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Foreword

Alfred  V.Aho
Columbia University

In complex software systems, reliability is the most important aspect of software quality, 
but one that has often been the most elusive to achieve. Since more and more of the 
world's activities and systems are dependent on software, achieving the appropriate level 
of software reliability consistently and economically is crucial. Software failures make 
newspaper headlines because at best they inconvenience people and in extreme cases kill 
them. 

It is refreshing to see a book that has the potential to make a significant improvement to 
software reliability. The Handbook of Software Reliability Engineering is an important 
milestone in the history of software reliability engineering. Michael R. Lyu has assembled 
a team of leading experts to document the best current practices in the field. The coverage 
is comprehensive, including material on fault prevention, fault removal, fault tolerance, 
and failure forecasting. Theory, models, metrics, measurements, processes, analysis, and 
estimation techniques are presented. The book is filled with proven methods, illustrative 
examples, and representative test results from working systems in the field. An important 
component of the book is a set of reliability tools that can be used to apply the techniques 
presented. 

The subject is treated with the rigor that is characteristic of a mature engineering 
discipline. The book stresses mathematical models for evaluating reliability trade-offs, and 
shows how these models can be applied to the development of software systems. 

With the publication of this Handbook, the field of software reliability engineering has 
come of age. This book is must reading for all soft ware engineers concerned with software 
reliability. 

Alfred V.Aho  



Foreword

Richard A. DeMillo
Purdue  University and Bellcore

Early in this exhaustive treatment of what may be the single most critical aspect 
of modern software development, the editor says "Mature engineering fields 
classify and organize proven solutions in handbooks so that most engineers can 
consistently handle complicated but routine designs." The reliability engineering 
of software has become mature with the appearance of this Handbook.  

In my graduate software engineering course, I motivate the importance of early 
test planning with reliability requirement setting examples. It is, in my experience, 
an issue about which success or failure of major systems projects revolve. In the 
early 1980s I led the DOD's software testing and reliability analysis team for the 
final operational tests of the now-famous Patriot Missile System. The questions? 
What was the required system reliability? Was the operational test data consistent 
with these requirements? Not many people know how close Patriot came to being 
re jected as a viable weapons system— not because the system itself was bad, but 
rather because the reliability engineering was so flawed that developers could not 
determine how reliable it really was. This crisis could have been avoided had 
software reliability engineering practice been systematized and applied in the 
manner advocated by this Handbook. 

Reliability theory and engineering statistics textbooks ignore soft ware, for the  
most part. Software engineering textbooks generally ignore reliability theory.
Classroom teachers of the subject are forced to the kind of anecdotal material 
mentioned above, perhaps augmented by special-purpose supplementary readings. 
Even worse, software reliability theory has a reputation for facileness that has 
been encouraged by the many contributors who try to apply hardware reliability 
models mutatis mutandis to the very different (and more difficult) problems of 
software reliability. 

So, when I was asked by the editor to review this Handbook, I agreed eagerly. 
On the one hand, a "real" handbook would be of inestimable 
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help to practitioners, decision makers, teachers, and students. On the other hand, a spotty or 
imbalanced treatment would only make matters worse. I said I would offer my comments 
only after reading the entire book. 

The first thing I did when I received the manuscript was to check it against my 
classroom "staples." There for the first time in book form was a coherent approach to 
developing reliability requirements. There also was a discussion of the relationship  
between software test and reliability estimation, the impact of software architecture on 
reliability, error studies and software fault classification, tools and methods extracted from 
best-practice benchmarks of the best reliability labs in the world, actual data. It was all 
there— and in pretty much the same form in which I would have presented it myself. The 
editor even included exercises to make it suitable for classroom use. 

Encouraged, I read the manuscript front to back. This is a book that will be the standard 
by which the field is measured for years to come. It is thorough, correct, readable, and so 
current that it actually anticipates results that have not appeared in archival journals yet. It 
contains the best work of many of the founders of the field. It contains innovations by 
some of the rising stars. It is, however, more than any thing else a Handbook in the tradition 
of the classic handbooks of mathematics, physics, and engineering. It does not present  
software reliability as a silver bullet. It does not attempt to proscribe the complex system 
usages that would require skill and training on the part of software developers. Rather it  
seeks to ". . . classify and organize proven solutions ... so that most engineers can 
consistently handle complicated but routine designs." In this it succeeds, far beyond my 
expectations. It clearly establishes software reliability engineering as a mature engineering 
discipline. 

Richard A. DeMillo 



Preface

Ever since I entered the field of software reliability engineering some years ago, I 
have been looking for a book that exclusively and compre hensively deals with 
software reliability subjects that interest me, as both a researcher and a  
practitioner. I wasn't able to find one. So I started this project by inviting the  
leading experts in this field to contribute chapters for this book. I laid out the 
framework of the book, identified its essential components, and integrated them 
by maintaining completeness and avoiding redundancies. As an editor, my duty is  
to ensure breadth, while the chapter authors treat the subjects of their delegated 
chapters in depth. 

This is a handbook on software reliability engineering. The theme underlying 
the book is the  formulation, application, and evaluation of software reliability 
engineering techniques in practice. Reliability is obviously related to many 
characteristics of the software product and development process. This  Handbook
intends to address all its aspects in a quantitative way.  

The book is designed for practitioners or researchers at all levels of  
competency, from novice to expert. It is targeted for several large, gen eral groups 
of people who need information on software reliability engineering. They  
inc lude: 

1. People who need a general understanding of software reliability. These are  
high-level managers, professional engineers who use soft ware or whose 
designs interface with software, and people who acquire, purchase, lease, or 
use software.  

2. Software developers, testers, and quality assurance personnel who use and 
apply software reliability engineering techniques. This also includes  
practitioners in related disciplines such as system engineer ing, reliability 
management, risk analysis, management-decision sciences, and software  
maintenance. 
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3. Researchers and students in software engineering, reliability analysis, applied statistics, 
operations research, and related disciplines, and anyone who wants a deeper  
understanding of software reliability and its engineering techniques. 

Each of the book's individual topics (i.e., chapters) could be considered as a compact, 
self-contained minibook. However, these topics are presented in relation to the basic 
principles and practices of software reliability engineering. The approach is to provide a 
framework and a set of techniques for evaluating and improving the engineering of soft-
ware reliability. It presents specific solutions, obtained mostly from real-world projects 
and experimental studies, for routine applications. It further hi ghlights promising emerging 
techniques for research and exploration opportunities.  

The book has been thoroughly indexed for your convenience, so that it can serve as a 
true handbook, and a comprehensive list of references is provided for the purpose of  
literature search. As a unique value-added feature, this book includes a CD-ROM, which 
contains 40 published and unpublished software project failure data sets and some of the 
most advanced software reliability tools for ready application of software reliability 
techniques and a jump-start on software reliability engineering programs. 

This book is also designed to be used as a textbook by students of software engineering 
or system reliability, either in a classroom or for self-study. Examples, case studies, and 
problems have been provided throughout the book to illustrate the concepts and to walk 
through the techniques. A Solution Manual is available from the editor with solutions to 
some of the exercises. 

What is finally presented here is the work of celebrated international experts 
contributing their most advanced knowledge and practices on specific reliability-related 
topics. The development team of this book wants to thank our colleagues who provided 
continuous encouragement and thorough review of the chapters of the book. They are Jean 
Arlat, Phillip Babcock, Farokh B. Bastani, Brian Beckman, Justin Biddle, James  Bieman,
Harry S. Burns, Sid Dalal, Chris Dale, Adrian Dolinsky, George Finelli, Amrit Goel, Jack 
Goldberg,  Myron  Hecht, Walter Heimerdinger, Yu-Yun Ho, Yennun Huang, Robert 
Jackson, Mohamed Kaaniche, Kalai Kalaichelvan, Rick Karcich, Ted Keller, Elaine
Keramidas, Chandra Kintala, Sy-Yen Kuo, Ming Y. Lai, Alice Lee, Haim Levendel,
Yi-Bing Lin, Peng Lu, Richard E. Machol, Suku Nair, Mits Ohba, Gardner Patton,  Hoang
Pham, Francesca Saglietti, Norm Schneidewind, Robert Sherman, David Siefert, Pradip
Srimani, Mark Sullivan, Robert Swarz, K.C. Tai, Yoshi Tohma, Randy Van Buren, C.W.
Vowell, Anneliese von Mayrhauser, Chris J. Walter, Yi-Ming Wang, Pramod Warty, 
Chuck  Weinstock, Min Xie, and  Jinsong Yu. 
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We are most appreciative of the organizations and projects that provided funding for the 
work conducted in some of the book chapters. They are the Advanced Research Projects 
Agency, the ESPRIT Basic Research Action on Predictably Dependable Computing 
Systems, the ESPRIT programme as part of the PDCS1 and PDCS2 projects, the  EU 
Environment programme as part of the SHIP project, IBM at Pough-keepsie, New York, 
the Illinois Computer Laboratory for  Aerospace Systems and Software (ICLASS),
National Aeronautics and Space Administration (NASA), NASAAMES Research Center, 
Office of Naval Research, Tandem Computers Incorporated, the U.K. EPSRC as part of 
the DATUM project, and the U.S. Air Force Operational Test and Evaluation Center 
(AFOTEC). 

I also want to particularly thank Al Aho and Rich DeMillo for writing forewords to this 
book. Their comments are helpful and rewarding. I am greatly thankful to Karen
Newcomb of NASA COSMIC and  Lil-iam Valdez-Diaz of AT&T for permission to 
include CASRE, SoftRel, and AT&T SRE Toolkit in this book. My appreciation goes to 
Jean Glasser, Marjorie Spencer, John Wyzaiek, and Suzanne Rapcavage, editing and 
production supervisors at  McGraw-Hill during different stages of this book. Midge 
Haramis's assistance is also acknowledged. The invaluable guidance and help of Christine 
Furry at North Market Street Graphics during many revision, editing, and production  
cycles have also made this book project much easier than it would have been. 

Finally, I want to thank my wife Felicia, to whom this book is dedicated. . 

Michael R. Lyu Murray Hill, New 
Jersey  


