KERNFORSCHUNGSZENTRUM

KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik

Handling and Service Programs for the
Karlsruhe Nuclear Data File KEDAK
Part I: Management and Retrieval Programs
B. Krieg

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B. H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1725

Institut für Neutronenphysik und Reaktortechnik

Handling and service programs for the Karlsruhe Nuclear Data File KEDAK Part I: Management and retrieval programs
B. Krieg

Gesellschaft für Kernforschung m.b. H., Karlsruhe

Abstract

In different parts of this report the computer programs developed in association with the Neutron Nuclear Data File KEDAK maintained in Karlsruhe are described. In this part the NDF-program package for the retrieval of the data from KEDAK and the program system KEMA for updating the KEDAK library e.g. for deletion, insertion, change of data records are presented. These programs are written in FORTRAN IV and are presupposing the direct access form of the KEDAK library as used in Karlsruhe.

\section*{Zusammenfassung}

In den verschiedenen Teilen dieses Berichtes werden die Computerprogramme beschrieben, die in Karlsruhe in Verbindung mit dem dort unterhaltenen Neutronenkerndatenfile KEDAK entwickelt wurden. In diesem Teil werden die NDF-Subroutinen zum Lesen der auf KEDAK befindlichen Daten und das Programmsystem KEMA, das zur Aufdatierung der KEDAK Daten z. B. zum Löschen, Einfügen, Ändern von Datensätzen dient, dargestellt. Diese Programme sind in FORTRAN IV geschrieben und setzen die in Karlsruhe benutzte Direct Access Form der KEDAK Bibliothek voraus.

.
I. INTRODUCTION 1
II. DIRECT ACCESS KEDAK LIBRARY 2
III. NDF - A RETRIEVAL PROGRAM FOR THE 12
DIRECT ACCESS KEDAK LIBRARY

1. The NDF retrieval mode 13
2. The LDF retrieval mode 14
3. The IDF retrieval mode 15
4. Examples 16
IV. PROGRAM SYSTEM KEMA 20
5. Purpose of the program system KEMA 20
6. The control program 23
7. Conversion of the KEDAK library from direct access 24
into sequential form
8. Updating the sequential KEDAK library 26
9. Conversion of the sequential KEDAK library 31 into direct access form
10. Programs for the management of test data 32
11. Print out of selected sets of data of the sequential 33KEDAK library
12. Print out of a list of contents of the direct access 34KEDAK library
13. Conversion of the standard data of the KEDAK 35 library from direct access form into card image format
14. Conversion of the sets of data of selected 36 isotopes from direct access form into card image format
15. Conversion of the KEDAK library from 37 card image format into direct access form
16. Example for the input 38
V. LITERATURE REFERENCES 40
VI. APPENDIX: DATA TYPES FORESEEN ON KEDAK 41

I. Introduction

The data file KEDAK contains the evaluated neutron nuclear data for a number of materials important for reactor physics, specific physical experiments, burn up calculations, shielding and others. It is maintained and updated in Karlsruhe. It is used there in the direct access form whereas the sequential card image format is in use for the external exchange of the KEDAK library.

In this part the NDF-program package for the retrieval of the data stored on the KEDAK-file is described and also the program system KEMA for the management of the KEDAK library in particular for deletion, insertion, exchange of data records is presented here. Both are presupposing the direct access form of the KEDAK library. The nomenclature used in this description follows that described in KFK 880 [1]. For the direct understanding of the following the most important terms will be shortly explained.

Each data type and each material is characterized by a numerical and an alphamerical name. Numeric names are used for storage purposes and in external transmission. The user of the direct access library alternatively may employ alphamerical names which might be kept in mind more easily since they are abbreviations containing the chemical symbols. For some data types additional so-called "further names" are necessary for their complete and unique description e.g. for the inelastic excitation cross section it is not sufficient to know its numerical data type name, but in addition the level excitation energy must be specified. The level energy is called a further name of this data type.
"Arguments" of the data type are called those quantities on which the data type considered is dependent and in dependence on which it is stored on the file, e.g. all cross section types have only one argument, the incident neutron energy. The numerical values of the nuclear data types corresponding to specific values of the arguments are termed "functional values". The number and kind of arguments and functional values for a single data item and also the number and kind of further names for a single data item are contained in a table of the Appendix for each of the data types at present available on KEDAK. This table supersedes the corresponding table in KFK 880 [1].
II. Direct access KEDAK library

The sets of data are written on a disk storage in direct access form without format control in form of fixed-length unblocked records. The entire information is divided into a declaration and a data part. All records are filled up to avoid unnecessary storage requirements. The structure of the declaration and data part is presented below in more detail.

Declaration part

The purpose of the declaration part is to provide necessary addressing information to access the data on the library. Addressing is performed by a hierarchy of pointers. Each pointer points to a table containing the next lower level of pointers. The lowest level pointer points to the starting address of a single data type.
An example may illustrate that: A table of pointers locates the starting address of the materials in the library. At this starting address another table provides the starting address of the various data types available for that material. If this data type requires further names, e.g. inelastic excitation levels, this address actually will point to a third table containing the starting address of the uniquely defined data types (see figure below).

High level pointer
Lower level pointer Lowest level pointer

Here the arrows indicate that the high level pointer contains the starting address of the next lower level pointer table or of data items.
The declaration part only includes the high level pointer table, the "material address table". As was pointed out before, numeric names are internally used to identify material or data type names. Therfore a link has to be established between the alphameric names and their numeric correspondent. This is obtained by two "conversion tables" stored in the declaration part. In addition the declaration part contains an identifier for the library, its creation date and the information necessary to access the three tables described above.

Structure of the declaration part:
The declaration part starts at the first word of the first record in the library.

The content of the different records in the declaration part is outlined below.

as specified in the words 12 and 13	four times the number given in word 11	"material address table": this table points to the starting address of each material in the library. At this address the beginning of a table is found pointing to the individual data types for that material. Structure: the table consists of four words for each material. The first word gives the numeric material name, the second the number of data types available for that material, and the third and fourth word the starting address for that material: material 1 material 2							
		numeric name	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { data types } \end{aligned}$	starting edddress of material 1 (record (word number) (wumber)	numeric name	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { data types } \end{aligned}$	starting a of mater (record number)	$\begin{aligned} & \text { ddress }{ }^{(1)} \\ & \text { ial } 2 \\ & \text { (word } \\ & \text { number) } \end{aligned}$	

[^0]The contents of the declaration part is stored word by word consecutively in the above order. Since the starting address of the above three tables is explicitly specified in the words 5-13 of record one, this however is no prerequisite for the programs described in this report. Actually the tables could be stored anywhere within the library.

Data part

The data part includes all lower level pointer tables and the actual data items for the materials listed in the "material address table". The data part may be divided into sections, each section containing the information for a single material. As a rule a section is not physically interrupted by data of another section, that means each section is a closed block in the library.
Each section consists of an addressing block and subsections. The addressing block begins at the first word of the respective section. The corresponding starting address is stored in the material address table. A subsection contains the data for one data type and its starting address is recorded in the addressing block in a manner explained below. If the respective data type requires further names for unique identification an additional address block has to be given in the subsection. A subsection contains one or more data blocks depending upon whether further names do exist or not. The figure below may illustrate the physical organization:

The logical structure of a section is displayed in the following figure:

> addressing block

subsection 2 contains one addressing block and one or more data blocks depending on the number of combinations of further names

(1) The number of further names required for a data type are described in table 1 in the Appendix. Note the difference between number of further names and number of the combinations of further names: the number of further names required for inelastic excitation cross sections is one, the level energy, i.e. each combination of further names consists of one further name only. The number of the combinations of further names however, equals the number of level energies for which data are given.
${ }^{(2)}$ The number of arguments and the number of functional values for each data type are given and interpreted in table 1 in the Appendix.
A data item is a set of arguments and functional values which logically belong together, e.g. for a cross section type the incident neutron energy (argument) and the cross section (functional value) form a data item. For details see $[1]$.

Notes

Although data are stored densely in the library since the updating program described below does align them in this manner, this dense storage is not a prerequisite to use any of the programs described here. However a block may not be interrupted by data not belonging to it, no matter whether it is an addressing block or a data block. Any block may be shifted to any other free position in the library provided the next higher level pointer pointing to it is reset to the new address. The only exception are the words $1-13$ of record 1 , which represent the highest level block and must not be shifted.

Summary
The flow chart below gives an idea of the logical and physical organization of the library. The term "block" is used in the above sense.

III. NDF - a retrieval program for the direct access KEDAK library

The purpose of this FORTRAN VI retrieval routine is to allow Fortran programs to access the KEDAK library. The routine supplies three different modes for the retrieval of the data. Each of them consists of three entries into the subroutine NDF. Each retrieval mode performs the same basic task:
a) - OPN entries: the KEDAK library linked to the program by the DD-statement FTO1FOO1 is opened and its identifier, the first three words on record one of the library, is tested (see preceding section). If this test does not fail, the declaration part of the library is read into the main storage. The -OPN entry may be called only once in a program.
b) - LOC entries: locating information for the material and the daty type specified in the call is retrieved, and the type address table for that material is read into the main storage, if it is not already residing there. The first data item then is retrieved and passed to the user. If however the requested material or data type is not found in the library, a return code is set and no retrieval of data is attempted.
In case of further names the values specified by the user need not agree with those actually requested: a search is started on the further name address table and the first combination of further names is selected, for which each name is larger or equal to the corresponding one specified by the user. Let the user for example specify a level energy of zero. This will result in selection of the first level energy available for that material. The corresponding value (s) in the argument list (see next paragraph) is (are) changed to the selected one(s). In the above example the zero is changed to the value of the first level energy. If no combination of further names can satisfy the above requirement a return code is set and no retrieval of data is attempted.
Each time data for a new combination of names are required, a call to a -LOC entry must be executed.
c) - NXT entries: the data item immediately succeeding the one retrieved most recently is transmitted to the user. Note, that the first data item for a given combination of names must be accessed by the respective -LOC entry. If the most recently retrieved data item had been the last of the data type, a return code is set and no retrieval of data is attempted. If this condition is encountered, the information generally returned is undefined. In the case of further names however the next combination of further names is transmitted and may be used in a subsequent -LOC call.

The hyphen in the above notation must be replaced by NDF, LDF or IDF depending on the retrieval mode to be used. The retrieval modes and the argument lists of the respective entries are discussed in more detail below.

1. The NDF retrieval mode

This mode of the reading routine is retained only for historical reasons.
a) CALL NDFOPN (ARG 1, ARG 2, ARG 3, ARG 4)

ARG 1 Fixed point variable or constant giving the data set reference number ascribed to the KEDAK library. At present it has to be set equal to 1 and the DD-name used must be FTO1FOO1

ARG 2 Fixed point array of length two words. This array is filled by NDFOPN with ' bbbbbbbb'

ARG 3 Fixed point variable which is used by NDFOPN to pass the date of the last change of the KEDAK library in the form ddmmyy (see II,a)

ARG 4 Variable or constant without meaning
b) CALL NDFLOC (ARG 1, ARG 2, ARG 3, ARG 4, ARG 5)

ARG 1 Fixed point variable defining a return code to which the value O is assigned by NDFLOC if the requested data item was not found and otherwise the value 1

ARG 2 Fixed point array with a length of four words. The first word has to be specified in the calling program and gives the number of names of the required data set. The following three words are filled by NDFLOC with:
number of arguments for a single data item, number of functional values for a single data item , O

ARG 3 Double precision array of adequate length. The first words have to to be specified in the calling program, in particular:
ARG 3(1) : name of the isotope in alphamerical form
ARG 3(2) : 'BEST bbbb'
ARG 3(3) : name of the data type in alphamerical form
In the case of further names the calling program must specify also:
ARG 3(4) : floating point value of the first further name
ARG 3 (5) : floating point values of the other further names of a data
: set required
After searching the library for the first data item belonging to the specified names, NDFLOC stores the arguments and functional values of this first data item into ARG 3 starting with the first unused word.

ARG 4 Variable which is filled by NDFLOC with O
ARG 5 Variable which is filled by NDFLOC with O
c) CALL NDFNXT (ARG 1, ARG 2, ARG 3, ARG 4, ARG 5)

ARG 1 Return code. Is set 1 by NDFNXT if the last data item for the required data block has been retrieved, otherwise it is set equal to O

ARG 2 Fixed point array with a length of four words which are filled by NDFNXT with:
ARG 2 (1) : number of names of the set of data required
ARG 2 (2) : number of arguments of a single data item with these names
ARG 2 (3) : number of functional values of a single data item with these names
ARG 2 (4): O
ARG 3 Double precision array of adequate length which is filled by NDFNXT successively with the names of the data set as specified in ARG 3 of NDFLOC, and the arguments and functional values of the data belonging to the above names and succeeding the one retrieved most recently

ARG 4 see NDFLOC
ARG 5 see NDFLOC

2. The LDF retrieval mode

This mode of the reading routine is the most refined one and its use is recommended therefore.
a) CALL LDFOPN (ARG 1, ARG 2, ARG 3)

ARG 1 Fixed point variable or constant giving the data set reference number ascribed to the KEDAK library. At present it has to be set equal to 1 and the corresponding DD-name is FTO1FOO1

ARG 2 Fixed point variable which is filled by LDFOPN with the date of the last change of the KEDAK library in the form ddmmy (see II, a)

ARG $3 \quad$ \& Statement number
This statement number marks the position in the calling program at which the program execution should be resumed in case the names required in ARG 3 of LDFLOC could not be found on KEDAK
b) CALL LDFLOC (ARG 1, ARG 2, ARG 3, ARG 4)

ARG 1 Fixed point variable defining a flag which is filled by LDFLOC with O in case the required set of data was not found, otherwise filled with 1

ARG 2 Fixed point array with a length of three words. The first word has to be specified in the calling program and has to give the number of names of the required data set. The succeeding two words are filled by LDFLOC with:
number of arguments for a single data item,
number of functional values for a single data item

ARG 3 Double precision array of adequate length which the calling program has to fill with:
ARG 3 (1): name of the isotope in alphamerical form
ARG 3 (2): name of the data type in alphamerical form
and in the case of further names:
ARG 3 (3) : floating point value of the first further name
ARG 3 (4) : floating point values of the other further names
of the data set required
ARG 4 Floating point array of adequate length which is filled by LDFLOC with the first data item belonging to the names supplied in ARG 3
c) CALL LDFNXT (ARG 1, ARG 2, ARG 3, ARG 4)

ARG 1 Return code. Is set 1 by LDFNXT if the last data item for the required data block has been retrieved, otherwise it is set equal to O

ARG 2 Fixed point array with a length of three words which are filled by LDFNXT with:
ARG 2 (1) : number of names of the set of the data required
ARG 2 (2) : number of arguments for a single data item with these names
ARG 2 (3) : number of functional values for a single data item with these names

ARG 3 Double precision array of adequate length which is filled by LDFNXT successively with the names of the data set in alphamerical form as specified in ARG 3 of LDFLOC
ARG 4 Floating point array of adequate length which is filled by LDFNXT with the data item next to the one retrieved most recently.
3. The IDF retrieval mode

This mode of the reading routine has compared with the LDF mode the preference of a shorter searching time in the library, since the isotope and data type names have to be given in the internal numerical form. The reading of data sets is performed in the following way:
a) CALL LDFOPN (ARG 1, ARG 2, ARG 3)
see III, a
b) CALL IDFLOC (ARG 1, ARG 2, ARG 3, ARG 4)

ARG 1 see LDFLOC III. 2 b
ARG 2 see LDFLOC III, 2 b
ARG 3 single precision array of adequate length which is filled by the calling program with:
ARG 3 (1) : name of the isotope in numerical form
ARG 3 (2) : name of the data type in numerical form

In the case of further names:
ARG 3 (3) : floating point value of the firstfurther name ARG 4 (4) : floating point values of the other further names $\stackrel{*}{0}$ of the set of the data required

ARG 4 see LDFLOC III 2 b
c) CALL IDFNXT (ARG 1, ARG 2, ARG 3, ARG 4)

ARG 1 see LDFNXT III.2 c
ARG 2 see LDFNXT III. 2 c
ARG 3 single precision array of adequate length which is filled by IDFNXT with the names of the set of data in numerical form

ARG 4 see LDFNXT III. 2 c
4. Examples
a) Reading and printing of the data between EU and EO for the fission cross section (KEDAK type SGF) of PU 239
$\mathrm{EU}=3 \mathrm{OKeV}$
$\mathrm{EO}=7 \mathrm{O} \mathrm{KeV}$

```
    REAL*8 MAT,TYP,NAM
    DIMENSION E(300),SIGMA(300),NNAM(3),NAM(2),QUER(2)
    DATA MAT/PU239 /,TYP/ESGF %/
    EU=30000.
    ED=70000.
    I=1
    CALL LDFOPN(1,NDATUM,&5)
    WRITE(6,1) NDATUM
1 FORMAT (" DATE OF THE KEDAK LIBRARY',I10//)
    NNAM(1)=2
    NAN(1)=MAT
    NAM(2)=TYP
    CALL LDFLOC(KENNZ,NNAM,NAM,QUER)
    IF(KENNZ.EQ.O) GO TO 2
    IF(QUER(I).LT.EU) GO TO 3
12 E(I)=QUER(1)
    SIGMA(I)=QUER (2)
    I=I +1
    IF(I.LE.300) GOTO 3
    GO TO 5
2 WRITE(6,4) MAT,TYP
4FORMAT!'FOR THE ISOTOPE *AG;' THE DATA TYPE *,AT,' IS NOT AVAILA
    1BLE IN THE KEDAK LIBPARY')
    GO TO 11
3 CALL LDFNXTIKENNZ,NNAM,NAM,QUER)
    IF(KENNZ.EQ.O) GO TO 5
    IF(QUER(1).LT.EU) GO TO 3
    IF(QUER(1).GT.EO) GO TO 5
    GO TO 12
    5 I =I-1
    IF(I.GT.1) GO TO b
    WRITE{6,7) MAT,TYP,EU,EO
7 FORMAT(" FOR THE ISOTOPE 'AG,' AND THE DATA TYPE ',AG,' NO DATA I
    1TEMS ARE AVAILABLE IN THE ENERGY RANGE FROM',E16.8, "EV TO',
    2E16.8, "EV')
        GO TO 11
    WRITE (6,8)
    8 FORMAT (6X,'ENERGY',11X,'SGF')
        WRITE (6,9)(E(J),SIGMA (J),J=1,1)
    9 FORMAT(2E16.8)
11 STOP
    END
```

Output :
DATE OF THE KEDAK LIBRARY 100571
ENERGY
SGF
0.30000000 E 050.16974993 E 01
0.35000000 E 050.16780996 E 01
0.40000000 E 050.1657 CS97E 01
$0.45000000 \mathrm{E} \quad 05 \quad 0.16438999 \mathrm{E} 01$
$0.50000000 \mathrm{E} \quad 050.16248999 \mathrm{E} 01$
0.55000000 E 050.16062994 E 01
0.57000000 E 050.16004000 E 01
0.60000000 E 050.15901995 E 01
0.65000000 E $050.15709991 E O L$
$0.7000 C 000 E 050.15663996 E O L$
b) Reading and printing of the data for the inelastic excitation cross section (KEDAK type SGIZ) of the excited levels between E 1 and E 2 for U 238

E $1=0$
$\mathrm{E} 2=200 \mathrm{KeV}$

REAL* 8 MAT, TYP,NIVEAU, NAM
DIMENS ION E (300), SIGMA (300), NNAM(3), NAM(3), QUER(2)
DATA MAT/'U 238 /,TYP/ SGIZ !/
$E 1=0$.
$E 2=200000$.
$1=1$
CALL LDFOPN(1, NDATUM, \&3)
WRITE $(6,1)$ NDATUM
1 FORMAT(: DATE OF THE KEDAK LIBRARY', 110//)
NNAM (1) $=3$
$\operatorname{NAM}(1)=$ MAT
$\operatorname{NAM(2)=TYP~}$
$\operatorname{NAM(3)=0.}$
CALL LDFLOC (KENNZ, NNAM,NAM,QUER)
IF(KENNZ.EQ.1) GO TO 2
5 CALL LDFLOC(KENNZ,NNAM, NAM,QUER)
IF(KENNZ.EQ.O) GO TO 3
2 IF (NAM(3).GE,E1) GO TC 9
NAM(3) =NAM(3) $\$ 1.0001$
GOTO 3
3 WRITE (6,6) MAT, TYP
6 FORMAT (FOR THE ISOTOPE "AO, "THE DATA TYPE "AT, 'IS NOT AVAILA IBLE IN THE KEDAK LIBRARY')
GO TO 11
9 NI VEAU=NAM(3)
IF (NAM(3).GT.E2) GO TO 11
4 E(I)=QUER(1)
SI GMA (I) = QUER (2)
$I=\mathrm{I}+1$
IF(I.GT.300) G0 TO 1\%
CALL LDFNXT (KENNZ, NNAM,NAM,QUER)
IF (KENNZ.EQ.1) GO TO 4
$141=1-1$
10 WRITE 6,7$)$ NIVEAU
7 FORMAT (//' LEVEL ENERGY: ", E1万. $3 / / 6 X,{ }^{\prime}$ ENERGY', $11 X,{ }^{\prime} \mathrm{SGIZ}$ ')
WRITE(6,8$)$ (E(J),SIGMA(J), $J=1, I)$
8 FORMAT (2E16.8)
$I=1$
IF(NAM(3).GT.NIVEAU.AND.NAM(3).LE.E2) GO TO 5
11 STOP
END

Output:

```
DATE OF THE KEDAK LIBRARY 100571
```

LEVEL ENERGY: 0.44700000005

ENERGY
$0.39000000 \mathrm{E} \quad 050.0$
0.42900000 E 050.0
$0.47000000 \mathrm{E} \quad 05 \quad 0.99999979 \mathrm{E} \sim 02$
$0.50000000 \mathrm{E} \quad 05 \quad 0.49999997 \mathrm{E}-01$
0.53100000 E OS 0.79999983 E 01

。
-
-

$0.14500000 E$	07	$0.12699997 E 00$
0.14700000 E	07	0.93399¢42E-01
0.15000000 E	07	$0.42999998 \mathrm{E}=01$
0.15500000 E	07	0.0
0.16000000 E	07	0.0
0.16500000 E	07	0.0
$0.17000000 E$	07	0.0
0.17500000 E	07	0.0
0.18000000 E	07	0.0
0.18500000 E	07	0.0
$0.19000000 E$	07	0.0
0.19500000 E	07	0.0
0.20000000 E	07	0.0
LEVEL ENERGY	:	0.14800000006
ENERGY		SGIZ
0.14000000 E	06	0.0
0.14800000 E	0.5	0.0
0.16000000 E	06	0.12999997E-01
0.18000000 E	06	$0.36999997 E-01$
$0.20000000 E$	06	0.57999998F=01

$0.17000000 E$	07	$0.97999990 E=01$
$0.17500000 E$	07	$0.61999999 E \sim 01$
$0.18000000 E$	07	$0.22000000 E=01$
$0.18500000 E$	07	0.0
$0.19000000 E$	07	0.0
$0.19500000 E$	07	0.0
$0.20000000 E$	07	0.0

IV. Program System KEMA

1. Purpose of the program system KEMA

The purpose of KEMA is to execute all kinds of management tasks on the KEDAK library. These can be all possible changes of nuclear data which imply a previous transformation from direct access form to a sequential form; the generation of the KEDAK library in card image format for dispatching the data to other centers; the retransformation from card image format to direct access form and the printout of KEDAK summary information.
KEMA also provides a number of routines for the management of the test data sets in the library. Similarly to the existence of ENDF/A and ENDF/B KEDAK offers the possibility to enter incomplete or not fully evaluated sets of data, e.g. to test new microscopic experimental results. Since these data are not distributed to external users, the organization of these sets of data and their management will not be described in this publication, although it forms part of the KEMA program system. Each of the above tasks will be executed by respectively one subroutine which is called by a control program. Therefore this FORTRAN VI program system is always expansive. The separate subroutines will be loaded in the program region by an overlay structure only if they are going to be used. The control program extracts from the input what kind of task will be done, checks the input of all desired working programs and the presentation of all needed DD-cards and calls the appropriate subroutines.
The entire input for the called subroutines is interpreted and written on unit 8 in unformatted form by a FORTRAN VI subroutine FREEFO. The working programs of KEMA can then read their particular input from unit 8. For the input some explanations are necessary: Each data record starts in column 1 of a data card. If it is not possible to place all the data of one input record on one card, a second, third, etc. card may be used, which must have a blank in column 1. Or: a non-blank column 1 in the input card is an indication for a new input record.

One has to distinguish between an alphameric word of the length REAL 4 and of the length REAL * 8. A REAL * 4 word must be included in apostrophies and is stored left justified in the computer and filled up with blanks if not all 4 bytes are occupied. Example: 'ARG' or 'ABCD'. A REAL * 8 word may be included in apostrophies comprising at least 5 signs and at most 8 signs, which are stored left justified in the computer if not all 8 bytes are occupied. A special case are REAL 8 words with a number of occupied bytes less than or equal to 5 . These words may be also included in \mathfrak{Q}-signs. They are also stored left justified in the computer and filled up with blanks.
 Fixed point and floating point numbers are written in the usual manner, e.g; fixed point numbers: $1 \quad 10 \quad 875$ and floating point numbers: $10 . \quad$. E3 O. $7 \mathrm{E}-3 \quad 0.01$. It is not possible to read double precision values.

The input data are separated by one or more blanks.
The following subroutines are contained in KEMA:

Identification number
O1717 - Program for converting the KEDAK library from direct access into sequential form

O 175 O - Program for deleting, inserting and changing nuclear data which are given in sequential form

O17O1 - Program for converting the KEDAK library from sequential into direct access form

O17O5 - Program for filling up data gaps in test data sets by standard data in the sequential KEDAK library

O1708 - Program for declaration of test data to standard data in the sequential KEDAK library

O17O3 - Program for printing selected sets of data of the sequential KEDAK library

O17O4 - Program for printing a list of contents of the direct access KEDAK library

O 172 O - Program for converting standard data of the KEDAK library from direct access form into card image format

O1721 - Program for converting the sets of data of selected isotopes of the KEDAK library from direct access form into card image format

O1722 - Program for conversion of the KEDAK library from card image format into direct access form

For updating the direct access KEDAK library by standard data, only the programs O1717, O175O and O17O1 are needed.

2. The control program

Input:

1. record (containing the information about the program flow)

I Number of working subroutines to be called $+1(\mathrm{I} \leq 2 \mathrm{O})$
(NFOLG(J), J=1, I) Identification numbers of the working subroutines chosen. NFOLG (I) $=0$
2. record (containing the assignment table of the alphanumerical and the numerical names of the isotopes)

NZM Number of isotopes in the assignment table
(MATNA(J), NUNA(J), J = 1, NZM)
MATNA : alphanumerical name of the isotope (REAL*8) NUNA : numerical name of the isotope
3. record (containing the assignment table of the alphanumerical and the numerical data type names)

NZT Number of data types in the assignment table
(TYPN(J), NUTY(J), J = 1, NZT)
TYPN : alphanumerical data type name (REAL * 8)
NUTY : numerical data type name

3. Conversion of the KEDAK library from direct access

into sequential form
Program: 01717
Input : KEDAK library in direct access form (organization see II) on the external storage unit 1

Output : KEDAK library in sequential form on the external storage unit 12

This sequential library has the following unformatted organization:

1. record

1 constant, date of the last change in the form ddmmyy, number of isotopes available in the library.
2. record

Names of the isotopes in numerical form
The following records are repeated for each isotope
3. record

Name of the isotope in numerical form, number of data types available for this isotope
4. record

Data type names in numerical form
The following records are repeated for each data type name
5. record

Name of the isotope in numerical form, name of the data type in numerical form, number of further names of the data type, number of arguments for a single data item, number of functional values for a single data item in the case of further names:
number of combinations of the further names
otherwise:
0
The following records are repeated for each combination of further names. If there are no further names at all the $6^{\text {th }}$ record is omitted and the other two records are given only once.
6. record

Further names of the combination.
7. record

Number of data items.
8. record

Arguments for a single data item, functional values belonging to the arguments for a single data item for all data items in the order of increasing arguments.

4. Updating the sequential KEDAK library

Program: 1750
Input : a) Sequential KEDAK library (organization see IV 3) on the external storage unit 12
b) Control input in form of card input
c) Data blocks for changing existing data either in the form of card input or in the form of a data set on the external storage unit 13

The control input has the following structure:

1. record

I AU $\left\{\begin{array}{l}\text { In the case the data alteration blocks are given in form } \\ \text { of cards: } 1 \\ \text { otherwise: } O\end{array}\right.$
I BA $\left\{\begin{array}{l}\text { In the case the data alteration blocks are given in form of } \\ \text { a data set on the external storage unit 13: } 1 \\ \text { otherwise: O }\end{array}\right.$
I AU and I BA may both be set equal to 1 . In this case first the card input and then the external input is processed.
NDTUM Current date. This date appears in the first record of the new version of the sequential library.

NNKO Number of combinations of material / data type names, for which new combinations of further names shall be inserted.
2. record (only if NNKO> O)
((IKO (I, J), I = 1, 2), IZKO (J), J = 1, NNKO)
IKO $(1, \ldots)$: name of the isotope in alphanumerical form, IKO $(2, \ldots)$: name of the data type in alphanumerical form, IZKO : number of combinations of new further names to be inserted.

Then the data alteration blocks follow. According to the kind of data change one has to choose between three types of data alteration blocks: ADD, DROPS and DROPA. The ADD-set has the function to insert single data items for the specified material and data type at the point specified by the respective arguments, the DROPS-set to delete single data items existing for the specified material and data type and identified by their arguments. The DROPA-set causes dropping for all data items for the specified material or only all data items for a specific data type. In arranging the data within the data alteration blocks first priority is assigned to the names of the isotopes. At present the following order of material names is valid for KEDAK :
$\mathrm{NI}_{\mathrm{bbb}}, \mathrm{NI}_{\mathrm{b}} 58, \mathrm{NI}_{\mathrm{b}} 6 \mathrm{O}, \mathrm{NI}_{\mathrm{b}} 61, \mathrm{NI}_{\mathrm{b}} 62, \mathrm{NI}_{\mathrm{b}} 64, \emptyset_{\mathrm{bb}} 16$, $\mathrm{U}_{\mathrm{b}} 235, \mathrm{AL}_{\mathrm{b}} 27, \mathrm{C}_{\mathrm{bb}} 12, \mathrm{CD}_{\mathrm{bbb}}, \mathrm{CR}_{\mathrm{bbb}}, \mathrm{CR}_{\mathrm{b}} 5 \mathrm{O}, \mathrm{CR}_{\mathrm{b}} 52$, $\mathrm{CR}_{\mathrm{b}} 53, \mathrm{CR}_{\mathrm{b}} 54, \mathrm{FE}_{\mathrm{bbb}}, \mathrm{FE}_{\mathrm{b}} 54, \mathrm{FE}_{\mathrm{b}} 56, \mathrm{FE}_{\mathrm{b}} 57, \mathrm{FE}_{\mathrm{b}} 58$, $\mathrm{H}_{\mathrm{bbb}} 2, \mathrm{H}_{\mathrm{bb}} \mathrm{H} 1, \mathrm{H}_{\mathrm{bb}} \varnothing 1, \mathrm{HE}_{\mathrm{bb}} 3, \mathrm{HE}_{\mathrm{bb}} 4, \mathrm{M} \varnothing_{\mathrm{bbb}}, \mathrm{M} \varnothing_{\mathrm{b}} 92$, $\mathrm{M} \varnothing_{\mathrm{b}} 94, \mathrm{M} \varnothing_{\mathrm{b}} 95, \mathrm{M} \varnothing_{\mathrm{b}} 96, \mathrm{M} \varnothing_{\mathrm{b}} 97, \mathrm{M} \varnothing_{\mathrm{b}} 98, \mathrm{M} \varnothing 100, \mathrm{~N}_{\mathrm{bbbb}}$, NA_{b} 23, PU239, PU24O, PU241, PU242, $\mathrm{U}_{\mathrm{b}} 238, \mathrm{H}_{\mathrm{bbb}} 1$, $\mathrm{CL}_{\mathrm{bbb}} \mathrm{UNC}, \mathrm{CL}_{\mathrm{b}} 35, \mathrm{CL}_{\mathrm{b}} 37$,

The actual order of material names can be printed out by the program 01704 in IV. 8.
Second priority have the data type names which have to be arranged in alphabetical order. If there are further names for the data type considered the different combinations of further names are given in the order of increasing values. For one particular material, data type and one particular combination of further names (if required) the rewised data have to be given in order of increasing arguments.

Structure of the data alteration blocks
A Insertion of new data (ADD - blocks)
This item covers the three following tasks:
a) The names specified (material - and / or data type - and / or further names) are not found in the KEDAK library - a new set of data characterized by these names has to be created.
b) The names specified are already available in the library - new data items have to be inserted.
c) The specified names and arguments of single data items exist already in the library - the existing functional values have to be replaced by new values.

Structure of the data block:
$\mathrm{N} \quad$ Number of data words in the following input record ($N \leq 2000$). Note that alphameric names consist of eight characters each and have to be counted as two words.
a $\mathrm{ADD}_{\mathrm{bb}} a$
NNATM

Constant, REAL * 8 word
Number of names
($\mathrm{NAM}(\mathrm{I}), \mathrm{I}=1$, NNAM) Name of the isotope in alphanumerical form (REAL * 8), name of the data type in alphanumerical form (REAL* 8), eventual further names in single precision floating point representation.

NARG
NWERT
Number of arguments of a single data item Number of functional values of a single data item
(ARG 1 (I), $I=1$, NARG)
(WERT 1 (I), I = 1, NWERT)
(ARG 2 (I), $\mathrm{I}=1$, NARG)
(WERT 2 (I), $\mathrm{I}=1$, NWERT)

$\left.\begin{array}{l}\text { Arguments } \\ \text { Funtional values }\end{array}\right\}$	first data item
$\left.\begin{array}{l}\text { Arguments } \\ \text { Functional values }\end{array}\right\}$	second data item

and so on in the order of increasing arguments as many times as data items shall be inserted or changed. In the case the data type for which changes should be performed has no arguments at all (as it is the case e.g. for the type ISOTノ, for other examples see [1] then NARG $=0$ and there can only be one data item with ARG (1) equal to the alphameric text 'ARG' and functional values following.

The data type AASTATUS, too, represents a special case since it is only used to store bibliographic information. If this type shall be inserted, NARG and NWERT have to be set equal to 1 and the comments consequently following have to be included in apostrophies. They have to be given in total by a number of characters divisible by 8 , since the first 4 characters are always interpreted as argument and the following 4 characters as functional value. Note, that 72 characters are thought to form one line in actual use.

B Deletion of existing data (DROPA -, DROPS - blocks)
a) The deletion of an entire set or sets of data on KEDAK is effected by the DROPA date block.
Structure of the data block:

N	Number of data words in the input record ($\mathrm{N} \leq 2 \mathrm{OOO}$). (REAL 8 data have to be counted as two single words)
$\hat{a} \text { DROPA } a$	Constant, (REAL * 8)
NNAM	Number of names
(NAM (I), $\mathrm{I}=1$, NNAM)	Name of the isotope in alphanumerical form (REAL * 8), eventually: name of the data type to be deleted in alphanumerical form (REAL 8), eventually: further names in floating point representation.

NNAM, (NAM (I), I = 1, NNAM) may be repeated as often as necessary.
b) The deletion of single data items belonging to the specified names and arguments is caused by the DROPS-block.

Structure of the DROPS-block:

N	Number of data words in the input record ($\mathrm{N} \leq 2000$). (REAL 8 words have to be counted as two single words)
0 DRops \mathfrak{a}	Constant, REAL* 8 word
NNAM	Number of names
$(\operatorname{NAM}(\mathrm{I}), \mathrm{I}=1, \mathrm{NNAM})$	Name of the isotope in alphanumerical form (REAL* 8), name of the data type in alphanumerical form (REAL* 8), eventually: further names in floating point representation
NARG	Number of arguments for a single data item
(ARG 1(I$), \mathrm{I}=1$, NARG)	Arguments of the first data item to be deleted
(ARG 2(I), $\mathrm{I}=1$, NARG)	Arguments of the second data item to be deleted

and so on in the order of increasing arguments as many times as data items shall be deleted.

The last input record of program 01750 is given by:
$20 \operatorname{ENDE}_{b} 0$
In the case that $\operatorname{IAU}=1$ and $\operatorname{IBA}=1$, i.e. data alteration blocks are presented in form of cards as well as on an external storage unit, first the data alteration blocks on cards closed by the $2 a$ ENDE a° record are processed and successively the external input which has also to be completed by the record $2 \alpha{ }^{\mathrm{b}}$ ENDE $_{b} \partial$ 。 The hierarchy of the input data, however, i.e. the already specified order of the material names, the alphabetic order of the data type names and the increasing order of arguments has not only to be fulfilled within the data alteration blocks on cards and on an external unit but it has also to be valid for the entire input in the case both input variants are mixed.
The different data alteration blocks ADD, DROPA, DROPS are sorted by the program onto the different storage units 9,10 and 11 respectively. Therefore DD-cards for these units are needed.

Qutput:
a) Sequential KEDAK library containing the changed data on the external storage unit 2 (organization see IV. 3)
b) A listing for each isotope and each data type, giving the number of data items available, number of data items deleted, number of data items inserted, number of data items exchanged.
5. Conversion of the sequential KEDAK library into direct access form

Program: O1701
Input : a) Sequential KEDAK library on the external storage unit 2 (organization see IV. 3)
b) The card input consists of one record with the following contents:
'KEDAK' 'BIBL' 'I \varnothing TH' Constants which appear as words $1,2,3$ in the declaration part of the direct access KEDAK library (see II)

IDAT Current date in the form ddmmy. This date appears as the $4^{\text {th }}$ word in the declaration part of the direct access KEDAK library

NMAT Number of isotopes available in the sequential library

Output : a) KEDAK library in direct access form (see II) on the external storage unit 14
b) Printed test output, e.g.

KMAT Current number of the isotope which is just going to be converted

ITYP Current number of the data type of this isotope KMAT which is just going to be converted

INK Current number of the combination of further names belonging to ITYP and KMAT which is just going to be converted.
6. Programs for the management of test data

Programs: 01705
O1708
These programs allow to operate upon test data in the library (see IV. 1) and will not be described here.

7. Print out of selected sets of data of the sequential KEDAK library

Program: O17O3
Input : a) Sequential KEDAK library on the external storage unit 2 (organization see IV. 3)
b) Card input with the following contents:
$\mathrm{N},(\operatorname{MAT}(\mathrm{I}), \operatorname{TYP}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
N : Number of isotope name/data type name combinations to be printed

MAT : Name of the isotope in alphanumerical form (REAL* 8)
TYP : Name of the data type in alphanumerical form (REAL*8)
Here the order of isotope names as specified in IV. 4 and the alphabetic order of the data type names has to be observed.

Output : For each selected combination of names:

Name of the isotope, name of the data type
(the following is repeated for each combination of further names, if existing for the respective data type)
further names if existing, number of data items,
arguments, $\} \quad$ for the first data item and so on functional values for all data items successively
8. Print out of a list of contents of the direct access

KEDAK library

Program: O1704
Input : KEDAK library in direct access form (organization see II) on the external storage unit 18

Output : A list of the contents of the KEDAK library, i.e. a list of the isotopes in the order as stored in the library and for each isotope the available alphanumerical data type names in alphabetical order.
9. Conversion of the standard data of the KEDAK library from direct access form into card image format

Program:	O172O
Input :	KEDAK library in direct access form (organization see II) on the external storage unit 17
Output :	The sets of data of all the isotopes in the KEDAK library having names of a length less than or equal 5 characters in card image format are written onto the external storage unit 16. The organization of the KEDAK library in card image format is described in $[1]$, except that the structure of the identification part was modified. The identification part contains now in columns
	73-74 the position at which the isotope appears in the description of the isotope contents or O_{i} if the record belongs to the description of the isotope contents
	75-76 the position at which the data type appears in the isotope dependent description of the data type contents or $O_{\text {}}$ if the record belongs to the description of the data type contents of a specific isotope name
	77-80 the record count for a set of data of a specific isotope name, a specific data type name and eventually a particular combination of further names starting with O
	Refer to $\lceil 17$ for an explanation of the terms used here. An exception to the format codes described in $[1]$ and used to prepare the card image library is the comment type AASTATUS, which is written in format (18A4)

10. Conversion of the sets of data of selected isotopes from
direct access form into card image format

Program: O1721
Input :
a) KEDAK library in direct access form (organization see II) on the external storage unit 17
b) Card input with the following contents:
(NNM, (TMAT (I), I = 1, NNM))
NNM : Number of isotopes the sets of data of which should be converted into card image format

TMAT : Names of these isotopes in alphanumerical form in the order given in IV. 4

Output : : The sets of data of the isotopes specified in the input are written in card image form on the external storage unit 16 . The output of program O1721 corresponds to the output of program O 172 O described in IV. 9.
11. Conversion of the KEDAK library from card image format into direct access form

Program: 01722
\qquad : a) The KEDAK library in card image format (organization see II) on the external storage unit 21. If the card image library is distributed on more than one magnetic tape, for each of these tapes a separate DD-card is necessary on which the unit numbers are continuously incremented by one starting with 21 . If for example the nuclear data are distributed on 3 magnetic tapes:

```
//G.FT21FOO1 DD UNIT=TAPE9, VOL=SER=TAPE1, . . 
// G.FT22FOO1 DD UNIT=AFF=FT21FOO1, VOL=SER=TAPE2,...
// G.FT23FOO1 DD UNIT=AFF=FT21FOO1,VOL=SER=TAPE3,...
```

b) The card input consists of one record with the following contents:
'KEDA' 'BIBL' ' $\varnothing \mathrm{TH}$ ' Constants which appear as words $1,2,3$ in the declaration part of the direct access KEDAK library (see II)

IDAT Current date in the form ddmmyy. This date appears as the $4^{\text {th }}$ word in the declaration part of the direct access KEDAK library
NMAT Number of isotopes available in the card image library

IBND Number of magnetic tapes on which the card image library is described

Output :
KEDAK library in direct access form as discussed in II on the external storage unit 1
12. Example for the input

The direct access KEDAK library shall be modified and the new library shall be converted into card image format
//INRO17KE ${ }_{\mathrm{b}} \mathrm{JOB}_{\mathrm{b}}(\mathrm{OO} 17,101, \mathrm{P} 6 \mathrm{M1A})$, KRIEG, CLASS=A, REGION=270 K, $1 /{ }_{b}$ TIME $=15$
$\|_{\mathrm{b}}$ EXEC FHG, LIB=NUSYS, NAME=KEMA
//G. FTO8FOO1 DD UNTT=SYSDA, SPACE=(TRK, 1O)
// G. FTO1FOO1 DD UNIT=2314, VOL=SER=NUSYSO, DSN=KNDF, DISP=SHR $/ /$ G. FT12FOO1 DD UNTT=SYSDA, SPACE=(TRK, 3OO, RLSE),
$\|_{\mathrm{b}} \mathrm{DCB}=(\mathrm{RECFM}=\mathrm{VBS}, \mathrm{BLKSIZE}=7168)$
$/ / \mathrm{G} . \mathrm{FTO} 9 \mathrm{FOO} 1$ DD UNIT=SYSDA, SPACE=(TRK, 2O)
//G. FT1OFOO1 DD UNIT=SYSDA, SPACE=(TRK, 2O)
//G. FT11FOO1 DD UNIT=SYSDA, SPACE=(TRK, 2O)
$/ /$ G. FTO2FOO1 DD UNIT=SYSDA, SPACE=(TRK, 3OO, RLSE), $/ /_{b} \mathrm{DCB}=(\mathrm{RECFM}=\mathrm{VBS}, \mathrm{BLKSIZE}=7168)$
//G. FT14FOO1 DD UNIT=2314, VOL=SER=NUSYSO, DSN=KEDAK, $/ \|_{b}$ DISP=(NEW, KEEP), \quad SPACE $=(T R K, 3 O O)$
$/ / \mathrm{G} . \mathrm{FT} 17 \mathrm{FOO} 1$ DD UNTT=2314, VOL=REF=*. FT14FOO1, $\|_{b}$ DSN=*。FT14FOO1, DISP=OLD
//G. FT16FOO1 DD UNIT=TAPE9, VOL=SER=9O17O1, DSN=KERND, $/ /_{\mathrm{b}}$ DISP $=($, PASS $)$, LABEL $=($, SL $)$,
$\|_{\mathrm{b}} \mathrm{DCB}=(\mathrm{RECFM}=\mathrm{FB}, \mathrm{LRECL}=8 \mathrm{O}$, BLKSIZE=72OO$)$
/* SETUP DEVICE=TAPE9, ID=901701
//G.SYSIN DD*

V. Literature References
[1] D. Woll, KFK 880 (EANDC(E)-112 "U") Dec. 1968
$\lceil 2]$ M.K. Drake, BNL 5O274, Vol. I
VI. Appendix

Table 1 : Data types foreseen on KEDAK
(status 1972)

$\begin{aligned} & \text { Name of data } \\ & \text { type } \\ & \text { K G S } \end{aligned}$	$\begin{aligned} & \text { Name as } \\ & \text { in } \\ & \text { ENDF/B? } \end{aligned}$	Name of data type on internal KEDAK	Further names	Arguments	Funct	nal values
1451 。	y	AASTATUS	-		$1^{(4)}$	bibliographic information giving data types and energy regions of recent evaluations.
14511	n	RANGRES	-	-	1. 2. 3. 4.	E_{L} - lower energy boundary of the region in \} which resolved resonance parameters F_{U} - upper are given under data type "RES " number of resolved resonances given by " RES " flag which indicates whether resolved resonance parameters should preferable be taken for group constant calculations or pointwise given cross section values. It may have the following values. 2. - cross section values fshould be 1. - resolved resonance parameters taken o. - no preference can be recommended
1458 -	n	IS¢T1	-	-	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \end{aligned}$	Atomic weight (A) Atomic number (Z) Nuclear spin of ground state (I)
1459 。	n	ISфT 2	-	-	1. 2. 3.	$\begin{aligned} & \star \quad \overline{\sqrt{E}}=\pi / \sqrt{2 m}{ }_{n} . \frac{A+1}{A} r_{1} \text { reduced neutron } \\ & \text { wave length }\left[\mathrm{eV} \mathrm{eV}^{2} 1 / 2\right] \\ & \mathrm{R}=\text { nuclear radius }[\mathrm{b} 1 / 2] \\ & \mathrm{E}_{\mathrm{B}}=\text { binding energy of the last neutron in com- } \\ & \text { pound nucleus } \end{aligned}$
14600	n	ISøT 3	-	Isotope atomic Isotopic abundance (\%) weight		
1457 o	n	PLNUE	-	-	1. v 2. v 3. v 4. v	where $v={ }_{i=0}^{3} v_{i} \mathbb{E}^{i}=$ average total number of fission neutrons

-Name of data type -K 'G 'S	$\begin{align*} & \text { Name as } \\ & \text { in } \\ & \text { ENDF/B? } \tag{1} \end{align*}$	Name of data type on internal KEDAK	Further names	Arguments Functional values
1456 o	n	CHICR		$\begin{array}{ll} \left.\begin{array}{ll} \text { 1. Neutron inci- } & \text { 1. A } \\ \text { dent energy } & \text { 2. B } \\ & \text { 3. C } \end{array}\right\} \quad \begin{array}{l} \text { Parameters of the Cranberg fission } \\ \text { spectrum } \end{array} . \end{array}$
21520	n	RES	-	1. Resonance energy 1. $\mathrm{g}_{\mathrm{J}}=(2 \mathrm{~J}+1) /(2(2 \mathrm{I}+1))$ 2. Neutron orbital 2. total half width Γ anguiar momentum (1.) 3. neutron half width Γ_{n} 3. Compound nucleus 4. capture half width Γ_{γ} $\operatorname{spin}(J)$ 5. fission half width Γ_{f} 6. (n, p)-half width Γ_{ρ} 7. (n, α)-half width $\Gamma_{\underline{\alpha}}^{\rho}$ 8. (n, n^{\prime})-half width $\Gamma_{n^{\prime}}^{\alpha}$ \qquad
21530	n	ST	-	1.1 1. average capture width \bar{T} 2.J 2. average level spacing \bar{D} 3. average reduced neutron width. 4. strength function $\overline{T_{n}(0) / D}$ 5. number of exit channels in fission ν_{f} 6. number of exit channels in neutron elastic scattering $\left(\nu_{n}\right)$
21540	n	STD	-	1. average observed level spacing 2. a parameters of the statistical 3. $2 \sigma^{2}$ \} theory

Name of data type K G S	$\begin{aligned} & \text { Name as } \\ & \quad \text { in } \\ & \operatorname{END} / \mathrm{B} ? \end{aligned}$	Name of data type on internal KEDAK	Further names	Arguments Functional values	
30270	y	SGA	-	neutron incident energy	absorption cross section
3028 -	y	SGIP	-	"	cross section for the ($n, n^{\prime} \mathrm{p}$)-process
30290	y	SGNI	-	"	" " sum of σ_{n} and σ_{n}.
31020	y	SGG	-	"	" " (n,r) -process
31030	y	SGP	-	"	" " " " (n, p) - "
31040	y	SGD	-	"	" " " " $(n, d)-$ -
31050	y	SGH3	-	"	" " " " $\left.n, H^{3}\right)-$ "
31060	y	SGHE3	-	"	" " " " $\left.n, H e^{3}\right)-$ "
31070	y	SGALP	-	"	" " " " $(n, \alpha)-$ "
31080	y	SG2HE	-	"	" " " " $n, 2 \alpha$) "
32010	n	SGTR	-	"	transport cross section
32060	n	ETA	-	"	average number of fission neutrons per neutron absorption
32070	n	ALPHA	-	"	ratio of capture to fission cross section
3251 -	y	MUEL	-	"	average cosine of the elastic scattering angle in the laboratory system
34520	y	NUE	-	"	$\cos \theta_{\mathrm{L}}=\mu_{\mathrm{L}}$ average number of fission neutrons
34550	n	NUEP	-	"	average number of prompt fission neutrons
3461 o	n	CHIF	-	neutron outgoing energy	energy spectrum of prompt fission neutrons (thermal fission)
34620	n	CHIFD	-	"	energy spectrum of delayed fission neutrons (thermal fission)

Name of data type $K \quad G \quad S$	$\begin{aligned} & \text { Name as } \\ & \text { in } \\ & \operatorname{ENDF} / B ? \end{aligned}$	Name of data type on internal KEDAK	Further names	Arguments Functional values	
40021	n	SGNL	$E_{0}^{(2)}$	cosine of scattering angle	differential elastic scattering cross section at the neutron incident energy E_{o} in the laboratory system
40022	n	SGNC	$E_{0}^{(2)}$	"	differential elastic scattering cross section at the neutron incident energy E_{0} in the center-ofmass system
40041	n	SGIL	E_{0}	"	differential inelastic scattering cross section at the neutron incident energy E_{o} in the laboratory system
40042	n	SGIC	E_{0}	"	differential inelastic scattering cross section at the neutron incident energy \mathbb{E}_{0} in the center-ofmass system
40051	n	SGILZ	$\begin{aligned} & 1 \cdot E_{i} \\ & 2 \cdot E_{0} \end{aligned}$	"	differential inelastic scattering cross section for $\bar{\sigma}$ excitation of the rest nucleus level \mathbb{E}_{i} at the neutron incident energy E_{0} in the laboratory system
40052	n	SGICZ	$\begin{aligned} & 1 \cdot E_{i} \\ & 2 \cdot E_{0} \end{aligned}$	"	differential inelasic cross section for excitation of the rest nucleus level E_{i} at the neutron incident energy E_{0} in the center-of-立ass system
40291	n	SGNIL	$\begin{aligned} & 1 \cdot E_{2} \\ & 2 \cdot E_{0} \end{aligned}$	"	differential cross section for elastic and inelastic scattering at the neutron incident energy E to neutron outgoing energies between E_{0} and E_{2} in ${ }^{\circ}$ the laboratory system
40292	n	SGNIC	$\begin{aligned} & 1 \cdot E_{2}^{2} \\ & 2 \cdot E_{0}^{2} \end{aligned}$	"	differential cross section for elastic and inelastic scattering at the neutron incident energy E to neutron outgoing energies between E_{0} and E_{2} in the center-of-mass system
44631	n	LEGINL	$\begin{aligned} & \text { 1.EO } \\ & \text { 2.order } \end{aligned}$	L	coefficient f_{L} in the Legendre-polynomial expansion of the differential elastic scattering cross section

Name of data type K G S	$\begin{aligned} & \text { Name as } \\ & \quad \text { in } \\ & \text { ENDF/? } \end{aligned}$	Name of data type of internal KEDAK	Further names	Arguments	Functional values
5461 。	n	CHIFZ	E_{0}	neutron outgoing energy	energy spectrum of prompt fission neutrons at the neutron incident energy E_{0}
54620	n	CHIFDZ	E_{0}	"	energy spectrum of delayed fission neutrons at the neutron incident energy E_{o}
50040	y	CHII	E_{0}	"	energy spectrum of inelastically scattered neutrons at the neutron incident energy E_{0}
50160	y	CHI 2 N	E_{0}	"	1.)2.) energy spectrum of the two neutrons emitted in the ($n, 2 n$) process at the neutron incident energy E_{o}
50170	y	CHI3N	E_{0}	"	1.)2.)3.) energy spectrum of the three neutrons emitted in the ($n, 3 n$) process at the neutron incident energy E_{0}

| Name of data
 type
 $K \quad G \quad S$ | Name as
 in
 $E N D F / ?$ | Name of data
 type of in-
 ternal KEDAK | Further
 names | Arguments |
| :---: | :---: | :---: | :---: | :---: |\quad Functional values

50053	n	SEDIC	E_{0}	K-identification number for the model used for description :
50163	y	SED2N	$"$	
50173	y	SED3N	"	$\mathrm{K}=1$ evaporation spectrum
54523	n	SEDF	-	$K=2$ Maxwellian spectrum
54613	n	SEDFP	"	$K=3$ Watt-Cranberg spectrum
54623	n	SEDFD	"	$\mathrm{K}=4$ Excitation of discrete levels

parametric representation of energy spectra
at incident neutron energy E_{o}
of neutrons inelastically scattered to a conti-
nuum of levels
of the two neutrons emitted by the ($n, 2 n$)
process
of the neutrons emitted by the ($n, 3 n$) process
of fission neutrons
of prompt fission neutrons
of delayed fission neutrons

3 functional values : (5)

1. p - fraction of the spectrum of typeK to the total energy distribution
2. θ (nuclear temperature) - for $K=1,2$ a (spectrum parameter) - for $K=3$ EC (level excitation - for $K=4$ energy)
3. K - upper limit for the - for $K=1,2$ final neutron energy $0 \leq E^{\prime} \leq \quad E-U$
or b (spectrum parameter) - for $\mathrm{K}=3$ or $0 \quad$ - for $K=4$
(1) K always corresponds to the ENDF/B format. If also G corresponds to the ENDF/B format, then the second column contains " yes ", otherwise " no ".
(2) E_{0} for this and all pertinent further data types in the laboratory system. This is also true for E_{2}.

(4) The data items of AASTATUS are only formally divided into argument and functional value. They contain the indicated text in successive order.
(5) These formats were chosen in accordance with ENDF / B as described in ref. [2].

[^0]: ${ }^{(1)}$ An address in the library consists of two words: the first word gives the record number, the second the word number in this record.

