
and y but outside circle z corresponds to Jevons’ xy¬z triple. Reasoning about
syllogisms follows Jevons as above except that the case ‘Some x is y’ is handled
by placing a mark on the z circle in the region representing xy which means it
is not known whether the region xyz or xy¬z contains the x that is y. Then, if
the next premise is, say, ‘All y is z’, the xy¬z region is eliminated so the mark
moves to the xyz region it borders allowing the conclusion ‘Some z is x’. Since
the connection between 0-1 logic and Venn circles is obvious, syllogisms can be
seen as just a special case of 0-1 logic.

The results of Boole, Jevons, and Venn rang down the curtain on Aristotelian
syllogisms, ending a reign of over 2000 years. In the remainder of this chapter
syllogisms will appear only once, and that is to show cases where they are unable
to represent common inferences.

1.7. Frege, logicism, and quantification logic

In the nineteenth century mathematicians like Cauchy and Weierstrass put analy-
sis on a clear mathematical footing by precisely defining its central terms. George
Cantor (1845-1918) extended their work by formulating a more global theory of
sets that allowed for the precise specification of such important details as when
sets exist, when they are identical, and what their cardinality is. Cantor’s set the-
ory was still largely intuitive and imprecise, though mathematicians like Dedekind
and Peano had axiomatized parts of number theory. Motivated as much by philos-
ophy as logic, the mathematician Gottlob Frege (1848-1925) conceived a project
called logicism to deduce from the laws of logic alone “all of mathematics,” by
which he meant set theory, number theory, and analysis (192). Logicism as an
attempt to deduce arithmetic from the axioms of logic was ultimately a failure.
As a research paradigm, however, it made the great contribution of making clear
the boundaries of “formal reasoning,” and has allowed deep questions to be posed,
but which are still unanswered, about the nature of mathematical truth.

Frege employed a formal language of his own invention, called “concept nota-
tion” (Begriffsschrift). In it he invented a syntax which is essential to the formal

4The difference between Euler circles and Venn circles is that Venn circles show all possible
overlaps of classes while there is no such requirement for Euler circles. Therefore, Euler circles
cannot readily be used as a means to visualize reasoning in Boolean logic. Leibniz and Ramon
Lull also used Euler-like circles (28).



language we know today for sentential and quantificational logic, and for func-
tions in mathematics. In his Grundgesetze der Arithmetik (1890) he used a limited
number of “logical axioms,” which consisted of five basic laws of sentential logic,
several laws of quantifiers, and several axioms for functions. When he published
this work, he believed that he had succeeded in defining within his syntax the
basic concepts of number theory and in deducing their fundamental laws from his
axioms of logic alone.

1.8. Russell and Whitehead

Bertrand Russell (1882-1970), however, discovered that he could prove in Frege’s
system his notorious paradox: if the set of all sets that are not members of
themselves is a member of itself, then, by definition, it must not be a member of
itself; and if it is not a member of itself then, by definition, it must be a member
of itself.

In Principia Mathematica (1910-13), perhaps the most important work of
early modern logic, Russell and Whitehead simplified Frege’s logical axioms of
functions by substituting for a more abstract set describing sets and relations.
One of the great weaknesses of traditional logic had been its inability to represent
inferences that depend on relations. For example, in the proof of Proposition 1
of his Elements Euclid argues, regarding lines, that if AC=AB and BC=AB, it
follows by commutativity that CA=AB, and hence that AC=BC (by either the
subsitutivity or transitivity or identity). But, the requirement of Aristotelian logic
that all propositions take subject-predicate form ‘S is P ’ makes it impossible to
represent important grammatical facts: for example, that in a proposition AC =
AB, the subject AC and direct object AB are phrases made up of component
terms A, B, and C, and the fact that the verb = is transitive and takes the direct
object AB. The typical move was to read “=AC” as a unified predicate and to
recast equations in subject-predicate form:

AC = AB: the individual AC has the property being-identical-to-AB
BC = AB: the individual BC has the property being-identical-to-AB
AC = BC: the individual AC has the property being-identical-to-BC

But the third line does not follow by syllogistic logic from the first two.
One of the strange outcomes of early logic is that syllogistic logic was so

unsuccessful at representing mathematical reasoning that in the 2000 years in
which it reigned there was only one attempt to reproduce geometrical proofs using
syllogisms; it did not occur until the 16th century, and it was unsuccessful (148).
Boole’s logic shared with Aristotle’s an inability to represent relations. Russell,
however, was well aware both of the utility of relations in mathematics and the
need to reform syntax to allow for their expression (247).

Accordingly, the basic notation of Principia allows for variables, one-place
predicates standing for sets, and n-place predicates standing for relations. For-
mulas were composed using the sentential connectives and quantifiers. With just
this notation it was possible to define all the constants and functions necessary
for arithmetic, and to prove with simplified axioms a substantial part of number



theory. It appeared at first that Principia had vindicated logicism: arithmetic
seemed to follow from logic.

1.9. Gödel’s incompleteness theorem

In 1931, Kurt Gödel astounded the mathematical world by proving that the axiom
system of Principia, and indeed any axiom system capable of formulating the laws
of arithmetic, is and must be incomplete in the sense that there will always be
some truth of arithmetic that is not a theorem of the system. Gödel proved, in
short, that logicism is false - that mathematics in its entirety cannot be deduced
from logic. Gödel’s result is sweeping in its generality. It remains true, however,
that limited parts of mathematics are axiomatizable, for example first-order logic.
It is also true that, although incomplete, mathematicians as a rule still stick to
axiomatic formulations as their fundamental methodology even for subjects that
they know must be incomplete. Axiomatic set theory, for example, contains
arithmetic as a part and is therefore provably incomplete. But axiomatics is still
the way set theory is studied even within its provable limitations.

Although logicism proved to be false, the project placed logic on its mod-
ern foundations: Principia standardized the modern notation for sentential and
quantificational logic. In the 1930s Hilbert and Bernays christened “first-order”
logic as that part of the syntax in which quantifiers bind only variables over indi-
viduals, and “higher-order” logic as the syntax in which variables bind predicates,
and predicates of predicates, etc.

1.10. Effective process and recursive functions

As logic developed in the 20th century, the importance of effective decidablilty
(see Section 1.3) increased and defining effective decidablility itself became a
research goal. However, since defining any concept that incorporates as a defining
term “epistemic transparency” would require a background theory that explained
“knowledge,” any direct definition of effective process remained elusive. This
difficulty motivated the inductive definitions of recursive function theory, Turing
machines, lambda calculus, and more, which, by Church’s thesis, succeeds in
providing an indirect definition of effective process.

One outcome of logicism was the clarification of some of the basic concepts
of computer science: for example, the notion of recursive functions which are
supposed to be what a mathematician would intuitively recognize as a “calcula-
tion” on the natural numbers. Gödel, in his incompleteness paper of 1931, gave
a precise formal definition of the class of primitive recursive functions, which he
called “recursive functions.” Gödel first singled out three types of functions that
all mathematicians agree are calculations and called these recursive functions.
He then distinguished three methods of defining new functions from old. These
methods moreover were such that everyone agreed they produced a calculation
as an output if given calculations as inputs. He then defined the set of recur-
sive functions as the closure of the three basic function types under the three
construction methods.



Given the definition of recursive function, Gödel continued his incomplete-
ness proof by showing that for each calculable function, there is a predicate in
the language of Principia that has that function as its extension. Using this fact,
he then showed, in particular, that Principia had a predicate T that had as its
extension the theorems of Principia. In an additional step he showed that Prin-
cipia also possesses a constant c that stands for the so-called liar sentence ¬Tc,
which says in effect “This sentence is not a theorem.” Finally, he demonstrated
both that ¬Tc is a truth of arithmetic and that it is not a theorem of Principia.
He proved, therefore, that the axiom system failed to capture one of the truths
of arithmetic and was therefore incomplete.

Crucial to the proof was its initial definition of recursive function. Indeed,
by successfully analyzing “effective process,” Gödel made a major contribution to
theoretical computer science: the computable function. However, in his Prince-
ton lectures of 1934, Gödel, attributing the idea of general recursive functions to
a suggestion of Herbrand, did not commit himself to whether all effective func-
tions are characterized by his definition. In 1936, Church (62) and Turing (279)
independently proposed a definition of the effectively computable functions. It’s
equivalence with Gödel’s definition was proved in 1943 by Kleene (179). Emil Post
(1897-1954), Andrei Markov (1903-1979), and others confirmed Gödel’s work by
providing alternative analyses of computable function that are also provably co-
extensive with his.

1.11. Herbrand’s theorem

Herbrand’s theorem relates issues of validity and logical truth into ones of sat-
isfiability, and issues of satisfiability into ones concerning the definition of com-
putable functions on syntactic domains. The proof employs techniques important
to computer science. A Herbrand model for a formula of first-order logic has as
its domain literally those terms generated from terms that occur in the formula
p. Moreover, the predicates of the model are true of a term if and only if the
formula asserting that the predicate holds of the term occurs in p. The first part
of Herbrand’s theorem says that p is satisfiable if and only if it is satisfied in its
Herbrand model.

Using techniques devised by Skolem, Herbrand showed that the quantified
formula p is satisfiable if and only if a specific set of its truth-functional in-
stantiations, each essentially a formula in sentential logic, is satisfiable. Thus,
satisfiability of p reduces to an issue of testing by truth-tables the satisfiability
of a potentially infinite set S of sentential formulas. Herbrand showed that, for
any first-order formula p, there is a decision function f such that f(p) = 1 if p
is unsatisfiable because, eventually, one of the truth-functions in S will come out
false in a truth-table test, but f(p) may be undefined when p is satisfiable because
the truth-table testing of the infinite set S may never terminate.

1.12. Model theory and Satisfiability

Although ideas in semantics were central to logic in this period, the primary
framework in which logic was studied was the axiom system. But the seemingly



obvious need to define the grammar rules for a formal language was skipped over
until Gödel gave a completely formal definition of the formulas of his version of
simple type theory in his 1931 paper (210).

In the late nineteenth and early twentieth centuries Charles Sanders Peirce,
see (194), and Ludwig Wittgenstein (289) had employed the two-valued truth-
tables for sentential logic. In 1936 Marshall Stone proved that the more general
class of Boolean algebras is of fundamental importance for the interpretation of
classical logic. His “representation theorem” showed that any interpretation of
sentential logic that assigns to the connectives the corresponding Boolean opera-
tors and defines validity as preserving a “designated value” defined as a maximal
upwardly closed subset of elements of the algebra (called a “filter”) has as its
logical truths and valid arguments exactly those of classical logic (269). The
early decades of the twentieth century also saw the development of many-valued
logic, in an early form by Peirce (280) and then in more developed versions by
Polish logicians lead by Jan Łukasiewicz (1878-1956). Thus, in sentential logic
the idea of satisfiability was well understood as “truth relative to an assignment
of truth-values” in a so-called “logical matrix” of truth-functions.

A precise notion of satisfiability for first-order logic, however, was not devel-
oped until the 1930s in the work of Alfred Tarski (1902-1983) (274; 272; 273).
Tarski’s task was to define a set of necessary and sufficient conditions for “p is
true,” for any formula p of first-order syntax. His solution was not to define the
idea in a single phrase applicable to all formulas, but, like Gödel, to give an in-
ductive definition, first defining truth for basic formulas and then extending the
definition to more complex formulas. The problem was made complex, however,
by the fact that, unlike sentential logic in which the truth-value of the parts im-
mediately determine that of the whole (by reference to truth-tables), when the
whole expression is universally quantified, it is unclear how its truth is determined
by the interpretation of its part. How does the “truth” of the open formula Fx
determine that of ∀x : Fx?

Tarski solved the problem in two stages. In the first stage he assigned fixed
interpretations to the variables. Having done so, it is possible to say when ∀x : Fx
is true if we know whether Fx is true under its various interpretations. If Fx is
true under all interpretation of x, then ∀x : Fx is also true under each of these
interpretations. If Fx is false under even one interpretation of x, however, ∀x : Fx
is false under any interpretation of the variables. Tarski coined the technical term
satisfaction to refer to truth relative to an interpretation of variables.

Let A = 〈D,R〉 be a structure and define a variable assignment as any func-
tion s that assigns to each variable an entity in D. Given R and s, all the basic
expressions of the syntax have a referent relative to D. We can now inductively
define “p is satisfied relative to A and s.” The atomic formula Ft1, . . . , tn is sat-
isfied relative to A and s if and only if the interpretations of t1, . . . , tn in R and s
stand in the relation assigned by R to F . The “satisfaction” of molecular formulas
made up by the sentential connectives are determined by the two-valued truth-
tables depending on whether or not their parts are satisfied. Finally, ∀x : Fx is
satisfied relative to A and s if and only if Fx is satisfied relative to R and every
variable assignment s. The notation for “p is satisfied relative to A and s” is
A |=s p.



The second stage of Tarski’s definition is to abstract away from a variable
assignment and define the simpler notion “p is true relative to A.” His idea at
this stage is to interpret an open formula Fx as true in this general sense if it
is “always true” in the sense of being satisfied under every interpretation of its
variables. That is, he adopts the simple formula: p is true relative to A if and
only if, for all variable assignments s, p is satisfied relative to A and s. In formal
notation, A |= p if and only if, for all s, A |=s p.

Logicians have adopted the common practice of using the term “satisfied in a
structure” to mean what Tarski called “true in a structure.” Thus, it is common
to say that p is satisfiable if there is some structure A such that p is true in A,
and that a set of formulas X is satisfiable if and only if there is some structure
A such that for all formulas p in X , p is true (satisfied) in A.

1.13. Completeness of first-order logic

First-order logic has sufficient expressive power for the formalization of virtually
all of mathematics. To use it requires a sufficiently powerful axiom system such
as the Zermelo-Fraenkel set theory with the axiom of choice (ZFC). It is generally
accepted that all of classical mathematics can be formalized in ZFC.

Proofs of completeness of first-order logic under suitable axiom systems date
back at least to Gödel in 1929. In this context, completeness means that all logi-
cally valid formulas of first-order logic can be derived from axioms and rules of the
underlying axiom system. This is not to be confused with Gödel’s incompleteness
theorem which states that there is no consistent axiom system for the larger set
of truths of number theory (which includes the valid formulas of first-order logic
as a proper subset) because it will fail to include at least one truth of arithmetic.

Tarski’s notion of truth in a structure introduced greater precision. It was
then possible to give an elegant proof that first-order logic is complete under its
usual axiom systems and sets of inference rules. Of particular interest is the proof
due to Leon Henkin (1921-2006) that makes use of two ideas relevant to this book:
satisfiability and a structure composed of syntactic elements (147) (1949). Due
to the relationship of validity to satisfiability, Henkin reformulated the difficult
part of the theorem as: if a set of formulas is consistent, then it is satisfiable.
He proved this by first extending a consistent set to what he calls a maximally
consistent saturated set, and then showing that this set is satisfiable in a structure
made up from the syntactic elements of the set. Although differing in detail, the
construction of the structure is similar to that of Herbrand.

Herbrand models and Henkin’s maximally consistent saturated sets are rele-
vant prototypes of the technique of constructing syntactic proxies for conventional
models. In complexity theory, the truth of predicates is typically determined rela-
tive to a structure with a domain of entities that are programs or languages which
themselves have semantic content that allow one to determine a corresponding,
more conventional, model theoretic structure. In that sense, the program or
language entities can be said to be a proxy for the conventional model and the
predicates are second-order, standing for a property of sets.



1.14. Application of logic to circuits

Claude Shannon provided one of the bridges connecting the path of logic over the
centuries to its practical applications in the information and digital age. Another
bridge is considered in the next section. Whereas the study of logic for thousands
of years was motivated by a desire to explain how humans use information and
knowledge to deduce facts, particularly to assist in decision making, Shannon, as
a student at MIT, saw propositional logic as an opportunity to make rigorous
the design and simplification of switching circuits. Boolean algebra, appreciated
by a relatively small group of people for decades, was ready to be applied to the
fledgling field of digital computers.

In his master’s thesis (264) (1940), said by Howard Gardner of Harvard Uni-
versity to be “possibly the most important, and also the most famous, master’s
thesis of the century,” Shannon applied Boolean logic to the design of minimal
circuits involving relays. Relays are simple switches that are either “closed,” in
which case current is flowing through the switch or “open,” in which case current
is stopped. Shannon represented the state of a relay with a variable taking value
1 if open and the value 0 if closed. His algebra used the operator ’+’ for “or”
(addition - to express the state of relays in series), ’·’ for “and” (multiplication
- to express the state of relays in parallel), and his notation for the negation of
variable x was x′.

The rigorous synthesis of relay circuits entails expressing and simplifying
complex Boolean functions of many variables. To support both goals Shannon
developed two series expansions for a function, analogous, in his words, to Taylor’s
expansion on differentiable functions. He started with

f(x1, x2, ..., xn) = x1 · f(1, x2, ..., xn) + x′1 · f(0, x2, ..., xn)

which we recognize as the basic splitting operation of DPLL algorithms and
the Shannon expansion which is the foundation for Binary Decision Diagrams
(Section 1.20), and its dual

f(x1, x2, ..., xn) = (f(0, x2, ..., xn) + x1) · (f(1, x2, ..., xn) + x′1).

Using the above repeatedly he arrived at the familiar DNF canonical form

f(x1, x2, ..., xn) = f(0, 0, ..., 0) · x′1 · x′2 · ... · x′n +

f(1, 0, ..., 0) · x1 · x′2 · ... · x′n +

f(0, 1, ..., 0) · x′1 · x2 · ... · x′n +

...

f(1, 1, ..., 1) · x1 · x2 · ... · xn

and its familiar CNF dual. These support the expression of any relay circuit
and, more generally, any combinational circuit. To simplify, he introduced the
following operations:

x = x+ x = x+ x+ x = ...

x+ x · y = x



x · f(x) = x · f(1)

x′ · f(x) = x′ · f(0)

x · y + x′ · z = x · y + x′ · z + y · z

and their duals. In the last operation the term y · z is the consenus of terms
x · y and x′ · z. The dual of the last operation amounts to adding a propositional
resolvent to a CNF clause set. The first two operations are subsumption rules.

In his master’s thesis Shannon stated that one can use the above rules to
achieve minimal circuit representations but did not offer a systematic way to do
so. Independently, according to Brown (46), Archie Blake, an all but forgotten
yet influential figure in Boolean reasoning, developed the notion of consensus in
his Ph.D. thesis (36) of 1937. Blake used consensus to express Boolean functions
in a minimal DNF form with respect to their prime implicants (product g is an
implicant of function h if g · h′ = 0 and is prime if it is minimal in literals) and
subsumption. An important contribution of Blake was to show that DNFs are
not minimized unless consensus is not possible. The notion of concensus was
rediscovered by Samson and Mills (248) (1954) and Quine (240) (1955). Later,
Quine (241) (1959) and McCluskey (207) (1959) provided a systematic method for
the minimization of DNF expressions through the notion of essential prime impli-
cants (necessary prime implicants) by turning the 2-level minimization problem
into a covering problem. This was perhaps the first confrontation with complexity
issues: although they did not know it at the time, the problem they were trying
to solve is NP -complete and the complexity of their algorithm was O(3n/

√
n),

where n is the number of variables.

1.15. Resolution

Meanwhile, the advent of computers stimulated the emergence of the field of
automated deduction. Martin Davis has written a history of this period in (88)
on which we base this section. Early attempts at automated deduction were aimed
at proving theorems from first-order logic because, as stated in Section 1.13, it
is accepted that given appropriate axioms as premises, all reasoning of classical
mathematics can be expressed in first-order logic. Propositional satisfiability
testing was used to support that effort.

However, since the complexity of the problem and the space requirements
of a solver were not appreciated at the time, there were several notable fail-
ures. At least some of these determined satisfiability either by simple truth table
calculations or expansion into DNF and none could prove anything but the sim-
plest theorems. But, each contributed something to the overall effort. According
to Davis (88), Gilmore’s (121) (1960) system served as a stimulus for others
and Prawitz (235) (1960) adopted a modified form of the method of semantic
tableaux. Also notable were the “Logic Theory Machine” of (225) (1957), which
used the idea of a search heuristic, and the Geometry machine of (119) (1959),
which exploited symmetry to reduce proof size.

Things improved when Davis and Putnam proposed using CNF for satisfia-
bility testing as early as 1958 in an unpublished manuscript for the NSA (90).



According to Davis (88), that manuscript cited all the essentials of modern DPLL

variants. These include:

1. The one literal rule also known as the unit-clause-rule: for each clause (l),
called a unit clause, remove all clauses containing l and all literals ¬l.

2. The affirmative-negative rule also known as the pure-literal-rule: if literal
l is in some clause but ¬l is not, remove all clauses containing l. Literal l
is called a pure literal .

3. The rule for eliminating atomic formulas: that is, replace

(v ∨ l1,1 ∨ . . . ∨ l1,k1) ∧ (¬v ∨ l2,1 ∨ . . . ∨ l2,k2) ∧C

with
(l1,1 ∨ . . . ∨ l1,k1 ∨ l2,1 ∨ . . . ∨ l2,k2) ∧ C

if literals l1,i and l2,j are not complementary for any i, j.
4. The splitting rule, called in the manuscript ‘the rule of case analysis.’

Observe that rule 3. is ground resolution: the CNF expression it is applied to
having come from a prenex form with its clauses grounded. The published version
of this manuscript is the often cited (91) (1960). The Davis-Putnam procedure, or
DPP, reduced the size of the search space considerably by eliminating variables
from a given expression. This was done by repeatedly choosing a target variable
v still appearing in the expression, applying all possible ground resolutions on v,
then eliminating all remaining clauses still containing v or ¬v.

Loveland and Logemann attempted to implement DPP but they found that
ground resolution used too much RAM, which was quite limited in those days.
So they changed the way variables are eliminated by employing the splitting
rule: recursively assigning values 0 and 1 to a variable and solving both resulting
subproblems (89) (1962). Their algorithm is, of course, the familiar DPLL.

Robinson also experimented with DPP and, taking ideas from both DPP

and Prawitz, he generalized ground resolution so that instead of clauses having
to be grounded to use resolution, resolution was lifted directly to the Skolem
form (243; 244) (1963,1965). This is, of course, a landmark result in mechanically
proving first-order logic sentences.

Resolution was extended by Tseitin in (278) (1968) who showed that, for any
pair of variables a, b in a given CNF expression φ, the following expression may
be appended to φ:

(z ∨ a) ∧ (z ∨ b) ∧ (¬z ∨ ¬a ∨ ¬b)
where z is a variable not in φ. The meaning of this expression is: either a and
b both have value 1 or at least one of a or b has value 0. It may be written
z ⇔ ¬a ∨ ¬b. It is safe to append such an expression because its three clauses
can always be forced to value 1 by setting free variable z to the value of ¬a∨¬b.
More generally, any expression of the form

z ⇔ f(a, b, ...)

may be appended, where f is some arbitrary Boolean function and z is a new, free
variable. Judicious use of such extensions can result in polynomial size refuta-
tions for problems that have no polynomial size refutations without extension. A



notable example is the pigeon hole formulas. Tseitin also showed that by adding
variables not in φ, one can obtain, in linear time, a satisfiability-preserving trans-
lation from any propositional expression to CNF with at most a constant factor
blowup in expression size.

After this point the term satisfiability was used primarily to describe the prob-
lem of finding a model for a Boolean expression. The complexity of Satisfiability
became the major issue due to potential practical applications for Satisfiability.
Consequently, work branched in many directions. The following sections describe
most of the important branches.

1.16. The complexity of resolution (Urquhart)

Perhaps the theoretically deepest branch is the study of the complexity of resolu-
tion. As seen in previous sections, the question of decidability dominated research
in logic until it became important to implement proof systems on a computer.
Then it became clear empirically and theoretically through the amazing result
of Cook (68) (1971) that decidable problems could still be effectively unsolvable
due to space and time limitations of available machinery. Thus, many researchers
turned their attention to the complexity issues associated with implementing var-
ious logic systems. The most important of these, the most relevant to the readers
of this chapter, and the subject of this section is the study of resolution refuta-
tions of contradictory sets of CNF clauses (in this section clause will mean CNF
clause).

Rephrasing the “rule for eliminating atomic formulas” from the previous sec-
tion: if A ∨ l and B ∨ ¬l are clauses, then the clause A ∨ B may be inferred by
the resolution rule, resolving on the literal l. A resolution refutation of a set of
clauses Σ is a proof of the empty clause from Σ by repeated applications of the
resolution rule.

Refutations can be represented as trees or as sequences of clauses; the worst
case complexity differs considerably depending on the representation. We shall
distinguish between the two by describing the first system as “tree resolution,”
the second simply as “resolution.”

Lower bounds on the size of resolution refutations provide lower bounds on
the running time of algorithms for the Satisfiability problem. For example, con-
sider the familiar DPLL algorithm that is the basis of many of the most successful
algorithms for Satisfiability. If a program based on the splitting rule terminates
with the output “The set of clauses Σ is unsatisfiable,” then a trace of the pro-
gram’s execution can be given in the form of a binary tree, where each of the
nodes in the tree is labeled with an assignment to the variables in Σ. The root of
the tree is labeled with the empty assignment, and if a node other than a leaf is
labeled with an assignment φ, then its children are labeled with the assignments
φ[v := 0] and φ[v := 1] that extend φ to a new variable v; the assignments labeling
the leaves all falsify a clause in Σ. Let us call such a structure a “semantic tree,”
an idea introduced by Robinson (245) and Kowalski and Hayes (186).

A semantic tree for a set of clauses Σ can be converted into a tree resolution
refutation of Σ by labeling the leaves with clauses falsified by the assignment at
the leaves, and then performing resolution steps corresponding to the splitting



moves (some pruning may be necessary in the case that a literal is missing from
one of the premisses). It follows that a lower bound on the size of tree resolution
refutations for a set of clauses provides a lower bound on the time required for
a DPLL-style algorithm to certify unsatisfiability. This lower bound applies no
matter what strategies are employed for the order of variable elimination.

The first results on the complexity of resolution were proved by Grighori
Tseitin in 1968 (278). In a remarkable pioneering paper, Tseitin showed that for
all n > 0, there are contradictory sets of clauses Σn , containing O(n2) clauses
with at most four literals in each clauses, so that the smallest tree resolution
refutation of Σn has 2Ω(n) leaves. Tseitin’s examples are based on graphs. If we
assign the values 0 and 1 to the edges of a finite graph G, we can define a vertex
v in the graph to be odd if there are an odd number of vertices attached to v with
the value 1. Then Tseitin’s clauses Σ(G) can be interpreted as asserting that
there is a way of assigning values to the edges so that there are an odd number of
odd vertices. The set of clauses Σn mentioned above is Σ(Gn), where Gn is the
n× n square grid.

Tseitin also proved some lower bounds for resolution but only under the re-
striction that the refutation is regular. A resolution proof contains an irregularity
if there is a sequence of clauses C1, . . . , Ck in it, so that Ci+1 is the conclusion of a
resolution inference of which Ci is one of the premisses, and there is a variable v so
that C1 and Ck both contain v, but v does not occur in some intermediate clause
Cj , 1 < j < k. In other words, an irregularity occurs if a variable is removed by
resolution, but is later introduced again in a clause depending on the conclusion
of the earlier step. A proof is regular if it contains no irregularity. Tseitin showed
that the lower bound for Σn also applies to regular resolution. In addition, he
showed that there is a sequence of clauses Πn so that there is a superpolynomial
speedup of regular resolution over tree resolution (that is to say, the size of the
smallest tree resolution refutation of Πn is not bounded by any fixed power of the
size of the smallest regular refutation of Πn).

Tseitin’s lower bounds for the graph-based formulas were improved by Zvi
Galil (117), who proved a truly exponential lower bound for regular resolution
refutations of sets of clauses based on expander graphsEn of bounded degree. The
set of clauses Σ(En) has size O(n), but the smallest regular resolution refutation
of Σ(En) contains 2Ω(n) clauses.

The most important breakthrough in the complexity of resolution was made
by Armin Haken (135), who proved exponential lower bounds for the pigeonhole
clauses PHCn. These clauses assert that there is an injective mapping from the
set {1, . . . , n+ 1} into the set {1, . . . , n}. They contain n+ 1 clauses containing
n literals asserting that every element in the first set is mapped to some element
of the second, and O(n3) two-literal clauses asserting that no two elements are
mapped to the same element of {1, . . . , n}. Haken showed that any resolution
refutation of PHCn contains 2Ω(n) clauses.

Subsequently, Urquhart (282) adapted Haken’s argument to prove a truly
exponential lower bound for clauses based on expander graphs very similar to
those used earlier by Galil. The technique used in Urquhart’s lower bounds were
employed by Chvátal and Szemerédi (64) to prove an exponential lower bound on
random sets of clauses. The model of random clause sets is that of the constant



width distribution discussed below in Section 1.18. Their main result is as follows:
if c, k are positive integers with k ≥ 3 and c2−k ≥ 0.7, then there is an ǫ > 0, so
that with probability tending to one as n tends to infinity, the random family of
cn clauses of size k over n variables is unsatisfiable and its resolution complexity
is at least (1 + ǫ)n.

The lower bound arguments used by Tseitin, Galil, Haken and Urquhart have
a notable common feature. They all prove lower bounds on size by proving lower
bounds on width – the width of a clause is the number of literals it contains,
while the width of a set of clauses is the width of the widest clause in it. If Σ is a
contradictory set of clauses, let us write w(Σ) for the width of Σ, and w(Σ ⊢ 0)
for the minimum width of a refutation of Σ.

The lower bound techniques used in earlier work on the complexity of res-
olution were generalized and unified in a striking result due to Ben-Sasson and
Wigderson (34). If Σ is a contradictory set of clauses, containing the variables V ,
let us write S(Σ) for the minimum size of a resolution refutation of Σ. Then the
main result of (34) is the following lower bound:

S(Σ) = exp

(

Ω

(

(w(Σ ⊢ 0) − w(Σ))2

|V |

))

.

This lower bound easily yields the lower bounds of Urquhart (282), as well as that
of Chvátal and Szemerédi (64) via a width lower bound on resolution refutations.

Tseitin was the first to show a separation between tree resolution and general
resolution, as mentioned above. The separation he proved is fairly weak, though
superpolynomial. Ben-Sasson, Impagliazzo and Wigderson (33) improved this to
a truly exponential separation between the two proof systems, using contradictory
formulas based on pebbling problems in directed acyclic graphs.

These results emphasize the inefficiency of tree resolution, as opposed to
general resolution. A tree resolution may contain a lot of redundancy, in the
sense that the same clause may have to be proved multiple times. The same kind
of inefficiency is also reflected in SAT solvers based on the DPLL framework,
since information accumulated along certain branches is immediately discarded.
This observation has led some researchers to propose improved versions of the
DPLL algorithm, in which such information is stored in the form of clauses.
These algorithms, which go under the name “clause learning,” lead to dramatic
speedups in some cases – the reader is referred to the paper of Beame, Kautz
and Sabharwal (31) for the basic references and some theoretical results on the
method.

1.17. Refinement of Resolution-Based SAT Solvers

Most of the current interest in Satisfisfiability formulations and methods is due
to refinements to the basic DPLL framework that have resulted in speed-ups of
many orders of magnitude that have turned many problems that were considered
intractable in the 1980s into trivially solved problems now. These refinements
include improvements to variable choice heuristics, early pruning of the search
space, and replacement of a tree-like search space with a DAG-like search space.



DPLL (1962) was originally designed with two important choice heuristics:
the pure-literal rule and the unit-clause rule (Both described on Page 24). But,
variable choices in case no unit clauses or pure literals exist were undefined. Thus,
extensions of both heuristics were proposed and analyzed in the 1980s through
the early 2000s. For example, the unit-clause rule was generalized to the shortest-
clause rule: choose a variable from an existing clause containing the fewest unset
literals (59; 63) (1990, described on Page 40) and the pure-literal rule was ex-
tended to linear autarkies (284) (2000, described on Page 33). Other notable
analyzed heuristics include the majority rule: choose a variable with the maxi-
mum difference between the number of its positive and negative literals (58) (1986,
see also Page 41), probe-order backtracking (238) (1997, see also Page 40), and
a greedy heuristic (134; 169) (2003, described on Page 42). The above heuristics
represent parts of many heuristics that have actually been implemented in SAT
solvers; they were studied primarily because their performance could be analyzed
probabilistically.

Early heuristics designed to empirically speed up SAT solvers were based on
the idea that eliminating small clauses first tends to reveal inferences sooner. Pos-
sibly the earliest well-known heuristic built on this approach is due to Jeroslow
and Wang (163) (1990): they choose a value for a variable that comes close to
maximizing the chance of satisfying the remaining clauses, assuming the remain-
ing clauses are statistically independent in the sense described on Page 41. They
assign weights w(Si,j) for each variable vj and each value i ∈ {0, 1} where, for a
subset of clauses S, Si,j is the clauses of S less those clauses satisfied and those
literals falsified by assigning value i to vj and w(Si,j) =

∑

C∈Si,j
2−|C| (|C| is the

width of clause C). The Jeroslow-Wang heuristic was intended to work better
on satisfiable formulas but Böhm (54) (1992) and Freeman (114) (1995) came up
with heuristics that work better on unsatisfiable formulas: they choose to elimi-
nate a variable that in some sense maximally causes an estimate of both sides of
the resulting search space to be roughly of equal size. This can be done, for ex-
ample, by assigning variable weights that are the product of positive and negative
literal weights as above and choosing the variable of maximum weight. Later, it
was observed that the activity of variable assignment was an important factor in
search space size. This led to the DLIS heuristic of GRASP (204) and eventually
to the VSIDS heuristic of Chaff (223). Most recent DPLL based SAT solvers use
variations of the VSIDS branching heuristic.

Another important refinement to SAT solvers is the early generation of in-
ferences during search. This has largely taken the appearance of lookahead tech-
niques. It was St̊almarck (267) who demonstrated the effectiveness of lookahead
in Prover (1992): the particular type of lookahead used there is best described
as breadth-first. This scheme is limited by the fact that search space width can
be quite large so the lookahead must be restricted to a small number of levels,
usually 2. Nevertheless, Prover was regarded to be a major advance at the time.
Later, Chaff used depth-first lookahead (this form is generally called restarts)
to greater effectiveness (223). Depth-first lookahead also solves a problem that
comes up when saving non-unit inferences (see below): such inferences may be
saved in a cache which may possibly overflow at some point. In the case of depth-
first lookahead, the inferences may be applied and search restarted with a cleared



cache.
Extremely important to SAT solver efficiency are mechanisms that reduce

the size of the search space: that is, discover early that branch of the search
space does not have to be explored. A conflict analysis at a falsified node of the
search space will reveal the subset Vs of variables involved in that node becoming
false. Thus, the search path from root to that falsified node can be collapsed to
include only the variables in Vs, effectively pruning many branch points from the
search space. This has been called non-chronological backtracking (204) (1996)
and is seen in all of the most efficient DPLL based SAT solvers. The result
of conflict analysis can also be saved as a non-unit inference in the form of a
clause. If later in the search a subset of variables are set to match a saved
inference, backtracking can immediately be applied to avoid repeating a search
that previously ended with no solution. This idea, known as clause learning, is
an essential part of all modern DPLL based SAT solvers: its power comes from
turning what would be a tree-like search space into a DAG-like search space.
This has gone a long way toward mitigating the early advantage of BDDs (see
Section 1.20) over search: BDD structures are non-repetitive. In practice, clause
learning is often implemented jointly with the opportunistic deletion of the less
used learnt clauses, thus reducing the over-usage of physical memory by SAT
solvers. Nevertheless, several of the most efficient DPLL based SAT solvers opt
for not deleting any of the learnt clauses, and so the need for deleting less used
learnt clauses is still not a completely solved issue.

Finally, the development of clever data structures have been crucial to SAT
solver success. The most important of these is the structure that supports the
notion of the watched literal (223).

1.18. Upper bounds (Speckenmeyer)

Deciding satisfiability of a CNF formula φ with n Boolean variables can be per-
formed in time O(2n|φ|) by enumerating all assignments of the variables. The
number m of clauses as well as the number l of literals of φ are further parame-
ters for bounding the runtime of decision algorithms for SAT. Note that l is equal
to length(φ) and this is the usual parameter for the analysis of algorithms. Most
effort in designing and analyzing algorithms for SAT solving, however, are based
on the number n of variables of φ.

A first non-trivial upper bound of O(αn
k · |φ|), where αn

k is bounding the
Fibonacci-like recursion

T (1) = T (2) = . . . = T (k − 1) = 1 and

T (n) = T (n− 1) + T (n− 2) + . . .+ T (n− k + 1), for n ≥ k,

for solving k-SAT, k ≥ 3, was shown in (221; 222). For example, α3 ≥ 1.681,
α4 ≥ 1.8393, and α5 ≥ 1.9276.

The algorithm supplying the bound looks for a shortest clause c from the
current formula. If c has k− 1 or less literals, e.g. c = (x1 ∨ . . .∨ xk−1) then φ is
split into k − 1 subformulas according to the k − 1 subassignments



1) x1 = 1;
2) x1 = 0, x2 = 1;

. . .
k-1) x1 = x2 = . . . = xk−2 = 0, xk−1 = 1.

If all clauses c of φ have length k, then φ is split into k subformulas as described,
and each subformula either contains a clause of length at most k−1 or one of the
resulting subformulas only contains clauses of length k. In the former case, the
above mentioned bound holds. In the latter case, the corresponding subassign-
ment is autark, that is, all clauses containing these variables are satisfied by this
subassignment, so φ can be evaluated according to this autark subassignment
thereby yielding the indicated upper bound.

For the case k = 3, the bound was later improved to α3 = 1.497 by a so-
phisticated case analysis (see (251)). Currently, from (85), the best deterministic
algorithms for solving k-SAT have a run time of

O

(

(2 − 2

k + 1
)n

)

.

For example, the bounds are O(1.5n), O(1.6n), O(1.666...n) for 3, 4, and 5
literal clause formulas. These bounds were obtained by the derandomization of a
multistart-random-walk algorithm based on covering codes. In the case of k = 3
the bound has been further improved to O(1.473n) in (47). This is currently the
best bound for deterministic 3-SAT solvers.

Two different probabilistic approaches to solving k-SAT formulas have re-
sulted in better bounds and paved the way for improved deterministic bounds.
The first one is the algorithm of Paturi-Pudlak-Zane (231) which is based on the
following procedure:

Determine a truth assignment of the variables of the input formula φ by
iterating over all variables v of φ in a randomly chosen order: If φ contains
a unit clause c = (x), where x = v or ¬v, set t(v) such that t(x) = 1. If
neither v nor ¬v occur in a unit clause of φ, then randomly choose t(v)
from {0, 1}. Evaluate φ := t(φ). Iterate this assignment procedure at
most r times or until a satisfying truth assignment t of φ is found, starting
each time with a randomly chosen order of variables for the assignment
procedure.

After r = 2n(1− 1
k
) rounds a solution for a satisfiable formula is found with high

probability (231). By adding to φ clauses originating from resolving input clauses
up to a certain length this bound can be improved. In case of k = 3, 4, and 5, the
basis of the exponential growth function is 1.36406, 1, 49579, and 1, 56943 (232).
For k ≥ 4 this is currently the best probabilistic algorithm for solving k-SAT.

The second approach is due to Schöning (253; 254) and extends an idea of
Papadimitriou (229). That procedure is outlined as follows:



Repeat the following for r rounds: randomly choose an initial truth as-
signment t of φ; if t does not satisfy φ, then repeat the following for three
times the number of variables of φ or until a satisfying assignment t is en-
countered: select a falsified clause c from φ and randomly choose and flip
a literal x of c.

If the algorithm continues, round after round, without finding a satisfying assign-
ment nothing definite can be said about the satisfiability of φ. However, in this
case the higher the number of rounds r, the lower the probability that φ is satis-
fiable. To guarantee an error probability of e−λ, the number of rounds should be
at least O(λ(2k−1

k )n). For k = 3, 4, and 5 the basis of the exponential growth is
1.3334, 1.5, and 1.6.

The case of k = 3 has since been improved to O(1.324n) by Iwama and
Tamaki (161). For CNF formulas of unrestricted clause length the best time

bound for a deterministic solution algorithm is O(2n(1− 1
log(2m)

)), where n is the
number of variables and m the number of clauses. This result, by Dantsin and
Wolpert (86), is obtained from a derandomization of a randomized algorithm by
Schuler (255), of the same time complexity. Dantsin and Wolpert recently im-

proved this bound for randomized algorithms to O

(

2
n(1− 1

ln( m
n

)+O ln(ln(m)
)
)

(87).

1.19. Classes of easy expressions

An entire book could be written about the multitude of classes of the Satisfiability
problem that can be solved in polynomial time, so only some of the classical results
will be mentioned here. It is often not enough that a class of problems is solved
in polynomial time - an instance may have to be recognized as a member of that
class before applying an efficient algorithm. Perhaps surprisingly, for some classes
the recognition step is unnecessary and for some it is necessary but not known to
be tractable.

The reader may have the impression that the number of polynomial time solv-
able classes is quite small due to the famous dichotomy theorm of Schaefer (250).
But this is not the case. Schaefer proposed a scheme for defining classes of propo-
sitional expressions with a generalized notion of “clause.” He proved that every
class definable within his scheme was either NP -complete or polynomial-time
solvable, and he gave criteria to determine which. But not all classes can be de-
fined within his scheme. The Horn and XOR classes can be but we will describe
several others including q-Horn, extended Horn, CC-balanced and SLUR that
cannot be so defined. The reason is that Schaefer’s scheme is limited to classes
that can be recognized in log space.

All clauses of a 2-SAT expression contain at most two literals. A two literal
clause describes two inferences. For example, inferences for the clause (x∨y) are:
1) if x is 0 then y is 1; and 2) if y is 0 then x is 1. For a given 2-SAT expression
an implication graph may be constructed where directed edges between pairs
of literals represent all the inferences of the expression. A cycle in the inference
graph that includes a pair of complementary literals is proof that no model exists.
Otherwise a model may be determined easily with a depth-first search of the



graph, which amounts to applying unit propagation. A full algorithm is given
in (103) (1976). A linear time algorithm is given in (23) (1979).

All clauses of an expression said to be Horn have at most one positive literal.
This class is important because of its close association with Logic Programming:
for example, the clause (¬v1∨¬v2∨v) expresses the rule v1∧v2 → v or v1 → v2 →
v. However, the notion of causality is generally lost when translating from rules to
Horn expressions. An extremely important property of Horn expressions is that
every satisfiable one has a unique minimum model with respect to 1 (the unique
minimum model is the intersection of all models of the expression). Finding
a model is a matter of applying unit propagation on positive literals until all
positive literals are eliminated, then assigning all remaining literals the value 0 (if
satisfiable, a unique minimum model is the result). It took a few iterations in the
literature to get this universally understood and the following are the important
citations relating to this:(159) (1982), (97) (1984), (259) (1990).

A given expression may be renameable Horn, meaning a change in the polarity
of some variables results in an equivalent Horn expression. Renameable Horn
expressions were shown to be recognized and solved in linear time by (195) (1978)
and (22) (1980).

A number of polynomially solvable relaxations of Linear Programming prob-
lems were shown to be equivalent to classes of Satisfiability; this work, quite
naturally, originated from the Operations Research community. Representing
CNF expressions as (0,±1) matrices where columns are indexed on variables and
rows indexed on clauses, Satisfiability may be cast as an Integer Programming
problem. If the matrix has a particular structure the Integer Program can be
relaxed to a Linear Program, solved, and the non-integer values of the solution
rounded to 0 or 1. Notable classes based on particular matrix structures are the
extended Horn expressions and what we call the CC-balanced expressions.

The class of extended Horn expressions was introduced by Chandru and
Hooker (57) (1991). Their algorithm is due to a theorem of Chandrasekaran (56)
(1984). Essentially, a model for a satisfiable expression may be found by ap-
plying unit propagation, setting values of unassigned variables to 1/2 when no
unit clauses remain, and rounding the result by a matrix multiplication. This
algorithm cannot, however, be reliably applied unless it is known that a given
expression is extended Horn and, unfortunately, the problem of recognizing an
expression as extended Horn is not known to be solved in polynomial time.

The class of CC-balanced expressions has been studied by several researchers
(see (67) (1994) for a detailed account of balanced matrices and a description
of CC-balanced formulas). The motivation for this class is the question, for
Satisfiability, when do Linear Programming relaxations have integer solutions?
The satisfiability of a CNF expression can be determined in linear time if it is
known to be CC-balanced and recognizing that a formula is CC-balanced takes
linear time.

Horn, Renameable Horn, Extended Horn, CC-balanced expressions, and other
classes including that of (270) (1991) turn out to be subsumed by a larger, ef-
ficiently solved class called SLUR for Single Lookahead Unit Resolution (252)
(1995). The SLUR class is peculiar in that it is defined based on an algorithm
rather than on properties of expressions. The SLUR algorithm recursively selects



variables sequentially and arbitrarily, and considers a one-level lookahead, under
unit propagation in both directions, choosing only one, if possible. If a model
is found, the algorithm is successful, otherwise it “gives up.” An expression is
SLUR if, for all possible sequences of variable selections, the SLUR algorithm
does not give up. Observe that due to the definition of this class, the question of
class recognition is avoided. In fact, SLUR provides a way to avoid preprocessing
or recognition testing for several polynomial time solvable classes of SAT when
using a reasonable variant of the DPLL algorithm.

The worst case time complexity of the SLUR algorithm would appear to
be quadratic. However, a simple modification brings the complexity down to
linear: run both calls of unit propagation simultaneously, alternating execution
of their repeat blocks. When one terminates without an empty clause in its output
formula, abandon the other call.

The q-Horn class also originated in the Operations Research community (39;
42) (1990) and for several years was thought to be what was described as the
largest, succinctly expressed class of polynomial time solvable expressions. This
claim was due to a measure on an underlying (0,±1) matrix representation of
clauses called the satisfiability index (40) (1994). The q-Horn class was also stud-
ied as a special case of the maximum monotone decomposition of matrices (276)
(1994). We find it easier to describe the efficient solution of q-Horn expressions
by following (277) (1998). Using the (0,±1) matrix representation, an expression
is q-Horn if columns can be multiplied by -1, and permuted, and rows can be per-
muted with the result that the matrix has four quadrants as follows: northeast
- all 0s; northwest - a Horn expression; southeast - a 2-SAT expression; south-
west - no +1s. A model may be found in linear time, if one exists, by finding a
model for the northwest quadrant Horn expression, cancelling rows in the south-
ern quadrants whose clauses are satisfied by that model, and finding a model
for the southeast quadrant 2-SAT expression. It was shown in (40) (1994) that
a CNF expression is q-Horn if and only if its satisfiability index is no greater
than 1 and the class of all expressions with a satisfiability index greater than
1 +1/nǫ, for any fixed ǫ < 1, is NP -complete. The SLUR and q-Horn classes are
incomparable (113) (2003).

The class of linear autarkies, developed by Kullmann (187) (2000), was shown
by van Maaren (284) (2000) to include the class of q-Horn formulas. It was
also shown to be incomparable with the SLUR class. An autarky for a CNF
formula φ is a partial assignment that satisfies all those clauses of φ affected by
it: for example, a pure literal is an autarky. Therefore, a subformula obtained by
applying an autarky to φ is satisfiable if and only if φ is. A formula with (0,±1)
matrix representation A has a linear autarky x ∈ Qn, x 6= 0, if Ax ≥ 0. In (187)
it was shown that a linear autarky can be found in polynomial time. There exists
a simple, efficient decomposition that results in a partial, autark assignment.
Applying this decomposition repeatedly results in a unique, linear-autarky-free
formula. If the decomposition is repeatedly applied to a renameable Horn formula
without unit clauses what is left is empty and if it is applied repeatedly to a 2-SAT
formula, the formula is unsatisfiable if what is left is not empty and satisfiable
otherwise.

The class of matched expressions was analyzed to provide a benchmark for



testing the claim made for the q-Horn class. This is a class first described in (275)
(1984) but not extensively studied, probably because it seems to be a rather
useless and small class of formulas. Establish a bipartite graph Gφ = (V1, V2, E)
for an expression φ where V1 vertices represent clauses, V2 vertices represent
variables, and edge 〈c, v〉 ∈ E if and only if clause c contains v or its complement.
If there is a total matching in Gφ, then φ is said to be matched. Clearly, matched
expression are always satisfiable and are trivially solved. The matched class
is incomparable with the q-Horn and SLUR classes. However, as is shown in
Section 1.22, with respect to frequency of occurrence on random expressions,
matched expressions are far more common than both those classes together (113)
(2003).

The worst case complexity of nested satisfiability, a class inspired by Licht-
enstein’s theorem of planar satisfiability (197) (1982), has been studied in (185)
(1990). Index all variables in an expression consecutively from 1 to n and let pos-
itive and negative literals take the index of their respective variables. A clause ci
is said to straddle another clause cj if the index of a literal of cj is strictly between
two indices of literals of ci. Two clauses are said to overlap if they straddle each
other. A formula is said to be nested if no two clauses overlap. For example, the
following formula is nested

(v6 ∨ ¬v7 ∨ v8) ∧ (v2 ∨ v4) ∧ (¬v6 ∨ ¬v9) ∧ (v1 ∨ ¬v5 ∨ v10).

The class of nested formulas is quite limited in size for at least the reason that
a nested expression can contain no more than 2m+ n literals. Thus, no expres-
sion consisting of k-literal clauses is a nested formula unless m/n < 1/(k − 2).
The class of nested expressions is incomparable with both the SLUR and q-Horn
classes. However, by the measure of Section 1.22 (also in (113) (2003)) a random
expression is far more likely to be matched, q-Horn, or even SLUR than nested.
The algorithm for nested expressions is notable for being quite different than
those mentioned above: instead of relying on unit propagation, it uses dynamic
programming to find a model in linear time. The question of whether the variable
indices of a given formula can, in linear time, be permuted to make the formula
nested appears to be open. An extension to nested satisfiability, also solvable in
linear time, has been proposed in (143) (1993).

None of the classes above covers a significant proportion of unsatisfiable ex-
pressions. Nevertheless, several classes of unsatisfiable expressions have been
identified. It is interesting that most known polynomial time solvable classes
with clauses containing three or more literals either are strongly biased toward
satisfiable expressions or strongly biased toward unsatisfiable expressions.

An expression is said to be minimally unsatisfiable if it is unsatisfiable and
removing any clause results in a satisfiable expression. A minimally unsatisfiable
expression with n variables must have at least n + 1 clauses (9) (1986). Every
variable of a minimally unsatisfiable expression occurs positively and negatively in
the expression. The class of minimally unsatisfiable formulas is solved in nO(k) if
the number of clauses exceeds the number of variables by a fixed positive constant
k (180) (1999) and (181) (2000). Szeider improved this to O(2k)n4 (271) (2003).
Kullmann has generalized this class in (188) (2003) and continues to find larger
versions. Some SAT solvers look for minimally unsatisfiable sets of clauses to



reduce search space size.
A CNF expression is said to be k-BRLR if all resolvents derived from it have

a number of literals bounded by k or if the null clause is deriveable from resolvents
having at most k literals. Obviously, this class is solved in time bounded by 2k

(

n
k

)

.
Finally, we mention that semidefinite programming which is discussed at

length in Section 1.25 is biased toward verifying unsatisfiability and this accounts
for the success of this approach.

1.20. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were considered for a while to be the best way
to handle some problems that are rooted in real applications, particularly related
to circuit design, testing, and verification. They are still quite useful in various
roles (84; 111; 156; 165; 224; 228; 65) and in some ways are complementary to
search (281; 131).

A BDD may be regarded as a DAG representation of the truth table of a
Boolean function. In a BDD non-leaf vertices are labeled as variables, there are
two out-directed edges for each non-leaf vertex, each labeled with value 0 or 1,
and two leaves, labeled 1 and 0. There is a single root and any path from root to
a “1” (“0”) leaf indicates an assignment of values to the variables which causes
the represented function to have value 1 (0). A BDD may also be viewed as
representing a search space in which paths to the 1 leaf represent models.

The attraction to BDDs is due in part to the fact that no subproblem is
represented more than once in a collection of BDDs - this is in contrast to the tree-
like search spaces of DPLL implementations of the 1980s. In addition, efficient
implementations exist for BDD operations such as existential quantification, “or,”
“and,” and others. The down side is: 1) each path from the root of a BDD
must obey the same variable ordering, so BDDs are not necessarily a minimal
representation for a function; and 2) repeatedly conjoining pairs of BDDs may
create outragiously large intermediate BDDs even though the final BDD is small.
By the late 1990s, DPLL advances such as conflict resolution, clausal learning,
backjumping, restarts, and more gave rise to DAG search spaces with dynamic
variable ordering. The result was improved performance for search over BDDs in
some cases.

BDDs were introduced in (193) (1959) as a data structure based on the Shan-
non expansion (see Section 1.14). They were publicized in (43) (1976) and (10)
(1978). But BDDs became most useful with the introduction of reduced order
BDDs by Bryant (48; 49) (1986,1992) and their implementation (44) (1990) which
supports subproblem sharing over collections of BDDs and the efficient manipu-
lation of those BDDs.

A number of operations on BDDs have been proposed over the years to assist
in the efficiency of combining BDDs. One of the most important and basic op-
erations is existential quantification which arises directly from Shannon’s
expansion of Section 1.14: namely, replace f with f |v=0 ∨ f |v=1. This operation
can be used to eliminate a variable at the expense of first conjoining all BDDs
containing it. It is not clear when existential quantification was first used but it
was probably known very early. An important problem in managing BDD size is



how to simplify a function f (implemented as a BDD), given a constaint c (imple-
mented as a BDD): that is, replace f with a function f ′ that is equal to f on the
domain defined by c. The operation of restrict (72) (1990) does this by pruning
paths from the BDD of f that are ‘false’ in the BDD of c. A more complex opera-
tion with restrict-like properties but admiting removal of a BDD from a collection
of BDDs at the expense of increasing the size of some of the remaining BDDs is
the constrain or generalized cofactor operation (73) (1990). Constraining f
to c results in a function h with the property that h(x) = f(µ(x)) where µ(x) is
the closest point to x in c where distance between binary vectors x, y ∈ {0, 1}n

is measured by d(x, y) =
∑

1≤i≤n 2n−i · ((xi + yi) mod 2) under a BDD variable
ordering which matches the index order. Additional minimization operations,
based on restrict, that do not increase BDD size are proposed in (151) (1997).

BDDs were designed primarily for the efficient representation of switching
circuits and their manipulation, but a number of variations on BDDs have ap-
peared over the years to target related classes of problems. BDDs of various
kinds have been used successfully to represent relations and formulas to support
symbolic model checking (52; 209) (1992), although more recently, it has been
found that SAT solvers for Bounded Model Checking (35) (1999) can sometimes
achieve even better results. The ZDD, for Zero-suppressed BDD, introduced in
1993 (214), differs from the BDD in that a vertex is removed if its 1 edge points
to the 0 leaf. This helps improve efficiency when handling sparse sets and repre-
senting covers. Thus, the ZDD has been used successfully on problems in logic
synthesis such as representing an irredundant DNF of an incompletely specified
Boolean function (74) (1993), finding all essential prime implicants in DNF mini-
mization (71) (1994), factorization (215) (1996), and decomposition (162) (2001).
The BMD, for Binary Moment Diagram, is a generalization of the BDD for han-
dling numbers and numeric computations, particularly multiplication (50) (1995).
The ADD, for Algebraic Decision Diagram (also known as Multi-Terminal Deci-
sion Diagram), allows more than two leaves (possibly real-valued) and is useful
for mapping Boolean functions to sets (24) (1993) as might be needed to model
the delay of MOS circuits, for example (208) (2001). The XDD has been used
to efficiently represent equations involving the xor operation. The essential idea
is that vertex x with 1 edge to vertex a and 0 edge to vertex b represents the
equation (x ∧ a) ⊕ b = 1. Many other varieties of BDD have been proposed but
there is not enough space to mention them all.

1.21. Probabilistic analysis: SAT algorithms

Probabilistic and average-case analysis of algorithms can give useful insight into
the question of what SAT algorithms might be effective and why. Under certain
circumstances, one or more structural properties shared by each of a collection
of formulas may be exploited to solve such formulas efficiently; or structural
properties might force a class of algorithms to require superpolynomial time.
Such properties may be identified and then, using probabilistic analysis, one may
argue that these properties are so common that the performance of an algorithm
or class of algorithms can be predicted for most of a family of formulas. The first
probabilistic results for SAT had this aim.



Probabilistic results of this sort depend on an underlying input distribution.
Although many have been proposed, well-developed histories exist for just two,
plus a few variants, which are defined over CNF inputs. All the results of this
section are based on these two. In what follows, the width of a clause is the
number of literals it contains. The distributions we discuss here are:

1. Variable width distribution: Given integers n, m, and a function p :
N+ × N+ → [0, 1]. Let V = {v1, ..., vn} be a set of n Boolean vari-
ables. Construct a random clause (disjunction) c by independently adding
literals to c as follows: for each variable vi, 1 ≤ i ≤ n, add literal vi with
probability p(m,n), add literal ¬vi with probability p(m,n) (therefore add
neither vi nor ¬vi with probability 1−2p(m,n)). A random input consists
of m independently constructed random clauses and is referred to below as
a random (n,m, p)-CNF expression. In some cases p(m,n) is independent
of m and n and then we use p to represent p(m,n).

2. Constant width distribution: Given integers n, m, and k. Let V = {v1, ..., vn}
be a set of n Boolean variables. Construct a random clause (disjunction) c
by choosing, uniformly and without replacement, k variables from V and
then complementing each, independently, with probability 1/2. A ran-
dom input consists of m independently constructed random clauses and is
referred to below as a random (n,m, k)-CNF expression. Such an input
is widely known as a uniform random k-SAT instance or simply random
k-SAT instance.

Variable width distribution

Goldberg was among the first to apply probability to the analysis of SAT algo-
rithms. He investigated the frequency with which simple backtracking returns a
model quickly on random CNF formulas by providing an average-case analysis
of a variant of DPLL which does not handle pure literals or unit clauses (125)
(1979). The result received a lot of attention when it was first presented and even
10 years afterward some people still believed it was the definitive probabilistic
result on satisfiability algorithms.

Goldberg showed that, for random (n,m, p)-CNF expressions, the DPLL

variant has average complexity bounded from above by O(m−1/ log(p)n) for any
fixed 0 < p < 1. This includes the “unbiased” sample space when p = 1/3
and all expressions are equally likely. Later work (126) (1982) showed the same
average-case complexity even if pure literals are handled as well. Very many
problems confronting the scientific and engineering communities are unsatisfiable,
but Goldberg made no mention of the frequency of occurrence of unsatisfiable
random (n,m, p)-CNF expressions.

However, Franco and Paull (112) (1983) pointed out that large sets of ran-
dom (n,m, p)-CNF expressions, for fixed 0 < p < 1/2, are dominated by trivial
satisfiable expressions: that is, any random assignment of values to the variables
of such a random expression is a model for that expression with high probability.
This result is refined somewhat in (108) (1986) where it is shown that a random
assignment is a model for a random (n,m, p)-CNF expression with high probabil-
ity if p > ln(m)/n and a random expression is unsatisfiable with high probability
if p < ln(m)/2n. In the latter case, a “proof” of unsatisfiability is trivially found



with high probability because a random (n,m, k)-CNF expression for this range
of p usually contains at least one empty clause, which can easily be located, and
implies unsatisfiability. The case p = c ln(m)/n, 1/2 ≤ c ≤ 1 was considered
in (110) (1988) where it was shown that a random (n,m, p)-CNF expression is
satisfiable with high probability if limn,m→∞m1−c/n1−ǫ <∞, for any 0 < ǫ < 1.

Although these results might be regarded as early threshold results (see Sec-
tion 1.22) the main impact was to demonstrate that probabilistic analysis can be
highly misleading and requires, among other things, some analysis of input distri-
bution to ensure that a significant percentage of non-trivial inputs are generated.
They show that random (n,m, p)-CNF expressions, satisfiable or unsatisfiable,
are usually trivially solved because either they contain empty clauses (we get the
same result even if empty or unit clauses are disallowed) or they can be satisfied by
a random assignment. In other words, only a small region of the parameter space
is capable of supporting significantly many non-trivial expressions: namely, when
the average clause width is c ln(m)/n, 1/2 ≤ c ≤ 1. These results demonstrate
shortcomings in choosing random (n,m, p)-CNF expressions for analysis and, be-
cause of this, such generators are no longer considered interesting by many.

Nevertheless, some interesting insights were developed by further analysis
and we mention the most significant ones here. The results are shown graphically
in Figure 1.1 which partitions the entire parameter space of the variable width
distribution according to polynomial-average-time solvability. The vertical axis
(p · n) measures average clause width and the horizontal axis (m/n) measures
density. Each result is presented as a line through the chart with a perpendicular
arrow. Each line is a boundary for the algorithm labeling the line and the arrow
indicates that the algorithm has polynomial average time performance in that
region of the parameter space that is on the arrow side of the line (constant and
even log factors are ignored for simplicity).

Goldberg’s result is shown as the diagonal line in the upper right corner of
the figure and is labeled Goldberg: it is not even showable as a region of the
parameter space, so there is no arrow there. Iwama analyzed an algorithm which
counts models using inclusion-exclusion (160) (1989) and has polytime-average-
time complexity in the region above and to the right of the line labeled Counting.
A random expression generated at a point in that region satisifes conditions, with
high probability, under which the number of terms in the inclusion-exclusion ex-
pansion is polynomial in m and n. However, every clause of the same random
expression is a tautology (contains a literal and its complement) with high prob-
ability. Therefore, this seems to be another example of a misleading result and,
judging from the relation between the Counting and Goldberg regions in the
figure, lessens the significance of Goldberg’s result even more.

There have been a number of schemes proposed for limiting resolution steps
to obtain polynomial complexity. A simple example is to perform resolution only
if the pivot variable appears once as a positive literal and once as a negative literal
- then, if an empty clause does not exist when no more resolutions are possible,
do a full search for a solution. The conditions under which this algorithm runs
in polynomial average time under random variable width expressions are too
complex to be given here but they are represented by the regions in Figure 1.1
below the lines labeled Limited Resolution (107) (1991).
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If pure literal reductions are added to the algorithm analyzed by Goldberg
then polynomial average time is achieved in the Pure Literals region, consider-
ably improving the result of Goldberg (237) (1985). But a better result, shown as
the region bounded from above by the lines labeled Unit Clauses, is obtained
by performing unit propagation (109) (1993) and is consistent with the empir-
ically and theoretically demonstrated importance of unit propagation in DPLL

algorithms. Results for Search Rearrangement Backtracking (236) (1983) are
disappointing (shown bounded by the two lines labeled Backtracking) but a
slightly different variant in which only variables from positive clauses (a positive
clause contains only positive literals) are chosen for elimination (if there is no
positive clause, satisfiability is determined by assigning all unassigned variables
the value 0), has spectacular performance as is shown by the line labeled Probe
Order Backtracking (238) (1997). The combination of probe order backtrack-
ing and unit clauses yield polynomial average time for random (n,m, p)-CNF
expressions at every point of the parameter space except for some points along
the thin horizontal region p · n = c · log(n).

By 1997, what Goldberg had set out to do in 1979, namely show DPLL has
polynomial average time complexity for variable width distributions, had been
accomplished. The research in this area had some notable successes such as the
analysis of probe order backtracking which demonstrated that a slight algorithmic
change can have a major effect on perfomance. But, the fact that nearly every
point in the parameter space is covered by an algorithm that has polynomial av-
erage time complexity is rather disturbing, though, since there are many practical
applications where SAT is considered extremely difficult. Largely for this reason
attention shifted to the constant width distribution and, by the middle of the
1990s, research on the variable width distribution all but disappeared.

Constant width distribution

Franco and Paull (1983) in (112) (see (234), 1987, for corrections) set out to test
Goldberg’s result on other distributions. They formulated the constant width
distribution and showed that for all k ≥ 3 and every fixed m/n > 0, with proba-
bility 1− o(1), the algorithm analyzed by Goldberg takes an exponential number
of steps to report a result: that is, either to report all (“cylinders” of) models, or
that no model exists. They also showed that a random (n,m, k)-CNF expression
is unsatisfiable with probability tending to 1 when m/n > − ln(2)/ ln(1 − 2−k).
For k = 3 this is m/n > 5.19.

Perhaps the first positive result using the constant width distribution was
presented in (58) (1986) where a non-backtracking, incremental assignment algo-
rithm employing unit propagation, called UC, was shown to find a model with
bounded probability when m/n < O(1) · 2k/k. This work introduced an analy-
sis tool called “clause-flows” analysis which was refined by Achlioptas (2) (2001)
using a theorem of Wormald (291). Analysis of clause flows via differential equa-
tions was to be the basic analytic tool for most of the following results in this
area. In (59) (1990) it was shown that a generalization of unit propagation, called
GUC, in which a variable from a “smallest” clause is chosen for assignment finds
a model with probability 1 − o(1) when m/n < O(1) · 2k/k, k ≥ 4. This was im-
proved by Chvátal and Reed (63) (1992) who showed that GUC, with assignment
rules relaxed if no unit or two literal clauses are present (called SC for shortest



clause), finds a model with probability 1−o(1) when m/n < O(1) ·2k/k for k ≥ 3.

Observe that the results of the previous two paragraphs show a gap between
the range m/n > ln(2)/ ln(1 − 2−k) ≈ 2k ln(2), where random expressions are
unsatisfiable with high probability, and m/n < O(1) · 2k/k, where analyzed non-
backtracking incremental assignment algorithms find models for random expres-
sions with high probability. According to results of Friedgut (1999 - see Sec-
tion 1.22) there is a sharp satisfiability threshold rk for every k ≥ 2 (it is still
not known whether the threshold depends on n) and the results above show
2k/k < rk < 2k ln(2). The question of the location of rk was pondered for quite
some time. Most people intuitively believed that rk was located near 2k ln(2) so
the question became known as the ‘Why 2 k?’ problem (Pittel, 1999). This was
verified by Achlioptas, Moore, and Perez in (6; 7) (2002,2004) who showed that
rk = 2k ln(2)−O(k) by applying the second moment method to a symmetric vari-
ant of satisfiability, known as not-all-equal k-SAT (NAE-k-SAT). In NAE-k-SAT
the question is whether, for a given CNF expression, there is a satisfying assign-
ment whose complement is also a satisfying assignment. Obviously, the class of
k-CNF expressions satisfiable in NAE-k-SAT is a subset of the class satisfiable in
the traditional sense. Hence, for the purposes of finding the threshold, NAE-k-
SAT may be analyzed instead of k-SAT. The symmetric nature of NAE-k-SAT
results in a low variance in the number of satisfying assignments and this makes
the second moment method work.

Most interest, though, has centered on the case k = 3. It is believed, from
experiment, that r3 ≈ 4.25. In (58) (1986) it is shown that UC finds a model
with bounded probability when m/n < 8/3 = 2.66.. and, when combined with a
“majority” rule (that is, choose a variable with the maximum difference between
the number of its positive and negative literals if unit propagation cannot be
applied), this improves to m/n < 2.9. Frieze and Suen (116) (1996) considered
SC and GUC and showed that for m/n < 3.003.., both heuristics succeed with
positive probability. Moreover, they proved that a modified version of GUC,
called GUCB, which uses a limited form of backtracking, succeeds almost surely
for the same range of m/n. Later, Achlioptas (1) (2000) analyzed SC, modified
slightly to choose two variables at a time from a clause with two unfalsified literals,
for an improvement to m/n ≤ 3.145 with probability 1 − o(1).

Nearly all the results above apply to myopic algorithms. A non-backtracking,
variable assignment algorithm is called myopic (8) if, under the spectral coa-
lescence of states, the distribution of expressions corresponding to a particular
coalesced state can be expressed by its spectral components alone: that is, by
the number of clauses of width i, for all 1 ≤ i ≤ k, and the number of assigned
variables. Being myopic considerably assists an analysis by preserving statisti-
cal independence from one algorithmic step to the next. Unfortunately, in (8)
(2000) it is shown that no myopic algorithm can have good probabilistic perfor-
mance when m/n > 3.26. In the same paper it is shown that at least one myopic
algorithm almost surely finds a model if m/n < 3.26.

However, Kaporis et al. (170) (2002) found a workaround to this “barrier” and
analyzed a simple non-myopic greedy algorithm for Satisfiability. They control the
statistical dependence problem by considering a different generator of expressions
such that probabilistic results also hold for random (n,m, 3)-CNF expressions.



Their result is that a greedy algorithm for satisfiability almost always finds a
model when m/n < 3.42. Similar algorithms have been shown to find a model,
almost always, when m/n < 3.52 (134; 169) (2003). With this analysis machinery
in place, better results are expected.

Although most of the results of the previous paragraph were motivated by
threshold research (see Section 1.22), their analyses can influence algorithm de-
velopment. It is hoped future probabilistic results will reveal new generally useful
search heuristics, or at least explain the mechanics of existing search heuristics.

Another analysis should be noted for the following non-myopic incremental
assignment algorithm: repeatedly assign values to pure literals to eliminate the
clauses containing them. Broder, Frieze and Upfal (45) (1993) proved that this
algorithm almost always finds a model when m/n ≤ 1.63 and k = 3. They
used Martingales to offset distribution dependency problems as pure literals are
uncovered. Mitzenmacher (218) (1997) showed that this bound is tight.

This section concludes with a history of results on algorithms which are in-
tended to return certificates of unsatisfiability. Most of these results, all pes-
simistic, are obtained for resolution. The best result, though, is obtained for an
algorithm which finds lower bounds on the number of variable assignments that
must be positive and the number that must be negative (via translation to two
hitting set problems) and returns “unsatisfiable” if the sum is greater than the
number of variables. This result is notable also because it makes use of a highly
underused analysis tool in this area: eigenvalues. Recall that nearly all random
constant width expressions are unsatisfiable if m/n > 2k ln(2).

Chvátal and Szemerédi obtained the earliest result on constant width distribu-
tions, inspired by the work reported in Section 1.16, is that, with high probability,
every resolution proof for a random unsatisfiable expression is exponentially long
if limn,m→∞m/n = f(k) > 2k ln(2) (64) (1988). The analysis shows the root
cause to be a property known as sparseness; which roughly indicates the number
of times pairs of clauses have a common literal or complementary pair of literals.
When an expression is sparse any “moderately large” subset of its clauses must
contain a “large” number of variables that occur exactly once in that subset.
Sparsity forces the proof to have a large resolvent. But, almost all “short” reso-
lution refutations contain no long clauses after eliminating all clauses satisfied by
a particular small random partial assignment ρ. Moreover, resolution refutations
for almost all unsatisfiable random (n,m, k)-CNF expressions with clauses satis-
fied by ρ removed are sparse and, therefore, must have at least one high width
resolvent. Consequently, almost all unsatisfiable random expressions have long
resolution refutations. Beame, Karp, Pitassi, Saks, Ben-Sasson, and Widgerson,
among others, contributed ideas leading up to a concise understanding of this
phenomenon in (32) (1996), (30) (1998), (34) (2001).

Despite considerable tweaking, the best we can say right now is that, with
probability tending to 0, the width of a shortest resolution proof is bounded
by a polynomial in n when m/n > 2k ln(2) and limm,n→∞m/n(k+2)/(4−ǫ) < 1,
where ǫ is some small constant; and with probability tending to 1, the width is
polynomially bounded when limm,n→∞m/n > (n/ log(n))k−2.

The failure of resolution has led to the development of a new technique
by Goerdt for certifying unsatisfiability, mentioned above, that uses eigenval-



ues. In (124) this spectral technique is used to obtain bounds sufficient to show
that certifying unsatisfiability in polynomial time can be accomplished with high
probability when limm,n→∞m/n > nk/2−1+o(1) which is considerably better than
resolution.

1.22. Probabilistic analysis: thresholds

Results of the 1980s (see Section 1.21) showed that, for random width k ex-
pressions density, that is the ratio m/n, is correlated with certain interesting
expression properties. For example, it was shown that if m/n > 2k ln(2) then a
random instance is unsatisfiable with high probability and if m/n < O(1) · 2k/k
a random expression is satisfiable with high probability. So, it was clear that a
crossover from probably unsatisfiable to probably satisfiable occurs as density is
changed. Early on it was speculated that “hardness” is directly related to the
nature of crossover and this motivated the study of Satisfiability thresholds.

Actually, thresholds can apply to a multitude of properties, not just the
property of a formula being satisfiable, so we give a general definition of threshold
here. Let X = {x1, ..., xe} be a set of e elements. Let AX , a subset of the power
set of X (denoted 2X), be called a property. Call AX a monotone property if for
any s ∈ AX , if s ⊂ s′, then s′ ∈ AX . Typically, a monotone property follows
from a high-level description which applies to an infinite family of sets X . For
example, let X = Ck,n be the set of all non-tautological, width k clauses that
can be constructed from n variables. Thus e = 2k

(

n
k

)

and any s ∈ 2Ck,n is a k-
CNF expression. Let UNSAT Ck,n

denote the property that a k-CNF expression
constructed from n variables is unsatisfiable. That is, any s ∈ UNSAT Ck,n

has
no model and any s ∈ 2Ck,n \ UNSAT Ck,n

has a model. If s ∈ UNSAT Ck,n
and

c ∈ Ck,n such that c /∈ s, then s∪{c} ∈ UNSAT Ck,n
so the property UNSAT Ck,n

is monotone for k < n.
For any 0 ≤ p ≤ 1 and any monotone property AX ⊂ 2X define

µp(AX) =
∑

s∈AX

p|s|(1 − p)e−|s|

to be the probability that a random set has the monotone property. For the
property UNSAT Ck,n

(among others), s is a set of clauses, hence this probability
measure does not match that for what we call random k-CNF expressions but
comes very close with p = m/(2k

(

n
k

)

) ≈ m · k!/(2n)k.

Observe that µp(AX) is an increasing function of p.5 Let pc(X) denote that
value of p for which µp(AX) = c. The values of pc(X) change as the size of X
increases. There are two threshold types.

AX is said to have a sharp threshold if, for any small, positive ǫ,

lim
|X|→∞

(p1−ǫ(X) − pǫ(X))/p1/2(X) = 0.

5By illustration using UNSATCk,n
this reflects the fact that, as p increases, the average

number of clauses increases, so the probability that an expression has the UNSATCk,n
property

increases.



AX is said to have a coarse threshold if, for any small, positive ǫ,

lim
|X|→∞

(p1−ǫ(X) − pǫ(X))/p1/2(X) > 0.

From experiments based on the constant width distribution it appeared that
UNSAT Ck,n

has a sharp threshold and that the density at which the crossover oc-
curs is a function of k. The so-called satisfiability threshold was therefore denoted
by rk. In addition, as m/n is reduced significantly below (the experimentally
determined) rk, algorithms of various types were observed to perform better and
expressions were more likely to be members of a polynomial time solvable class
(see Section 1.19 for a description - an analysis of these classes is given later in
this section), and as m/n is increased significantly above rk various algorithms
were observed to perform better. But, in the neighborhood of rk random ex-
pressions seemed to reach a point of maximum difficulty, at least for well-known,
well-tried algorithms. Hence, the study of satisfiability thresholds was motivated
by a possible connection between the nature of hardness and the nature and lo-
cation of thresholds. The constant width distribution has dominated this study,
perhaps because expressions generated when parameters are set near rk tend to
be extremely difficult for known algorithms.

The conjecture of a sharp threshold can be traced to a paper by Mitchell,
Selman, and Levesque (217) (1992) where the “easy-hard-easy” phenomenon is
pointed out. A possible explanation is given by Cheeseman in (60) (1991) where
long “backbones” or chains of inference are stated to be a likely cause as the
high density of well-separated “near-solutions” induced by backbones leads to
thrashing in search algorithms. Tremendous insight on this phenomenon came
from the field of Statistical Mechanics (220; 213) where the connection between
backbones and hardness was seen to be analogous to phase transitions in spin
glasses. Achlioptas advanced this further with a rigorous analysis as this volume
was going to press.

The satisfiability threshold for random (n,m, 2)-CNF expressions was found
by Chvátal and Reed to be sharp with r2 = 1 (63) (1992) (it is historically
correct to note that de la Vega (96) and Goerdt (123) independently achieved
the same result in the same year). The fact that (n,m, 2)-CNF expressions can
be solved in polynomial time (68) means that there is a simple characterization
for those instances which are unsatisfiable. Both (63) and (123) make use of this
characterization by focusing on the emergence of the “most likely” unsatisfiable
random (n,m, 2)-CNF expressions.

For k > 2 the situation was much more difficult. The results of Section 1.21,
some of which were bounded probability results, can be regarded as a history of
lower bounds for the satisfiability threshold. Upper bounds were improved at a
consistent rate for a while, the most intense investigation focusing on the case
k = 3. Results due to Frieze and Suen (116) (1996), Kamath, Motwani, Palem,
Spirakis (168) (1995), de la Vega (102) (1997), Dubois, Boufkhad (99) (1997),
Kirousis, Kranakis, Krizanc (177) (1996), Kirousis, Kranakis, Krizanc, Stama-
tiou (178) (1998), Dubois (98) (2001), and Dubois, Boufkhad, Mandler (100)
(2002), containing many beautiful ideas, have brought the upper bound down to
just over 4.5 for k = 3. From Section 1.21 the lower bound for k = 3 is 3.52.
From experiments, we expect r3 ≈ 4.25.



Friedgut (115) (1999) proved that sharp satisfiability thresholds exist for ran-
dom (n,m, k)-CNF expressions, thereby confirming the conjecture of (217). This
result immediately lifted all previously known and future constant probability
bounds, to almost surely bounds. Friedgut’s result has left open the possibil-
ity that the satisfiability threshold is a function of both k and n and it is still
not known whether the satisfiability threshold depends on n, as weak as that
dependency must be.

Monasson (220; 219) (1999) and others conjectured that there is a strong
connection between the “order” of threshold sharpness, that is whether the tran-
sition is smooth or discontinuous, and hardness. Consistent with this, using the
characterization of unsatisfiable (n,m, 2)-CNF expressions mentioned above, Bol-
lobas et al. (37) (2001) completely determined the “scaling window” for random
(n,m, 2)-CNF expressions, showing that the transition from satisfiability to un-
satisfiability occurs for m = n+λn2/3 as λ goes from −∞ to +∞. For some time
scaling windows for various problems were consistent with Monasson’s conjecture
(e.g. (76; 77)). But eventually the conjecture was disproved in (4) (2001) where
it was found that the order of threshold sharpness for the 1-in-k SAT problem,
which is NP -complete, is the same as that of 2-SAT.

On the other hand, the work of Creignou and Daudé (81) (2002), (78) (2004)
revealed the importance of minimal monotonic structures to the existence of
sharp transitions. An element s ∈ AX is said to be minimal if for all s′ ⊂ s,
s′ ∈ 2X \ AX . Those results have been used, for example, to show the limita-
tions of most succinctly defined polynomial-time solvable classes of expressions,
such as those mentioned in Section 1.19. Using density m/n of (n,m, k)-CNF
distributions as a measure, thresholds for some classes of Section 1.19 have been
determined: for example, a random (n,m, k)-CNF expression, k ≥ 3, is q-Horn
with probability tending to 1 ifm/n < O(1)/(k2−k) and with probability tending
to 0 if m/n > O(1)/(k2 − k) (113; 79). Except for the matched class, the mono-
tonic structure analysis shows why the classes of Section 1.19, including q-Horn,
SLUR, renameable Horn and many others, are weak: they are “vulnerable” to
cyclic clause structures, the presence of any of these in an expression prevents
it from having the polynomial-time solveable property. A random expression is
matched with probability tending to 1 if m/n < 0.64 (113): a result that adds
perspective to the scope of most polynomial-time solveable classes.

Also of historical importance are results on 2 + p mixed random expressions:
random expressions with width 2 and width 3 clauses, the p being the fraction
of width 3 clauses. This distribution was introduced in (176) (1994) to help un-
derstand where random expressions get hard during search: if a search algorithm
that embodies unit propagation is presented with a (n,m, 3)-CNF expression, ev-
ery search node represents such a mixed expression with a particular value of p so
hardness for some range of p could translate to hardness for search. Experimental
evidence suggested that for some pc, figured to be around 0.417, if p < pc the
width 3 clauses were effectively irrelevant to the satisfiability of a random expres-
sion but if p > pc the transition behavior was more like that of a random width
3 expression. In (5) (2001) it was shown that 0.4 < pc < 0.696 and conjectured
that pc = 0.4. In (3) (2004) it was shown that a random 2 + p mixed expression
has a minimum exponential size resolution refutation (that includes any DPLL



algorithm) with probability 1 − o(1) when the number of width 2 clauses is less
than ρn, ρ < 1, and p is any constant. Actually, the results of this paper are
quite far-ranging and provide new insights into the behavior of DPLL algorithms
as they visit search nodes that represent 2 + p expressions.

1.23. Stochastic Local Search (Hoos)

Stochastic local search (SLS) is one of the most successfully and widely used
general strategies for solving hard combinatorial problems. Early applications to
optimization problems date back to the to the 1950s (for example, see (82; 105;
198)), and the Lin-Kernighan algorithm for the Traveling Salesman problem (199)
(1973) is still among the most widely known problem-specific SLS algorithms.
Two of the most prominent general SLS methods are Simulated Annealing (175)
(1983) and Evolutionary Algorithms (106; 150; 258) (1966–1981).

SLS algorithms for SAT were first presented in 1992 by Gu (133) and Selman
et al. (262) (following earlier applications to Constraint Satisfaction (216) and
MAX-SAT (142)). Interestingly, both Gu and Selman et al. were apparently
unaware of the MAX-SAT work, and Hansen and Jaumard and Minton et al.
appear to have been unaware of each other’s work. The success of Selman et al.’s
GSAT algorithm in solving various types of SAT instances more effectively than
DPLL variants of the day sparked considerable interest in the AI community,
giving rise to a fruitful and active branch of SAT research. GSAT is based on
a simple iterative best improvement method with static restarts; in each local
search step, it flips the truth value of one propositional variable such that the
number of unsatisfied clauses in the given CNF formula is maximally reduced.

Within a year, the original GSAT algorithm was succeeded by a number of
variants. These include HSAT (120), which uses a very limited form of search
memory to avoid unproductive cycling of the search process; GSAT with Clause
Weighting (260), which achieves a similar goal using dynamically changing weights
associated with the clauses of the given CNF formula; and GSAT with Random
Walk (GWSAT) (260), which hybridizes the “greedy” search method underlying
GSAT with a simple random walk procedure (which had previously been shown
by Papadimitriou (229) to solve satisfiable 2-CNF formulae almost certainly in
O(n2) steps).

Two relatively subtle modifications of GWSAT lead to the prominent (basic)
WalkSAT algorithm (261), which is based on the idea of selecting a currently
unsatisfied clause in each step and satisfying that clause by flipping the value
assigned to one of its variables. Basic WalkSAT (also known as WalkSAT/SKC)
was shown empirically to outperform GWSAT and most other GSAT variants
for a broad range of CNF formulae; it is also somewhat easier to implement.
Variants of WalkSAT that additionally use search memory, in particular Walk-
SAT/Tabu (206) (1997) and Novelty+ (153; 154) (1998) – an extension of the
earlier Novelty algorithm of McAllester et al. (206) – typically achieve even better
performance. Novelty+, which has been proven to solve satisfiable CNF formulae
with arbitrarily high probability given sufficient time, was later extended with an
adaptive noise mechanism (155) (2002), and the resulting Adaptive Novelty+ al-
gorithm is still one of the most effective SLS algorithms for SAT currently known.



Based on the same fundamental idea of dynamically changing clause weights
as GSAT with Clause Weighting, Wah et al. developed an approach known as
Discrete Lagrangian Method (263) (1998), whose later variants were shown to
be highly effective, particularly for solving structured SAT instances (293; 294).
A conceptually related approach, which uses multiplicatively modified clause
weights has been developed by Schuurmans et al. (257) (2001) and later im-
proved by Hutter et al. (157) (2002), whose SAPS algorithm was, until recently,
one of the state-of-the-art SLS algorithms for SAT.

A detailed survey of SLS algorithms for SAT up to 2004 can be found in
Chapter 6 of the book by Hoos and Stützle (152). Since then, a number of
new algorithms have been developed, including Li and Huang’s G2WSAT (196)
(2005), which combines ideas from the GSAT and WalkSAT family of algorithms,
and Ishtaiwi et al.’s DDFW algorithm (158) (2006), which uses a dynamic clause
weight redistribution. In another line of work, Anbulagan et al. have reported
results suggesting that by using a resolution-based preprocessing method, the
performance of several state-of-the-art SLS algorithms for SAT can be further
improved (15)(2005).

SLS algorithms for SAT have also played an important role in theoretical
work on upper bounds on worst-case time complexity for solving SAT on k-
CNF formulae; this includes the previously mentioned random walk algorithm
by Papadimitriou (229) (1991) and later extensions by Schöning (253) (1999) and
Schuler et al. (256) (2001).

1.24. Maximum Satisfiability (Zhang)

The problem of finding a truth assignment to the variables of a CNF expression
that satisfies the maximum number of clauses possible is known as Maximum
Satisfiability or MAX-SAT. If clauses have at most two literals each, the problem
is known as MAX-2-SAT. The decision version of MAX-SAT and even MAX-2-
SAT is NP -complete. Unfortunately, there is no polynomial time approximation
scheme for MAX-SAT unless P = NP (20). Because the MAX-SAT problem is
fundamental to many practical problems in Computer Science (142) and Electri-
cal Engineering (295), efficient methods that can solve a large set of instances of
MAX-SAT are eagerly sought.

MAX-SAT: Decision Algorithms
Many of the proposed methods for MAX-SAT are based on approximation al-

gorithms (85) (2002); some of them are based on branch-and-bound methods (142)
(1990), (38) (1999), (26) (1999), (149) (2000), (227) (2000), (92) (2003); and some
of them are based on transforming MAX-SAT into SAT (295) (2002), (13) (2002).

Worst-case upper bounds have been obtained with respect to three parame-
ters: the length L of the input formula (i.e., the number of literals in the input),
the number m of the input’s clauses, and the number n of distinct variables oc-
curring in the input. The best known bounds for MAX-SAT are O(L2m/2.36) and
O(L2L/6.89) (26) (1999). The question of whether there exist exact algorithms
with complexity bounds down to O(L2n) has been open and of great interest
(see (226) (1998), (11) (2000), (128) (2003)) since an algorithm which enumer-



ates all the 2n assignments and then counts the number of true clauses in each
assignment would take time O(L2n). Recently, it has been shown that a branch-
and-bound algorithm can achieve O(b2n) complexity where b is the maximum
number of occurrences of any variable in the input. Typically, b ≃ L/n.

The operation of the best branch-and-bound algorithms for MAX-SAT is sim-
ilar to that of DPLL. Notable implementations are due to Wallace and Freuder
(implemented in Lisp) (288) (1996), Gramm (127) (1999), Borchers and Fur-
man (38) (1999 - implemented in C and publicly available), Zhang, Shen, and
Manyà (296) (2003), and Zhao and Zhang (297) (2004).

MAX-2-SAT: Decision Algorithms
MAX-2-SAT is important because a number of other NP -complete problems

can be reduced to it in a natural way, for example graph problems such as Max-
imum Cut and Independent Set (61) (1996), (202). For MAX-2-SAT, the best
bounds have been improved from O(m2m/3.44) (26) (1999), to O(m2m/2.88) (227)
(2000), and recently to O(m2m/5) (128) (2003). The recent branch-and-bound
algorithm cited above results in a bound of O(n2n) since b ≤ 2n. When m = 4n2

the bound is O(
√
m1.414

√
m), which is substantially better than the result re-

ported in (128).
For random 2-CNF formulas satisfiability thresholds have been found as fol-

lows:

Theorem (69) :

1. For c < 1, K(n, cn) = Θ(1/n).
2. For c large,

(0.25c− 0.343859
√
c+O(1))n ≥ K(n, cn) ≥ (0.25c− 0.509833

√
c)n.

3. For any fixed ǫ > 0, 1
3ǫ

3n ≥ K(n, (1 + ǫ)n).

In the above theorem, ≥ is a standard asymptotic notation: f(n) ≥ g(n) means
that f is greater than or equal to g asymptotically, that is, f(n)/g(n) ≥ 1 when
n goes to infinity, although it may be that f(n) < g(n) even for arbitrarily large
values of n.

1.25. Nonlinear formulations (Anjos)

The nonlinear formulations for SAT are based on the application of the fundamen-
tal concept of lift-and-project for constructing tractable continuous relaxations of
hard binary (or equivalently, Boolean) optimization problems. The application of
continuous relaxations to binary optimization dates back at least to Lovász’s in-
troduction of the so-called theta function as a bound for the stability number of a
graph (200). More generally, the idea of liftings for binary optimization problems
has been proposed by several researchers, and has led to different general-purpose
frameworks. Hierarchies based on linear programming relaxations include the
lift-and-project method of Balas, Ceria and Cornuéjols (25), the reformulation-
linearization technique of Sherali and Adams (266), and the matrix-cuts approach



of Lovász and Schrijver (201). Researchers in the SAT community have studied
the complexity of applying some of these techniques, and generalizations thereof,
to specific classes of SAT problems (see the recent papers (53; 129; 130)).

While the aforementioned techniques use linear programming relaxations, the
recent Lasserre hierarchy is based on semidefinite programming relaxations (189;
190). (Semidefinite constraints may also be employed in the Lovász-Schrijver
matrix-cuts approach, but in a different manner from that of the Lasserre paradigm.)
A detailed analysis of the connections between the Sherali-Adams, Lovász-Schrijver,
and Lasserre frameworks was done by Laurent (191). In particular, Laurent
showed that the Lasserre framework is the tightest among the three.

Semidefinite programming (SDP) refers to the class of optimization problems
where a linear function of a symmetric matrix variable X is optimized subject to
linear constraints on the elements of X and the additional constraint that X must
be positive semidefinite. This includes linear programming problems as a special
case, namely when all the matrices involved are diagonal. The fact that SDP
problems can be solved in polynomial-time to within a given accuracy follows
from the complexity analysis of the ellipsoid algorithm (see (132)). A variety of
polynomial time interior-point algorithms for solving SDPs have been proposed
in the literature, and several excellent solvers for SDP are now available. The
SDP webpage (145) and the books (93; 290) provide a thorough coverage of the
theory and algorithms in this area, as well as a discussion of several application
areas where semidefinite programming researchers have made significant contribu-
tions. In particular, SDP has been very successfully applied in the development of
approximation algorithms for several classes of hard combinatorial optimization
problems, including maximum-satisfiability (MAX-SAT) problems.

A σ-approximation algorithm for MAX-SAT is a polynomial-time algorithm
that computes a truth assignment such that at least a proportion σ of the clauses
in the MAX-SAT instance are satisfied. The number σ is the approximation ratio
or guarantee. For instance, the first approximation algorithm for MAX-SAT is
a 1

2 -approximation algorithm due to Johnson (166): given n values πi ∈ [0, 1],
the algorithm sets the ith Boolean variable to 1 independently and randomly
with probability πi; the resulting total expected weight of the satisfied clauses
is 1

2 . Unless P=NP , there is a limit to the approximation guarantees that can
be obtained. Indeed, Hästad (144) proved that unless P=NP , for any ǫ > 0,
there is no (21

22 + ǫ)-approximation algorithm for MAX-2-SAT, and no (7
8 + ǫ)-

approximation algorithm for MAX-SAT.

The most significant breakthrough was by Goemans and Williamson (122)
who proposed an SDP-based 0.87856-approximation algorithm for MAX-2-SAT.
The key to their analysis is the ingenious use of a randomly generated hyperplane
to extract a binary solution from the set of n-dimensional vectors defined by the
solution of the SDP relaxation. The randomized hyperplane rounding procedure
can be formally de-randomized using the techniques in (203).

A further significant improvement was achieved by Feige and Goemans (104)
who proposed a 0.931-approximation algorithm for MAX-2-SAT. There are two
key innovations introduced by Feige and Goemans. The first one is that they
tighten the SDP relaxation of Goemans and Williamson by adding the

(

n
3

)

triangle
inequalities. From the optimal solution of this strengthened SDP relaxation, they



similarly obtain a set of vectors, but instead of applying the random hyperplane
rounding technique to these vectors directly, they use them to generate a set of
rotated vectors to which they then apply the hyperplane rounding.

Karloff and Zwick (171) proposed a general construction of SDP relaxations
for MAX-k-SAT. Halperin and Zwick (136) consider strengthened SDP relax-
ations for MAX-k-SAT, and specifically for MAX-4-SAT, they studied several
rounding schemes, and obtained approximation algorithms that almost attain
the theoretical upper bound of 7

8 . Most recently, Asano and Williamson (21)
have combined ideas from several of the aforementioned approaches and obtained
a 0.7846-approximation algorithm for general MAX-SAT.

For the decision version of SAT, the first SDP-based approach is the Gap
relaxation of de Klerk, van Maaren, and Warners (95; 94). This SDP relaxation
was inspired by the work of Goemans and Williamson as well as by the concept
of elliptic approximations for SAT instances. These approximations were first
proposed in (283) and were applied to obtain effective branching rules as well
as to recognize certain polynomially solvable classes of SAT instances. The idea
behind the elliptic approximations is to reformulate a SAT formula on n boolean
variables as the problem of finding a ±1 (hence binary) n-vector in an intersection
of ellipsoids in Rn. Although it is difficult to work directly with intersections of
ellipsoids, it is possible to relax the formulation to an SDP problem. The result-
ing SDP relaxation is called the Gap relaxation. This relaxation characterizes
unsatisfiability for 2-SAT problems (95). More interestingly, it also characterizes
satisfiability for a class of covering problems, such as mutilated chessboard and
pigeonhole instances. Rounding schemes and approximation guarantees for the
Gap relaxation, as well as its behaviour on (2 + p)-SAT problems, are studied
in (94).

An elliptic approximation uses a quadratic representation of SAT formulas.
More powerful relaxations can be obtained by considering higher-degree polyno-
mial representations of SAT formulas. The starting point is to define for each
clause a polynomial in ±1 variables that equals 0 if and only if the clause is sat-
isfied by the truth assignment represented by the values of the binary variables.
Thus, testing satisfiability of a SAT formula is reduced to testing whether there
are values x1, . . . , xn ∈ {−1, 1} such that for every clause in the instance, the
corresponding polynomial evaluated at these values equals zero.

We present two ways that SDP can be used to attempt to answer this ques-
tion. One of them applies the Lasserre hierarchy mentioned above as follows. The
Gap relaxation has its matrix variable in the space of (n+1)× (n+1) symmetric
matrices, and is thus a first lifting. To generalize this operation, we allow the
rows and columns of the SDP relaxations to be indexed by subsets of the discrete
variables in the formulation. These larger matrices can be interpreted as higher
liftings. Applying directly the Lasserre approach to SAT, we would use the SDP
relaxations QK−1 (as defined in (189)) for K = 1, 2, . . . , n where the matrix vari-
able of QK−1 has rows and columns indexed by all the subsets I with ‖I‖ ≤ K
(hence for K = 1, we obtain the matrix variable of the Gap relaxation). The
results in (190) imply that for K = n, the resulting SDP relaxation characterizes
satisfiability for every instance of SAT. However, this SDP has dimension expo-
nential in n. Indeed, the SDP problems quickly become far too large for practical



computation. This limitation motivated the study of partial higher liftings, where
we consider SDP relaxations that have a much smaller matrix variable, as well
as fewer linear constraints. The construction of such partial liftings for SAT be-
comes particularly interesting if we let the structure of the SAT instance specify
the structure of the SDP relaxation.

One of these partial liftings was proposed in (18). This construction considers
all the monomials

∏

i xi that appear in the instance’s satisfiability conditions.
An appropriate SDP relaxation is then defined where each row and column of
the matrix variable corresponds to one of these terms. The resulting matrix is
highly structured, and hence the SDP relaxation can be strengthened by adding
some constraints that capture this structure. The tradeoff involved in adding such
constraints to the SDP problem is that as the number of constraints increases, the
SDP problems become increasingly more demanding computationally. Anjos (18)
defines the SDP relaxation R3 by proposing to add a relatively small number of
these constraints, judiciously chosen so that it is possible to prove the following
result: if R3 is infeasible, then the SAT instance is unsatisfiable; while if R3 is
feasible, and Y is a feasible matrix such that rank(Y ) ≤ 3, then the SAT instance
is satisfiable, and a model can be extracted from Y . Thus the SDP relaxation can
prove either satisfiability or unsatisfiability of the given SAT instance. A more
compact relaxation is obtained by defining the columns of the matrix variable
using only the sets of odd cardinality. This yields the SDP relaxation R2 (16),
an intermediate relaxation between the Gap relaxation (call it R1 ) and R3.
The names of the relaxations reflect their increasing strength in the following
sense: For k = 1, 2, 3, any feasible solution to the relaxation Rk with rank at
most k proves satisfiability of the corresponding SAT instance. Furthermore, the
increasing values of k also reflect an improving ability to detect unsatisfiability,
and an increasing computational time for solving the relaxation.

From the computational point of view, it is only possible to tackle relatively
small SAT instances (regardless of the choice of SDP relaxation) if branching is
needed (17). However, when it does not require branching, the SDP approach can
be competitive. For instance, the SDP approach can successfully prove (without
branching) the unsatisfiability of the hgen8 instances, one of which was the small-
est unsatisfiable instance that remained unsolved during the SAT competitions
of 2003 and 2004.

A second way to test whether there is a set of ±1 values for which the
clause polynomials all equal zero was proposed by van Maaren and van Nor-
den (285; 286). They consider (among others) the aggregate polynomial obtained
by summing all the polynomials arising from clauses. This polynomial turns
out to be non-negative on {−1, 1}n, and for x ∈ {−1, 1}n it equals the number
of unsatisfied clauses. (Hence, MAX-SAT is equivalent to the minimization of
this polynomial over {−1, 1}n.) An SDP relaxation is obtained as follows. Sup-
pose we are given a column vector β of monomials in the variables x1, . . . , xn

and a polynomial p(x). Then p(x) can be written as a sum-of-squares (SOS) in
terms of the elements of β if and only if there exists a matrix S � 0 such that
βTSβ = p (230). If S is symmetric positive semidefinite, then S = WTW for
some matrix W , and hence we have an explicit decomposition of p as an SOS:



βTSβ = p⇒ ||Wβ||22 = p. The resulting SDP problem is

max g

s.t. FB
Φ (x) − g ≡ βTSβ modulo IB

S � 0

where IB denotes the ideal generated by the polynomials x2
k − 1, k = 1, . . . , n.

(The fact that each degree k polynomial that is non-negative on {−1, 1}n can be
expressed as an SOS modulo IB follows from the work of Putinar (239).) Note
that since β is fixed, the equation F (x)−g = βTSβ is linear in S and g, and hence
this is an SDP problem. The SOS approach can thus be applied to obtain proofs
of (un)satisfiability. For instance, it is straightforward to prove that if there exists
a monomial basis β and an ǫ > 0 such that FB(x) − ǫ is a SOS modulo IB, then
the underlying SAT formula is unsatisfiable.

For the SOS approach, different choices of the basis β result in different
SDP relaxations. Among the choices considered by van Maaren and van Norden
are the following: SOSGW is the relaxation obtained using the basis containing
1, x1, . . . , xn ; SOSp is obtained using the basis containing 1, x1, . . . , xn, plus the
monomial xk1xk2 for each pair of variables that appear together in a clause; SOSap

is obtained using the basis containing 1, x1, . . . , xn, plus the monomials xk1xk2

for all pairs of variables; SOSt is obtained using the basis containing 1, x1, . . . , xn,
plus the monomial xk1xk2xk3 for each triple of variables that appear together in
a clause; and SOSpt is obtained using the basis containing 1, x1, . . . , xn, plus the
monomial xk1xk2 for each pair of variables that appear together in a clause, plus
xk1xk2xk3 for each triple of variables that appear together in a clause.

The notation SOSGW is justified by the fact that SOSGW is precisely the
dual of the SDP relaxation used by Goemans and Williamson in their seminal pa-
per (122). van Maaren and van Norden prove that SOSGW gives the same upper
bound for MAX-2-SAT as the relaxation of Goemans and Williamson. They also
show that for each triple xk1xk2xk3 , adding the monomials xk1xk2 , xk1xk3 , and
xk2xk3 gives an SDP relaxation at least as tight as that obtained by adding the
corresponding triangle inequality to the Goemans-Williamson relaxation. Fur-
thermore, they prove that the SDP relaxation SOSap is at least as tight as the
Feige-Goemans relaxation, and that for every instance of MAX-3-SAT, the SDP
relaxation SOSpt provides a bound at least as tight as the Karloff-Zwick relax-
ation.

From the computational point of view, van Maaren and van Norden provide
computational results comparing several of these relaxations on instances of vary-
ing sizes and varying ratios of number of clauses to number of variables. They
propose rounding schemes for MAX-2-SAT and MAX-3-SAT based on SOSp and
SOSt respectively, and present preliminary results comparing their performance
with the rounding schemes mentioned above. They also compare the performance
of the R3 relaxation with the SOS approach using either SOSt or SOSpt . Their
preliminary results suggest that SOSpt offers the best performance.

The most recent result about the nonlinear approach is that the SDP ap-
proach can explicitly characterize unsatisfiability for the well-known Tseitin in-
stances on toroidal grid graphs. Consider a p× q toroidal grid graph and for each



node (i, j), set the parameter t(i, j) = 0 or 1. Introduce a Boolean variable for
each edge, and for each node (i, j), define 8 clauses on the four variables adjacent
to it as follows: if t(i, j) = 0, add all clauses with an odd number of negations;
and if t(i, j) = 1, add all clauses with an even number of negations. It is clear that
the SAT instance is unsatisfiable if and only if

∑

(i,j) t(i, j) is odd. It is shown

in (19) how to construct an SDP relaxation with matrix variable of dimension
14pq and with 23pq − 1 linear equality constraints such that the SDP problem
is infeasible if and only if the SAT instance is unsatisfiable. Therefore, for these
instances, the SDP-based approach provides, in theory, an explicit certificate of
(un)satisfiability, and therefore makes it possible to numerically compute such a
certificate to within a given precision in polynomial time.

1.26. Pseudo-Boolean Forms

Let Bn be the set of binary vectors of length n. Mappings f :Bn 7→ ℜ are called
pseudo-Boolean functions. Let V = {v1, v2, . . . , vn} be a set of n binary variables.
Since there is a one-to-one correspondence between subsets of V and Bn these
functions are called set functions. There is a natural connection between pseudo-
Boolean functions and binary optimization which has been exploited since the
1960s, especially following the seminal treatment of the topic by Hammer and
Rudeanu in 1968 (140). Areas impacted by pseudo-Boolean functions are di-
verse and include VLSI design (for example, (27)), maximum satisfiability (for
example, (172)), clustering in statistics (for example, (242)), economics (for ex-
ample, (141)), graph theory (for example, (233)), and scheduling, among many
others.

There are at least two important representations of pseudo-Boolean func-
tions. All pseudo-Boolean functions may be uniquely represented as multi-linear
polynomials of the form

f(v1, v2, . . . , vn) = cf +
∑

S⊆V

cS
∏

v∈S

v

where cS is some real number that depends on S and cf is a constant. The degree
of such a polynomial is the largest S for which cS 6= 0. A degree 1 polynomial is
called linear , a degree 2 polynomial is called quadratic and so on.

Polynomials can also be written with non-negative constants using products
of literals instead of products of variables as follows:

f(v1, v2, . . . , vn) = cf +
∑

S⊆V ∪V

cS
∏

l∈S

l

where V = {¬v1,¬v2, . . . ,¬vn} is the set of negative literals associated with vari-
ables (and positive literals) V and cS ≥ 0 with cS = 0 if there is a complementary
pair {v,¬v} ∈ S. This is called the posiform representation of a pseudo-Boolean
function. Although a posiform uniquely determines a pseudo-Boolean function, a
pseudo-Boolean function may be represented by more than one posiform. More-
over, it is easy to compute a posiform from a polynomial representation but it
may be difficult to compute a unique polynomial representation corresponding to



a given posiform. Because factors cS are non-negative, minimizing a posiform is
essentially the same as maximizing the number of terms that are 0. Thus, the
posiform representation is closely related to instances of maximum satisfiability
and the problem of determining satisfiability of a Boolean formula may be viewed
as testing whether the minimum of a posiform is equal to its constant term.

The optimization of a pseudo-Boolean function can be reduced in polynomial
time to the optimization of a quadratic pseudo-Boolean function (246) (1972)
by repeatedly substituting a new variable for a product of two variables and the
addition of constraints that force the new variable to take the value of the product.
However, a posiform corresponding to a quadratic pseudo-Boolean function may
have degree higher than 2.

The basic algorithm for finding the optimum value of a pseudo-Boolean func-
tion was introduced in (139; 138) (1963) and refined in (140) (1968). Although the
algorithm has exponential complexity, special cases have been found, for example
where the algorithm is fixed-parameter tractable (75) (1990). An upper (lower)
bound of a pseudo-Boolean function may be obtained by a term-by-term ma-
jorization (minorization) procedure which was introduced in (137) (1984). An al-
gorithm for posiforms known as the DDT algorithm was developed in (41) (1989).

In (66) (1996) a variant of the Gröbner basis algorithm was applied to sys-
tems of posiforms restricted to modulo 2 arithmetic. The base operations of that
algorithms were posiform addition, modulo 2, and variable multiplication. Ap-
plication of such an operation is called a derivation. It was shown in (66) that
the algorithm uses a number of derivations that is guaranteed to be within a
polynomial of the minimum number possible and that the minimum number of
derivations cannot be much greater than, and may sometimes be far less than,
the minimum number needed by resolution.

More recently, conventional resolution-based SAT solvers have been general-
ized to solve systems of linear polynomials. An early example is OPBDP (29)
(1995). Notable advanced examples include PBS (14) (2002) which has advanced
to PBS4 (12) (2005), Galena (55) (2003), and Pueblo (265) (2006). In (101) (2006)
it is shown that translating linear polynomials to CNF clauses and then solv-
ing with a conventional SAT solver is a viable alternative to specialized pseudo-
Boolean solvers although some expertise is needed to obtain the best translations.
The authors point out that translations might be the best approach when prob-
lems are modeled with many clauses and a few pseudo-Boolean contraints.

1.27. Quantified Boolean formulas (Kleine Büning)

The concept of quantified Boolean formulas (QBF) is an extension of proposi-
tional logic that allows existential (∃) and universal (∀) quantifiers. The intended
semantics of quantified Boolean formulas, without free variables, is that a uni-
versally quantified formula ψ = ∀xφ is true if and only if for every assignment of
the truth values 1 and 0 to the variable x, ψ is true. For existentially quantified
formulas ψ = ∃xφ, ψ is true if and only if there is an assignment to x for which
φ is true. In the case of free variables, ψ is called satisfiable if there is a truth
assignment to the free variables such that ψ is true. The satisfiability problem
for quantified Boolean formulas is often denoted as QSAT.



Most of the research has been done for formulas in prenex form, that is,
formulas of the form Q1x1 . . . Qnxnφ, where Qi ∈ {∃, ∀}, x1, . . . , xn are variables,
and φ is a propositional formula called the matrix. By standard techniques, every
quantified Boolean formula can be transformed into a logically equivalent formula
in prenex form. In the same way, by the well-known procedure for propositional
formulas, logically equivalent formulas with a CNF matrix or 3-CNF matrix can
be obtained. These classes are denoted as QCNF and Q3-CNF.

Quantified Boolean formulas with free variables are logically equivalent to
Boolean functions. But, clearly, there is no polynomial p such that every n-ary
Boolean function can be represented as a quantified Boolean formula of length
p(n). However, for various applications, QBFs lead to shorter formulas in com-
parison to propositional formulas. See, for example, (167).

The first papers on QBFs were motivated by questions arising from compu-
tational complexity. Like SAT for NP, it has been shown in (212) that QSAT is
one of the prominent PSPACE-complete problems. In a more detailed analysis,
a strong relationship was shown between the satisfiability problem of formulas
with a fixed number of alternations of quantifiers and the polynomial–time hier-
archy (211) where the polynomial–time hierarchy is defined as follows (k ≥ 0):

∆P
0 := ΣP

0 := ΠP
0 := P

ΣP
k+1 := NPΣP

k , ΠP
k+1 := coΣP

k+1, ∆P
k+1 := PΣP

k

For quantified Boolean formulas in prenex form, the prefix type is defined as
follows:

1. The prefix type of a propositional formula is Σ0 = Π0.
2. Let Φ be a formula with prefix type Σn (Πn respectively), then the for-

mula ∀x1 . . . ∀xnΦ (∃x1 . . .∃xnΦ respectively) is of prefix type Πn+1 (Σn+1

respectively).

It has been proved that for k ≥ 1, the satisfiability problem for formulas with
prefix type Σk (Πk respectively) is ΣP

k -complete (ΠP
k -complete respectively) (268;

292). Since PSPACE = NPSPACE (249), almost all quantified Boolean for-
mula problems are solvable in PSPACE. For example, in propositional logic, the
equivalence problem is ⌋oNP -complete, whereas for quantified Boolean formulas,
the problem remains PSPACE-complete.

In addition to propositional formulas, a dichotomy theorem for quantified
Boolean formulas has been established in (250). The idea was to classify classes
of quantified Boolean formulas by means of a finite set of constraints, where
the constraints are Boolean functions. The dichotomy theorem says that if the
Boolean functions are equivalent to Horn formulas (anti-Horn formulas, 2-CNF
formulas, XOR-CNF formulas respectively), then the satisfiability problems for
the quantified classes are in P, otherwise they are PSPACE-complete. As a con-
sequence, the solvability of the satisfiability problem for Q2-CNF and QHORN
follows, where QHORN is the set of formulas, whose matrix is a Horn formula.
Detailed proofs and extensions of the dichotomy theorem can be found, for ex-
ample, in (83; 80). For formulas with fixed prefix type, further results have been
shown in (146).



For Q2-CNF, the first linear-time algorithm for solving the satifiability problem
has been presented in (23). For QHORN, the best known algorithm can be found
in (182). The latter algorithm requires not more than O(r · n) steps, where r is
the number of universal variables and n is the length of the formula.

Not all the problems solvable in polynomial time for propositional formulas
remain polynomial-time solvable for quantified formulas. For example, in contrast
to the polynomial-time solvability of the equivalence problem for Horn formulas,
the equivalence problem for quantified Horn formulas is ⌋oNP -complete (183).

Instead of restrictions on the form of clauses, classes of quantified formulas
satisfying some graph properties have been investigated. Examples are quantified
versions of ordered binary decision diagrams (OBDDs) and free binary decision di-
agrams (FBDDs) (see, for example, (70)). For instance, the satisfiability problem
for quantified FBDDs is PSPACE-complete.

Q-resolution is an extension of the resolution calculus for propositional for-
mulas to quantified formulas. Q-unit-resolution was introduced in (174) and was
then generalized to Q-resolution in (182). Here, a Q-unit clause contains at most
one free or existentially quantified literal and arbitrarily many universal literals.
The idea of Q-resolution is to resolve only over complementary pairs of existential
or free variables, combined with a careful handling of the universal literals. Q-
resolution is refutation complete and sound for QCNF. Similar to propositional
Horn formulas, Q-unit-resolution is refutation complete for QHORN, and also
for the class QEHORN. That is the set of formulas for which, after deleting the
universal literals in the matrix, the remaining matrix is a Horn formula. The
satisfiability problem for that class remains PSPACE-complete (173).

A more functional view of the valuation of quantified Boolean formulas is the
observation that a formula is true if and only if for every existential variable y
there is a Boolean function fy(x1, . . . , xm) depending on the dominating universal
variables x1, . . . , xm, such that after replacing the existential variables y by the
associated functions fy(x1, . . . , xm) the formula is true. The set of such functions
is called a satsifiability model. For some classes of quantified Boolean formulas,
the structure of the satisfiability models has been investigated. For example, sat-
isfiable quantified Horn formulas have satisfiability models which consist of the
constants true and false or conjunctions of variables. For Q2-CNF, the models
are constants or a literal (184). Instead of satisfiability models, one can ask for
Boolean functions, such that after replacing the existentially quantified variables
with the functions, the formula is logically equivalent to the initial formula. These
functions are called equivalence model. Equivalence models describe in a certain
sense the internal dependencies of the formula. For example, quantified Horn
formulas have equivalence models consisting of monotone functions. By means of
this result, it has been shown that every quantified Horn formula can be trans-
formed into an equivalent existentially quantified Horn formula in time O(r · n),
where r is the number of universal variables and n is the length of the formula
(51).
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Chapter 2

Glossary

algebraic structure: (8)

A set of underlying elements and operations on them obeying defining axioms. See
structure below for details and Boolean algebra below for the definition of Boolean
algebra as a structure.

Boolean algebra: (14)

An algebraic structure whose constant set is {0, 1}, whose operations ∨, ∧, ¬ obey
axioms of distributivity, commutativity, associativity, absorbtion, and where x∨¬x = 1,
x ∧ ¬x = 0, 1 ∧ x = x, and 0 ∨ x = x.

epistemic modifier: (12)

A grammatical element which is neither an argument nor a predicate, but which mod-
ifies another element or phrase (e.g. a predicate) to indicate degree of truth. For
example, A knows B, A believes B

formal language: (14,18)

An unordered pair {A,F} where F is a set of finite-length sequences of elements taken
from a set A of symbols. A first-order logic language L has the following sets of
non-logical symbols in A:

1. C, the set of constant symbols of L.
2. P , the set of predicate symbols of L. For each P ∈ P , α(P ) denotes the arity

of P . The symbols in P are also called relation symbols of L.
3. F , the set of function symbols of L. For each f ∈ F , α(f) denotes the arity of

f . The symbols in F are also called operation symbols of L.
4. {∀,∃}, the universal and existential quantifier symbols of L.



homomorphism: (60)

As used here, given structures A and B for a common language L, the mapping h :
A → B is a homomorphism if

1. For each constant c ∈ C, h(cA) = cB.
2. For each predicate symbol P ∈ P , if α(P ) = n, then PB =

{h(a1), ..., h(an)|a1, ..., an ∈ PA}.
3. For each function symbol f ∈ F , if α(f) = n, then for any a1, ..., an ∈

A, h(fA(a1, ..., an)) = fB(h(a1), ..., h(an)).

Thus, a homomorphism h between the Boolean algebras A and B is a function such
that for all a, b ∈ A:

h(a ∨ b) = h(a) ∨ h(b)

h(a ∧ b) = h(a) ∧ h(b)

h(0) = 0

h(1) = 1

interpretation: (8)

A homomorphism h : A → B from the syntax of a formal language viewed as an
algebraic structure to semantic values in some other structure. The structure B is said to
be a model. In first-order logic the underlying set of A includes symbols D representing
values that may be assigned to variables. The interpretation supplies mappings for
each of the function and predicate symbols of A to arity consistent functions of domain
D for the former and domain {0, 1} for the latter.

modal modifier: (12)

A grammatical element which is neither an argument nor a predicate, but which modi-
fies another element or phrase (e.g. a predicate) to indicate the attitude of the speaker
with respect to the truth-value of the proposition expressed. Examples are must,
should, maybe, possibly, can.

model: (8)

A model of a theory T consists of a structure in which all sentences of T are true.

prenex form: (24,55)

A formula of the form Q1x1 . . . Qnxnφ, where Qi ∈ {∃,∀}, x1, . . . , xn are variables, and
φ is a propositional formula called the matrix.



structure: (8,60)

For the purposes of this handbook, a structure for a language L is a pair A = 〈D, R〉,
where D is a non-empty set of entities (objects, concepts, etc.) called the domain of
L, and R is a function, called the interpretation, that assigns to each constant of L an
entity in D, to each predicate symbol of L a relation among entities in D, and to each
function symbol of L a function among entities in D. A sentence p of L is said to be
true if the entities chosen as the interpretations of the sentence’s terms and functors
stand to the relations chosen as the interpretation of the sentence’s predicates.

Alternatively, A = 〈D, {PA}P∈P , {fA}f∈F , {cA}c∈C〉 where P , F , and C are the
constant, predicate, and function symbols for L. The set PA is a set of predicate
symbols, fA is a set of function symbols, and cA is a set of constant symbols, such
that

1. For each P ∈ P , PA ⊆ D
α(P ),

2. For each f ∈ F , fA : Dα(f) → D.
3. For each c ∈ C, cA ∈ D,

where α is the arity function.

theory: (7)

A set of sentences in a language L. A theory is said to be closed if the set of sentences
is closed under the usual rules of inference.
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