
Handbook of
Software Reliability

Engineering

Handbook of
Software Reliability

Engineering

Michael R. Lyu Editor in Chief

IEEE COMPUTER SOCIETY PRESS
Los Alamitos, California

Washington Brussels Tokyo

McGraw-Hill
New York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mex ico City Milan Montreal New
Delhi San Juan Singapore Sydney Tokyo Toronto

Library of Congress Cataloging -i n-Publication Data

Handbook of software reliability engineering / Michael R. Lyu, editor in chief.
p. cm. Includes index. ISBN

0-07-039400-8 (alk. paper)
1. Computer software— Reliability— Handbooks, manuals, etc. I. Lyu,

Michael R. QA76.76.R44H36 1995
005.1 — dc20 95 -46468 CIP

McGraw-Hill
A Division of The McGraw-Hill Companies

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system, without
the prior written per mission of the publisher.

1234567890 BKP/BKP 9009876

P/N 039401-6
PART OF
ISBN 0 -07-039400-8

The sponsoring editor for this book was Marjorie Spencer, the editing supervisor was
Christine H. Furry, and the production supervisor was Suzanne W. B. Rapcavage. This
book was set in Century Schoolbook by North Market Street Graphics.
Printed and bound by Quebecor / Book Press. This

book is printed on acid -free paper.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The author and publisher have exercised care in preparin g this book and the programs con tained in
it. They make no representation, however, that the programs are error-free or suit able for every
application to which a reader may attempt to apply them. The author and publisher make no
warranty of any kind, expressed or implied, including the warranties of merchantability or fitness
for a particular purpose, with regard to these programs or the documentation or theory contained in
this book, all of which are provided "as is." The author and publisher shall not be liable for
damages in an amount greater than the purchase price of this book, or in any event for incidental
or consequential damages in connection with, or arising out of the furnishing, performance, or use
of these programs or the associated descriptions or discussions.

Readers should test any program on their own systems and compare results with those presented
in this book. They should then construct their own test programs to verify that they fully
understand the requisite calling conventions and data formats for each of the programs. Then they
should test the specific application thoroughly

To my wife C. Felicia Lyu,
for her love, understanding, and
support throughout this project

Contents

Contributors xvi i i Foreword by Alfred V.
Aho xix Foreword by Richard A.
DeMil lo xxi Preface xxi i i

Part 1 Technical Foundations

Chapter 1 . Introduction 3

1.1 The Need for Reliable Software 3
1.2 Software Reliability Engineering Concepts 5
1.3 Book Overview 8
1.4 Basic Definitions 12
1.5 Technical Areas Related to the Book 19

1.5.1 Fault Prevention 19
1.5.2 Fault Removal 20
1.5.3 Fault Tolerance 20
1.5.4 Fault/ Failure Forecasting 21
1.5.5 Scope of This Handbook 21

1.6 Summary 22
Problems 22

C hapter 2. Software Reliability and System Reliability 27

2.1 Introduction 27
2.2 The Dependability Concept 28

2.2.1 Basic Definitions 28
2.2.2 On the Impairments to Dependability 28
2.2.3 On the Attributes of Dependability 32
2.2.4 On the Means for Dependability 33

2.3 Failure Behavior of an X- w a r e System 35
2.3.1 Atomic Systems 35
2.3.2 Systems Made Up of Components 41

2.4 Failure Behavior of an X- ware System with Service Restoration 49
2.4.1 Characterization of System Behavior 50
2.4.2 Maintenance Policie s 51

vii

viii Contents

2.4.3 Reliability Modeling
2.4.4 Availability Modeling

2.5 Situation with Respect to the State of the Art in Reliability Evaluation
2.6 Summary Problems

Chapter 3. Software Reliability Modeling Survey

3.1 Introduction
3.2 Historical Perspective and Implementation

3.2.1 Historical Background
3.2.2 Model Classification Scheme
3.2.3 Model Limitations and Implementation Issues

3.3 Exponential Failure Time Class of Models
3.3.1 Jelinski -Moranda De-eutrophication Model
3.3.2 Nonhomogeneous Poisson Process (NHPP) Model
3.3.3 Schneidewind's Mode l
3.3.4 Musa's Basic Execution Time Model
3.3.5 Hyperexponential Mode l
3.3.6 Others

3.4 Weibull and Gamma Failure Time Class of Models
3.4.1 Weibull Model
3.4.2 S-Shaped Reliability Growth Model

3.5 Infinite Failure Category Models
3.5.1 Duane's Mode l
3.5.2 Geometric Model
3.5.3 M u s a-Okumoto Logarithmic Poisson

3.6 Bayes ian Models
3.6.1 Lit t lewood-Verrall Reliability Growth Model
3.6.2 Other Bayesian Models

3.7 Model Relationships
3.7.1 Generalized Exponentia l Model Class
3.7.2 Exponential Order Statistic Model Class

3.8 Software Reliability Prediction in Early Phases of the Life Cycle
3.8.1 Phase-Based Model
3.8.2 Predicting Software Defects from Ada Designs
3.8.3 Rome Laboratory Work

3.9 Summary Problems

Chapter 4. Techniques for Prediction Analysis and Recalibration

4.1 Introduction
4.2 Examples of Model Disagreement and Inaccuracy

4.2.1 Simple Short-Term Predictions
4.2.2 Longer -Term Predictions
4.2.3 Model Accuracy Varies from Data Source to Data Source
4.2.4 Why We Cannot Select the Best Model a Priori
4.2.5 Discussion: A Possible Way Forward

4.3 Methods of Analyzing Predictive Accuracy
4.3.1 Basic Ideas: Recursive Comparison of Predictions with

Eventual Outcomes

Contents ix

4.3.2 The Prequential Likelihood Ratio (PLR) 131
4.3.3 The U -Plot

135
4.3.4 The V-Plot

140
4.3.5 Discussion: The Likely Nature of Prediction Errors, and How We

Can Detect Inaccuracy 141
4.4 Recalibration

145
4.4.1 The L/ -Plot as a Means of Detecting Bia s 145
4.4.2 The Recalibration Technique 146
4.4.3 Examples of the Power of Recalibration 147

4.5 A Worked Example 150
4.6 Discussion

156
4.6.1 Summary of the Good News: Where We Are Now 156
4.6.2 Limitations of Present Techniques
159
4.6.3 Possible Avenues for Improvement of Methods 160
4.6.4 Best Advice to Potential Users 162

4.7 Summary 163
Problems 164

Chapter 5. The Operational Profile
 16
7

5.1 Introduction 167
5.2 Concepts 168
5.3 Development Procedure 170

5.3.1 Customer Type List 173
5.3.2 User Type List 173
5.3.3 System Mode List 174
5.3.4 Functional Profile 176
5.3.5 Operational Profile 183

5.4 Test Selection 194
5.4.1 Selecting Operations 195
5.4.2 Regression Test 196

5.5 Special Issues 197
5.5.1 Indirect Input Variables 197
5.5.2 Updating the Operational Profile 197
5.5.3 Distributed Systems 198

5.6 Other Uses 199
5.7 Application to DEFINITY ® 200

5.7.1 Project Description 200
5.7.2 Development Process Description 200
5.7.3 Describing Operational Profiles 201
5.7.4 Implementing Operational Profiles 203
5.7.5 Conclusion 204

5.8 Application to FASTAR® " (FAST Automated Restoration) 204
5.8.1 System Description 204
5.8.2 FASTAR: S R E Implementation 206
5.8.3 FASTAR: SRE Benefits 210

5.9 Application to the Power Quality Resource System (PQRS) 210
5.9.1 Project Description 210
5.9.2 Developing the Operational Profile 211
5.9.3 Testing 213
5.9.4 Conclusion 214
5.10 Summary 215
Problems 215

x Contents

Part 2 Practices and Experiences

Chapter 6. Best Current Practice of SRE 219

6.1 Introduction 219
6.2 Benefits and Approaches to SRE 220

6.2.1 Importance and Benefits 221
6.2.2 An SRE Success Story 221
6.2.3 SRE Costs 222
6.2.4 SRE Activities 223
6.2.5 Implementing SRE Incrementally 223
6.2.6 Implementing SRE on Existing Projects 224
6.2.7 Implementing SRE on Short-Cycle Projects 226

6.3 SRE During the Feasibility and Requirements Phase 226
6.3.1 Feasibility Stage 226
6.3.2 Requirements Stage 228

6.4 SRE During Design and Implementation Phase 232
6.4.1 Design Stage 232
6.4.2 Implementation Stage 233

6.5 SRE During the System Test and Field Trial Phase 235
6.5.1 Determine Operational Profile 236
6.5.2 System Test Stage 237
6.5.3 Field Trial Stage 241

6.6 SRE During the Postdel ivery and Maintenance Phase 242
6.6.1 Project Post re lease Staff Needs 242
6.6.2 Monitor Field Reliability versus Objectives 243
6.6.3 Track Customer Satisfaction 245
6.6.4 Time New Feature Introduction by Monitoring Reliability 245
6.6.5 Guide Produce and Process Improvement with Reliability Measures 246

6.7 G etting Started with SRE 246
6.7.1 Prepare Your Organization for SRE 247
6.7.2 Find More Information or Support 250
6.7.3 Do an SRE Self -Assessment 250

6.8 Summary 252
Problems 253

Chapter 7. Software Reliability Measurement Experience 255

7.1 Introduction 255
7.2 Measurement Framework 256

7.2.1 Establishing Software Reliability Requirements 259
7.2.2 Setting Up a Data Collection Process 266
7.2.3 Defining Data to Be Collected 267
7.2.4 Choosing a Preliminary Set of Software Reliability Models 272
7.2.5 Choosing Reliability Modeling Tools 273
7.2.6 Model Application and Application Issues 273
7.2.7 Dealing with Evolving Software 276
7.2.8 Practical Limits in Modeling Ultrareliability 277

7.3 Project Investigation at JPL 278
7.3.1 Project Selection and Characterization 278
7.3.2 Characterization of Available Data 280
7.3.3 Experimental Results 280

7.4 Investigation at Bellcore 281
7.4.1 Project Characteristics 281

Contents xi

7.4.2 Data Collection 284
7.4.3 Application Results 285

7.5 Linear Combination of Model Results 289
7.5.1 Statically Weighted Linear Combinations 290
7.5.2 Weight Determination Based on Ranking Model Results 290
7.5.3 Weight Determination Based on Changes in Prequent ia l Likelihood 291
7.5.4 Modeling Results 291
7.5.5 Overall Project Results 292
7.5.6 Extensions and Alternatives 295
7.5.7 Long -Term Prediction Capability 298

7.6 Summary 299
Problems 300

Chapter 8. Measurement -Based Analysis of Software Reliability 303

8.1 Introduction 303
8.2 Framework 304

8.2.1 Overview 304
8.2.2 Operational versus Development Phase Evaluation 306
8.2.3 Past Work 306

8.3 Measurement Techniques 307
8.3.1 On-Line Machine Logging 308
8.3.2 Manual Reporting 310

8.4 Preliminary Analysis of Data 312
8.4.1 Data Processing 312
8.4.2 Fault and Error Classification 314
8.4.3 Error Propagation 317
8.4.4 Error and Recovery Distributions 320

8.5 Detailed Analysis of Data 323
8.5.1 Dependency Analysis 324
8.5.2 Hardware-Related Software Errors 327
8.5.3 Evaluation of Software Fault Tolerance 328
8.5.4 Recurrences 329

8.6 Model Identification and Analysis of Models 333
8.6.1 Impact of Failures on Performance 333
8.6.2 Reliability Modeling in the Operational Phase 335
8.6.3 Error/Failure/Recovery Model 339
8.6.4 Multiple-Error Model 344

8.7 Impact of System Activity 345
8.7.1 Statistical Models from Measurements 345
8.7.2 Overall System Behavior Model 348

8.8 Summary 352
Problems 353

Chapter 9. Orthogonal Defect Classification 359

9 .1 Introduction 359
9.2 Measurement and Software 360

9.2.1 Software Defects 361
9.2.2 The Spectrum of Defect Analysis 364

9.3 Principles of O D C 367
9.3.1 The Intuition 367
9.3.2 The Design of Orthogonal Defect Classification 370

xii Contents

9.3.3 Necessary Condition
9.3.4 Sufficient Conditions

9.4 The Defect-Type Attribute
9.5 Relative Risk Assessment Using Defect Types

9.5.1 Subjective Aspects of Growth Curves
9.5.2 Combining O D C and Growth Modeling

9.6 The Defect Trigger Att ribute
9.6.1 The Trigger Concept
9.6.2 System Test Triggers
9.6.3 Review and Inspection Triggers
9.6.4 Function Test Triggers
9.6.5 The Use of Triggers

9.7 Multidimensional Analysis
9.8 Deploying ODC
9.9 Summary Problems

Chapter 10. Trend Analysis

10.1 Introduct ion
10.2 Reliability Growth Characterization

10.2.1 Definitions of Reliability Growth
10.2.2 Graphical Interpretation of the Subadd i t i ve Property
10.2.3 Subadditive Property Analysis
10.2.4 Subadditive Property and Trend Change
10.2.5 Some Particular Situations
10.2.6 Summary

10.3 Trend Analysis
10.3.1 Trend Tests
10.3.2 Example
10.3.3 Typical Results That Can Be Drawn from Trend Analyses
10.3.4 Summary

10.4 Application to Real Systems
10.4.1 Software of System SS4
10.4.2 Software of System S27
10.4.3 Software of System SS1
10.4.4 Software of System SS2
10.4.5 SAV

10.5 Extension to Static Analysis
10.5.1 Static Analysis Conduct
10.5.2 Application

10.6 Summary Problems

Chapter 11. Field Data Analysis

11.1 Introduction
11.2 Data Collection Principles

11.2.1 Introduction
11.2.2 Failures, Faults, and Related Data
11.2.3 Time
11.2.4 Usage
11.2.5 Data Granularity
11.2.6 Data Maintenance and Validation

Contents xiii

11.2.7 Analysis Environment
11.3 Data Analysis Principles

11.3.1 Plots and Graphs
11.3.2 Data Modeling and Diagnostics
11.3.3 Diagnostics for Model Determination
11.3.4 Data Transformations

11.4 Important Topics in Analysis of Field Data
11.4.1 Calendar Time
11.4.2 Usage Time
11.4.3 An Example

11.5 Calendar -Time Reliability Analysis
11.5.1 Case Study (IBM Corporation)
11.5.2 Case Study (Hitachi Software Engineering Company)
11.5.3 Further Examples

11.6 Usage- Based Reliability Analysis
11.6.1 Case Study (Nortel Telecommunication Systems)
11.6.2 Further Examples

11.7 Special Events
11.7.1 Rare-Event Models
11.7.2 Case Study (Space Shutt le Flight Software)

11.8 Availability
11.8.1 Introduction
11.8.2 Measuring Availability
11.8.3 Empirical Unavailability
11.8.4 Models

11.9 Summary Problems

Part 3 Emerging Techniques

Chapter 12. Software Metrics for Reliability Assessment 493

12.1 Introduction 493
12.2 Static Program Complexity 495

12.2.1 Software Metrics 495
12.2.2 A Domain Model of Software Attributes 496
12.2.3 Principal Components Analysis 497
12.2.4 The Usage of Metrics 499
12.2.5 Relative Program Complexity 500
12.2.6 Software Evolut ion 502

12.3 Dynamic Program Complexity 504
12.3.1 Execution Profile 505
12.3.2 Functional Complexity 505
12.3.3 Dynamic Aspects of Functional Complexity 507
12.3.4 Operational Complexity 509

12.4 Software Complexity and Software Quality 510
12.4.1 Overview 510
12.4.2 The Application and Its Metrics 512
12.4.3 Multivariate Analysis in Software Quality Control 514
12.4.4 Fault Prediction Models 518
12.4.5 Enhancing Predictive Models with Increased Domain Coverage 520

12.5 Software Reliability Modeling 523
12.5.1 Reliability Modeling with Software Complexity Metrics 524
12.5.2 The Incremental Build Problem 526

448
449
450
454
455
458
459
461

461
462

463
464

466

468
469
469
470
472
473

476

479

479
480
481
483

486
487

xiv Contents

12.6 Summary
Problems

Chapter 13. Software Testing and Reliability

13.1 Introduction
13.2 Overview of Software Testing

13.2.1 Kinds of Software Testing
13.2.2 Concepts from White-Box and Black -Box Testing

13.3 Operational Profiles
13.3.1 Difficulties in Estimating the Operational Profile
13.3.2 Estimating Reliability with Inaccurate Operational Profiles

13.4 Time/Structure- Based Software Reliability Estimation
13.4.1 Definitions and Terminology
13.4.2 Basic Assumptions
13.4.3 Testing Methods and Saturation Effect
13.4.4 Testing Effort
13.4.5 Limits of Testing Methods
13.4.6 Empirical Basis of the Saturation Effect
13.4.7 Reliability Overest imation due to Saturation
13.4.8 Incorporating Coverage in Reliability Estimation
13.4.9 Filtering Failure Data Using Coverage Information
13.4.10 Selecting the Compression Ratio
13.4.11 Handling Rare Events

13.5 A Microscopic Model of Software Risk
13.5.1 A Testing -Based Model of Risk Decay
13.5.2 Risk Assessment: An Example
13.5.3 A Simple Risk Computation
13.5.4 A Risk Browser
13.5.5 The Risk Model and Software Reliability

13.6 Summary Problems

Chapter 14. Fault -Tolerant Software Reliability Engineering

14.1 Introduction
14.2 Present Status
14.3 Principles and Terminology

14.3.1 Result Verification
14.3.2 Redundancy
14.3.3 Failures and Faults
14.3.4 Adjudicat ion by Voting
14.3.5 Tolerance

14.4 Basic Techniques
14.4.1 Recovery Blocks
14.4.2 N -Version Programming

14.5 Advanced Techniques
14.5.1 Consensus Recovery Block
14.5.2 Acceptance Voting
14.5.3 N Self-Chec king Programming

14.6 Reliability Modeling
14.6.1 Diversity and Dependence of Failures
14.6.2 Data-Domain Modeling
14.6.3 Time-Domain Modeling

Contents xv

14.7 Reliability in the Presence of Interversion Failure Correlation 596
14.7.1 An Experiment 596
14.7.2 Failure Correlation 598
14.7.3 Consensus Voting 599
14.7.4 Consensus Recovery Block 601
14.7.5 Acceptance Voting 603

14.8 Development and Testing of Multiversion Faul t-Tolerant Software 604
14.8.1 Requirements and Design 605
14.8.2 Verification, Validation, and Testing 606
14.8.3 Cost of Fault -Tolerant Software 607

14.9 Summary 609
Problems 609

Chapter 15. Software System Analysis Using Fault Trees 615

15.1 Introduction 615
15.2 Fault Tree Modeling 615

15.2.1 Cutset Generation 617
15.2.2 Fault Tree Analysis 619

15.3 Fault Trees as a Design Aid for Software Systems 622
15.4 Safety Validation Using Fault Trees 623
15.5 Analysis of Fault -Tolera nt Software Systems 627

15.5.1 Fault Tree Model for Recovery Block System 629
15.5.2 Fault Tree Model for N -Version Programming System 630
15.5.3 Fault Tree Model for N Self -Checking Programming System 632

15.6 Quantitative Analysis of Fault -Tolerant Software 635
15.6.1 Methodology for Parameter Estimation from Experimental Data 635
15.6.2 A Case Study in Parameter Estimation 639
15.6.3 Comparative Analysis of Three Software- Fault -Tolerant Systems 642

15.7 System -Level Analysis of Hardware and Software Syst em 645
15.7.1 System Reliability and Safety Model for DRB 647
15.7.2 System Reliability and Safety Model for NVP 648
15.7.3 System Reliability and Safety Model for N S C P 650
15.7.4 A Case Study in System -Level Analysis 651

15.8 Summary 657
Problems 657

Chapter 16. Software Reliability Simulation 661

16.1 Introduction 661
16.2 Reliability Simulation 662

16.2.1 The Need for Dynamic Simulation 663
16.2.2 Dynamic Simulation Approaches 664

16.3 The Reliability Process 665
16.3.1 The Nature of the Process 666
16 .3.2 Structures and Flows 667
16.3.3 I nterdependencies Among Elements 668
16.3.4 Software Environment Characteristics 669

16.4 Artifact -Based Simulation 669
16.4.1 Simulator Architecture 670
16.4.2 Results 675

16.5 Rate-Based Simulation Algorithms 676
16.5. 1 Event Process Statistics 677
16.5.2 Single-Event Process Simulation 678

Contributors

Sarah Brocklehurst City University, London (CHAP. 4)

Ram Chillarege IBM Watson Research (CHAP. 9)

Mary Donnelly AT&T Bell Laboratories (CHAP. 6)

Joanne Bechta Dugan University of Virginia (CHAP. 15)

Bill Everett AT&T Bell Laboratories (CHAP. 6)
William Farr Naval Surface Warfare Center (CHAP. 3)

Gene Fuoco AT&T Bell Laboratories (CHAP. 5)
Joseph R. Horgan Bellcore (CHAP. 13)

Nancy Irving AT&T Bell Laboratories (CHAP. 5)

Ravi K. lyer University of Illinois (CHAP. 8)

Wendell Jones BNR Incorporated (CHAP. 11)

Bruce Juhlin U S West (CHAP. 5)

Karama Kanoun L A A S-CNRS, Toulouse, France (CHAPS. 2,10)
Nachimuthu Karunanithi Bellcore (CHAP. 17)

Taghi Khoshgoftaar Florida Atlantic University (CHAP. 12)

Diane Kropfl AT&T Bell Laboratories (CHAP. 5)

Jean-Claude Laprie L A A S-CNRS, Toulouse. France (CHAPS. 2,10)

Inhwan Lee Tandem Computers, Inc. (CHAP. 8)

Bev Littlewood City University, London (CHAP. 4)

Michael R. Lyu AT&T Bell Laboratories, Editor (CHAPS . 1, 7, 16, APP. B)

Yashwant Malaiya Colorado State University (CHAP. 17)

Aditya P. Mathur Purdue University (CHAP. 13)

David McAllister North Carolina State University (CHAP. 14)

John Munson University of Idaho (CHAP. 12)

John Musa AT&T Bell Laboratories (CHAPS . 5, 6)
Alien Nikora Jet Propulsion Laboratory (CHAP. 7)

George Stark Mitre Corporation (APP. A)

xvi Contents

16.5.3 Recurrent Event Statistics
16.5.4 Recurrent Event Simulat ion
16.5.5 Secondary Event Simulation
16.5.6 Limited Growth Simulation
16.5.7 The General Simulation Algorithm

16.6 Rate-Based Reliability Simulation
16.6.1 Rate Functions of Conv entional Models
16.6.2 Simulator Architecture
16.6.3 Display of Results

16.7 The Gali leo Project Application
16.7.1 Simulation Experiments and Results
16.7.2 Comparisons with Other Software Reliability Models

16.8 Summary Problems

Chapter 17. Neural Networks for Software Reliability Engineering

17.1 Introduction
17.2 Neural Networks

17.2.1 Processing Unit
17.2.2 Architecture
17.2.3 Learning Algorithms
17.2.4 Back -Propagation Learning Algorithm
17.2.5 Cascade-Correlation Learning Architecture

17.3 Applicatio n of Neural Networks for Software Reliability
17.3.1 Dynamic Reliability Growth Modeling
17.3.2 Identifying Fault-Prone Modules

17.4 Software Reliability Growth Modeling
17.4.1 Training Regimes
17.4.2 Data Representation Issue
17.4.3 A Prediction Experiment
17.4.4 Analysis of Neural Network Models

17.5 Identification of Fault-Prone Software Modules
17.5.1 Identification of Fault-Prone Modules Using Software Metrics
17.5.2 Data Set Used
17.5.3 Classifiers Compared
17.5.4 Data Representation
17.5.5 Training Data Selection
17.5.6 Experimental Approach
17.5.7 Results

17.6 Summary Problems

Appendix A. Software Reliability Tools

Appendix B. Review of Reliability Theory, Analytical Techniques,
and Basic Statistics

References 781
Index 821

xviii Contributors

Robert Tausworthe Jet Propulsion Laboratory (CHAP . 16) MIaden

Vouk North Carolina State University (CHAPS . 11, 14) Geoff Wilson

AT&T Bell Laboratories (CHAP. 6)

Foreword

Alfred V.Aho
Columbia University

In complex software systems, reliability is the most important aspect of software quality,
but one that has often been the most elusive to achieve. Since more and more of the
world's activities and systems are dependent on software, achieving the appropriate level
of software reliability consistently and economically is crucial. Software failures make
newspaper headlines because at best they inconvenience people and in extreme cases kill
them.

It is refreshing to see a book that has the potential to make a significant improvement to
software reliability. The Handbook of Software Reliability Engineering is an important
milestone in the history of software reliability engineering. Michael R. Lyu has assembled
a team of leading experts to document the best current practices in the field. The coverage
is comprehensive, including material on fault prevention, fault removal, fault tolerance,
and failure forecasting. Theory, models, metrics, measurements, processes, analysis, and
estimation techniques are presented. The book is filled with proven methods, illustrative
examples, and representative test results from working systems in the field. An important
component of the book is a set of reliability tools that can be used to apply the techniques
presented.

The subject is treated with the rigor that is characteristic of a mature engineering
discipline. The book stresses mathematical models for evaluating reliability trade-offs, and
shows how these models can be applied to the development of software systems.

With the publication of this Handbook, the field of software reliability engineering has
come of age. This book is must reading for all soft ware engineers concerned with software
reliability.

Alfred V.Aho

Foreword

Richard A. DeMillo
Purdue University and Bellcore

Early in this exhaustive treatment of what may be the single most critical aspect
of modern software development, the editor says "Mature engineering fields
classify and organize proven solutions in handbooks so that most engineers can
consistently handle complicated but routine designs." The reliability engineering
of software has become mature with the appearance of this Handbook.

In my graduate software engineering course, I motivate the importance of early
test planning with reliability requirement setting examples. It is, in my experience,
an issue about which success or failure of major systems projects revolve. In the
early 1980s I led the DOD's software testing and reliability analysis team for the
final operational tests of the now-famous Patriot Missile System. The questions?
What was the required system reliability? Was the operational test data consistent
with these requirements? Not many people know how close Patriot came to being
re jected as a viable weapons system— not because the system itself was bad, but
rather because the reliability engineering was so flawed that developers could not
determine how reliable it really was. This crisis could have been avoided had
software reliability engineering practice been systematized and applied in the
manner advocated by this Handbook.

Reliability theory and engineering statistics textbooks ignore soft ware, for the
most part. Software engineering textbooks generally ignore reliability theory.
Classroom teachers of the subject are forced to the kind of anecdotal material
mentioned above, perhaps augmented by special-purpose supplementary readings.
Even worse, software reliability theory has a reputation for facileness that has
been encouraged by the many contributors who try to apply hardware reliability
models mutatis mutandis to the very different (and more difficult) problems of
software reliability.

So, when I was asked by the editor to review this Handbook, I agreed eagerly.
On the one hand, a "real" handbook would be of inestimable

xxi

xxii Foreword

help to practitioners, decision makers, teachers, and students. On the other hand, a spotty or
imbalanced treatment would only make matters worse. I said I would offer my comments
only after reading the entire book.

The first thing I did when I received the manuscript was to check it against my
classroom "staples." There for the first time in book form was a coherent approach to
developing reliability requirements. There also was a discussion of the relationship
between software test and reliability estimation, the impact of software architecture on
reliability, error studies and software fault classification, tools and methods extracted from
best-practice benchmarks of the best reliability labs in the world, actual data. It was all
there— and in pretty much the same form in which I would have presented it myself. The
editor even included exercises to make it suitable for classroom use.

Encouraged, I read the manuscript front to back. This is a book that will be the standard
by which the field is measured for years to come. It is thorough, correct, readable, and so
current that it actually anticipates results that have not appeared in archival journals yet. It
contains the best work of many of the founders of the field. It contains innovations by
some of the rising stars. It is, however, more than any thing else a Handbook in the tradition
of the classic handbooks of mathematics, physics, and engineering. It does not present
software reliability as a silver bullet. It does not attempt to proscribe the complex system
usages that would require skill and training on the part of software developers. Rather it
seeks to ". . . classify and organize proven solutions ... so that most engineers can
consistently handle complicated but routine designs." In this it succeeds, far beyond my
expectations. It clearly establishes software reliability engineering as a mature engineering
discipline.

Richard A. DeMillo

Preface

Ever since I entered the field of software reliability engineering some years ago, I
have been looking for a book that exclusively and compre hensively deals with
software reliability subjects that interest me, as both a researcher and a
practitioner. I wasn't able to find one. So I started this project by inviting the
leading experts in this field to contribute chapters for this book. I laid out the
framework of the book, identified its essential components, and integrated them
by maintaining completeness and avoiding redundancies. As an editor, my duty is
to ensure breadth, while the chapter authors treat the subjects of their delegated
chapters in depth.

This is a handbook on software reliability engineering. The theme underlying
the book is the formulation, application, and evaluation of software reliability
engineering techniques in practice. Reliability is obviously related to many
characteristics of the software product and development process. This Handbook
intends to address all its aspects in a quantitative way.

The book is designed for practitioners or researchers at all levels of
competency, from novice to expert. It is targeted for several large, gen eral groups
of people who need information on software reliability engineering. They
inc lude:

1. People who need a general understanding of software reliability. These are
high-level managers, professional engineers who use soft ware or whose
designs interface with software, and people who acquire, purchase, lease, or
use software.

2. Software developers, testers, and quality assurance personnel who use and
apply software reliability engineering techniques. This also includes
practitioners in related disciplines such as system engineer ing, reliability
management, risk analysis, management-decision sciences, and software
maintenance.

xxiil

xxiv Preface

3. Researchers and students in software engineering, reliability analysis, applied statistics,
operations research, and related disciplines, and anyone who wants a deeper
understanding of software reliability and its engineering techniques.

Each of the book's individual topics (i.e., chapters) could be considered as a compact,
self-contained minibook. However, these topics are presented in relation to the basic
principles and practices of software reliability engineering. The approach is to provide a
framework and a set of techniques for evaluating and improving the engineering of soft-
ware reliability. It presents specific solutions, obtained mostly from real-world projects
and experimental studies, for routine applications. It further hi ghlights promising emerging
techniques for research and exploration opportunities.

The book has been thoroughly indexed for your convenience, so that it can serve as a
true handbook, and a comprehensive list of references is provided for the purpose of
literature search. As a unique value-added feature, this book includes a CD-ROM, which
contains 40 published and unpublished software project failure data sets and some of the
most advanced software reliability tools for ready application of software reliability
techniques and a jump-start on software reliability engineering programs.

This book is also designed to be used as a textbook by students of software engineering
or system reliability, either in a classroom or for self-study. Examples, case studies, and
problems have been provided throughout the book to illustrate the concepts and to walk
through the techniques. A Solution Manual is available from the editor with solutions to
some of the exercises.

What is finally presented here is the work of celebrated international experts
contributing their most advanced knowledge and practices on specific reliability-related
topics. The development team of this book wants to thank our colleagues who provided
continuous encouragement and thorough review of the chapters of the book. They are Jean
Arlat, Phillip Babcock, Farokh B. Bastani, Brian Beckman, Justin Biddle, James Bieman,
Harry S. Burns, Sid Dalal, Chris Dale, Adrian Dolinsky, George Finelli, Amrit Goel, Jack
Goldberg, Myron Hecht, Walter Heimerdinger, Yu-Yun Ho, Yennun Huang, Robert
Jackson, Mohamed Kaaniche, Kalai Kalaichelvan, Rick Karcich, Ted Keller, Elaine
Keramidas, Chandra Kintala, Sy-Yen Kuo, Ming Y. Lai, Alice Lee, Haim Levendel,
Yi-Bing Lin, Peng Lu, Richard E. Machol, Suku Nair, Mits Ohba, Gardner Patton, Hoang
Pham, Francesca Saglietti, Norm Schneidewind, Robert Sherman, David Siefert, Pradip
Srimani, Mark Sullivan, Robert Swarz, K.C. Tai, Yoshi Tohma, Randy Van Buren, C.W.
Vowell, Anneliese von Mayrhauser, Chris J. Walter, Yi-Ming Wang, Pramod Warty,
Chuck Weinstock, Min Xie, and Jinsong Yu.

Preface xxv

We are most appreciative of the organizations and projects that provided funding for the
work conducted in some of the book chapters. They are the Advanced Research Projects
Agency, the ESPRIT Basic Research Action on Predictably Dependable Computing
Systems, the ESPRIT programme as part of the PDCS1 and PDCS2 projects, the EU
Environment programme as part of the SHIP project, IBM at Pough-keepsie, New York,
the Illinois Computer Laboratory for Aerospace Systems and Software (ICLASS),
National Aeronautics and Space Administration (NASA), NASAAMES Research Center,
Office of Naval Research, Tandem Computers Incorporated, the U.K. EPSRC as part of
the DATUM project, and the U.S. Air Force Operational Test and Evaluation Center
(AFOTEC).

I also want to particularly thank Al Aho and Rich DeMillo for writing forewords to this
book. Their comments are helpful and rewarding. I am greatly thankful to Karen
Newcomb of NASA COSMIC and Lil-iam Valdez-Diaz of AT&T for permission to
include CASRE, SoftRel, and AT&T SRE Toolkit in this book. My appreciation goes to
Jean Glasser, Marjorie Spencer, John Wyzaiek, and Suzanne Rapcavage, editing and
production supervisors at McGraw-Hill during different stages of this book. Midge
Haramis's assistance is also acknowledged. The invaluable guidance and help of Christine
Furry at North Market Street Graphics during many revision, editing, and production
cycles have also made this book project much easier than it would have been.

Finally, I want to thank my wife Felicia, to whom this book is dedicated. .

Michael R. Lyu Murray Hill, New
Jersey

