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Abstract

Purpose Identifying and understanding causal risk factors for crime over the life-

course is a key area of inquiry in developmental criminology. Prospective longitudinal

studies provide valuable information about the relationships between risk factors and

later criminal offending. Meta-analyses that synthesize findings from these studies can

summarize the predictive strength of different risk factors for crime, and offer unique

opportunities for examining the developmental variability of risk factors. Complex data

structures are common in such meta-analyses, whereby primary studies provide mul-

tiple (dependent) effect sizes.

Methods This paper describes a recent innovative method for handling complex meta-

analytic data structures arising due to dependent effect sizes: robust variance estimation

(RVE). We first present a brief overview of the RVE method, describing the underlying

models and estimation procedures and their applicability to meta-analyses of research

in developmental criminology. We then present a tutorial on implementing these

methods in the R statistical environment, using an example meta-analysis on risk

factors for adolescent delinquency.

Results The tutorial demonstrates how to estimate mean effect sizes and meta-

regression models using the RVE method in R, with particular emphasis on exploring

developmental variation in risk factors for crime and delinquency. The tutorial also

illustrates hypothesis testing for meta-regression coefficients, including tests for overall

model fit and incremental hypothesis tests.
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Conclusions The paper concludes by summarizing the benefits of using the RVE

method with complex meta-analytic data structures, highlighting how this method

can advance research syntheses in the field of developmental criminology.

Keywords Dependent effect sizes . Protective factors . Risk factors . Robust standard

errors

Introduction

Identifying and understanding causal risk factors for crime over the life-course is a

key area of inquiry in developmental and life-course criminology [1–4]. Prospec-

tive longitudinal studies provide valuable information regarding age-related tra-

jectories of criminal offending, which is crucial not only for informing theories of

crime etiology but also for developing interventions aimed at reducing criminal

behavior (e.g., [5–7]). Findings from any individual study will rarely provide

sufficient evidence for policy or practice recommendations. Even the most well-

designed study will be subject to sampling error [8]. Meta-analyses that synthesize

findings from multiple studies can provide more compelling evidence than that

from a single study, given their greater statistical power to detect effects, gener-

alizability across settings, and ability to systematically appraise conflicting find-

ings across studies. Meta-analyses are therefore uniquely situated to guide the

field of developmental and life-course criminology by assisting in the identifica-

tion of risk factors that are promising targets for intervention and prevention, and

identifying effective crime prevention programs. The Campbell Collaboration

(www.campbellcollaboration.org), for instance, is an organization committed to

producing and disseminating systematic reviews and meta-analyses to identify

effective programs in the fields of criminology and other social sciences.

Complex data structures are common in meta-analyses of criminological re-

search, whereby primary studies provide multiple, statistically dependent effect

size estimates (i.e., effect size estimates with correlated error terms or correlated

effect size parameters). For instance, the guiding example used in this tutorial is a

meta-analysis where the effect size of interest is the correlation indexing the

relationship between school motivation/attitudes and subsequent delinquency or

criminal behavior. The prospective longitudinal studies that were included in this

meta-analysis often reported multiple effect sizes (i.e., correlation coefficients) of

interest, given the numerous ways in which school motivation/attitudes variables

could be operationalized (e.g., academic aspirations, academic self-efficacy) as

well as the numerous ways in which crime/delinquency could be operationalized

(e.g., property crime, violent crime). In their meta-analysis of correlational re-

search examining the association between school bullying and later aggression/

violence, Ttofi et al. [9] also encountered dependent effect sizes, such that primary

studies often reported multiple measures of bullying or aggression by informant

(e.g., self- vs. peer-rated).

Complex data structures are also common in meta-analyses of intervention

effectiveness research. For instance, in a Campbell Collaboration review and

meta-analysis examining the effectiveness of drug courts, Mitchell and colleagues
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[10] found that evaluation studies reported multiple odds ratio effect sizes

indexing the effects of drug courts on multiple indicators of recidivism (e.g.,

referrals vs. convictions, general vs. specific offense types). In another meta-

analysis examining the effectiveness of self-control interventions for reducing

delinquency, Piquero, Jennings, and Farrington [2] reported that evaluations often

included more than one intervention condition and/or comparison condition, thus

yielding a set of statistically dependent effect size estimates. And in their meta-

analysis synthesizing research on the effects of “pulling levers” focused deterrence

strategies, Braga and Weisburd [11] also encountered dependent effect sizes such

that evaluations often reported multiple indicators of crime (e.g., homicides, shots

fired, gun assaults, youth gun assaults).

Statistically dependent effect sizes would ideally be synthesized via multivar-

iate meta-analysis methods, which permit the inclusion of dependent effect sizes in

a meta-analysis by fully modeling those dependencies [12–15]. Multivariate meta-

analysis is rarely used, however, because it assumes knowledge of the underlying

covariance structure among effect sizes (i.e., the covariance between effect size

estimates within a study), which is seldom reported in primary studies and thus

often unknown to the meta-analyst. Historically, most meta-analysts have conse-

quently used data processing and selection techniques for handling dependent

effect sizes. This might include, for instance, selecting one effect size per study,

either randomly or based on a set of selection criteria, or creating a single

synthetic effect size per study by averaging all effect sizes within a given study

[14, 16–18]. Although these data processing and selection techniques result in an

analytic sample of statistically independent effect sizes for any given analysis,

these techniques ultimately result in the loss of potentially valuable information.

One contemporary alternative for handling statistically dependent effect sizes is

through robust variance estimation (RVE). This method permits the inclusion of

statistically dependent effect sizes within a meta-analysis and therefore permits the

meta-analyst to utilize all available information reported in primary studies. This

method does not require knowledge of the underlying covariance structure among

effect sizes, and thus is practical for use in many scenarios. Recent advances in

meta-analytic software have also made RVE easy to implement. Thus, this paper

will provide an overview of the RVE method, describing the underlying model

and estimation procedures and its applicability to meta-analyses of research in

developmental criminology. We then present a tutorial on implementing these

methods in the R statistical environment [19], using an example meta-analysis

on school motivation risk factors for adolescent crime and delinquency. The goal

of this paper is to provide practical guidance to researchers interested in applying

this innovative method to complex meta-analytic data structures.

This is the first tutorial to demonstrate the application of RVE in the R

statistical environment and the first to discuss the application of RVE for meta-

analyses of criminological research. It is also the first to illustrate the use of RVE

with small-sample adjustments for both the t- and F-tests, which we introduce

below [20, 21]. Although more technical presentations of the RVE method exist

(e.g. [22, 23]), as well as a tutorial for implementing RVE in SPSS and Stata [24],

this is the first tutorial of which we are aware that provides a user-friendly

description of how to implement RVE in the R environment.
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Review of Standard Meta-analysis Model

In a standard meta-analysis with independent effect sizes, the fixed-effect model is

written as:

y j ¼ β0 þ e j ð1Þ

where yj is an effect size in the jth study (j=1… m); β0 is the average population effect,

and ej is the study level residual∼N(0, vj) [25]. Although this fixed-effect model is

appropriate under some circumstances, most meta-analyses of criminological research

will assume some underlying heterogeneity in effects (e.g., across settings, samples,

outcomes) and/or will desire to make inferences to a larger population of studies, in

which case a random-effects model will be more appropriate.In a standard meta-

analysis with independent effect sizes, the random-effects model is written as:

y j ¼ β0 þ u j þ e j ð2Þ

where yj is an effect size in the jth study (j= 1…m); β0 is the average population

effect; uj is the study level random effect ∼N(0, τ2), and ej is the study level

residual ∼N(0, vj) [25]. Given that heterogeneous effect sizes are common in

meta-analyses of criminological research, most meta-analysts are also interested

in examining the effect of moderator variables that may account for some of the

observed variability in effect sizes [26, 27]. This simple random-effects meta-

analytic model can thus be extended to include p covariates or effect size

moderators x1 … xp:

y j ¼ β0 þ β1x1þ … þ βpxp þ u j þ e j ð3Þ

where β0 is the intercept, β1 … βp are the regression coefficients for the

covariates, and Var(uj) = τ
2
res is the residual heterogeneity after adjusting for the

covariates. This meta-regression model can thus be used to model the associa-

tions between the p covariates or effect size moderators and the effect size y. The

weighted least-squares estimate of β= (β1,…, βp) can be calculated using

b ¼ X
0
WX

� �

−1

X
0
WY

� �

ð4Þ

where W is a diagonal weight matrix. The variance of the estimate b of β can be

written as:

V bð Þ ¼ X
0
WX

� �

−1

X
0
WΣWX

� �

X
0
WX

� �

−1

: ð5Þ

In a traditional meta-analysis model where the effect sizes from each study are

assumed to be statistically independent, the diagonal elements of Σ are the

variances vj and the off-diagonal covariance estimates are assumed to be zero.
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Typically, the weights are defined to be inverse variance, with the diagonals of W

equal to (1/vj) for each effect size, and the off-diagonals equal to zero; in this

case, the variance reduces to:

VM bð Þ ¼ X
0
WX

� �

−1

: ð6Þ

This formula for standard errors is widely used in meta-analyses of criminological

research and is appropriate to use when estimated effect sizes are statistically

independent. The estimator VM(b) is inappropriate for use when effect sizes are

statistically dependent, however, because it results in standard error estimates that

are much too small.

Review of Robust Variance Estimation (RVE)

RVE is a method that can be used to analyze statistically dependent effect sizes in a

meta-analysis [22, 23]. Although this method does not require researchers to correctly

specify the dependence structure of the data, it is helpful for researchers to understand

where and how dependence can arise. For simplicity, we focus here on two broad types

of dependence structures: “hierarchical effects” and “correlated effects.” Although we

describe these two types of dependence separately, it is common for both forms of

dependence to arise within the same meta-analysis (see [24]).

In the hierarchical effects case, dependence arises due to multiple studies being

nested within a larger cluster such as a research group, lab, region, or country. For

instance, a meta-analysis on drug court effectiveness studies might synthesize effect

sizes indexing reductions in recidivism among drug court participants across multiple

studies, but some drug courts may have conducted multiple independent evaluations at

the same drug court site (e.g., by cohort). Thus, in this scenario, the meta-analyst might

have effect sizes from multiple independent studies nested within a larger cluster (i.e.,

drug court site). In this hierarchical effects case, primary study participants (level 1)

provide effect sizes in multiple studies (level 2), which are nested within some larger

cluster (level 3). This hierarchical effects model assumes independent sampling errors

within clusters, which is often a reasonable assumption when there are no overlapping

participant samples represented in the effect size estimates.

Perhaps a more common dependence structure that arises in meta-analyses of

criminological research is the correlated effects case, where there are dependent

sampling errors within clusters. Correlated effects arise when the same participant

samples are used to estimate multiple effect sizes. For instance, a meta-analysis on

childhood risk factors for juvenile delinquency might synthesize effect sizes indexing

the strength of different parenting-related risk factors across multiple studies; individual

studies may report multiple measures of parenting-related risk factors, and individual

studies may also report longitudinal effects at multiple follow-up points. In this

correlated effects case, the meta-analytic model now represents primary study partic-

ipants (level 1) providing multiple effect estimates (level 2) that are nested within

studies (level 3).

The RVE method is agnostic to the type of dependence structure present in the data,

so can be used to handle both the hierarchical effects and correlated effects scenarios
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described above. Moreover, the same underlying model is used here as in Eq. 2.

Assuming a correlated effects model where multiple effect size estimates are nested

within studies, the meta-analytic model can now be written as:

yi j ¼ β0 þ u j þ ei j ð7Þ

where for i=1…kj, j=1…m, yij is the ith effect size in the jth study; β0 is the average

population effect; uj is the study level random effect such that Var(uj) = τ
2 is the

between-study variance component; and eij is the residual for the ith effect size in the

jth study. To examine effect size moderators, the RVE model can be extended to include

p covariates x1 … xp, where:

yi j ¼ β0 þ β1x1i jþ… þβpxpi jþu j þ ei j: ð8Þ

With RVE models, the weighted least-squares estimate of β= (β1,…, βp) can be

calculated using the same approach as in the standard meta-analysis model (Eq. 4). The

RVE approach differs from the standard meta-analysis approach in the estimate of the

variance of b (Eq. 5). Whereas in standard meta-analysis the model-based estimator

(Eq. 6) is employed, in RVE instead this variance is estimated by:

VR bð Þ ¼
X m

j¼1
X

0

jW jX j

� �

−1 X m

j¼1
X

0

jW jA je je
0

jA
0

jW jX j

� �

X m

j¼1
X

0

jW jX j

� �

−1

ð9Þ

where for study j=1…m,Xj is the design matrix, Wj is the weight matrix, Aj is an

adjustment matrix, and ej is the estimated residual vector. This adjustment matrix is

included to adjust for small-sample bias in the estimator VR(b). When the adjustment

matrix follows the form provided in Tipton [20], the robust variance estimator VR(b) is

unbiased for the true variance V(b) even with a small number of included studies.

The Role of Weights in RVE

Although any weights can be used with the RVE method, Hedges et al. [22] argue that

approximately inverse variance weights will often be desired because they are most

efficient. Because the RVE estimator is derived for any weights, using weights other

than inverse variance weights will not comprise statistical inferences and will only

comprise efficiency. Hedges and colleagues [22] therefore proposed two methods for

weighting: hierarchical effects weights and correlated effects weights (and these are the

weights that are available as default options in the R package used in this tutorial).

In a hierarchical effects model, inverse variance weights can be used:

ωi j ¼
1

vi jþτ2þω2
� � ð10Þ

where vij is the within-study sampling variance for effect size i in study j, τ2 is the

estimate of the between-cluster variance component, and ω2 is the estimate of the
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within-cluster between-study variance component. The matrix Wj thus has the values

wij on the diagonals and zeros on the off-diagonals. Hedges et al. [22] provide method

of moments estimators for both τ2 and ω2. Importantly, unlike maximum likelihood

estimates, these estimates do not require any distributional assumptions.

In a correlated effects model, Hedges et al. also provide a simple method for

estimating inverse variance weights:

wi j ¼
1

k j v: j þ τ2
� � ð11Þ

where v.j is the mean of the within-study sampling variances (vij) for the kj effect sizes

in study j, τ2 is the estimate of the between-study variance component, and kj is the

number of effect sizes within each study j. Again, Hedges et al. provide a method of

moments estimator of τ2, which is implemented in the R package used in this tutorial.

Because the choice of weights only affects efficiency in estimates, Tanner-

Smith and Tipton [24] recommended that meta-analysts faced with complicated

dependence structures (i.e., a mixture of correlated and hierarchical effects) choose

weights based on the most prevalent type of dependence. Namely, if most studies

provide results from multiple evaluations on different participant samples, but a

few also measure multiple outcomes on the same participant samples, then the

hierarchical effects weights would be most appropriate. In contrast, if most studies

provide the results of a single evaluation with multiple measures on the same

participant sample, but a few have multiple cohorts of samples, then the correlated

effects weights would be more appropriate.

Adjustment Matrices

In the RVE estimator of the variance (Eq. 9), adjustment matrices Aj are found on

either side of the estimator. In the original formulation of RVE found in Hedges

et al. [22], these adjustments were not included, and the estimator was known to

under-estimate the true variance when the number of studies is small (see simula-

tions in [22, 23]). Tipton [20] showed that the bias from inclusion of a small number

of studies could be reduced if these adjustment matrices were included. In the case

in which correlated effects weights are used, these matrices can be written,

A j ¼ I–H j

� �

−1=2 ð12Þ

where Hj=Xj(X′WX)−1Xj′Wj is the hat matrix for study j. These adjustments differ

from study to study and take into account the leverage and influence of each study

in the analysis. The adjustments for the hierarchical effects case, as well as more

general adjustments, are found in Tipton [20] and follow a similar form.

Hypothesis Tests for RVE Meta-regression Coefficients

In meta-regression, analysts are typically interested in testing whether effect sizes vary

in relation to particular covariates or effect size moderators. Hypotheses regarding a
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single coefficient βk in a meta-regression model (e.g., H0: βk=0) can be tested using the

robust variance estimator as:

t
k¼ βk

ffiffiffiffi

VR
k

p ð13Þ

where bk is the estimate of βk and VR
k is robust estimate of the variance estimate of bk

(i.e., the kth diagonal of the VR(b) variance-covariance matrix). In large samples, under

the null hypothesis this tk statistic can be shown to be normally distributed (see [22]). In

small to moderate samples, Tipton [20] shows that the distribution of tk is approxi-

mately that of a t-distribution, where the degrees of freedom are estimated using a

Satterthwaite approximation; this approximation holds as long as the degrees of

freedom are greater than or equal to four. When the degrees of freedom are less than

four, the approximation does not hold and the type I error can be larger than the stated p

value associated with the test.

Similarly, researchers are often interested in multi-parameter tests, including omni-

bus tests of model fit (e.g., H0: β=0) and incremental tests (e.g., H0: β1=β2=0).

Incremental tests are particularly useful in the presence of categorical effect size

moderators, whereby multiple dummy or indicator variables might be used to examine

the effects of a categorical factor in a meta-regression model (e.g., region; age groups;

race composition). In this case, Tipton and Pustejovsky [21] showed that the F test,

Fq ¼
η − qþ 1

ηq

� �

bq
� �0

VR
q

h i

−1

bq
� �

ð14Þ

can be used to test the null hypothesis that βq=0, where bq is a vector of estimates for

the q coefficients being tested, Vq
R=VR(bq) is the sub-matrix of VR(b) associated with

the q estimates in bq, and η is a small-sample correction factor that is empirically

estimated. Tipton and Pustejovsky also showed that the distribution of Fq can be

approximated by an F(q, η−q+1) distribution, where q is the number of parameters

or contrasts tested and η is empirically estimated. Like the robust t test described above,

this approximation holds even when the number of studies is small (and, unlike the t

test, for all values of the degrees of freedom).

Importantly, for both the robust t test and F test, the degrees of freedom depend on

both the number of studies in the meta-analysis (but not the number of effect sizes), and

also on features of the covariate(s). For example, for the robust t test, when a covariate

is balanced (e.g., a dummy variable for sex with 50 % females and 50 % males), the

degrees of freedom are close to m−p (where m is the number of studies and p is the

number of coefficients in the model), but grow smaller as the degree of balance in the

covariate values decreases. Similarly, the degrees of freedom decrease when a covariate

has large skew or an extreme leverage point. This relationship between covariate

features and degrees of freedom holds for the F test as well, although the multivariate

nature of the F test makes it harder to diagnose. Nevertheless, the most important

practical issue for meta-analysts using this method is that because the degrees of

freedom vary in relation to covariate features (and not just the number of studies),

these small-sample corrected hypothesis tests should always be implemented when
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using RVE (and indeed, these are now the default test statistics in the RVE software

used in this tutorial).

Comparisons Between RVE and Multilevel Meta-analysis

Multilevel meta-analysis (MLMA) is another method that can be used to include

statistically dependent effect sizes in a meta-analysis [28–32]. The MLMA approach

decomposes the variance of the effect sizes at each level, and thus explicitly models the

dependence structure among effect sizes. In contrast to RVE, MLMA is not agnostic to

the dependence structure in the data and is only appropriate in the hierarchical effect

case, where primary study participants (level 1) provide one effect size in multiple

studies (level 2), which are nested within some larger cluster (level 3). This hierarchical

effects model assumes independent sampling errors within clusters, which is a reason-

able assumption when there are no overlapping participant samples represented in the

effect size estimates. For instance, in a meta-analysis of drug court impact evaluations,

an evaluation study might report findings from several consecutive cohorts of drug

court participants. In this example, the MLMA approach would be appropriate for

handling the dependent effect sizes in this hierarchical structure, and would also be

useful for decomposing variance of effect sizes at each level (e.g., between drug court

sites, between cohorts within drug court sites). Parameters from these hierarchical

effects three-level MLMA models can be estimated using iterative Maximum Likeli-

hood or Restricted Maximum Likelihood algorithms [30, 33].

Because MLMA models assume independent sampling errors within clusters, using

MLMA under the correlated effects scenario (i.e., when the same participants provide

data on multiple effect sizes) violates the model assumptions of independent sampling

errors within level 3 units. Because most developmental criminological meta-analyses

with complex data structures will include correlated effects (rather than hierarchical

effects), this tutorial will focus solely on the application of the RVE method for

correlated effects data (but see [32, 34]).

Benefits and Limitations of RVE

The RVE method permits the inclusion of statistically dependent effect sizes within a

meta-analysis, and therefore does not require the analyst to throw away information

contained in the effect sizes reported in primary studies (i.e., the type of data loss that

would occur if selection criteria were used to select a set of statistically independent

effect sizes). Indeed, RVE does not require knowledge of the covariance between the

effect sizes within each study, information that is required when applying multivariate

meta-analysis methods [35]. Because RVE can be easily implemented using free

statistical software (demonstrated later in this tutorial), it is an innovative and attractive

method for handling multiple types of complex meta-analytic data structures.

Although RVE is a promising method for handling statistically dependent effect

sizes within meta-analyses of criminological research, it also has several limitations that

should be noted. The first of these has to do with the treatment of heterogeneity in RVE.

Whereas MLMA models heterogeneity at multiple levels of the data, and therefore

provides estimates of variance parameters (e.g., τ2L2 and τ2L3) and corresponding

hypothesis tests (i.e., Q, I2), RVE is simply a method for adjusting standard errors
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where the primary focus is on estimating fixed effects (e.g., the mean effect size, meta-

regression coefficients). Heterogeneity parameters, although reported in RVE, are

incidental to the RVE analysis; they are only needed for the estimation of approxi-

mately inverse variance weights, and are often estimated via a simplistic method-of-

moments estimator. Thus, RVE models are not intended to provide precise variance

parameter estimates, nor test null hypotheses regarding heterogeneity parameters. This

is an important issue to highlight; many meta-analysts are interested in estimating

precise variance parameter estimates and want to conduct hypothesis tests around these

variance parameters, but RVE may not be the most appropriate method for that

purpose.

Second, the fact that the degrees of freedom used in hypothesis testing depend

on the number of studies and features of the covariate means that in some cases,

tests of particular moderators may be surprisingly under-powered. This problem

arises when the covariate under study is highly skewed (e.g., most of the values

are between 10 and 20, with one value of 100) or imbalanced (e.g., 27 studies are

on adolescents and 3 are on adults, with a dummy code for age as a moderator). In

these cases, the number of studies could be quite large (e.g., more than 40) and yet

the degrees of freedom could be quite small (e.g., less than 10).

Aside from issues of power, this can be particularly problematic when the

degrees of freedom fall below 4 for t tests, where the t-distribution approximation

no longer holds. In these cases, two approaches are recommended. First, if the

degrees of freedom are much smaller than the number of studies, the analyst

should carefully examine the covariate values, paying attention to leverage points

and imbalances. The suggested approach here is to follow the rules of thumb and

guidelines for dealing with “unusual” data (e.g., outliers, leverage, influence

points) in regression. For example, if most of the covariate values are between

10 and 20, with one “outlying” value of 100, a strategy may be to remove or

winsorize this extreme value; doing so will improve not only the degrees of

freedom, but may also help with the interpretability of the findings, since this

observation could be exerting large influence on the coefficient estimate as well.

Second, if the degrees of freedom are very small, a lower p value should be used;

for example, if p< 0.05 is used as a threshold elsewhere, for these cases p< 0.01

should be used instead (since the type I error is typically higher than stated in

these cases).

Finally, RVE provides a statistically appropriate method for the inclusion of all

effect sizes in a meta-analysis, but does not address other obstacles commonly

encountered in a meta-analysis. For instance, many primary studies fail to report

the information needed to estimate a standardized effect size, which often neces-

sitates requesting additional information from primary study authors (and response

rates to these requests can be quite low). Such missing effect size data pose a

challenge to any meta-analyst, and the use of RVE may not be warranted if

standardized effect sizes are not available from a sufficient number of studies.

Similarly, the RVE method does not directly address another common obstacle in

meta-analyses: how to handle the synthesis of bivariate and partial correlations.

Partial correlations are often available from regression coefficients reported in

primary studies, and meta-analysts synthesizing correlations must carefully attend

to this issue [36]. The RVE method also does not provide a solution to the “apples
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and oranges” critique common in meta-analysis. Just as in any other meta-analy-

ses, analysts using RVE should be careful to consider whether the effect sizes

included in a meta-analysis are “similar” enough to be synthesized. This is a

substantive consideration that must always be guided by content expertise, how-

ever, so is not a true limitation of the RVE method itself but rather a potential

limitation if meta-analysts carelessly apply the method to their data.

Example Research Questions to Guide the Software Tutorial

To illustrate the application of RVE for handling statistically dependent effect

sizes in a correlated effects scenario, this tutorial will be guided by the following

research questions: (1) How strongly are school motivation risk factors in child-

hood and adolescence correlated with subsequent crime and delinquency in ado-

lescence, and (2) How does the crime risk associated with school motivation/

attitudes vary across the span of adolescence? This example was selected given its

relevance to developmental and life-course criminology and its demonstration of

the potential developmental variability in risk factors for crime during adoles-

cence. This example is used solely for pedagogical and demonstration purposes,

however, and is not intended to provide a review or synthesis of the most current

research evidence. And although these example data use correlation coefficients,

the same procedures outlined in this tutorial can be applied to intervention

effectiveness meta-analyses that may synthesize standardized mean difference

effect sizes, risk ratios, or odds ratios.

Method

Sample

This tutorial uses a meta-analytic database that includes correlations indexing the

relationship between school motivation or attitudes (hereafter referred to as school

motivation) and a later chargeable delinquent or criminal behavior (hereafter

referred to as crime) measured during adolescence and adulthood. This database

is a subset from a larger meta-analytic database of studies published through 2002

that used prospective longitudinal panel designs with at least 6 months between

measurement waves, which reported the correlation between a risk factor and a

subsequent antisocial behavior outcome measured during late adolescence or early

adulthood (funded by R01MH051685 and R01MH63288 from the National Insti-

tutes of Mental Health to PI Mark Lipsey). To be eligible for inclusion in the

larger meta-analytic database, studies could have no more than 50 % attrition

between consecutive waves, and must have been conducted in the USA and

published in English (see [37]). The subset of studies used in this example

includes 113 product–moment correlation coefficients, each of which represent a

relationship between a school motivation risk factor measured between ages 11

and 18 and a crime outcome measured between ages 12 and 20. These correlations

originated from 17 independent respondent samples from 6 longitudinal studies

(see [58-63]). Note that this sample of correlation effect sizes is used solely for
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pedagogical purposes for this tutorial, however, and is not intended to provide a

current synthesis of the literature (for which an updated, systematic literature

review would be needed).

Measures

The effect sizes used in this tutorial are Fisher’s z-transformed correlation coefficients

representing the longitudinal relationship between a school motivation risk factor

measured prior to age 18 and a crime outcome measured at least six months after the

initial wave of measurement:

z ¼ 0:5� ln
1þ r

1 − r

� �

ð15Þ

where r is the product–moment correlation coefficient between school motivation and

crime. The variance of the z-transformed correlation effect size is estimated as:

V ¼ 1

n − 3
: ð16Þ

Correlation coefficients were coded directly from study reports or estimated from

contingency tables or other summary statistics if necessary. As is recommended when

estimating correlation effect sizes from primary studies, artifact adjustments were used

to correct for the unreliability of any artificial dichotomous variables used in the

correlations for underlying continuous variables [26, 38]. We refer readers interested

in guidance on how to calculate effect size estimates from primary studies to more

comprehensive sources on that topic [25, 26, 38, 39].

Analytic Strategies

On average, studies reported 6.65 correlation effect sizes (SD=3.81, Minimum=2,

Maximum=12) measuring the relationship between a school motivation risk factor and

a subsequent crime outcome. We therefore used RVE to synthesize these dependent

effect size estimates. First, to estimate the overall strength of the correlation between

school motivation risk factors and later crime outcomes, we estimated a simple RVE

meta-regression model:

yi j ¼ β0 þ u j þ ei j ð17Þ

where yij is the ith correlation effect size in the jth study; β0 is the average population

effect of the risk-crime correlation; uj is the study level random effect such that

Var(uj) = τ
2 is the between-study variance component; and eij is the residual for the ith

effect size in the jth study. Next, to explore variability in the strength of this risk factor

over the span of adolescence, we estimated a mixed-effects RVEmeta-regressionmodel:

yi j ¼ β0 þ β1 Age at T1ð Þi j þ β2 Age at T2ð Þi j þ β3 Age at T1 � Age at T2ð Þi j þ u j þ ei j ð18Þ
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that included the main effects and multiplicative interaction term for the average age of

participants at the initial measurement wave (i.e., the age at which the school motivation

risk factor was measured) and the age at the follow-up measurement wave (i.e., the age

at which the crime outcome was measured). Because the age of participants could vary

both within and between studies, we used study-level mean values for all age moderators

(see [24] for a discussion on measuring moderators in RVEmodels). Finally, to examine

whether these effects persisted after adjusting for the sex composition of the samples, we

estimated a final model:

yi j ¼ β0 þ β1 Age at T1ð Þ ji þ β2 Age at T2ð Þi j þ β3 Age at T1 � Age at T2ð Þi j
þ β4 All malesð Þ þ β5 Mixed sexð Þ þ u j þ ei j ð19Þ

that included two dummy variables indicating whether the participant sample was

comprised entirely of males or was of mixed sex composition (with all females

being the reference category). Note that this categorization of the gender compo-

sition variable is used solely for pedagogical purposes to demonstrate the exam-

ination of a categorical effect size moderator. This illustrative example was

selected to highlight how RVE can be used to examine developmental changes

in risk factors over time, but this meta-regression could easily be extended to

include a range of other effect size moderators (provided sufficient sample sizes

for parameter estimation). Because the dependence structure in these data reflected

correlated effects (i.e., multiple effect sizes available from the same participant

samples), we used the recommended approximately inverse variance weights for

correlated effects (Eq. 11).

All analyses were conducted in the R statistical environment (version 3.2.2). To

illustrate the standard meta-analysis method that (naively) ignores the dependen-

cies in the data, we used the metafor package [40]. For the RVE method, the

robumeta package [41] was used to estimate mean effect sizes and meta-regression

models and the clubSandwich package [42] was used to estimate the multi-

parameter F tests. The package ggplot2 was used to create the scatter plot [43].

Appendix A provides annotated code using the R Markdown language [44].

Robust Variance Estimation in R

We now provide a tutorial on how to conduct a meta-analysis with RVE in the

R statistical environment. Although these methods can also be implemented in

SAS and Stata (e.g., see [24, 34]), here we use R because it is freely available

from the Comprehensive R Archive Network at http://cran.r-project.org. Appendix A

includes the R code that reproduces all analyses demonstrated below; Appendix B

(in the only supplementary material) Table 3 (and the online supplementary material)

provides a text file containing the data used in all analyses.

Prior to synthesizing effect sizes, we examined the distribution of the effect sizes to

assess for potential outliers using a violin plot (not shown, but syntax included in

Appendix A). The effect size distribution is approximately normal and right skewed,

but there do not appear to be any outlying effect sizes.
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We now estimate the overall mean effect size, synthesizing the 113 correla-

tions from the 17 independent study samples. For illustrative purposes, we first

estimate a naïve standard meta-analysis model that ignores the dependency

structure of the data. This naïve meta-analysis model would never be appropri-

ate to use with such a complex meta-analytic data structure; here we present it

simply to illustrate how ignoring dependencies can yield inappropriately small

standard errors. As shown in Table 1, the naïve standard meta-analysis (z= 0.12,

95 % CI [0.09, 0.14], τ2= 0.01) yields a larger estimate of the average effect

size and a narrower confidence interval than the analysis appropriately handling

the statistically dependent effect sizes using RVE (z= 0.09, 95 % CI [0.04,

0.15], τ2= 0.01). Thus, these results suggest that school motivation has a small

but significant association with crime during adolescence. Transforming this

mean Fisher’s z-transformed effect size into a Pearson correlation (e2*0.09− 1)/

(e2*0.09 + 1) yields a mean correlation of 0.09. Although informative for

estimating the overall correlation between school motivation and adolescent

criminal behavior, this overall mean correlation estimate ignores any potential

developmental variability in this risk-crime relationship. Thus, we next estimate

a meta-regression model with RVE that models the potential variability in this

risk-crime correlation across the span of adolescence.

Table 2 presents the results from the RVE meta-regressions that model the

potential developmental variability in the risk of adolescent crime associated

with school motivation. The left panel presents results from a model that

estimates the main effects of participant ages at time 1 (when school motivation

risk was measured) and time 2 (when the crime outcome was measured).

Overall, the results provide no evidence that the risk-crime correlation varies

depending on the average ages of participants at the different measurements

waves. The omnibus F test [21] provides no evidence that the age covariates

are jointly significant (F= 1.54, df= 3.11, p= 0.34). This model does not appro-

priately parameterize the potential developmental variability in risk, however,

because it does not include the multiplicative interaction term between the two

age variables. Namely, the strength of school motivation as a risk factor at age

Table 1 Mean effect size estimates from standard meta-analysis and RVE meta-analysis

Standard (Naïve) meta-analysis RVE meta-analysis

z 0.12* 0.09*

SE z 0.01 0.03

95 % CI [0.09, 0.14] [0.04, 0.15]

τ2 0.01 0.01

n 113 113

k 17 17

ρ n/a 0.80

z = mean Fisher’s z effect size, SE = standard error of mean effect size, τ2 = between-study variance,

n = number of effect sizes, k = number of studies, ρ = assumed correlation between effect sizes

*p < 0.05
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12 may vary for crime at age 14, 16, 18, etc.; thus, an interaction term is

needed to model that potential variability in risk. Furthermore, the small-sample

corrected degrees of freedom for the age at time 2 parameter in the main

effects model is less than four (df= 1.92) and thus the p value associated with

the hypothesis test is likely to under-estimate the true type I error; because the

test is not significant, however, taking this into account does not change the

conclusion [20]. Thus, we next estimated a full model that included both the

main effects and interaction terms to examine the potential developmental

variability in crime risk associated with school motivation.

The middle panel of Table 2 presents results from this full model. In this

model, all of the small-sample corrected degrees of freedom are in an accept-

able range (i.e., greater than four), indicating that the p values for the associ-

ated t tests accurately reflect the type I error. The results indicate that there is a

significant interaction between age at time 1 and age at time 2 (b=−0.01, 95 %

CI [−0.02, −0.00]). Although the omnibus F test provides no evidence of joint

significance across all covariates (F= 1.83, df= 3.03, p= 0.32), this is likely due

to the small number of studies and the imbalance in covariate values. Plotting

the results from this interaction in Fig. 1, we see that the magnitude of the

correlation between school motivation and criminal behavior generally decreases

over the course of adolescence (evidenced by the negative slopes of the

regression lines). However, school motivation around age 17 has the strongest

correlation with crime during late adolescence and early adulthood (ages 18–

20). Although the magnitude of these risk-crime correlations is somewhat small

in magnitude, these results nonetheless suggest that school motivation may be

an appropriate target for delinquency prevention and intervention programs, and

also suggest that the most developmentally appropriate time to target school

motivation risk factors may be prior to age 16.

Fig. 1 Developmental variation in the correlation between school motivation risk and subsequent criminal

behavior
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The right panel of Table 2 includes two additional dummy variables representing the

sex composition of the samples in the meta-analysis, contrasting samples that were all

male, mixed sex, and all female (the reference category). The results from this model

suggest that the developmental variability in the crime risk associated with school

motivation is still statistically significant (b=−0.01, 95 % CI [−0.03, −0.01]) even after

adjusting for the sex composition of the primary study samples. Neither of the

regression coefficients for the sex composition dummy variables are statistically

significant, so it is no surprise that the joint F test regarding the effect of gender

composition (i.e., the two dummy variables) is non-significant as well (F=0.14,

df=6.51, p=0.87). And similar to the prior model, the omnibus F test provides no

evidence of joint significance across all covariates (F=1.05, df=3.08, p=0.52).

Discussion

Meta-analyses in the field of developmental and life-course criminology will

often encounter complex meta-analytic data structures with statistically depen-

dent effect size estimates. Although statistically dependent effect sizes would

ideally be synthesized via multivariate meta-analysis, that method is often not

feasible to implement given that it requires knowledge about the covariance

structure of the effect size estimates. Historically, therefore, meta-analysts have

been forced to use less optimal methods for handling statistically dependent

effect sizes, such as selecting one effect size per study or creating a single

synthetic effect size per study, thus ultimately throwing away potentially valu-

able information from primary studies (e.g., [9–11, 45]).

RVE for meta-regression is a recent innovative technique that can be used to

handle statistically dependent effect sizes in a meta-analysis, but does not

require information about the effect size covariance structure. Although the

RVE method has several limitations (e.g., it does not model variance at all

levels of the data, does not provide tests of null hypotheses regarding hetero-

geneity parameters; see Benefits and Limitations of RVE), the method is easy

to implement and can also be used to handle different types of dependency

structures. This software tutorial demonstrated how to use RVE in the R

statistical environment, providing example code for future researchers to adapt

for their own meta-analyses. Using an example meta-analysis examining the

crime risk associated with adolescents’ school motivation and attitudes, we

illustrated how RVE can be used to address important research synthesis

questions regarding the developmental variability in risk factors. Syntheses like

these can be useful for identifying risk and protective factors that may be

appropriate targets for crime prevention and intervention programs, establishing

the most developmentally appropriate time to address these risk factors, and

advancing developmental theories of crime etiology.

Although this tutorial illustrated the use of RVE in a meta-analysis with a

correlated effects dependency structure, this method is also appropriate for

meta-analyses with hierarchical effects dependency structures or a combination

of dependence structures (see [24] for a tutorial). Further, although the data

used in this tutorial were from a meta-analysis where the effect size metric was
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a correlation coefficient, the same procedures can be used in meta-analyses

using other effect size metrics such as mean differences, standardized mean

differences, odds ratios, risk ratios, risk differences, or phi coefficients. Indeed,

the example code in this software tutorial can be easily translated to meta-

analyses of program or policy effectiveness, such as those examining the effects

of neighborhood watch on crime [46], street-level drug law enforcement [47],

or batterer intervention programs [48].

This tutorial demonstrated the application of RVE in the R statistical environment

(version 3.2.1) using the robumeta [41] and clubSandwich [42] packages. The tutorial

illustrates the ease with which the RVE method can be implemented in R, with the

additional advantage that R is freely available to all researchers. Meta-analysts inter-

ested in implementing RVE with other statistical platforms such as SAS, SPSS, or Stata

should consult other resources (e.g., [24, 34]). Importantly, analysts should pay atten-

tion to the implementation of RVE in these packages, noting if corrections for small

numbers of studies have been implemented before proceeding. Currently, the Stata

macro (also called “robumeta”) includes small sample adjustments for t tests but not F

tests, whereas the SPSS and SAS macros do not include these adjustments.

Complex meta-analytic data structures with statistically dependent effect size

will become more common in criminology as the body of primary studies

continues to accumulate, and as the focus of meta-analyses shifts away from

estimation of mean effect sizes to the examination of variability in effect sizes.

Indeed, the RVE method for handling dependent effect sizes is already being

adopted by researchers in the fields of ecology [49, 50], education [51], mental

health [52], pediatrics [53, 54], psychology [55], psychiatry [56], and substance

abuse [57]. The uptake in RVE is not surprising given that this method obviates

the loss of information that occurs when meta-analysts artificially create a set

of statistically independent effect sizes, either through selection processes or

averaging effect sizes within studies.

This tutorial is intended to provide a guide for criminologists interested in

applying the RVE method to their complex meta-analytic data structures. This

method will be particularly useful for meta-analysts interested in modeling the

developmental graduations in risk factors for crime (e.g., what are the age-

crime curves for different risk factors), examining the effectiveness of crime

prevention programs during key life-course transitions (e.g., are residential

mobility programs effective in reducing juvenile delinquency?), and other de-

velopmental dimensions of crime across the life-course.

Compliance with Ethical Standards This manuscript does not contain clinical studies or patient data.
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Appendix A

R Code for Tutorial Example

Start by installing and loading all required libraries. The code will run using R version 3.2.2 "Fire Safety". 

Remove “#” to run specific lines of code and produce output.

### remove all objects from workspace

#rm(list=ls())

### set working directory

#setwd("~/My Documents")

### install & load metafor package

#install.packages("metafor")
library(metafor)

## Loading required package: Matrix

## Loading 'metafor' package (version 1.9-8). For an overview 
## and introduction to the package please type: help(metafor).

### install & load robumeta package

#install.packages("robumeta")
library(robumeta)

## Loading required package: grid

### install & load clubSandwich package from Github
#install.packages("devtools")
library(devtools)

## WARNING: Rtools is required to build R packages, but is not currently 
installed.
## 

## Please download and install Rtools 3.3 from http://cran.r-
project.org/bin/windows/Rtools/ and then run find_rtools().

#install_github("jepusto/clubSandwich")

## "clubSandwich" repo does not appear in "user library", but is still 
running 
library(clubSandwich)

### install violin plot package
#install.packages("vioplot")

library(vioplot)

## Loading required package: sm
## Package 'sm', version 2.2-5.4: type help(sm) for summary information
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Load in the dataset and create two new variables.

### load example data
SchoolMotivationRisk = read.csv("SchoolMotivationRisk.csv")

### create between-study version of covariates
SchoolMotivationRisk$aget1_m <- group.mean(SchoolMotivationRisk$aget1, 

SchoolMotivationRisk$studyid)
SchoolMotivationRisk$aget2_m <- group.mean(SchoolMotivationRisk$aget2, 
SchoolMotivationRisk$studyid)

Create a "violin plot" to visualize the plot.

#vioplot(SchoolMotivationRisk$yi, col="grey", names="School motivation risk")
#title(ylab="Risk-crime correlation")

Fit a naive random-effects model that ignores dependencies.

res_1<-rma(yi, vi, data=SchoolMotivationRisk)

#print(res_1)
#forest(res_1)
#funnel(res_1)

#predict(res_1, transf=transf.ztor, digits=2)

Fit a naive mixed-effects meta-regression model that ignores dependencies.

res_2<-rma(yi, vi, mods= ~ aget1_m*aget2_m, data=SchoolMotivationRisk)
#print(res_2)

Fit an RVE random-effects model with correlated effects weights.

### rho assumed = 0.8; sensitivity analyses could vary rho from 0.1 to 0.9
### small = TRUE option applies the small sample correction to df
res_3<-robu(formula = yi ~ 1, var.eff.size=vi, studynum = studyid, 

modelweights = "CORR", rho = 0.8, small=TRUE, data=SchoolMotivationRisk)
#print(res_3)

Fit an RVE mixed-effects meta-regression model with age main effects. The Wald_test func�on tests the 

linear contrasts from a regression model, using a sandwich es�mator for the variance-covariance matrix 

and a small sample correc�on for the p-value. Various correc�ons can be used by specifying test = "". 

Type "?Wald_test" for more informa�on.

res_4<-robu(formula = yi ~ aget1_m + aget2_m, var.eff.size=vi, studynum =

studyid, modelweights = "CORR", rho = 0.8, small=TRUE, 
data=SchoolMotivationRisk)
#print(res_4)

#Wald_test(res_4, constraints = 2:3, vcov="CR2")
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Fit an RVE mixed-effects meta-regression model with age interac�on.

res_5<-robu(formula = yi ~ aget1_m*aget2_m, var.eff.size=vi, studynum =
studyid, modelweights = "CORR", rho = 0.8, small=TRUE, 

data=SchoolMotivationRisk)
#print(res_5)
#Wald_test(res_5, constraints = 2:4, vcov="CR2")

Fit an RVE mixed-effects meta-regression model with age interac�on, adjus�ng for sex mix of samples.

res_6<-robu(formula = yi ~ aget1_m*aget2_m + sexmix, var.eff.size=vi, 
studynum = studyid, modelweights = "CORR", rho = 0.8, small=TRUE, 
data=SchoolMotivationRisk)

#print(res_6)
#Wald_test(res_6, constraints = 2:6, vcov="CR2")

### Omnibus F-test for categorical sex mix variable
#Wald_test(res_6, constraints = 4:5, vcov="CR2")

Create a graph to illustrate the distribu�on of the correla�ons by age. Start by manipula�ng the dataset.

#install.packages("ggplot2")

library(ggplot2)

### graph prediction line at different ages, overlaid with effect sizes

### create interaction variable
SchoolMotivationRisk$aget1_mXaget2_m <-
SchoolMotivationRisk$aget1_m*SchoolMotivationRisk$aget2_m

### create factored age1 variable
SchoolMotivationRisk$age1_cat <- ifelse(SchoolMotivationRisk$aget1 <= 12.9, 

1, 
ifelse(SchoolMotivationRisk$aget1 <=

14.9, 2, 

ifelse(SchoolMotivationRisk$aget1 <= 16.9, 3, 

ifelse(SchoolMotivationRisk$aget1 <= 18.9, 4, NA))))

SchoolMotivationRisk$age1_cat <- factor(SchoolMotivationRisk$age1_cat, 

levels = c(1,2,3,4), 
labels = c("11-13", "13-15", "15-17",

"17-19"))

Create a plot using "ggplots2". More informa�on about the various modifiers may be found by typing 

"?ggplots2".

Graph_withoutSE <- ggplot(data = SchoolMotivationRisk, 

aes(x = aget2_m, y = yi, color = factor(age1_cat)))
+
geom_point(position = "jitter") +
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geom_smooth(method = lm, se = FALSE) +
scale_color_discrete(name = "Age at risk measurement") +

ylab("Risk-crime correlation") +
xlab("Age at crime outcome measurement") +
theme(axis.ticks.x = element_blank()) +

theme(text = element_text(size = 18)) +
theme(panel.grid.major = element_blank(), panel.grid.minor =

element_blank(), 

panel.background = element_blank(), axis.line = element_line(colour =
"black"))
#Graph_withoutSE

Graph_withSE <- ggplot(data = SchoolMotivationRisk, 
aes(x = aget2_m, y = yi, color = factor(age1_cat))) +

geom_point(position = "jitter") +
geom_smooth(method = lm) +
scale_color_discrete(name = "Age at risk measurement") +

ylab("Risk-crime correlation") +
xlab("Age at crime outcome measurement") +
theme(axis.ticks.x = element_blank()) +

theme(text = element_text(size = 18)) +
theme(panel.grid.major = element_blank(), panel.grid.minor =

element_blank(), 

panel.background = element_blank(), axis.line = element_line(colour =
"black"))
#Graph_withSE
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Appendix B

Table 3 Data for tutorial example

studyid yi vi sei aget1 aget2 permale sexmix

2 −0.060 0.001 0.027 14.5 18 1.000 All male

2 −0.050 0.001 0.027 14.5 18 1.000 All male

3 −0.050 0.001 0.028 14.5 18 0.000 All female

3 −0.050 0.001 0.028 14.5 18 0.000 All female

5 −0.010 0.006 0.080 11.5 13.5 1.000 All male

5 0.030 0.006 0.080 11.5 13.5 1.000 All male

5 0.100 0.006 0.080 11.5 13.5 1.000 All male

6 0.141 0.007 0.085 11.5 13.5 0.000 All female

6 0.110 0.007 0.085 11.5 13.5 0.000 All female

6 0.213 0.007 0.085 11.5 13.5 0.000 All female

7 0.245 0.006 0.080 13.5 15.5 1.000 All male

7 0.299 0.006 0.080 13.5 15.5 1.000 All male

7 0.266 0.006 0.080 13.5 15.5 1.000 All male

8 0.141 0.007 0.085 13.5 15.5 0.000 All female

8 0.182 0.007 0.085 13.5 15.5 0.000 All female

8 0.030 0.007 0.085 13.5 15.5 0.000 All female

24 0.117 0.008 0.089 11 13 0.533 Mixed sex

24 0.048 0.008 0.089 11 14 0.533 Mixed sex

24 0.189 0.008 0.089 11 12 0.533 Mixed sex

24 0.032 0.008 0.089 11 14 0.533 Mixed sex

24 0.246 0.008 0.089 11 14 0.533 Mixed sex

24 0.125 0.008 0.089 11 12 0.533 Mixed sex

24 0.065 0.008 0.089 11 13 0.533 Mixed sex

24 0.068 0.008 0.089 11 13 0.533 Mixed sex

24 −0.003 0.008 0.089 11 12 0.533 Mixed sex

25 0.377 0.007 0.085 14 15 0.550 Mixed sex

25 0.121 0.007 0.085 14 15 0.550 Mixed sex

25 −0.006 0.007 0.085 13 15 0.550 Mixed sex

25 0.130 0.007 0.085 14 15 0.550 Mixed sex

25 −0.007 0.007 0.085 12 15 0.550 Mixed sex

25 0.016 0.007 0.085 12 15 0.550 Mixed sex

25 0.279 0.007 0.085 13 15 0.550 Mixed sex

25 0.036 0.007 0.085 13 15 0.550 Mixed sex

25 0.026 0.007 0.085 12 15 0.550 Mixed sex

26 0.140 0.007 0.086 13 16 0.543 Mixed sex

26 0.176 0.007 0.086 14 15 0.543 Mixed sex

26 0.175 0.007 0.086 13 16 0.543 Mixed sex

26 0.214 0.007 0.086 13 15 0.543 Mixed sex

26 0.144 0.007 0.086 14 16 0.543 Mixed sex

26 0.068 0.007 0.086 13 15 0.543 Mixed sex
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Table 3 (continued)

studyid yi vi sei aget1 aget2 permale sexmix

26 0.201 0.007 0.086 14 16 0.543 Mixed sex

26 0.163 0.007 0.086 14 15 0.543 Mixed sex

26 0.208 0.007 0.086 14 16 0.543 Mixed sex

26 0.194 0.007 0.086 14 15 0.543 Mixed sex

26 0.107 0.007 0.086 13 15 0.543 Mixed sex

26 0.280 0.007 0.086 13 16 0.543 Mixed sex

27 0.149 0.008 0.089 14 17 0.523 Mixed sex

27 0.198 0.008 0.089 14 17 0.523 Mixed sex

27 0.231 0.008 0.089 14 15 0.523 Mixed sex

27 0.189 0.008 0.089 14 16 0.523 Mixed sex

27 0.216 0.008 0.089 14 16 0.523 Mixed sex

27 0.327 0.008 0.089 14 16 0.523 Mixed sex

27 0.221 0.008 0.089 14 15 0.523 Mixed sex

27 0.122 0.008 0.089 14 17 0.523 Mixed sex

27 0.076 0.008 0.089 14 15 0.523 Mixed sex

28 0.137 0.008 0.088 15 18 0.519 Mixed sex

28 0.182 0.008 0.088 15 18 0.519 Mixed sex

28 0.205 0.008 0.088 16 18 0.519 Mixed sex

28 0.120 0.008 0.088 16 18 0.519 Mixed sex

28 0.174 0.008 0.088 17 18 0.519 Mixed sex

28 0.033 0.008 0.088 16 18 0.519 Mixed sex

28 −0.006 0.008 0.088 17 18 0.519 Mixed sex

28 0.153 0.008 0.088 15 18 0.519 Mixed sex

28 −0.002 0.008 0.088 17 18 0.519 Mixed sex

29 0.119 0.008 0.090 16 18 0.556 Mixed sex

29 0.053 0.008 0.090 17 18 0.556 Mixed sex

29 0.068 0.008 0.090 16 18 0.556 Mixed sex

29 0.141 0.008 0.090 16 18 0.556 Mixed sex

29 0.135 0.008 0.090 16 18 0.556 Mixed sex

29 0.170 0.008 0.090 16 18 0.556 Mixed sex

29 0.014 0.008 0.090 17 18 0.556 Mixed sex

29 0.029 0.008 0.090 16 18 0.556 Mixed sex

29 −0.119 0.008 0.090 17 18 0.556 Mixed sex

29 0.139 0.008 0.090 17 18 0.556 Mixed sex

29 −0.049 0.008 0.090 17 18 0.556 Mixed sex

29 0.083 0.008 0.090 17 18 0.556 Mixed sex

30 0.098 0.014 0.120 17 19 0.534 Mixed sex

30 0.078 0.014 0.120 17 18 0.534 Mixed sex

30 −0.117 0.014 0.120 17 19 0.534 Mixed sex

30 0.122 0.014 0.120 17 18 0.534 Mixed sex

30 −0.097 0.014 0.120 17 20 0.534 Mixed sex

108 E. E. Tanner-Smith



Table 3 (continued)

studyid yi vi sei aget1 aget2 permale sexmix

30 −0.131 0.014 0.120 17 20 0.534 Mixed sex

30 −0.078 0.014 0.120 17 18 0.534 Mixed sex

30 −0.090 0.014 0.120 17 20 0.534 Mixed sex

30 −0.022 0.014 0.120 17 19 0.534 Mixed sex

36 0.000 0.002 0.046 13.75 19.5 1.000 All male

36 0.000 0.002 0.046 13.75 19.5 1.000 All male

61 0.152 0.001 0.028 17.68 18.5 1.000 All male

61 0.151 0.001 0.028 17.68 18.5 1.000 All male

61 0.090 0.001 0.028 15.49 18.5 1.000 All male

61 0.141 0.001 0.028 17.68 18.5 1.000 All male

61 0.077 0.001 0.028 15.49 18.5 1.000 All male

61 0.060 0.001 0.028 15.49 18.5 1.000 All male

61 0.090 0.001 0.028 15.49 18.5 1.000 All male

61 0.191 0.001 0.028 17.68 18.5 1.000 All male

61 0.213 0.001 0.028 17.68 18.5 1.000 All male

61 0.090 0.001 0.028 15.49 18.5 1.000 All male

61 0.151 0.001 0.028 17.68 18.5 1.000 All male

61 0.077 0.001 0.028 15.49 18.5 1.000 All male

86 0.010 0.005 0.072 14 16 1.000 All male

86 0.030 0.005 0.072 14 16 1.000 All male

86 0.251 0.004 0.062 13 15 1.000 All male

86 0.090 0.005 0.072 14 16 1.000 All male

86 0.161 0.005 0.072 14 16 1.000 All male

86 0.213 0.005 0.072 14 16 1.000 All male

86 0.363 0.004 0.062 13 15 1.000 All male

87 0.121 0.005 0.073 14 16 0.000 All female

87 0.383 0.004 0.065 13 15 0.000 All female

87 0.060 0.005 0.073 14 16 0.000 All female

87 0.070 0.005 0.073 14 16 0.000 All female

87 0.514 0.004 0.065 13 15 0.000 All female

87 0.234 0.005 0.073 14 16 0.000 All female

87 0.161 0.005 0.073 14 16 0.000 All female
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