
Machine Learning (2020) 109:533–568

https://doi.org/10.1007/s10994-019-05835-w

Handling concept drift via model reuse

Peng Zhao1 · Le-Wen Cai1 · Zhi-Hua Zhou1

Received: 2 May 2019 / Revised: 16 July 2019 / Accepted: 6 September 2019 / Published online: 10 October 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

In many real-world applications, data are often collected in the form of a stream, and thus the
distribution usually changes in nature, which is referred to as concept drift in the literature.
We propose a novel and effective approach to handle concept drift via model reuse, that
is, reusing models trained on previous data to tackle the changes. Each model is associated
with a weight representing its reusability towards current data, and the weight is adaptively
adjusted according to the performance of the model. We provide both generalization and
regret analysis to justify the superiority of our approach. Experimental results also validate
its efficacy on both synthetic and real-world datasets.

Keywords Concept drift · Model reuse · Non-stationary environments

1 Introduction

With the rapid development in data collection technology, it is of great importance to analyze
and extract knowledge from a vast number of data. However, data are commonly in a streaming
form and are usually collected from non-stationary environments, and thus they are evolving
in nature. In other words, the joint distribution between the input feature and the target label
will change, which is also referred to as concept drift in the literature (Gama et al. 2014). If
we simply ignore the distribution change when learning from the evolving data stream, the
performance will dramatically drop, which is not empirically and theoretically desirable for
these tasks. Consequently, the concept drift problem has become one of the most challenging
issues for data stream learning and has drawn researchers’ attention to design practically
effective and theoretically sound algorithms.
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However, data stream with concept drift is essentially almost impossible to learn (predict)
if there is no assumption on the distribution change. That is, if the underlying distribution
changes arbitrarily or even adversarially, there is no hope to learn a good model to make the
prediction. We share the same assumption with most of previous works, that is, there contains

some useful knowledge for the future prediction in previous data. No matter sliding window
based approaches (Klinkenberg and Joachims 2000; Bifet and Gavaldà 2007; Kuncheva and
Zliobaite 2009), forgetting based strategies (Koychev 2000; Klinkenberg 2004; Zhao at al.
2019) or ensemble based methods (Kolter and Maloof 2005, 2007; Sun et al. 2018), they
share the same assumption, whereas the difference is how to exploit and utilize the knowledge
in previous data.

Another issue is that most previous works on handling concept drift focus on the algo-
rithm design, only a few works consider the theoretical property (Helmbold and Long 1994;
Crammer et al. 2010; Mohri and Medina 2012). There are some works proposing algorithms
along with theoretical analysis, for instance, (Kolter and Maloof 2005) provides mistake and
loss bounds and guarantees that the performance of the proposed approach is relative to the
performance of the base learner. (Harel et al. 2014) detects concept drift via resampling and
provides bounds on differentiates based on stability analysis. Nevertheless, seldom have clear
theoretical guarantees or justifications on why and how to utilize knowledge in previous data
to fight with concept drift.

In this paper, we propose a novel and effective approach for handling Concept drift via
model reuse, or Condor. It consists of two modules,ModelUpdatemodule aims at exploit-
ing knowledge from previous models to help build the new model, while WeightUpdate
module adaptively assigns weights for previous models according to their performance, where
the weights represent the reusability of previous models towards current data. We theoretically
justify the advantage of the ModelUpdate module from the aspect of generalization analysis,
showing that our approach of model reuse can benefit from a good weighted combination
of previous models. Meanwhile, the WeightUpdate module guarantees that the weights will
finally concentrate on the better-fit models and thus provides a good weighted combination
of previous models as the initialization for ModelUpdate module to train the new model.
Therefore, they together make our proposed algorithm successful. Besides, we investigate
the overall performance of the whole data stream by the dynamic regret analysis. Experiments
on both synthetic and real-world datasets validate the superiority of our approach, and the
empirical studies demonstrate the effectiveness of the model reuse mechanism for handling
concept drift.

The rest of this paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 proposes our approach. Sections 4 and 5 present theoretical analysis. Section 6 reports
experimental results. Finally, we conclude the paper and discuss future work in Sect. 7.

2 Related work

Concept Drift The phenomenon of concept drift has been well-recognized in recent
researches (Gama et al. 2014; Gomes et al. 2017). The capability of handling concept drift is
one of fundamental requirements of learnware (Zhou 2016), and also a crucial step towards
robust and reliable artificial intelligence (Dietterich 2017, 2019).

Basically, if there is not any structural information about the data stream, we shall not
expect to learn from historical data and make any meaningful prediction. Therefore, a com-
mon assumption on the concept drift in the stream as aforementioned is that there contains
useful knowledge in previous data. Particularly, most previous works assume that the nearby
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data items include more useful information concerning the current data, and thus researchers
propose plenty of approaches based on the sliding window and forgetting mechanisms. Slid-
ing window based approaches maintain the nearest data items and discard old items, with
a fixed or adaptive window size (Klinkenberg and Joachims 2000; Kuncheva and Zliobaite
2009). Forgetting based approaches do not explicitly drop old items but downweight previous
data items according to their age (Koychev 2000; Klinkenberg 2004).

Another important category falls into the ensemble based approaches, they adaptively add
or delete base classifiers and dynamically adjust weights when dealing with the evolving
data stream. A series of work borrows the idea from boosting (Schapire 1990) and online
boosting (Beygelzimer et al. 2015) by endowing the learning system with the capability to
cope with non-stationarity via dynamically adjusting weights of classifiers. Take a few repre-
sentatives, dynamic weighted majority (DWM) dynamically creates and removes weighted
experts in response to distribution changes (Kolter and Maloof 2003, 2007). Additive expert
ensemble (AddExp) adaptively adjusts the additive expert pool and provides mistake bounds
as theoretical guarantees (Kolter and Maloof 2005). Learning in non-stationary environments
(Learn++.NSE) trains one new classifier for each batch of data and then combines these clas-
sifiers (Elwell and Polikar 2011). Hybrid Forest (Rad and Haeri 2019) considers to adaptively
charge to the suitable classifier by the multiple classifier selection according to the ‘hybrid
power’ quantity defined therein. Plenty of approaches are proposed to learn from evolving
data stream; we refer the reader to comprehensive surveys (Gama et al. 2014; Gomes et al.
2017). For boosting and ensemble approaches, the reader is recommended books (Schapire
and Freund 2012; Zhou 2012).

Our approach is kind of similar to DWM and AddExp on the surface. We all maintain a
model pool and adjust weights to penalty models with poor performance. However, we differ
from the model update procedure, and they ignore to leverage previous knowledge and reuse
models to help build a new model and update the model pool. Besides, our weight update
strategies are also different.

Model Reuse Model reuse is an important learning problem, also named as model transfer,
hypothesis transfer, or learning from auxiliary classifiers. The basic setting is that one desires
to reuse pre-trained models to help further model building, especially when the data are too
scarce to train a fair model directly. A series of works lies in the idea of biased regulariza-
tion, which leverages previous models as the biased regularizer in addition to empirical risk
minimization, and achieves a good performance in plenty of scenarios (Duan et al. 2009;
Tommasi et al. 2010, 2014). (Reddi et al. 2015) adopts such techniques in the covariate
shift to reduce the variance introduced by the standard reweighted empirical risk minimiza-
tion. There are also some other attempts and applications, for instance, (Segev et al. 2017)
develops model reuse by random forests, (Ye et al. 2018) reuses models for transferring the
invariant meta feature representation between heterogeneous feature space by semantic map-
ping and (Wu et al. 2019) proposes a novel model reuse method for multi-party learning by
optimizing the global behavior of an ensemble of heterogeneous local models. Besides, (Li
et al. 2013) applies model reuse technique to adapt different performance measures. Apart
from algorithm design, theoretical foundations are recently established by algorithmic sta-
bility (Kuzborskij and Orabona 2013), Rademacher complexity (Kuzborskij and Orabona
2017) and transformation functions (Du et al. 2017).

Our paper proposes to handle concept drift problem via utilizing model reuse learning. The
idea of exploiting knowledge by reusing previous model is reminiscent of some past works
coping with concept drift by transfer learning, like the temporal inductive transfer (TIX)
approach (Forman 2006) and the diversity and transfer-based ensemble learning (DTEL)
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approach (Sun et al. 2018). Both of them are batch-style approaches, that is, they need to
receive a batch of data each time, whereas ours can update either in an incremental style
or a batch update mode. TIX concatenates the predictions from previous models into the
feature of next data batch as the new data, and a new model is learned from the augmented
data batch. DTEL chooses decision tree as the base learner and builds a new tree by directly
using the latest data batch along with “fine-tuning” previous models by a direct tree structural
adaptation. It maintains a fixed size model pool with the selection criteria based on diversity
measurement. They both do not depict the reusability of previous models, which is carried
out by WeightUpdate module in our approach. Last but not the least important, our approach
is proposed with sound theoretical guarantees, in particular, we carry out a generalization jus-
tification on why and how to reuse previous models. Nevertheless, theirs are not theoretically
clear in general.

3 Proposed approach

We consider the scenario that data are coming one by one sequentially, and there may emerge
concept drift in the data stream. We propose a novel algorithm, Condor, to handle the potential
concept drift. The high-level idea is to adapt the non-stationarity by extracting the useful
knowledge in previous data. Therefore, we propose to adopt the model reuse technique to
handle concept drift. To realize this goal, we design two core modules: ModelUpdate
module and WeightUpdate module, both are essential in reusing knowledge in previous
data and automatically adapting the non-stationary environments. In the following, we give
detailed descriptions of the proposed algorithm.

Condor periodically updates the model when achieving the maximum update period p,
which is a data-dependent parameter, reflecting the inherent extent of fluctuation and non-
stationarity. Meanwhile, we also adopt a concept drift detector D in the background in case
of abrupt changes. When the maximum update period is achieved, or the abrupt change is
detected, instead of resetting the model pool and incrementally training a new model, we
aim at reusing knowledge in previous models in a weighted manner to enhance the overall
performance. Therefore, there are two issues to address:

• Suppose each previous model is associated with a proper weight. How to reuse these
models weightedly to train the new model?

• How to obtain a proper weight for each previous model? Note that the weight should
represent model’s “reusability” towards current data.

To address the above two issues, our approach consists of the following two important
modules.

(1) ModelUpdate by model reuse: we reuse previous models to build the new model and
update model pool, by making use of the biased regularization technique for multiple
model reuse learning.

(2) WeightUpdate by expert advice: The weight of each previous model is updated
according to its performance on the current data, in an exponential weighted average
manner.

We present descriptions of these two modules in next two subsections.
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Fig. 1 Illustration of main idea: our approach periodically conducts the model update, and adopts the drift
detector D in the background in case of the abrupt change. During the model update, on one hand, we
utilize the data items in current epoch Sk ; on the other hand, we reuse knowledge from previous models
({h1, h2, . . . , hk−1}) via model reuse

3.1 Model update bymodel reuse

During the model update stage, we propose to reuse previous models weightedly to adapt
the current data epoch. Note that in this subsection, the weight of each previous model is
supposed to be given in advance, and the weight update procedure will be specified in the
next subsection.

Consider the kth model update as illustrated in Fig. 1, we desire to use previous models
in the model pool H = {h1, . . . , hk−1} along with the current data epoch Sk to train a new
model hk . With a slight abuse of notations, we denote Sk = {(x1, y1), . . . , (xm, ym)}.

We first adopt linear classifier as the base model and reusing previous models via biased

regularization technique (Schölkopf et al. 2001; Tommasi et al. 2014). We remark that one
may use kernel methods, and Nyström method as well as random Fourier features to transform
the kernelized problem into a linear one, details can be found in the paper (Yang et al. 2012).

When the base model is linear classifier, the new model will be obtained according to the
following regularized empirical risk minimization,

ŵk = arg minw

{

1

m

m
∑

i=1

ℓ (〈w, xi 〉, yi ) + μΩ(w, wp)

}

, (1)

where ℓ : R × Y �→ R+ is the non-negative loss function, μ > 0 is a positive trade-off
regularization coefficient. Besides, we denote by H the hypothesis set, and Ω : H×H �→ R+
is a model reuse regularizer specifying the final model to be built upon the previous models,
satisfying Ω(wp, wp) = 0 with a typical choice as ‖w − wp‖2. And wp is the linear

weighted combination of previous models, namely, wp =
∑k−1

j=1 β j ŵ j , where β j is the
weight associated with previous model h j , representing the reusability of each model on
data in current epoch.

Since data in a relatively stationary epoch are usually scarce in evolving data stream, model
reuse mechanism is quite useful as it reduces the sample complexity by reusing previous
models as a basis, which will be theoretically investigated by generalization analysis in
Theorem 1.

For simplicity, in this paper, we choose the square loss with ℓ2 regularization in practical
implementation, essentially, Least Square Support Vector Machine (LS-SVM) (Suykens et al.
2002). Meanwhile, the optimal solution of 1 can be expressed in the form of ŵk =

∑m
i=1 αi xi ,

where the coefficients α = [α1, . . . , αm]T can be obtained by analyzing its optimality con-
dition. Specifically, it is sufficient to solve the following linear Karush-Kuhn-Tucker (KKT)
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Algorithm 1 Condor
Require: Data stream {(x1, y1), . . . , (xT , yT )}. Epoch size (maximum update period) p; model pool size K ;

step size η; Drift detector D(δ, x, y) with threshold δ.
Ensure: Prediction ŷt , where t = 1, . . . , T ; and returned model pool H .
1: Initialize model h1 on first (or a couple of) data items;
2: Initialize model pool H ← {h1} and weight β1,1 ← 1 ;
3: for t = 1 to T do

4: Receive xt ;
5: for k = 1 to |H | do

6: ŷt,k ← hk (xt );
7: end for

8: ŷt ←
∑|H |

k=1 βt,k ŷt,k/
∑|H |

k=1 βt,k ;
9: Receive yt ;
10: for k = 1 to |H | do

11: βt+1,k ∝ βt,k exp{−ηℓ(ŷt,k , yt )};
12: end for

13: if t mod p = 0 or D(δ, xt , yt ) > 0 then

14: h ← ModelUpdate(S|H |, H , {β1, . . . , β|H |});
15: H ← H ∪ {h};
16: if |H | > K then

17: Remove the oldest model from H .
18: end if

19: for k = 1 to |H | do

20: Reinitialize the weights: β1,k ← 1/|H |;
21: end for

22: end if

23: end for

system (Suykens et al. 2002, Chapter 3, pp. 73),

[

K + 1
μ

I 1

1 0

] [

α

b

]

=
[

y −
∑k−1

j=1 β j ŷ j

0

]

, (2)

where K is the linear kernel matrix, i.e., Ki j = xT
i x j . Besides, y and ŷ j are vectors containing

labels of data stream and predictions of the previous j th model, that is, y = [y1, . . . , ym]T and
ŷ j = [〈ŵ j , x1〉, . . . , 〈ŵ j , xm〉]T. The KKT system can be solved by the Gaussian elimination
method. For larger datasets, in order to alleviate memory cost and reduce computational com-
plexity, the use of iteration methods are recommended, for instance, the conjugate gradient
iterative methods (Suykens et al. 2002, Chapter 3.4.1, pp. 86).

If the concept drift occurs very frequently or data stream accumulates for a long time,
the size of the model pool will explode supposing there is no model retirement mechanism.
Therefore, we set the maximum of model pool size as K . Apparently, we can keep K of all
models with the largest diversity as done in the work of Sun et al. (2018). For simplicity, we
only keep the latest K ones in the model pool.

Remark 1 The biased regularization model reuse learning is not limited in the binary clas-
sification task, and can be extended to the multi-class scenario. We defer notations and
corresponding theoretical analyses in Sect. 5. Meanwhile, our framework can generalize to
other base models with suitable model reuse mechanisms. For instance, we can use the deci-
sion tree as the base classifier, along with the suitable model reuse strategy. More extensions
will be investigated in the future work.
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3.2 Weight update by expert advice

During the weight update stage, we propose to update the weights such that the weight
can represent the reusability of the model towards current data scratch. To this end, we
update the weight of each model by prediction with expert advice technique (Cesa-Bianchi
et al. 1997; Cesa-Bianchi and Lugosi 2006). The intuitive idea is to adaptively adjust the
weight distribution of previous models according to their performance in order to reflect
their reusability.

Specifically, when the ModelUpdate stage finishes, the weight distribution in the model
pool H will reinitialize. We adopt a uniform initialization: β1,k = 1/|H |, for k = 1, . . . , |H |.
After the initialization, we update the weight as follows: we first receive the new data item
xt , and each previous model will then provide its prediction ŷt,k . The final prediction ŷt is
made based on a weighted combination of those predictions (ŷt,k , for k = 1, . . . , |H |). Next,
the true label is revealed as yt , and we will update the weight distribution according to the
loss each model suffers, in an exponential weighted manner,

βt+1,k ∝ βt,k exp{−ηℓ(ŷt,k, yt )}. (3)

The weight update procedure in Eq. (3) is simple yet efficient. Next, we show the Weigh-
tUpdate mechanism returns a good weight distribution, implying our approach can reuse
previous models properly. We have the following observation regarding the weight distribu-
tion.

Observation 1 (Weight Concentration) During the WeightUpdate procedure in epoch Sk ,the

weights will concentrate on those previous models who suffer a small cumulative loss on Sk .

Proof By a simple analysis on the ModelUpdate procedure, we know that the weight asso-

ciated with the j th previous model is proportional to β1, j exp{−ηL
( j)
Sk

}, where L
( j)
Sk

=
∑

i∈Sk
ℓ(h j (xi ), yi ) and j = 1, . . . , k − 1. Therefore, the model suffers a small cumula-

tive loss will be associated with a large weight. ⊓⊔

Notwithstanding its simplicity, this observation plays a vital role in making our approach
successful. It guarantees that the algorithm adaptively assigns more weights on better-fit
previous models and thus essentially depicts the “reusability” of each model. Therefore, the
weight update procedure is particularly useful when there emerge recurring concepts in the
data stream. We give empirical evidence as support in Sects. 6.3 and 6.4.

The overall procedure of proposed approach Condor is summarized in Algorithm 1, where
line 10-12 mainly conduct the weight update procedure presented in Eq. (3) and the model
update procedure shown in line 14 is realized by Eq. (1). From the update procedures, we
conclude that the overall space complexity is O(d(K + p)) because Condor needs to store p

data items in each epoch and K previous models, where d is the dimensionality of the feature.
The overall time complexity is O(p3 + dp2 + dpK ), specifically, the O(p3 + dp2) term
is mainly devoted in solving the KKT system of Eq. (2), while the O(dpK ) term is for the
prediction of p instances in each epoch. We remark that the time complexity can be further
accelerated by the iterative methods in solving LS-SVM, particularly when the matrix of the
KKT system has a small condition number (Shewchuk 1994).
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4 Theoretical analysis

In this section, we provide theoretical justifications of the proposed approach Condor. Obser-
vation 1 in the last paragraph demonstrates that the WeightUpdate mechanism provides a
good weight distribution for the weighted combination of previous models as the initializa-
tion. We will further show that the ModelReuse mechanism is capable of taking advantage of
this initialization when training the new model. Therefore, they together make our proposed
approach successful.

To this end, we present the results in the following two aspects:

• Local analysis: investigate the performance in each epoch, from both generalization and
regret aspects.

• Global analysis: examine the regret on the whole data stream globally.

To better present the main results, we defer all the proofs in the appendix.

4.1 Local analysis

Local analysis aims to scrutinize the performance of a particular epoch. On the one hand, we
are concerned about the generalization ability of the model obtained by the ModelUpdate
module. Second, we examine the cumulative regret of predictions.

Let us consider the epoch Sk , the ModelUpdate module reuses previous models
h1, . . . , hk−1 to help build the new model hk , as shown in Fig. 1. To simplify the presentation,
we introduce some notations. Suppose the length of data stream S is T , and is partitioned
into k epochs, S2, . . . , Sk .1 For epoch Sk , we assume the distribution is identical, i.e., Sk is a
sample of mk points drawn i.i.d. according to distribution Dk , where mk denotes its length.

Generalization analysis

First, we conduct generalization analysis on the ModelUpdate module. Define the risk and
empirical risk of the hypothesis (model) h on epoch Sk by

R(h) = E(x,y)∼Dk
[ℓ(h(x), y)], R̂(h) = 1

mk

∑

i∈Sk

ℓ(h(xi ), yi ).

Here, with a slight abuse of notations, we also adopt Sk to denote the index included in the
epoch, and R̂(h) instead of R̂Sk

(h) for simplicity. The new model hk is built and updated
on epoch Sk via the ModelUpdate module, then we have the following generalization error
bound.

Theorem 1 Assume that the non-negative loss function ℓ : R × Y �→ R+ is bounded by

M ≥ 0. Meanwhile, for all y ∈ Y , ℓ(·, y) is L-Lipschitz continuous. Also, assume the

regularizer Ω : H × H �→ R+ is a non-negative and λ-strongly convex function in its first

argument w.r.t. a norm ‖·‖. Given the source model h p , which is a linear combination of

previous models. Then, for any δ > 0, with probability at least 1 − δ, we have,2

R(hk) − R̂(hk) ≤ L

√

ǫ1

m
+ 3

√

ǫ2 log(1/δ)

m
+ 3M log(1/δ)

4m
,

1 Here, we start from epoch 2, since the first epoch cannot utilize the WeightUpdate procedure.
2 We use m instead of mk for simplicity.
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where ǫ1 = 2B2 Rp

λμ
and ǫ2 = M

4 Rp + 2L M
√

ǫ1
m

. Besides, B = supx∈X ‖x‖⋆ and Rp =
R(h p) = E(x,y)∼Sk

[ℓ(h p(x), y)], representing the risk of reusing model on the underlying

distribution of current data.

To better present the results, we only keep the leading terms w.r.t. m and Rp , and obtain

that

R(hk) − R̂(hk) = O

(
ǫ̃1√
m

+ ǫ̃2

m

)

, (4)

where ǫ̃1 =
(√

Rp

λμ
+ 4

√
Rp

λμm

)

and ǫ̃2 =
(√

1
λ

+ 4
√

1
λ

)

.

Remark 2 Equation (4) shows that the model returned by the ModelUpdate procedure enjoys
an O(1/

√
m) generalization bound under certain conditions. In particular, when the source

model (a weighted combination of previous models) is sufficiently good, that is, it has a small
risk on the current distribution Dk (i.e., when Rp → 0), we can obtain an O(1/m) bound, a
fast rate convergence guarantee. Such a result is very much desired because the number of data
items in each epoch is typically limited. Theorem 1 theoretically justifies the effectiveness
of the model reuse mechanism that incorporates the knowledge of previous models to learn
the new model on the current data, because such a mechanism can significantly reduce
the sample complexity, especially if we can reuse previous models properly. Meanwhile,
the WeightUpdate mechanism gives a satisfying weight distribution for reusing previous
models, because it guarantees to concentrate more weights on those better-fit models (see
Observation 1).

Remark 3 It is noteworthy to mention that the generalization analysis does not require the
loss function be necessarily convex. We only assume a bounded and Lipschitz condition (in
Theorem 1) for the loss function, along with strongly convexity condition for the regularizer.
These two conditions can be easily satisfied by common models. For example, in SVMs
we use ℓ2 regularization, which is 2-strongly convex, and the hinge loss ℓ(z, y) = [1 −
yz]+, which is 1-Lipschitz continuous. We remark that the bounded condition of the loss
function can be achieved with bounded model space and training items. This is a general
assumption which also appears in the analysis of support vector machine (Mohri et al. 2018,
Theorem 5.10), online learning (Cesa-Bianchi and Lugosi 2006, Theorem 2.2) and learning
to rank (Mohri et al. 2018, Theorem 10.1 and Corollary 10.2). The limitation of constraining
the model space can be possibly relaxed by the technique of localized complexity (Bartlett
et al. 2005; Sridharan et al. 2008), which will be investigated in the future work.

Remark 4 The main techniques in the proof are inspired by Kuzborskij and Orabona (2017),
but we differ in two aspects. First, their analysis requires a smoothness condition for loss
functions, and thus their results are not suitable under our conditions. Second, we extended
the analysis of model reuse to multi-class scenarios, and results are presented in Sect. 5 as
an independent part for a clear presentation. In addition, the work of Reddi et al. (2015)
utilizes biased regularization technique to reduce the variance of the importance sampling
estimator in covariate shift scenarios, and they give the theoretical analysis. We remark
that their results focus on the deviation of expected risk between the obtained model and
the vanilla importance sampling estimator, while they do not give the generalization error
of the obtained model, i.e., R(h) − R̂(h). More importantly, their results do not exhibit a
phenomenon of fast-rate convergence when the reusable model is good. On the contrary, we
present a fast-rate generalization error analysis, theoretically justifying the advantage of the
model reuse mechanism.
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Regret analysis

In order to proceed to the regret analysis, we need to introduce more notations. Let LT

be the global cumulative loss on the whole data stream S, namely, LT =
∑T

i=1 ℓ(ŷi , yi ).
Meanwhile, on epoch Sk , let L Sk

be the cumulative loss over data in epoch Sk suffered by

our approach, and L
( j)
Sk

as the local cumulative loss over data in epoch Sk suffered by the
previous model h j ,

L Sk
=

∑

i∈Sk

ℓ(ŷi , yi ), L
( j)
Sk

=
∑

i∈Sk

ℓ(h j (xi ), yi ).

We adopt the concept of cumulative regret (or regret) from online learning (Zinkevich
2003; Cesa-Bianchi and Lugosi 2006; Hazan 2016) as the performance measurement, where
regret is defined as the difference between the accumulated loss of the predictions and that
of a particular expert.

We demonstrate that our approach suffers a small cumulative loss and is able to benefit
from recurring concept drift scenarios.

Theorem 2 (Local Regret Cesa-Bianchi and Lugosi (2006)) Assume that the loss function

ℓ : R ×Y �→ R+ is convex in its first argument and takes values in [0, 1]. When the step size

is set as η =
√

(8 ln(k − 1))/mk , then we have

RegretSk
= L Sk

− min
j=1,...,k−1

L
( j)
Sk

≤
√

(mk/2) ln(k − 1). (5)

Furthermore, suppose we know that there exists a previous model which matches current

data quite well. Then, by setting the step size as η = ln(1 +
√

2 ln(k − 1)/L j∗k
), where

L j∗k
= min j=1,...,k−1 L

( j)
Sk

is the cumulative loss of the best-fit previous model, we have

RegretSk
= L Sk

− L j∗k
≤

√

2L j∗k
ln(k − 1) + ln(k − 1). (6)

Apparently, the quantity L j∗k
can be only available after all mk rounds predictions. How-

ever, it can be compensated by “doubling trick” (Cesa-Bianchi et al. 1997), letting η change
according to the current best previous model.

From the regret bound in the above statement [Eqs. (5) and (6)], we can see that the order of
regret bound can be substantially improved from a typical O(

√
mk) to O (ln k), independent

from the number of data items in the epoch, providing Lk∗ ≪ √
mk , that is, the cumulative

loss of the best-fit previous model is small.

Remark 5 Theorem 2 implies that if the concept of epoch Sk or a similar concept has emerged
previously, our approach enjoys a substantially improved local regret providing a proper step
size is chosen (essentially, let the step size be larger). The theory accords to our intuition on
why model reuse helps for concept drift data stream. In many situations, although the distri-
bution underlying might change over time, the concepts can be recurring, i.e., disappear and
re-appear (Katakis et al. 2010; Gama and Kosina 2014). Thus, the conclusion demonstrates
that our approach can benefit from such recurring concepts or similar concepts.

4.2 Global analysis

In this part, we investigate the global behavior of the proposed approach, namely, the perfor-
mance on the whole data stream.
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We remark that in the local regret analysis, Theorem 2 gives the (static) regret analysis, that
is, the benchmark in Eqs. (5) and (6) is the cumulative loss of the fixed best-fit previous model.
This is reasonable since the underlying distribution in each local epoch is considered identical.
However, the static regret is not suitable for the global regret analysis. The rationale behind
static regret is that the best fixed decision in hindsight is reasonably good over the data stream,
nevertheless, the optimal decision is drifting over time in non-stationary environments. We
thus adopt the dynamic regret (Zinkevich 2003; Besbes et al. 2015) denoted by “D-Regret”
as the performance measure, a more stringent metric, which compares the predictions to a
time-varying comparator sequence.

Theorem 3 (Global Dynamic Regret) Assume that the loss function ℓ : R × Y �→ R+
is convex in its first argument and takes the values in [0, 1]. By setting the epoch size

(maximal update period) p = ⌈ 3
√

ln K
2 (T /2VT )2/3⌉ and the step size in epoch Sk as

ηk =
√

(8 ln K )/mk ,

D-RegretT =
T
∑

t=1

ℓ(ŷt , yt ) −
T
∑

t=1

ℓ(h∗
t (xt ), yt ) = O

(

V
1/3
T T 2/3

)

, (7)

where h∗
t ∈ arg minh∈H ℓ(h(xt ), yt ) is the optimal classifier of this round. Besides, VT is the

function variation defined by

VT =
T
∑

t=2

sup
h∈H

|ℓ(h(xt−1), yt−1) − ℓ(h(xt ), yt )|. (8)

Evidently, the function variation measures the non-stationarity of the data stream.

Remark 6 The regret bound in Theorem 3 is different from traditional (static) regret
bounds (Hazan 2016). Essentially, it measures the difference between the global cumulative
loss with the sum of local cumulative loss suffered by the best possible model. Therefore, the
comparator dynamically changes and is time-varying, which depicts the distribution change
in the sequence. It is thus named as dynamic regret, more suitable to be the performance
measure in non-stationary environments.

Remark 7 The term VT involved in the bound is called function variation, characterizing
the non-stationarity of the data stream essentially. That is, the more non-stationary the data
stream is, the larger the value of VT will be. In this sense, the dynamic regret bound in Eq.
(7) is adaptive to non-stationarity of the data stream.

Note that the optimal choice of epoch size p depends on the function variation VT , which
is unfortunately unknown ahead of time. There are at least two ways to eliminate such an
undesired dependence: either one knows the variation budget BT such that VT ≤ BT , then p

can be set according to BT ; or one can appeal to doubling trick (Cesa-Bianchi et al. 1997) or
grid search (Koolen et al. 2014; Zhang et al. 2018) to replace the unknown quantity by those
quantities empirically attainable. We will not go for details as this exceeds the scope of this
paper.

5 Multi-class model reuse learning

In this section, we extend the generalization analysis from the binary model reuse learning
to the multi-class scenario. All proofs are deferred to “Appendix D”.
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We first introduce new notations for a clear presentation, as the notations in multi-class
learning scenarios are slightly different from those in the binary case.

Let X denote the input feature space and Y = {1, 2, . . . , c} denote the target label space.
Our analysis acts on the last data epoch Sk = {(x1, y1), . . . , (xmk

, ymk
)}, a sample of mk

points drawn i.i.d. according to distribution Dk , where xi ∈ R
d and yi ∈ Y with only a single

class from {1, . . . , c}. Given the multi-class hypothesis set H, any hypothesis h ∈ H maps
from X × Y �→ R, and makes the prediction by x �→ arg maxy∈Y h(x, y). This naturally
rises the definition of margin ρh(x, y) of the hypothesis h at a labeled instance (x, y),

ρh(x, y) = h(x, y) − max
y′ �=y

h(x, y′).

Based on the margin and the non-negative loss function ℓ : R �→ R+, we can define the
risk and empirical risk of a hypothesis h on epoch Sk as,

R(h) = E(x,y)∼Dk

[

1ρh(x,y) ≤ 0
]

, R̂S(h) = 1

mk

∑

i∈Sk

ℓ(ρh(xi , yi )).

One should be aware that the definition of the loss function in the multi-class scenario is
different from that in the binary classification.

First, we identify the optimization formulation of multi-class biased regularization model
reuse learning,

Ŵ = arg minW

{

1

m

m
∑

i=1

ℓ
(

ρhW
(xi , yi )

)

+ μΩ(W , Wp)

}

, (9)

where ℓ : R×Y �→ R+ is a non-negative loss function and hW (x) = W Tx, μ > 0 is a positive
trade-off regularization coefficient. Besides, Ω : H × H �→ R+ is a model reuse regularizer
specifying the final model to be built upon the previous models, satisfying Ω(Wp, Wp) = 0
with a typical choice as ‖W −Wp‖2

F . And Wp is the linear weighted combination of previous

models, namely, Wp =
∑k−1

j=1 β j Ŵ j , where β j is the weight associated with previous model
h j , representing the reusability of each model on data in current epoch.

Apart from the non-negative property, we suppose the loss function is regular as defined
in the work of Lei et al. (2015).

Definition 1 (Regular Loss, Cf. Definition 2 of Lei et al. 2015) We call a loss function ℓ :
R �→ R is L-regular if it satisfies the following properties:

(i) ℓ(t) bounds the 0-1 loss from above: ℓ(t) ≥ 1t≤0;
(ii) ℓ(t) is L-Lipschitz continuous, i.e., |ℓ(t1) − ℓ(t2)| ≤ L|t1 − t2|;

(iii) ℓ(t) is decreasing and it has a zero point cℓ, i.e., there exists a cℓ such that ℓ(cℓ) = 0.

Our goal is to provide the generalization analysis, namely, to prove the convergence of
risk R(h) to the empirical risk R̂(h), and establish the rate. Since E(x,y)∼Dk

[R̂(h)] �= R(h),
thus, we cannot directly utilize concentration inequalities to help. To make this feasible, we
need to introduce the risk w.r.t. loss function ℓ,

Rℓ(h) = E(x,y)∼Dk
[ℓ(ρh(x, y))] .

From property (i) in Definition 1, we know that the risk R(h) is a lower bound of Rℓ(h), that
is R(h) ≤ Rℓ(h). Thus, we only need to establish generalization bound between Rℓ(h) and
R̂S(h). Evidently, E(x,y)∼Dk

[R̂S(h)] = Rℓ(h), thus we can utilize concentration inequalities
again.
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In the theoretical analysis, we specify the regularizer as square of Frobenius norm, namely,
Ω(W , Wp) = ‖W − Wp‖2

F , and provide the following generalization error bound.

Theorem 4 Let H ⊆ R
X×Y be a hypothesis set with Y = {1, 2, . . . , c}. Assume that the

non-negative loss function ℓ : R �→ R+ is L-regular and M-bounded. Given the source

model h p , which is a linear combination of previous models. Then, for any δ > 0, with

probability at least 1 − δ, the following holds,3

R(h
Ŵ

) − R̂S(h
Ŵ

) ≤ 2Lc2

√

ǫ1

m
+ 3

√

ǫ2 log(1/δ)

4m
+ 3M log(1/δ)

4m
.

where ǫ1 = B2 Rp

2μ
and ǫ2 = M

(

8Lc2
√

ǫ1
m

+ Rp

)

. Besides, B = supx∈X ‖x‖2.

To better present the results, we only keep the leading term w.r.t. m and Rp , and we have

R(hk) − R̂S(hk) = O

(

c2

√
m

(√

Rp

μ
+ 4

√

Rp

μm

)

+ 1

m

4

√

1

μ

)

, (10)

where Rp = R(h p) = E(x,y)∼Sk
[ℓ(ρh p (x, y))], representing the risk of reusing model on

current distribution.

Remark 8 From Theorem 4, we can see that the main result and conclusion in the multi-class
case is very similar to that in the binary case. In Eq. (10), we can see that Condor enjoys an
O(1/

√
m) order generalization bound, which is consistent to the common learning guaran-

tees. More importantly, Condor enjoys an O(1/m) order fast rate generalization guarantees,
when Rp �→ 0, namely, when the previous model h p is highly “reusable” for the current data.
This shows the effectiveness of the ModelUpdate module that reuses previous models to help
build the new model in multi-class scenarios, since the number of data items in each epoch
is usually limited, the model reuses mechanism is able to significantly reduce the sample by
utilizing previous models as the basis when constructing the new model.

At last, it is noteworthy to mention that the current generalization error bound admits a
quadratic dependence on the number of classes c, one might further sharp this to a radical
dependence by applying the vector Rademacher complexity technique (Maurer 2016) along
with a more scrutinized analysis.

6 Experiments

In this section, we first present the experimental results on both synthetic and real-world
concept drift datasets in Sect. 6.1. Then, we provide the empirical support for the effectiveness
of the model reuse mechanism in Sect. 6.2. Next, we justify the efficacy of weight update
mechanism by showing the empirical studies of weight concentration phenomenon (Sect. 6.3)
and experiments on recurring concept drift datasets (Sect. 6.4). Finally, we conduct the
parameter study in Sect. 6.5.

6.1 Results on synthetic and real-world datasets

Contenders We conduct the comparisons with two classes of state-of-the-art concept drift
approaches. The first class is the ensemble category, including (a) Learn++.NSE (Elwell

3 We use m instead of mk for simplicity.
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Table 1 Basic statistics of datasets with concept drift

Dataset # instance # dim # class Dataset # instance # dim # class

SEA200A 24,000 3 2 GEARS-2C-2D 200,000 2 2

SEA200G 24,000 3 2 Usenet-1 1500 100 2

SEA500G 60,000 3 2 Usenet-2 1500 100 2

CIR500G 60,000 3 2 Luxembourg 1900 32 2

SINE500G 60,000 2 2 Spam 9324 500 2

STA500G 60,000 3 2 Email 1500 913 2

1CDT 16,000 2 2 Weather 18,159 8 2

1CHT 16,000 2 2 GasSensor 4450 129 6

UG-2C-2D 100,000 2 2 Powersupply 29,928 2 2

UG-2C-3D 200,000 3 2 Electricity 45,312 8 2

UG-2C-5D 200,000 5 2 Covertype 581,012 54 2
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Fig. 2 Holdout accuracy comparisons on three synthetic datasets

and Polikar 2011), (b) DWM (Kolter and Maloof 2003, 2007) and (c) AddExp (Kolter and
Maloof 2005), (d) HybridForest (Rad and Haeri 2019). The second class is the transfer

category, including (e) DTEL (Sun et al. 2018) and (f) TIX (Forman 2006). Essentially,
DTEL and TIX also adopt ensemble idea, we classify them into transfer category just to
highlight their model transfer strategies.

Settings In the experiments, we set the maximum update period (epoch size) p = 50 and
model pool size K = 25.4 In case of the abrupt changes, we choose ADWIN algorithm (Bifet
and Gavaldà 2007) as the drift detector D with default parameter setting reported in their
paper.

Synthetic Datasets As it is not realistic to foreknow detailed concept drift information of
real-world datasets, like the start, the end of change and so on. We employ six widely used
synthetic datasets SEA, CIR, SIN, and STA with their variants into experiments. Besides,
another six synthetic datasets are also adopted: 1CDT, 1CHT, UG-2C-2D, UG-2C-3D, UG-
2C-5D, and GEARS-2C-2D. Table 1 summarizes their brief statistics. We provide detailed
dataset information in “Appendix E.1”.

We plot holdout accuracy comparisons over three synthetic datasets: SEA200A,
SEA200G, and SEA500G. The holdout accuracy is calculated over testing data generated

4 Except for Covertype and GasSensor datasets, we set p = 200, since Covertype is extremely large with
581,012 data items in total and GasSensor is a multi-class dataset causing a higher sample complexity.
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according to the identical distribution as training data at each time stamp. Following (Sun
et al. 2018), we manually split the time horizon of each dataset into 120 epochs to have a clear
presentation, and all the algorithms will perform the model update after each epoch ends. Note
that each synthetic dataset has four stages, in other words, the distribution changes for three
times. Specifically, the decision boundary changes for every 30 epochs. From Fig. 2, we can
see that all the approaches drop when an abrupt concept drift occurs. Nevertheless, Condor
is relatively stable and rises rapidly with more new data items coming, and finally achieves
the highest accuracy compared with other approaches, which validates its effectiveness.

Real-world Datasets We adopt ten real-world datasets: Usenet-1, Usenet-2, Luxembourg,
Spam, Email, Weather, GasSensor, Powersupply, Electricity, and Covertype. The number of
data items varies from 1500 to 581,012, and the class number varies from 2 to 6. Detailed
descriptions are provided in “Appendix 1”. We conduct all the experiments for five trails and
report overall mean and standard deviation of predictive accuracy in Table 2, which is the
ratio between the number of iterations with correct predictions and the time horizon T . The
measure reflects the average performance of the algorithm over the whole data stream. Apart
from all the real-world datasets, synthetic datasets are also included.

Table 2 shows that Condor outperforms other contenders. It achieves the best on 16 over
22 datasets in total and ranks the second on four other datasets. Especially, Condor behaves
significantly better than other approaches in all ten real-world datasets. The reason that
Condor behaves poor on two synthetic datasets (CIR500G and SIN500G) is that these two
datasets are highly nonlinear (generated by a circle and sine function respectively). This
problem can be solved by using the non-linear mapping. For example, we adopt the random
feature technique to linearize these two datasets, and the results show the accuracy is improved
from 68.41 ± 0.87 to 85.14 ± 0.08 for CIR500G, and from 65.68 ± 0.12 to 73.59 ± 0.43
for SIN500G. These show the superiority of our proposed approach.

From the win/tie/loss summarized in the last row of Table 2, we can see that DWM is
the most competitive contender. We now discuss its complexity. In each epoch, its space
complexity is O(d(K + p)) and the time complexity is O(dp2 + dpK ). We remark that
there is typically a limited number of data in each epoch, so the complexity of DWM is
basically comparable with that of Condor.

6.2 Effectiveness of model reusemechanism

In the theoretical analysis presented in the last sections, we demonstrate that the Weigh-
tUpdate mechanism leads to the phenomenon of weight concentration, highly useful for
adaptively reusing the previous model according to their reusability, and thus provides a
good combination of previous models. Theorem 1 and Theorem 4 further show that Model-
Reuse mechanism is capable of utilizing such an initialization, in both binary and multi-class
classification. We now validate the effectiveness via empirical studies.

Figure 3 shows the performance comparison between Condor and Condor without model
reuse (that is, directly training a new model without reusing previous models). We can observe
that the model reuse mechanism does help, especially on these “difficult” datasets where
Condor without model reuse only achieves around 60% accuracy, whereas the model reuse
mechanism can bring at least ten percents accuracy improvement.

As will be shown later, the default epoch size p will be set as 50. That is, in each epoch,
there will be at most 50 data items for training. Therefore, it would be rather undesired if
one train a new model with such a limited number of training data directly. Theorem 1 and
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Fig. 3 Performance comparisons (in predictive accuracy) of Condor with/without model reuse mechanism

Table 3 Emailing list dataset: There are in total three different topics, “+” indicates the users are interested in
it, while “−” indicates not interested in it

Topic 1–300 301–600 601–900 901–1200 1201–1500

Medicine + − + − +
Space − + − + −
Baseball − + − + −

Say an example, in the first period (time stamp 0–300), users’ are only interested in messages of the topic
medicine

Theorem 4 reveal that the model reuse mechanism can reduce the sample complexity when
provided with a proper initialization. The results accord to the theoretical insight.

6.3 Effectiveness of weight concentrationmechanism

We examine the weight concentration phenomenon on a real-world dataset Emailing list,
whose detailed information of concept drift is shown in Table 3. We can see that the concept
drift happens for every 300 rounds, in a recurring manner.

Let us consider the epoch in 1200–1500 (epoch 5), and focus on the weights of previous
models h1, h2, h3, h4, namely, β1, β2, β3, β4. Clearly, the concept of epoch 5 has emerged
previously, i.e., it is the same as the concepts of epoch 1 and epoch 3. Thus, we expect that the
weight distribution should concentrate on β1 and β4. As we can see in Table 4, the empirical
results show the weights β1 and β4 indeed dominate while β2 and β3 are almost zero. The
result validates that the returned weight distribution largely concentrates on those previous
models who better fit current data epoch. Additionally, the results, to some extent, justify
why our approach succeeds in recurring concept drift scenarios. A more detailed elaboration
will be presented in the next paragraph.

6.4 Recurring concept drift

In this paragraph, we conduct the performance comparison on the recurring concept drift

scenario, a specific sub-type of concept drift, in which previous concepts may disappear and
then re-appear in the future. Therefore, previous models may be beneficial for future learning.
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Table 5 Performance comparisons on two recurring concept drift datasets: Email list and Spam filtering

Category Approach Email list Spam filtering

Accuracy Precision Recall Accuracy Precision Recall

Window SVM-fix 71.4 73.7 72.1 88.1 82.0 68.5

NB-sw 74.7 77.9 73.2 91.9 90.2 77.0

Ensemble Learn++.NSE 70.0 76.5 76.5 90.4 84.5 79.6

DWM 78.2 75.1 81.4 91.9 89.1 84.0

AddExp 70.4 68.2 71.4 91.3 90.0 80.7

Model-reuse TIX 86.2 88.2 88.2 88.5 82.3 69.3

DTEL 86.2 88.2 88.2 86.3 73.4 71.4

Recurring CCP 77.5 79.7 77.6 92.3 85.7 83.9

DACC 76.2 73.8 75.9 94.7 95.1 97.8

ADACC 77.5 75.2 77.2 94.9 95.6 97.6

Ours Condor 95.6 93.2 99.8 95.4 91.1 90.8

The best accuracy on each data set is bolded

Previous studies show that one needs to consider the recurring structure specifically, otherwise
the performance will dramatically drop, even for approaches dealing with gradually evolving
concept drift.

Datasets We adopt two popular real-world datasets with recurring concept drift, i.e., Email

list and Spam filtering datasets (Katakis et al. 2008, 2010; Jaber et al. 2013). Both datasets
are extracted from email corpus, and concept is decided by users’ personal interests, which
changes in a recurring manner.

Comparisons We include contenders are from the following four categories: (a) Sliding
window based approaches, including SVM-fix (batch implementation by SVM) and NB-
sw (update only use data in the sliding window based on incremental Naive Bayes). (b)
Ensemble based approaches, including Learn++.NSE, DWM and AddExp. (c) Transfer
learning based approaches, including TIX and DTEL. (d) Recurring approaches, which are
specifically designed for recurring concept drift scenarios, including Conceptual Clustering
and Prediction (CCP) approach, an ensemble method that handle recurring concept drift via
similarity clustering (Katakis et al. 2010). Also, we compare with Dynamic Adaptation to
Concept Change (DACC) and its adaptive variant ADACC, detecting recurring concept drift
based on a new second-order online learning mechanism (Jaber et al. 2013). Since codes
of CCP, DACC and ACACC are not available, we directly use the results reported in their
papers, as we use the whole dataset without any random splitting according to their settings.

Results Table 5 reports experimental results. We can see that Condor exhibits an encouraging
performance on both datasets over three different performance measures. It performs signif-
icantly better than general concept drift approaches and is comparable or even better than
those approaches designed explicitly for recurring concept drift scenario.

The effectiveness of Condor in recurring datasets lies in the effect of weight concentration,
since our approach guarantees the weight concentrates on the best-fit previous models (See
Observation 1).
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Fig. 4 Parameter study on different real-world datasets

6.5 Parameter study

In this part, we study the parameter influence. There are four parameters: epoch size p, model
pool size K , regularization coefficient μ and step size η. We conduct the experiments for
five times and plot the mean and standard variance of predictive accuracy with respect to
different parameter values in Fig. 4.

Epoch Size We set the value of epoch size (i.e., maximum update period) p from 25 to 500.
Figure 4a shows that the overall performance is relatively stable in terms of different epoch
sizes. However, for some highly non-stationary datasets (particularly, email and electricity),
the accuracy curve drops significantly with a larger epoch size, because the epoch size is so
large that data within are not iid and thus the model trained from scratch is not desired. On the
other hand, although a small epoch size leads to a more timely update, the model trained from
each epoch will suffer from the insufficient data. Actually, the epoch size is a data-dependent
parameter, reflecting the inherent extent of fluctuation. Meanwhile, the setting of epoch size
might also subject to requirements from real-world applications. In this paper, we set the
default value of epoch size p as 50.

Model Pool Size We set the value of model pool size K from 5 to 50. Figure 4b shows that the
predictive accuracy rises as the model pool size increases, and will not benefit from an even
larger model pool. Although an even larger K might be benign for performance improvement,
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the memory cost will also significantly increase with a larger K . We set the default value of
model pool size K as 25.

Regularization Coefficient We set the value of regularization coefficient μ from 2 × 10−6 to
2 × 106. Figure 4c shows that when we set a relatively large μ value, all datasets basically
achieve the best performance, and are not sensitive to the μ value. This agrees with the
intuition since μ value represents a trade-off between empirical loss and biased regularization,
a larger value addresses more importance on reusing models. In other words, when μ is large,
it tends to exploit more information from previous models to build the new model. Hence, the
result implies the effectiveness of model reuse. We set the default value of the regularization
coefficient μ as 200.

Step Size We set the value of step size η from 0 to 1. From Fig. 4d, we can see that when
step size is relatively large, say larger than 0.5, the performance is satisfying and stable.
This phenomenon matches the theoretical suggestion value in Theorem 2, calculated by
ηtheory =

√
8 ln(K )/p =

√
8 ln(25)/50 ≈ 0.718, where the model size K is 25 and epoch

size p is 50 by default. We set the default value of step size η as 0.75.

7 Conclusion

In this paper, a novel and effective approach Condor is proposed for handling concept drift
via model reuse, which consists of two key modules,ModelUpdate andWeightUpdate.
Specifically, ModelUpdate mechanism reuses previous models in a weighted manner to train
a new model along with current data. Meanwhile, WeightUpdate mechanism adaptively
adjusts weights of previous models according to their performance. By the generalization
analysis, we prove that the model reuse mechanism helps if we properly reuse previous
models. Through regret analysis, we show that the weights finally concentrate on those
better-fit models and thus provides a good weighted combination of previous models as the

initialization for ModelUpdate mechanism. Moreover, our approach enjoys an O(T 2/3V
1/3
T )

dynamic regret, where T is the length, and VT is the function variation, representing the non-
stationarity of the data stream. Empirical results demonstrate the superiority of our approach
to other compared methods, on both synthetic and real-world datasets.

In the future, it would be interesting to incorporate more techniques from model reuse
learning into handling concept drift problems. Interesting future issue is to incorporate a
condor-like approach into the recently proposed abductive learning (Zhou 2019), a new
paradigm which leverages both machine learning and logical reasoning, to enable it handle
changing concepts and predicates.

Acknowledgements This research was supported by the National Key R&D Program of China
(2018YFB1004300), NSFC (61921006), and the Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization.

Appendix A: Prerequisite knowledge and technical lemmas

In this section, we introduce prerequisite knowledge and technical lemmas in order to prove
the main results. Specifically, we will utilize Rademacher complexity (Bartlett and Mendelson
2002) in proving generalization bounds. Besides, we will also exploit the function properties
when bounding Rademacher complexity and proving the regret bounds.
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Appendix A.1: Rademacher complexity

To simplify the presentation, first, we introduce some notations. Let S = {(x1, y1), . . . ,

(xm, ym)} be a sample of m points drawn i.i.d. according to the underlying distribution D,
then the risk and empirical risk of hypothesis h are defined by

R(h) = E(x,y)∼D [ℓ(h(x), y)] , R̂S(h) = 1

m

m
∑

i=1

ℓ(h(xi ), yi ).

In the following, we will utilize the notion of Rademacher complexity (Bartlett and
Mendelson 2002) to measure the hypothesis complexity and use it to bound the general-
ization error.

Definition 2 (Rademacher Complexity Bartlett and Mendelson 2002) Let G be a family of
functions and a fixed sample of size m as S = (z1, · · · , zm). Then, the empirical Rademacher

complexity of G with respect to the sample S is defined as:

R̂S(G) = Eσ

[

sup
g∈G

1

m

m
∑

i=1

σi g(zi )

]

.

Besides, the Rademacher complexity of G is the expectation of the empirical Rademacher
complexity over all samples of size m drawn according to D:

Rm(G) = ES∼Dm [R̂S(G)]. (11)

Appendix A.2: Function properties

In this paragraph, we introduce several common and useful function properties.

Definition 3 (Lipschitz Continuity) A function f : K �→ R is L-Lipschitz continuous w.r.t.
a norm ‖·‖ over domain K if for all x, y ∈ K, we have

| f (y) − f (x)| ≤ L‖y − x‖.

Definition 4 (Strong Convexity) A function f : K �→ R is λ-strongly convex w.r.t. a norm
‖·‖ if for all x, y ∈ K and for any α ∈ [0, 1], we have

f ((1 − α)x + αy) ≤ (1 − α) f (x) + α f (y) − λ

2
α(1 − α)‖x − y‖2.

A common and equivalent form for the differentiable case is,

f (y) ≥ f (x) + ∇ f (x)T(y − x) + λ

2
‖y − x‖2. (12)

Definition 5 (Smoothness) A function f : K �→ R is σ -smooth w.r.t. a norm ‖·‖ if f is
everywhere differentiable and for all x, y ∈ K, we have

f (y) ≤ f (x) + ∇ f (x)T(y − x) + σ

2
‖y − x‖2.

The above condition is equivalent to a Lipschitz condition over the gradients,

‖∇ f (x) − ∇ f (y)‖ ≤ σ‖x − y‖.
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Appendix A.3: Technical lemmas

To obtain a fast generalization rate, essentially, we need a Bernstein-type concentration
inequality. And we adopt the functional generalization of Bennett’s inequality due to Bous-
quet (2002), for self-containedness, we state the conclusion in Lemma 1 as follow.

Lemma 1 (Theorem 2.11 of Bousquet 2002) Assume the random variables X1, . . . , Xn are

identically distributed according to P. Let F be a countable set of functions from X to R and

assume that all functions f in F are P-measurable, square-integrable and satisfy E[ f ] = 0.

If sup f ∈F ess sup f ≤ 1 then we denote

Z = sup
f ∈F

n
∑

i=1

f (X i ),

and if sup f ∈F‖ f ‖∞ ≤ 1, Z can be defined as above or as

Z = sup
f ∈F

∣
∣
∣
∣
∣

n
∑

i=1

f (X i )

∣
∣
∣
∣
∣
.

Let σ be a positive real number such that σ 2 ≥ sup f ∈F Var[ f (X1)] almost surely, then

for all t ≥ 0, we have

Pr [Z ≥ E[Z ] + t] ≤ exp

{

−vg

(
t

v

)}

,

with v = nσ 2 + 2E[Z ] and g(y) = (1 + y) log(1 + y) − y, also

Pr

[

Z ≥ E[Z ] +
√

2tv + t

3

]

≤ e−t .

Besides, for a strongly convex regularizer, we have following property, which will be
useful in proving Theorem 1.

Lemma 2 (Corollary 4 of Kakade et al. 2012) If f : K �→ R is λ-strongly convex w.r.t. a

norm ‖·‖ and f ⋆(0) = 0, then, denoting the partial sum
∑

j≤i v j by v1:i , we have for any

feasible sequence v1, . . . , vn and for any u ∈ K,

n
∑

i=1

〈vi , u〉 − f (u) ≤ f ⋆(v1:n) ≤
n

∑

i=1

〈∇ f ⋆(v1:i−1), vi 〉 + 1

2λ

n
∑

i=1

‖vi‖2
⋆,

where f ⋆ is the Fenchel conjugate of f , namely, f ⋆(x) = supy∈K{〈y, x〉) − f (y)}.

Lemma 3 (Lemma 8.1 of Mohri et al. 2012) Let F1, . . . , Fl be l hypothesis sets in R
X , l ≥ 1,

and let F = {max{h1, . . . , hl} : h j ∈ F j , j ∈ [1, l]}. Then, for any sample S of size m, the

empirical Rademacher complexity of F can be upper bounded as follows:

R̂S(F) ≤
l

∑

j=1

R̂S(F j ).
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Appendix B: Proof of Theorem 1

We prove the statement in Theorem 1 in the following two steps,

(1) First, in Lemma 4, we establish fast generalization error bound in terms of the
Rademacher complexity of loss function family, i.e., Rm(L).

(2) Next, in Lemma 5, we upper bound the Rademacher complexity of Lipschitz loss function
family by terms regarding to Rp , which is defined as the risk of the combination of
previous models h p on current distribution Dk .

Appendix B.1: Fast rate generalization error bound

Lemma 4 Assume that the non-negative loss function ℓ : R × Y �→ R+ is bounded by

M ≥ 0. Let H denote the hypothesis set and S be a sample of m points drawn i.i.d. according

to distribution D. For any constant r ≥ 0, we define the truncated hypothesis set as Hr =
{h : h ∈ H ∧ R(h) ≤ r}, whose associated loss function family L is

L = {(x, y) �→ ℓ(h(x, y) : h ∈ Hr }.

Then, for any δ > 0, with probability at least 1 − δ, the following holds for all h ∈ Hr with ,

R(h) − R̂S(h) ≤ 2Rm(L) + 3M log(1/δ)

2m
+ 3

√

(8Rm(L) + r)M log(1/δ)

4m
. (13)

Proof The proof is based on the application of functional generalization of Bennett’s inequal-
ity in Lemma 1.

For any sample S = {(x1, y1), . . . , (xm, ym)} and any hypothesis h ∈ Hr , we turn to
consider the uniform upper bound of R(h) − R̂S(h). The argument consists of applying
functional generalization of Bennett’s inequality, namely, Lemma 1, to function ΦS defined
by

ΦS = m

2M
sup

h∈Hr

{R(h) − R̂S(h)},

which satisfies the condition in Lemma 1. We now first verify this claim. Following the nota-
tions in Lemma 1, let f (X i ) = 1

2M
{E[ℓ(h(x), y)] − ℓ(h(xi ), yi )}. Evidently, on one hand,

E[ f ] = 0. One the other hand, sup f ∈F ess sup f = suph∈Hr
ess sup 1

2M
{E[ℓ(h(x), y)]−

ℓ(h(xi ), yi )} ≤ 1, due to the boundedness of loss function. Therefore, the quantity ΦS

essentially represents Z in Lemma 1, which can be verified as follows,

Z = sup
f ∈F

m
∑

i=1

f (X i ) = sup
h∈Hr

m
∑

i=1

1

2M
{E[ℓ(h(x), y)] − ℓ(h(xi ), yi )}

= m

2M
sup

h∈Hr

R(h) − R̂S(h) = ΦS .

Therefore, we can now apply Lemma 1, for all t ≥ 0, the following holds

Pr [ΦS ≥ ES[ΦS] + t] ≤ exp

{

−vg

(
t

v

)}

,

where g(y) = (1 + y) log(1 + y) − y and

v = mσ 2 + 2ES[ΦS], σ 2 = sup
h∈Hr

Var

[
1

2M
E(x′,y)∼D[ℓ(h(x′), y′)] − ℓ(h(x), y)

]

.
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And we can reverse the above inequality and obtain that for any δ > 0, with probability
at least 1 − δ, the following holds for all h ∈ Hr ,

ΦS ≤ ES[ΦS] + 3 log(1/δ)

4
+ 3

2

√

v log(1/δ). (14)

Thus, we proceed to bound term σ 2 and ES[ΦS]. First, we bound the term σ 2.

σ 2 = sup
h∈Hr

Var

[
1

2M
E(x′,y)∼D[ℓ(h(x′), y′)] − ℓ(h(x), y)

]

= sup
h∈Hr

E(x,y)∼D

[
1

4M2

(

ℓ(h(x), y) − E(x′,y′)∼D[ℓ(h(x′), y′)]
)2
]

≤ sup
h∈Hr

1

4M2
E(x,y)∼D[ℓ(h(x), y)2]

≤ sup
h∈Hr

1

4M
E(x,y)∼D[ℓ(h(x), y)] (15)

= sup
h∈Hr

1

4M
R(h) = r

4M
. (16)

Equation (15) holds due to the boundedness of loss function, and Eq. (16) holds because
of the definition of Hr , as we know that R(h) ≤ r holds for all h ∈ Hr .

Next, we turn to prove the bound on ES[ΦS] by utilizing the standard symmetrization

technique (Koltchinskii 2011; Mohri et al. 2012).

ES[ΦS] = ES

[

m

2M
sup

h∈Hr

{R(h) − R̂S(h)}
]

= ES

[

m

2M
sup

h∈Hr

{

ES′ [R̂S′(h) − R̂S(h)]
}
]

≤ m

2M
ES,S′

[

sup
h∈Hr

{

R̂S′(h) − R̂S(h)

}
]

(17)

= m

2M
ES,S′

[

sup
h∈Hr

1

m

m
∑

i=1

(

ℓ(h(x′
i ), y′

i ) − ℓ(h(xi ), yi )
)

]

= m

2M
Eσ ,S,S′

[

sup
h∈Hr

1

m

m
∑

i=1

σi

(

ℓ(h(x′
i ), y′

i ) − ℓ(h(xi ), yi )
)

]

(18)

≤ m

M
Eσ ,S

[

sup
h∈Hr

1

m

m
∑

i=1

σi

(

ℓ(h(xi ), yi ))
)

]

= m

M
Rm(L). (19)

Equation (17) holds due to the convexity of supremum function, and thus we can apply
Jensen’s inequality. In Eq. (18), we introduce Rademacher random variables σi s, that are
uniformly distributed independent random variables taking values in {−1,+1}, and thus this
does not change the expectation. Equation (19) holds due to the sub-additivity of supremum
function.

Thus, we can obtain the bound on v,

v = mσ 2 + 2ES[ΦS] ≤ rm

4M
+ 2m

M
Rm(L).
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Combining the bounds on v and ES[ΦS], we have

ΦS = m

2M
sup

h∈Hr

{R(h) − R̂S(h)} ≤ ES[ΦS] + 3 log(1/δ)

4
+ 3

2

√

v log(1/δ)

≤ m

M
Rm(L) + 3 log(1/δ)

4
+ 3

2

√
(

rm

4M
+ 2m

M
Rm(L)

)

log(1/δ).

Hence, we conclude that for any hypothesis h ∈ Hr ,

R(h) − R̂S(h) ≤ sup
h∈Hr

{R(h) − R̂S(h)} = (2M/m)ΦS

≤ 2Rm(L) + 3M log(1/δ)

2m
+ 3

√

(r + 8Rm(L))M log(1/δ)

4m
.

⊓⊔

Appendix B.2: Rademacher complexity of Lipschitz loss function family

Lemma 5 Assume that the non-negative loss function ℓ : R × Y �→ R+ is bounded by

M ≥ 0. Meanwhile, for all y ∈ Y , ℓ(·, y) is L-Lipschitz continuous. Meanwhile, assume

that the regularizer Ω : H × H �→ R+ is λ-strongly convex in its first argument w.r.t. the

norm ‖ · ‖. Given the previous model h p (aka, wp), which be a linear weighted combination

of previous models. Define the truncated hypothesis set Wr = {w : Ω(w, wp) ≤ α R̂S(h p)},
and let the loss function family L be as,

L = {(x, y) �→ ℓ(〈w, x〉, y) : w ∈ Wr },

and let S be a sample of m points drawn i.i.d. according to distribution D, then we have

Rm(L) ≤ L

√

2B2αRp

λm
. (20)

where B = supx∈X ‖x‖⋆, and Rp = R(h p) = E(x,y)∼Sk
[ℓ(h p(x), y)], representing the risk

of reusing model on current distribution.

Proof The empirical Rademacher complexity of L, by definition, is,

R̂S(L) = 1

m
Eσ

[

sup
w∈Wr

m
∑

i=1

σiℓ (〈w, xi 〉, yi )

]

≤ L

m
Eσ

[

sup
w∈Wr

m
∑

i=1

σi 〈w, xi 〉
]

, (21)

where the last inequality holds due to the fact that for all y ∈ Y , the loss function ℓ(·, y) is L-
Lipschitz continuous, and thus we can apply the Talagrand’s Comparison Inequality (Ledoux
and Talagrand 2013) to relate the Rademacher complexity of loss function family with that
of hypothesis set.

Now, we turn to bound the empirical Rademacher complexity term in the r.h.s. of Eq.
(21). Similar to the technique developed in the work of Kakade et al. (2012), we utilize the
primal-dual technique by exploiting the strongly-convex property of the regularizer Ω . Since
the Ω does not satisfy the condition of Ω(0, wp) = 0, we introduce the shifted regularizer

Ω̃(w) = Ω(w + wp, wp), which is also λ-strongly convex in w with respect to the norm

‖ · ‖ and satisfies Ω̃(0) = 0 at the same time. Besides, we also introduce the non-negative
variable t in order to obtain a tighter bound by tunning the variable.
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For the the r.h.s. of Eq. (21), we apply Lemma 2 with u = w and vi = tσi xi (t > 0),

Eσ

[

sup
w∈W

1

m

m
∑

i=1

〈w, tσi xi 〉
]

≤ 1

m
Eσ

[

t2

2λ

m
∑

i=1

‖σi xi‖2
⋆ + sup

w∈W

Ω̃(w) +
m
∑

i=1

t〈∇Ω̃⋆(v1:i−1), σi xi 〉
]

≤ B2t2

2λ
+ α R̂S(h p)

m
,

where the last inequality holds due to the fact that supw∈Wr
Ω(w, wp) ≤ α R̂S(h p) and

supx∈X ‖x‖⋆ ≤ B. Meanwhile, the last term vanishes due to the expectation over the
Rademacher variables σ . Furthermore, by dividing the non-negative t on both sides and
noticing that the above upper bound holds for any t > 0, we choose a particular t0 making
the upper bound tight,

L

m
Eσ

[

sup
w∈W

m
∑

i=1

σi 〈w, xi 〉
]

≤ inf
t1>0

L

(

B2t1

2λ
+ α R̂S(h p)

mt1

)

= L

√

2B2α R̂S(h p)

λm
. (22)

Therefore, we obtain the bound for R̂S(L). Notice that the square-root function is concave,
by applying the Jensen’s inequality w.r.t. the both side, we have the following result for the
expected Rademacher complexity term,

Rm(L) ≤ LES

[√

2B2α R̂S(h p)/λm

]

≤ L

√

2B2αES

[

R̂S(h p)

]

/λm = L

√

2B2αRp

λm
,

where Rp is short for R(h p). Hence, we complete the proof of the statement. ⊓⊔

Appendix B.3: Proof of Theorem 1

Proof To prove the generalization bound for the learned model ŵ stated in Theorem 1, we
turn to show that the statement holds uniformly over the following truncated hypothesis set

Hr = {x �→ 〈w, x〉 : Ω(w, wp) ≤ 1

μ
R̂(h p) ∧ R̂S(w) ≤ R̂S(h p)}.

First, we demonstrate that the final model ŵ returned by the ModelUpdate procedure
belongs to the set Hr . Actually, since ŵ is the empirical minimizer of the biased regularization
objective function, thus, it is evidently better than the choice ŵp ,

1

m

m
∑

i=1

ℓ(ŵ
T

xi , yi ) + μΩ(ŵ, wp) ≤ 1

m

m
∑

i=1

ℓ(wT
pxi , yi ) + μΩ(wp, wp) = R̂S(h p),

combining the non-negative property of loss and regularizer, we know that ŵ satisfies
R̂S(ŵ) ≤ R̂S(h p) and Ω(ŵ, wp) ≤ 1

μ
R̂S(h p). Therefore, ŵ belongs to the hypothesis

set Hr .
Besides, we can upper bound the Rademacher complexity of any hypothesis in the trun-

cated hypothesis set Hr as,

r = sup
h∈Hr

R(h) = sup
h∈Hr

ES[R̂S(h)] ≤ ES[ sup
h∈Hr

R̂S(h)] ≤ ES[R̂S(h p)] = Rp. (23)

123



560 Machine Learning (2020) 109:533–568

Thus, we can apply Lemma 4 by setting r = Rp , obtaining that for any δ > 0, with
probability at least 1 − δ, the following uniform convergence bound holds for all h ∈ Hr ,

R(h) − R̂S(h) ≤ 2Rm(L) + 3M log(1/δ)

4m
+ 3

√

(8Rm(L) + Rp)M log(1/δ)

4m
. (24)

Particularly, as aforementioned, the final model hk (that is, ŵ) returned by the ModelUp-
date procedure belongs to the set Hr . So R(hk)− R̂S(hk) also enjoys the upper bound in Eq.
(24). Then, we apply Lemma 5 by setting α = 1/μ to bound the Rademacher complexity

term, and obtain that Rm(L) ≤ L

√
2B2 Rp

λμm
. This in conjunction with Eq. (24) yields the

desired result of (1) presented in Theorem 1. ⊓⊔

Corollary 1 If we further suppose an H-smooth condition on the loss function, then under the

same conditions (except for the L-Lipschitz continuity) stated in Theorem 1, for any δ > 0,

with probability at least 1 − δ, the following holds,

R(hk) − R̂(hk) = O

(
ǫ̂1√
m

+ ǫ̂2

m

)

,

where ǫ̂1 =
(

√

Rp +
√√

H Rp

λ2 + 4

√√
H Rp

λ2m

)

, and ǫ̂2 =
(√

1
λ

+ 4
√

1
λ

)

.

Proof From Lemma B.1 of Srebro et al. (2010), we know that for any H -smooth non-negative
function f : R �→ R+ and any x, y ∈ R, | f (x) − f (y)| ≤

√
6H( f (x) + f (y))|x − y|.

Suppose f is bounded by M > 0, we can easily conclude that f is also L-Lipschitz
continuous with L =

√
12H M . Thus, we can apply Theorem 1 to obtain a generalization

bound. It turns out above bound can be tighter than that obtained by directly analyzing the
smoothness condition in Theorem 1 (Kuzborskij and Orabona 2017) under certain conditions.

⊓⊔

Appendix C: Proof of Theorems 2 and 3

Our WeightUpdate strategy is essentially exponentially weighted average forecaster
(Cesa-Bianchi and Lugosi 2006), and thus the local regret guarantee can be achieved naturally.

Proof (Proof of Theorem 2) The argument is based on a simple reduction from our scenario to
standard exponentially weighted average forecaster. For epoch Sk , let previous models pool
{h1, h2, . . . , hk−1} be as the expert pool. Then, plugging the expert number N = k − 1 and
number of instances n = mk into Cesa-Bianchi and Lugosi (2006), Theorem 2.2 and Cesa-
Bianchi and Lugosi (2006), Corollary 2.4, we thus obtain the statement.

Besides, the proof of exponentially weighted average forecaster is standard, which utilizes
potential function (Cesa-Bianchi and Lugosi 2006; Mohri et al. 2012). For proofs we refer
the reader to Mohri et al. (2012), Chapter 7, pp. 157–159. ⊓⊔

Now, we proceed to prove Theorem 3.

Proof (Proof of Theorem 3) Our proof relies on the application of local static regret analysis
in each epoch.
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Let K denote the number of all epochs, clearly, K ≤ T /p. Since S1, . . . , SK is a partition
of the whole period T , we thus decompose the dynamic regret as follows,

D-RegretT =
K
∑

k=1

(

L Sk
−

∑

i∈Sk

ℓ(h∗
i (xi ), yi )

)

(25)

=
K
∑

k=1

(

L Sk
− L j∗k

)

︸ ︷︷ ︸

term(a)

+
K
∑

k=1

(

L j∗k
−

∑

i∈Sk

ℓ(h∗
i (xi ), yi )

)

︸ ︷︷ ︸

term(b)

(26)

≤K
√

p ln(K )/2 + p

K
∑

k=1

Vk (27)

≤
√

ln K

2

T
√

p
+ pVT . (28)

Equation (25) holds due to the decomposition of regret over K epochs. We insert the fixed
comparator in each epoch that appears in the static regret and thus obtain Eq. (26). Then term
(a) can be upper bounded by applying Theorem 2 in each epoch locally, where K is number
of the previous models. Besides, term (b) is bounded due to Besbes et al. (2015), Theorem 1,
where Vk is the variation within the epoch k. We thus combine them to get Eqs. (27) and (28).

Therefore, we can set p = ⌈ 3
√

ln K
2 (T /2VT )2/3⌉ and obtain the dynamic regret in the

order of O
(

V
1/3
T T 2/3

)

. ⊓⊔

Appendix D: Proof of Theorem 4

Similar to the arguments in Appendix B, we prove Theorem 4 by first applying Lemma 4. We
thus obtain the fast generalization error bound in terms of the Rademacher complexity of loss
function family. Then, in Lemma 6, we provide the upper bound of Rademacher complexity
of Lipschitz loss function family.

Appendix D.1: Rademacher complexity of Lipschitz loss function family in

multi-class case

Lemma 6 Let H ⊆ R
X×Y be a hypothesis set with Y = {1, 2, . . . , c}. Assume that the

non-negative loss function ℓ : R �→ R+ is L-regular and bounded by M > 0. Given the

previous model h p (aka, wp), which be a linear weighted combination of previous models.

Define the truncated hypothesis set Wr = {W : Ω(W ) ≤ α R̂S(h p)}, whose associated loss

function family is then defined as

L =
{

(x, y) �→ ℓ
(

ρhW
(x, y)

)

: W ∈ Wr

}

,

and let S be a sample of m points drawn i.i.d. according to distribution D, then we have

Rm(L) ≤ Lc2

√

B2αRp

m
. (29)

where Rp = R(h p), B = supx∈X ‖x‖2.
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Proof To make the presentation clear, we first define the truncated hypothesis class Hr =
{h : h ∈ H ∧ R(h) ≤ r}. And the empirical Rademacher complexity of L can be calculated
as,

R̂S(L) = 1

m
Eσ

[

sup
W∈Wr

m
∑

i=1

σiℓ
(

ρhW
(xi , yi )

)

]

≤ L

m
Eσ

[

sup
h∈Wr

m
∑

i=1

σiρhW
(xi , yi )

]

(30)

≤ L

m

∑

y∈Y

Eσ

[

sup
W∈Wr

m
∑

i=1

σiρhW
(xi , y)

]

(31)

= L

m

∑

y∈Y

{

Eσ

[

sup
W∈Wr

m
∑

i=1

σi (hW (xi , y) − max
y′ �=y

hW (xi , y′))

]}

(32)

≤ L

m

∑

y∈Y

{

Eσ

[

sup
W∈Wr

m
∑

i=1

σi hW (xi , y)

]

+ Eσ

[

sup
W∈Wr

m
∑

i=1

σi max
y′∈Y\y

hW (xi , y′)

]}

(33)

≤ L

m

∑

y∈Y

⎧

⎨

⎩
Eσ

[

sup
W∈Wr

m
∑

i=1

σi hW (xi , y)

]

+
∑

y′∈Y\y

Eσ

[

sup
W∈Wr

m
∑

i=1

σi hW (xi , y′)

]
⎫

⎬

⎭

(34)

= Lc2

m
Eσ

[

sup
W∈Wr

m
∑

i=1

σi 〈wy, xi 〉
]

(35)

where wy ∈ R
d = W [:, y] is the yth column of W . Meanwhile, Eq. (30) holds due to the

fact that loss function ℓ(·) is L-Lipschitz, and thus we can apply Talagrand’s Comparison
Inequality (Ledoux and Talagrand 2013; Mohri et al. 2012) to relate the Rademacher com-
plexity of loss family to margin function family. Equations (31) and (33) hold due to the
sub-additivity of supremum function, Eq. (32) is an application of margin definition, Eq.
(34) holds due to Lemma 3.

In the following, we proceed to bound the last term. The basic idea is essentially the
same as the argument in bounding Eq. (22), a slight trick here is that we need to introduce
an auxiliary vector regularizer, the Euclidean norm Ωaux(w) = 1

2‖w‖2, to establish the
connection between Frobenius norm of matrix and Lemma 2, since Lemma 2 is designed for
vector norm.

Similarly, we introduce the variable t1 and t2 into two Rademacher complexity term, i.e.,
term (a) and term (b), respectively. Note that the Euclidean norm Ωaux(w) = 1

2‖w‖2
2 is

1-strongly convex with respect to the ℓ2-norm ‖ · ‖2, whose dual norm is itself.

Lc2

m
Eσ

[

sup
W∈Wr

m
∑

i=1

〈wy, t1σi xi 〉
]

≤ Lc2

m
Eσ

[
t2
1

2

m
∑

i=1

1

2
‖σi xi‖2

2 + sup
W∈Wr

1

2
‖wy‖2

2 +
m
∑

i=1

1

2
〈∇‖v1,i−1‖2

2, σi xi 〉
]

(36)

123



Machine Learning (2020) 109:533–568 563

≤ Lc2

(

B2t2
1

4
+ α R̂S(h p)

2m

)

(37)

Inequality Eq. (36) is obtained by applying Lemma 2 with f = Ωaux, and u = wy

and vi = txi . And the last step in Eq. (37) holds due to the fact that Ωaux(wy) ≤
1
2 supW∈Wr

Ω(W , Wp) ≤ 1
2α R̂S(h p) and supx∈X ‖x‖2 ≤ B. By dividing t on both sides,

and notice that the above upper bound holds for any t > 0, we choose a particular t making
the upper bound tight,

Lc2

m
Eσ

[

sup
W∈Wr

m
∑

i=1

σi 〈w, xi 〉
]

≤ inf
t>0

Lc2

(

B2t

4
+ α R̂S(h p)

2mt

)

= Lc2

√

B2α R̂S(h p)

2m
.

(38)
Therefore, we obtain obtain the upper bound for R̂S(L). Notice that the square-root

function is concave, by applying the Jensen’s inequality w.r.t. the both side, we have the
following upper bound for Rademacher complexity of loss function family,

Rm(L) ≤ Lc2
ES

[√

B2α R̂S(h p)/2m

]

≤ Lc2

√

B2αES

[

R̂S(h p)

]

/2m

= Lc2
√

B2αR(h p)/2m.

Hence, we complete the proof. ⊓⊔

Remark 9 Our analysis follows the framework of Mohri et al. (2012), Chapter 8 and thus
shows a quadratic dependency on the number of classes c. In fact, it can be further improved
into linear or radical dependency by utilizing Gaussian complexity (Lei et al. 2015) or vector-
contraction inequality for Rademacher complexities (Maurer 2016).

Appendix D.2: Proof of main theorem

Proof To prove the generalization bound for the learned model Ŵ stated in Theorem 4, we
turn to show that the statement holds uniformly over the following truncated hypothesis set

Hr = {x �→ W Tx : Ω(W , Wp) ≤ 1

μ
R̂S(h p) ∧ R̂S(W ) ≤ R̂S(h p)}.

First, we demonstrate that the final model Ŵ returned by Eq. (9) belongs to the set
Hr . Actually, since the Ŵ is the empirical minimizer of the biased regularization objective
function, thus, it is evidently better than the choice Ŵp ,

1

m

m
∑

i=1

ℓ(ρ
Ŵ

(xi , yi )) + μΩ(Ŵ , Wp) ≤ 1

m

m
∑

i=1

ℓ(ρWp (xi , yi )) + μΩ(Wp, Wp) = R̂S(h p),

combining the non-negative property of loss and regularizer, we know that Ŵ satisfies
R̂S(Ŵ ) ≤ R̂S(h p) and Ω(Ŵ , Wp) ≤ 1

μ
R̂S(h p). Therefore, Ŵ belongs to the hypothesis

set Hr .
Besides, similar to the argument in Eq. (23), we know that the upper bound of the risk can

be chosen as r = Rp , the risk of previous models on target distribution.
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Thus, we can apply Lemma 4, obtaining that for h
Ŵ

,

R(h
Ŵ

) − R̂S(h
Ŵ

) ≤ Rℓ(hŴ
) − R̂S(h

Ŵ
)

≤ 2Rm(L) + 3M log(1/δ)

4m
+ 3

√

(8Rm(L) + Rp)M log(1/δ)

4m
.

(39)

Therefore, we can apply Lemma 6 by setting α = 1/μ and obtain that Rm(L) ≤
Lc2

√
B2 Rp

2μm
. Plugging this into Eq. (39),

R(h
Ŵ

) − R̂S(h
Ŵ

) ≤ Lc2

√

B2 Rp

2μm
+ 3M log(1/δ)

4m

+ 3

√
√
√
√
√

⎛

⎝8Lc2

√

B2 Rp

2μm
+ Rp

⎞

⎠
M log(1/δ)

4m
.

By standard derivations and transforms, we conclude the desired conclusion. ⊓⊔

Appendix E: Dataset description

We provide detailed descriptions of datasets used in experiments as follows.

Appendix E.1: Descriptions of synthetic datasets

In the experiments, we adopt four commonly used synthetic datasets and their variants: SEA
(SEA200A, SEA200G and SEA500G), CIR500G, SIN500G and STA500G.

The first family is SEA dataset (Street and Kim 2001), which consists of three attributes
x1, x2, x3, and 0 ≤ xi ≤ 10.0. The target concept is determined by x1 + x2 ≤ b. For the
three variants, there are 24, 000 instances. The drift period of SEA200A and SEA200G is
200, and for SEA500G, the drift period is 500. ‘A’ indicates b ∈ A and ‘G’ indicates b ∈ G,
where A = {10, 5, 10, 15} and G = {10, 8, 10, 12}.

The information of other three synthetic datasets are listed as follows.

• CIR500G is a variant of CIRCLE datasets (Elwell and Polikar 2011), which applies
a circle as the decision boundary in a 2-D feature space and simulates concept drift
by changing the radius of the circle. The target label is x1 + x2

2 ≤ r with r =
{3, 2.5, 2, 2.5, 3, 3.5, 4, 3.5}. The drift period is 500.

• SIN500G is a variant of SINE datasets (Elwell and Polikar 2011), which applies a sine
curve as the decision boundary in a 2-D feature space and simulates concept drift by
changing the angle. The target label is sin(x1 + θ) ≤ x2 with θ0 = 0 and Δθ = π/60.
The drift period is 500.

• STA500G is a variant of STAGGER Boolean Concepts (Schlimmer and Granger 1986),
which generate the data with categorical features using a set of rules to determine the
class label. Details is included in the paper of Sun et al. (2018). The drift period is 500.

The other six synthetic datasets are 1CDT, 1CHT, UG-2C-2D, UG-2C-3D, UG-2C-5D
and GEARS-2C-2D. Their basic information are reported in Table 1. For more details we
refer the reader to de Souza et al. (2015).
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Appendix E.2: Descriptions of real-world datasets

In the experiments, we adopt nine real-world datasets: Usenet-1, Usenet-2, Luxembourg,
Spam, Email, Weather, GasSensor, Powersupply, Electricity and Covertype. The number of
data items varies from 1500 to 581,012.

– Usenet (Katakis et al. 2008) is split into Usenet-1 and Usenet-2 which both consist of
1500 instances with 100 attributes based on 20 newsgroups collection. They simulate a
stream of messages from different newsgroups that are sequentially presented to a user,
who then labels them according to his/her personal interests.

– Luxembourg (Zliobaite 2011) is constructed by using European Social Survey data. There
are 1,900 instances with 32 attributes in total, and each instance is an individual and
attributes are formed from answers to the survey questionnaire. The label indicates high
or low internet usage.

– Spam (Katakis et al. 2009) is a real-world textual dataset that uses email messages from the
Spam Assassin Collection, and boolean bag-of-words approach is adopted to represent
emails. It consists of 9,324 instances with 500 attributes, and label indicates spam or
legitimate.

– Email (Katakis et al. 2009) is a stream of 1500 examples and 913 attributes which are
words that appeared at least 10 times in the corpus (boolean bag-of-words representation),
which are collected from 20 Newsgroup collection. The users’ personal interests are
changing in a recurring manner.

– Weather (Elwell and Polikar 2011) dataset is originally collected from the Offutt Air
Force Base in Bellevue, Nebraska. 18,159 instances are presented with an extensive
range of 50 years (1949−1999) and diverse weather patterns. Eight features are selected
based on their availability, eliminating those with a missing feature rate above 15%.
The remaining missing values are imputed by the mean of features in the preceding and
following instances. Class labels are based on the binary indicator(s) provided for each
daily reading of rain with 18,159 daily readings: 5698 (31%) positive (rain) and 12,461
(69%) negative (no rain).

– GasSensor (Vergara et al. 2012) is a dataset contains 4,450 measurements from 16 chem-
ical sensors utilized in simulations for drift compensation in a discrimination task of six
gases (six classes) at various levels of concentrations.

– Powersupply (Chen et al. 2015) contains three year power supply records including
29,928 instances with 2 attributes from 1995 to 1998, and our learning task is to predict
which hour the current power supply belongs to. We relabel into binary classification
according to p.m. or a.m.

– Electricity (Harries and Wales 1999) is wildly adopted and collected from the Australian
New South Wales Electricity Market where prices are affected by demand and supply
of the market. The dataset contains 45,312 instances with 8 features. The class label
identifies the change of the price relative to a moving average of the last 24 hours.

– Covertype (Gama et al. 2003; Sun et al. 2018) is a real-world data set for describing
the observation of a forest area with 51 cartographic variables obtained from US Forest
Service (USFS) Region 2 Resource Information System (RIS). Binary class labels are
involved to represent the corresponding forest cover type.
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