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Handling Distributed Authorization with Delegation through Answer
Set Programming

Abstract Distributed authorization is an essential issue
in computer security. Recent research shows that trust
management is a promising approach for the authoriza-
tion in distributed environments. There are two key is-
sues for a trust management system: how to design an
expressive high-level policy language and how to solve
the compliance-checking problem [5,6], where ordinary
logic programming has been used to formalize various
distributed authorization policies [19,20]. In this paper,
we employ Answer Set Programming to deal with many
complex issues associated with the distributed authoriza-
tion along the trust management approach. In particu-
lar, we propose a formal authorization language AL pro-
viding its semantics through Answer Set Programming.
Using language AL, we can not only express nonmono-
tonic delegation policies which have not been considered
in previous approaches, but also represent the delega-
tion with depth, separation of duty, and positive and
negative authorizations. We also investigate basic com-
putational properties related to our approach. Through
two case studies. we further illustrate the application of
our approach in distributed environments.

Keywords Access control · trust management ·
authorization · delegation · answer set programming ·
knowledge representation · nonmonotonic reasoning

1 Introduction

Access control is an important topic in computer secu-
rity research. It provides availability, integrity and con-
fidentiality services for information systems. The tradi-
tional access control process includes identification, au-
thentification and authorization. With the development
of Internet, there are increasing applications that require
distributed authorization decisions. For instance, in the
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application of electronic commerce, many organizations
use the Internet (or large Intranets) to connect offices,
branches, databases, and customers around the world
and share their resources with other organizations. One
essential problem among those distributed applications
is about how to make authorization decisions, which is
significantly different from that in centralized systems or
even in distributed systems which are closed or relatively
small. In traditional scenarios, the authorizer owns or
controls the resources, and each entity in the system has
a unique identity. Based on the identity and access con-
trol policies, the authorizer is able to make his/her au-
thorization decision. In a distributed or multi-centralized
authorization environment, however, there are more enti-
ties in the system, which can be both authorizers and re-
questers, and probably are unknown to each other. Quite
often, there is no central authority that everyone trusts,
as the authorizer does not know the requester directly,
he/she has to use the information from the third par-
ties who know the requester better. He/She trusts these
third parties only for certain things to certain degrees.
The trust and delegation issues make distributed autho-
rization different from traditional access control scenar-
ios.

In recent years, the trust management approach, which
was initially proposed by Blaze et al. in [5], has received
a great attention in information security community, e.g.
[5–7,18,20]. Under this approach public keys are viewed
as entities to be authorized and the authorization can be
delegated to third parties by credentials or certificates.
This approach frames the authorization decision as fol-
lows:

“Does the set C of credentials prove that the re-
quest r complies with the local security policy P?”

From above we can see that there are at least two key
issues for a trust management system:

1. Designing a high-level policy language to specify the
security policy, credentials, and request. It is expected
that the language has richer expressive power and is
more human-understandable.
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2. Finding a feasible approach for the compliance check-
ing.

Several trust-management systems such as Policy-
Maker [5], Keynote [8], SPKI/SDSI [9–12,22], Delega-
tion Logic [20], and RT framework [19] have been de-
veloped. PolicyMaker [5] was the first trust management
system. Its access policies and credentials are called as-
sertions which can be written in any programming lan-
guage. It initiates the proof of compliance by creating
a “blackboard” for inter-assertion communication, and
a proof is achieved if the blackboard contains an accep-
tance record indicating that a policy assertion approves
the request. Keynote [8] is the second generation of trust
management systems and was designed according to the
same principles as PolicyMaker. Instead of writing pol-
icy and credentials in a general-purpose procedural lan-
guage, it adopts a specific expression. The both sys-
tems do not provide the negative authorization and re-
delegation control. On the other hand, SPKI (Simple
Public Key Infrastructure) [11] and SDSI (Simple Dis-
tributed Security Infrastructure) [22] were developed in-
dependently. Both of them were motivated by the in-
adequacy of public-key infrastructures based on global
name hierarchies, such as X.509 [14] and Privacy En-
hanced Mail (PEM) [16]. Later, SPKI and SDSI merged
into a collaborative effort, SPKI/SDSI 2.0. SPKI/SDSI
2.0 has two kinds of certificates, name-definition certifi-
cates and authorization certificates. A name cert binds
a local name to a principal or a more complex name.
Name certs are used to resolve names to principals. An
auth cert delegates a certain permission from a princi-
pal (the cert’s issuer) to the cert’s subject. SPKI/SDSI
can deal with the k-out-of -n structures and handle cer-
tain types of nonmonotonic policies based on validity
field of auth certificates. It controls whether the autho-
rization should be delegated again or not, but there is
no delegation depth control. Delegation Logic and RT
framework, on other hand, both adopt logic program-
ming based languages for representing security policies.
D1LP [20], the monotonic version of Delegation Logic
can express the delegation depth and complex princi-
ples including k-out-of -n structures using DATALOG
as the sematic foundation. RT framework is a role-based
trust management framework which includes languages
RT0, RT1, RT2, RTD, and RTT , where RTD, and RTT

can be used together or separately, with RT0, RT1 or R2.
The semantic foundation of RT is DATALOG with con-
straints which enables RT to express the authorization
regarding structured resources and separation of duty
policies.

Although the existing trust management systems may
express rich delegation and authorization policies, we ob-
serve that one important issue they do not consider is to
express nonmonotonic policy and its related problems.
For example, neither D1LP nor RT framework can deal
with nonmonotonic reasoning. In the real world applica-
tions, many security policies have nonmonotonic features

for decision making (e.g. authorization decision, delega-
tion decisions including partial delegation), if there is no
information to refute them.

Let us consider the following scenarios:

Scenario 1: In a large commercial organization,
the system administrator trusts department man-
agers and delegate them the privilege of accessing
the file server with depth 1. Then managers give
the privilege to the staff who are not in holiday in
their departments and make them access the file
server.
Scenario 2: In a hospital database, there is a
table in which there is detailed information for
its doctors, such as name, education background,
specialized area, salaries and so on. The database
administrator delegates patients to read all infor-
mation about doctors except their salaries.
Scenario 3: A bank requires two cashiers to ap-
prove a transaction requested by customers if they
do not have a bad credit history.

It is easy to see that all above scenarios have not
only nonmontonic reasoning features, but also involve
complex delegation and authorization controls. In Sce-
nario 1, a department manager will make a positive au-
thorization if there is no information stating that a staff
in his/her department is on holidays. However the ordi-
nary staff can not obtain delegation right to re-delegate
this privilege because of the delegation depth control.
Scenario 2 is a partial delegation decision which can be
made if the requested resource from patients is not the
doctor’s salary. Scenario 3 is a separation of duty autho-
rization in which the privilege to approve a transaction is
delegated to two cashiers that should be specified using a
dynamic threshold structure. The authorization decision
will be made by two cashiers together if the customer
requesting the transaction has not a bad credit history.

DAP (Delegable Authorization Program) proposed
by Ruan et al. [25], is a logic program based formulation
to support delegable authorizations. DAP permits nega-
tion as failure, classic negation, and rules inheritance
and also provides a conflict resolution method for au-
thorization conflicts. Although DAP provides nonmono-
tonic features in delegation reasoning, it does not have
a flexible delegation control mechanism, which limits its
expressive power to handle complex authorization and
delegation representations. For example, Scenarios 1 and
2 involve the delegation depth control and partial dele-
gation respectively, but they cannot be represented by
DAP . On the other hand, as illustrated in Scenario 3,
separation of duty plays an important role in authoriza-
tion policy representation, and this feature cannot be ex-
pressed by DAP either. Finally, DAP has a difficulty to
represent threshold structure in delegation specification
as described in Scenario 3.

In this paper, we develop a formal language AL with
nonmonotonic features, which is based on Answer Set
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Programming, where negation as failure is used to im-
plement nonmonotonic reasoning. AL also enables both
positive and negative authorization which make policies
more flexible. Most importantly, our proposed approach
preserves all desirable features from existing trust man-
agement systems such as delegation with depth control,
structured resources, separation of duty, etc. and over-
come the major limitations of DAP . The reasons we
choose Answer Set Programming as the foundation of
language AL are as follows:

1. Answer Set Programming implements nonmonotonic
reasoning through negation as failure. Nonmonotonic
reasoning was developed to model commonsense rea-
soning used by human beings. A language with non-
monotonic features is much easier to specify security
policies which is close to the natural language.

2. The highly efficient solvers for Answer Set Program-
ming have been implemented, such as Smodels, dlv
etc. This is an important reason that Answer Set Pro-
gramming has been widely applied in product con-
figuration, planning, constraint programming, crypt-
analysis, etc. [2]. We need to indicate that Smodels
supports some extended literals such as constraint
literal and conditional literal which are particularly
useful to express the static and dynamic threshold
structures [26].

We should mention that although Answer Set Pro-
gramming has been used in centralized authorization
specifications [4,15], these previous work did not address
the delegation aspect of distributed authorization.

The rest of this paper is organized as follows. Sec-
tion 2 presents the syntax and expressive features of lan-
guage AL. Then Section 3 defines the semantics of lan-
guage AL through Answer Set Programming. Section 4
provides scenarios to demonstrate the application of lan-
guage AL. Section 5 shows the computation properties
of language AL. Finally Section 6 presents the related
work and concludes the paper.

2 An Authorization Language AL

In this section, we first define the syntax of the authoriza-
tion language AL and then illustrate its expressiveness
via some examples.

2.1 Syntax of AL

The authorization languageAL consists of entities, atoms,
thresholds, statements, rules and queries. The formal BNF
syntax of AL is given in Figure 1. We explain the syntax
in detail as follows.

Entities
In distributed systems, the entities include subjects who

are authorizers owning or controlling resources and re-
questers making requests, objects which are resources
and services provided by authorizers, and privileges which
are actions executed on objects.

We define three types of constant entities, subject,
object and privilege. Each constant entity is an element
of three disjointed constant symbol sets, SUB, OBJ, and
PRIV, where SUB is the set of subject constants, OBJ
the set of object constants, and PRIV the set of privilege
constants. The constant entity must start with a lower-
case character.

Correspondingly each variable entity is an element
of three disjointed variable symbol sets, Vsub, Vobj , and
Vpriv that range over the sets SUB, OBJ , and PRIV
respectively. The variable entities are prefixed with an
upper-case character.

In the BNF of AL, 〈sub-con〉, 〈obj-con〉, 〈priv-con〉,
〈sub-var〉, 〈obj-var〉, and 〈priv-var〉 represent elements
of the sets SUB, OBJ , PRIV , Vsub, Vobj , and Vpriv

respectively.
In languageAL, we provide a special subject, local. It

is the local authorizer which makes the authorization de-
cision based on local policy and credentials from trusted
subjects.

Atoms
An atom is a function symbol with n arguments - gener-
ally 1, 2, or 3 constant or variable entities, to express a
logical relationship between them. There are three types
of atoms:

1. 〈relation-atom〉. An atom in this type is a 2-ary func-
tion symbol and expresses the relationship of two
entities. We provide three relation atoms, neq, eq,
and below. The atoms neq and eq denote two same
type entities equal or not equal, and below to denote
the hierarchy structure for objects and privileges. In
most realistic systems, the data information is orga-
nized using hierarchy structure, such as file systems
and object oriented database system. For example,
below(ftp, pub-services) denotes that ftp is one of
pub-services.

2. 〈assert-atom〉. This type of atoms, denoted by exp
(a1, . . . , an), is an application dependant function sym-
bol with n arguments, where n is 1, 2 or 3, to express
one, two or three constant or variable entities and
states the property of the subjects, or the relation-
ship between entities. It is a kind of flexible atoms in
language AL. For example, isaTutor(alice) denotes
that alice is a tutor.

3. 〈auth-atom〉. The auth-atom is of the form,
right(〈sign〉, 〈priv〉, 〈obj〉),

in which sign is +, -, or ¤. It states positive(+) privi-
lege, negative(-) privilege, or both(¤) of them. When
an auth atom is used in delegation statement, the
sign is ¤ to denote both positive and negative au-
thorizations. For example, right(+, update, students)
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〈rule〉 ::= 〈head-stmt〉 [ if [ 〈list-of -body-stmt〉 ]

[ with absence 〈list-of -body-stmt〉 ] ] (1)

〈head-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt-head〉 | 〈delegate-stmt-head〉 (2)

〈list-of -body-stmt〉 ::= 〈body-stmt〉 | 〈body-stmt〉, 〈list-of -body-stmt〉 (3)

〈body-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt-body〉 | 〈delegate-stmt-body〉 (4)

〈relation-stmt〉 ::= “local” says 〈relation-atom〉 (5)

〈assert-stmt〉 ::= 〈sub〉 asserts 〈assert-atom〉 (6)

〈auth-stmt-body〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub〉 (7)

〈auth-stmt-head〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub-ext-struct〉 (8)

〈delegate-stmt-body〉 ::= 〈sub〉 delegates 〈auth-atom〉 with depth 〈k〉 to 〈sub〉 (9)

〈delegate-stmt-head〉 ::= 〈sub〉 delegates 〈auth-atom〉 with depth 〈k〉 to 〈sub-struct〉 (10)

〈relation-atom〉 ::= below(〈obj〉, 〈obj〉) | below(〈priv〉, 〈priv〉 |

neq(〈entity〉, 〈entity〉) | eq(〈entity〉, 〈entity〉) (11)

〈assert-atom〉 ::= exp(〈entity-set〉) (12)

〈auth-atom〉 ::= right(〈sign〉, 〈priv〉, 〈obj〉) (13)

〈obj〉 ::= 〈obj-con〉 | 〈obj-var〉 (14)

〈priv〉 ::= 〈priv-con〉 | 〈priv-var〉 (15)

〈sub〉 ::= 〈sub-con〉 | 〈sub-var〉 (16)

〈sub-set〉 ::= 〈sub-con〉 | 〈sub-con〉, 〈sub-set〉 (17)

〈sub-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉 (18)

〈sub-ext-set〉 ::= 〈dth〉 | 〈dth〉, 〈sub-ext-set〉 (19)

〈sub-ext-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉 | “[”〈sub-ext-set〉“]” (20)

〈entity〉 ::= 〈sub〉 | 〈obj〉 | 〈priv〉 (21)

〈entity-set〉 ::= 〈entity〉 | 〈entity〉, 〈entity-set〉 (22)

〈sign〉 ::= + | − | ¤ (23)

〈k〉 ::= 〈natural-number〉 (24)

〈threshold〉 ::= 〈sth〉 | 〈dth〉 (25)

〈sth〉 ::= sthd(〈k〉, “[”〈sub-set〉“]”) (26)

〈dth〉 ::= dthd(〈k〉, 〈sub-var〉, 〈assert-stmt〉) (27)

〈query〉 ::= 〈sub〉 requests (+, 〈priv〉, 〈obj〉) |

“[”〈sub-set〉“]” requests (+, 〈priv〉, 〈obj〉) (28)

Fig. 1 BNF for the Authorization Language AL

indicates the positive update privilege on students
table.

Statements
There are four types of statements, relation statement,
assert statement, auth statement, and delegation state-
ment. Only the local authorizer can issue the relation
statement to denote the structured resources and priv-
ileges. We provide the body and head forms for auth
statements and delegation statements.

Threshold
There are two types of threshold structures, static thresh-
old and dynamic threshold.

The static threshold structure is of the form,
sthd(k, [s1, s2, . . . , sn]),

where k is the threshold value, [s1, s2, . . . , sn] is the static
threshold pool, and we require k ≤ n and si 6= sj for 1 ≤
i 6= j ≤ n. This structure states that we choose k sub-
jects from the threshold pool.

The dynamic threshold structure is of the form:
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dthd (k, S, 〈sub〉 assert exp(. . . , S, . . .)),

where S is a subject variable and we require that S is an
argument of assert atom exp. This structure denotes we
choose k subjects who satisfy the assert statement.

Rules
The rule is of the form,

〈head-stmt〉 if 〈list-of -body-stmt〉,
with absence 〈list-of -body-stmt〉.

The basic unit of a rule is a statement. Let h0 be a head
statement and bi a body statement, then a rule is ex-
pressed as follows,

h0, if b1, b2, . . . , bm, with absence bm+1, . . . , bn.

In language AL, a rule is a local authorization policy
or a credential from other subjects and the issuer of the
rule is the issuer of the head statement h0. That is the
reason why we limit the issuer structure in statements.

Query
Language AL supports single subject query and group
subject query. They are of the forms:

sub requests right(+, p, o), and
[s1, s2, . . . , sn] requests right(+, p, o).

Through group subject query, we implement separa-
tion of duty which is an important security concept. It
ensures that a critical task cannot be carried out by one
subject. If we grant an authorization to a group sub-
ject, we permit it only when all of subjects in the group
request the authorization at the same time.

2.2 Characteristics of AL

In this subsection, we present some examples to show
the expressive power of AL.

Structured resources
In the file system of a server in a university, there is
a directory postgraduate which has one subdirectory for
each postgraduate student, such as alice, bob, and so on.

local says below(alice, postgraduate).
local says below(bob, postgraduate).

Structured privileges
In a database system, there are a group of privileges
allrights including insert, delete, and select.

local says below(insert, allrights).
local says below(delete, allrights).
local says below(select, allrights).

Partial delegation and authorization
A firewall system protects the allServices, including ssh,
ftp, and http. The administrator permits ipA to access
all the services except ssh and delegates this right to ipB
with two steps.

local delegates right(¤, access, X) with depth 2 to ipB if
local says below(X, allServices), local says neq(X, ssh).

local grants right(+, access, X) to ipA if
local says below(X, allServices), local says neq(X, ssh).

Separation of duty
A company chooses to have multiparty control for emer-
gency key recovery. If a key needs to be recovered, three
persons are required to present their individual PINs.
They are from different departments, managerA, a mem-
ber of management, auditorB, an individual from au-
diting department, and techC, one individual from IT
department.

local grants right(+, recovery, k) to
[ managerA, auditorB, techC ].

Negative authorization
In a firewall system, the administrator sa does not permit
ipB to access the ftp services.

sa grants right(−, access, ftp) to ipB.
Nonmonotonic reasoning
In a firewall system, the administrator sa permit a per-
son to access the mysql service if the human resource
manager hrM asserts the person is a staff and not on
holiday.

sa grants right(+, access, mysql) to X if
hrM asserts isStaff (X),
with absence hrM asserts onHoliday(X).

3 Semantics of AL

In this section, we first introduce Answer Set Program-
ming (ASP) which is the foundation of language AL,
and an ASP based language LAns. We define the seman-
tics for language AL by translating it to language LAns.
We present function TransRules(DAL) to translate an
domain description DAL under AL into program P of
LAns, and function TransRules(DAL) to translate query
QAL into program Π and ground literals ϕ(+) and ϕ(−).
We use ϕ(+) to denote positive right and ϕ(−) to denote
negative right. We solve a query based on P, Π and ϕ
via Smodels.

Definition 1 A domain description DAL of language
AL is a finite set of rules.

Definition 2 The size of a domain description DAL,
|DAL| is the number of rules in it.

Definition 3 Given a domain description DAL and a
query QAL of language AL, we define functions
TransRules(DAL) = P and TransQuery(QAL) =
<Π,ϕ(+), ϕ(−)>. We say that query QAL is permitted,
denied, or unknown by the domain description DAL iff
(P ∪Π) |= ϕ(+), (P ∪Π) |= ϕ(−), or (P ∪Π) 6|= ϕ(+)
and (P ∪Π) 6|= ϕ(−) respectively.1

1 Functions TransRules and TransQuery will be specified
in section 3.3.
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3.1 Answer Set Programming: An Overview

Now we give a brief overview of the answer set (sta-
ble model) semantics [3] and necessary terminologies in
Smodels language [26], which includes the basic terms in
logic programs and the extended stuff that consists of
the special features of Smodels.

There are four different types of terms: constants,
variables, functions, and ranges in Smodels. A constant
is either a symbolic constant or numeric constant starting
with a lower case letter. A variable is a string of letters
and numbers starting with an upper case letter. A func-
tion is either a function symbol followed by a parenthe-
sized argument list or a built-in arithmetical expression.
A range is of the form:

start..end

where start and end are constant valued arithmetic ex-
pressions. A range is a notational shortcut that is mainly
used to define numerical domains in a compact way.

An atom is of the form p (a1, . . . , an) where p is a
n-ary predicate symbol and a1, . . . , an (n ≥ 0) are terms.
Generally, a literal is either an atom a or its negation
not a. We call it a basic literal. In Smodels, there are
three extended literals, constraint literals, weight literals,
and conditional literals. We do not consider the weight
situation in language AL. Then the weight literal is not
discussed here.

A constraint literal is of the form:

lower { l1, l2, . . . , ln } upper

where lower and upper are arithmetic expressions and
l1, . . . , ln are basic or conditional literals. A constraint
literal is satisfied if the number of satisfied literals in
the body of the constraint is between lower and upper
(inclusive).

A conditional literal is of the form:

p (X) : q (X)

where p (X) is any basic literal and q(X) is a domain
predicate. Formally, a predicate p of program Π is a do-
main predicate iff in the predicate dependency graph of
Π every path starting from p is free of cycles that pass
through a negative edge.

A rule is of the form:

h ← l1, . . . , ln.

Where the literal h is the rule head and literals l1, . . . , ln
form the rule body. In Smodels, h can be basic atom, pos-
itive conditional or constraint literal and l1, . . . , ln can
be basic literal, conditional literal or constraint literal.
Smodels improves its expressive power using rich literal
forms. If the rule body is empty (n = 0), the rule is called
a fact. A rule is called a Horn rule if it does not have any
negative literals. A normal logic program is a set of rules.

In [3], a logic program just including Horn rules is
called AnsProlog−not. A normal logic program is called

AnsProlog where negation as failure is allowed to occur
in the rule’s body. AnsProlog programs are a superclass
of AnsProlog−not programs in that they allow the oper-
ator not, negation-as-failure in the body of rules.

AnsProlog−not programs form the simplest class of
declarative logic programs, and its answer set semantics
usually can be defined using two ways, model theoretical
approach and iterated fixpoint approach. The answer set
semantics of AnsProlog programs can be defined using
neither the approach of minimal models nor that of it-
erated fixpoints. The problem is that in minimal model
approach, AnsProlog programs may have multiple min-
imal models and in the iterated fixpoint approach, an
AnsProlog program may not lead to a fixpoint. The
answer set semantics of AnsProlog programs is defined
based on the Gelfond-Lifschitz transformation (also re-
ferred to as a reduct), as it was originally defined by
Gelfond and Lifschitz in [13]. The detailed definition for
them is referred to [3].

A program may have one, more than one, or no an-
swer sets at all. For a given program Π and a ground
atom ϕ, we say Π entails ϕ, denoted by Π |= ϕ, iff ϕ is
in every answer set of Π.

3.2 The language LAns

LAns is an ASP based language with answer set seman-
tics. A program of LAns can be computed by Smodels. In
this subsection, we first present the alphabet for language
LAns, and then give the propagation rules, authorization
rules, and conflict resolution and decision rules in LAns.

3.2.1 The language alphabet of LAns

1. Entity Sort:
There are three types of constant entities, subject,
object, and privilege. The subject entity sort includes
group subject entities introduced in the translation
to denote a set of subjects. All the constant entities
start with a lowercase characters.
Accordingly, there are three disjointed variable sets,
the sets of subject variables, object variables, and
privilege variables that range over the constant en-
tities respectively. The variable entities begin with a
uppercase characters.

2. Function symbols:
right(sign, priv, obj), where sign is +, −, or ¤, priv
privilege sort, obj object sort.
exp(a1, . . . , an), where ai is an entity sort, and exp
is an application dependant assertion atom name.
For example, isDoctorOf(alice, tom), which denotes
that alice is the doctor of tom.
In Smodels, the above both functions are symbolic
functions which just defines a new constant as an
argument for the predicates in the application. We
define them just to combine the related arguments



Title Suppressed Due to Excessive Length 7

together to express a right or an assertion which are
parameters for predicates auth, delegate, and assert.
After the rules in the program are grounded, there are
no any variables in both functions and they are just
ordinary constant arguments for the related predi-
cates.
max(t1, . . . , tn), where ti’s are integers. The function
returns a biggest integer among ti’s.
min(t1, . . . , tn), where ti’s are integers. The function
returns a smallest integer among ti’s2.

3. Predicate symbols:
below(arg1, arg2), where arg1 and arg2 are of the
same entity sort to denote partial order relationship
in a hierarchy structure. For example, below(read,
write) means the privilege read is dominated by write.
assert(issuer, exp(a1, . . . , an)), where issuer is of
subject sort, exp is an application dependant function
of n arguments that are of entity sort.
auth(issuer, grantee, right(sign, priv, obj), step),
where issuer and grantee are both of subject en-
tity sort, step is a natural number or variable which
means how many steps the right goes through from
issuer to grantee.
delegate(issuer, delegatee,
right(sign, priv, obj), depth, step), where issuer and
delegatee are of subject entity sorts, depth, and step
are natural numbers or variables. depth states how
far the right can be delegated further. step states
how many steps the delegation has gone through.
req(sub, right(+, priv, obj)), where sub is of sub-
ject entity sort. It states that the sub requests the
right(+, priv, obj).
grant(sub, right(sign, priv, obj)), where sub is of
subject entity sort. It states that the right(sign, priv,
obj) is granted to sub.
For the group subject query, we present predicate
ggrant and match.
ggrant(sub, right(sign, priv, obj)), where sub is one
of subject group entities introduced during the trans-
lation process. It states that the right(sign, priv, obj)
is granted to a set of subjects.
match(sub, right(sign, priv, obj)), where sub is one
of subject group entities introduced during the trans-
lation process. It states that people requesting the
right are exactly those who are authorized.
We also introduce some predicates for the authoriza-
tion and conflict resolving rules.
exist pos(sub, right(+, priv, obj)), where sub is of
subject entity sort. It states there is positive privilege
on obj for sub.
pos far(sub, right(+, priv, obj), step), where sub is
of subject entity sort. It states that there is at least
one negative authorization right(−, priv, obj) for sub
which has less steps than the positive authorization
right(+, priv, obj) with step for sub. For example, if

2 Because Smodels does not provide max and min func-
tions, we have extended Smodels by adding them in it.

both of auth(s1, s2, right(+, read, file1), 4) and auth
(s3, s2, right(−, read, file1), 3) exist, we can get
pos far(s2, right(+, read, file1), 4).
exist neg(sub, right(−, priv, obj)), where sub is of
subject entity sort. It states there is negative privilege
on obj for sub.
neg far(sub, right(−, priv, obj), step), where sub is
of subject entity sort. It is similar with pos far(sub,
right(+, priv, obj), step).

3.2.2 Propagation rules

We need the propagation rules because in most real world
situations, the work to assign the authorization to all re-
sources is burdensome and not necessary. The security
officer prefers to assign them partially and propagate
them to all resources based on propagation policy. In
LAns, we have propagation rules based on the relation-
ships between objects or privileges as follows.

below(A1, A3) ← below(A1, A2), below(A2, A3) (1)

Rule (1) is for the structured data propagation.

3.2.3 Authorization rules

Using negation as failure, if there is only positive au-
thorization and no negative authorization, then we will
conclude the positive authorization, and vice versa. On
the other hand, if there are the positive and negative
authorizations at the same time, we leave the decision
problem to conflict resolution and decision policy. The
following is our authorization rules.

exist pos (X, right(+, P, O)) ←
auth(local, X, right(+, P, O), T ). (2)

exist neg (X, right(−, P, O)) ←
auth(local, X, right(−, P,O), T ). (3)

Rules (2) and (3) denote that there are positive and
negative authorization in the system respectively.

grant (X, right(+, access, O)) ←
auth(local, X, right(+, P,O), T ),
not exist neg(X, right(−, P, O)). (4)

Rule (4) makes positive authorization decision for the
single subject request if there is only positive authoriza-
tion and no negative authorization in the system.

grant (X, right(−, P, O)) ←
not exist pos(X, right(+, P, O)). (5)
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Rule (5) makes negative authorization decision for
the single subject request if there is no positive autho-
rization, no matter whether there is positive authoriza-
tion or not.

ggrant (L, right(+, P, O)) ←
auth(local, L, right(+, P, O), T ),
match(L, right(+, P, O)),
not exist neg(L, right(−, P, O)). (6)

Rule (6) makes positive authorization decision for the
group subject request if there are only positive authoriza-
tion and no negative authorization in the system, and the
requesters satisfy the group subject requirement.

ggrant (L, right(−, P, O)) ←
not exist pos(L, right(+, P,O)). (7)

Rule (7) makes negative authorization decision for
the group subject request if there are group subject re-
quests and no positive authorization decision that has
been made.

3.2.4 Conflict resolution and decision rules

In an access control system, when both positive and
negative authorization are permitted, the conflict occur.
Most existing approaches deal with conflicts in the fol-
lowing ways:(1) No conflict policy. It relies on the secu-
rity administrator to write the consistent authorization
rules. If there are conflicts, errors happen[28]. (2) A fixed-
conflict resolving policy based on relative authorization
or specification. As pointed out in [23], this kind of poli-
cies include negative(positive)-take-precedence, strong and
weak authorization, specific-take-precedence, and time-
take-precedence. Moreover, Ruan et al [23,?] and Agudo
et al [1], have proposed graph-based schemes to deal
with distributed authorization, in which they present
predecessor-take-precedence and strict-predecessor-take-
precedence, respectively. It should be noted that the work
in [1] is to generalize the proposal in [24] and can resolve
more conflicts that are incomparable in [24]. (3) Flexi-
ble scheme to support multiple conflict resolving policies
[15]. Logic-based approaches for distributed authoriza-
tion can easily specify different policies that coexist in
the same framework.

Our work is logic-based approach for distributed au-
thorization, then it is feasible to integrate different con-
flict resolving policies into our approach. Comparing with
the weighted-graph based approach [1,24], we should
mention that, it is easy to extend our language to han-
dle weighted authorization because Smodels already pro-
vided weight literal representation in logic programming.
In this paper, we choose trust-take-precedence policy,
similar to the work in [23], to deal with the conflicts.
We consider delegation as an action and assign the step
for each authorization which is decided by the delega-
tion step. All the authorizations arise from local origi-
nally. The step number denotes how far the authoriza-
tion is away from local which reflects the trust extent.

The smaller the authorization step, the more trust there
is on this authorization. For this reason, we take pref-
erence to the smallest step authorization. If the conflict
occurs with the same step, we deny the request. The fol-
lowing is the rules of our conflict resolution and decision
policy.

pos far(X, right(+, P, O), T1) ←
auth(local,X, right(+, P, O), T1),
auth(local,X, right(−, P, O), T2),
T1 > T2. (8)

neg far(X, right(−, P,O), T1) ←
auth(local, X, right(−, P, O), T1),
auth(local, X, right(+, P, O), T2),
T1 > T2. (9)

Rule (8) denotes that for a positive authorization
with step T1, there is a negative authorization which has
a smaller step. Rule(9) is vice verse.

grant (X, right(+, P, O)) ←
auth(local, X, right(−, P,O), T2),
neg far(X, right(−, P, O), T2),
auth(local, X, right(+, P,O), T1),
not pos far(X, right(+, P, O), T1). (10)

Rule (10) makes positive authorization decision for
the single subject request if there are both positive au-
thorization and negative authorization, and a positive
authorization with smallest step exists in the system.

grant (X, right(−, P, O)) ←
auth(local, X, right(+, P,O), T1),
auth(local, X, right(−, P,O), T ),
not neg far(X, right(−, P,O), T ). (11)

Rule (11) makes negative authorization decision for
the single subject request if there are both positive au-
thorization and negative authorization, and a negative
authorization with smallest step exists or a negative au-
thorization and a positive authorization have the same
step which is smallest in the system.

ggrant (L, right(+, P,O)) ←
auth(local, L, right(−, P, O), T2),
neg far(L, right(−, P, O), T2),
match(L, right(+, P, O)),
auth(local, L, right(+, P, O), T1),
not pos far(L, right(+, P,O), T1). (12)

ggrant (L, right(−, P,O)) ←
auth(local, L, right(+, P, O), T1),
auth(local, L, right(−, P, O), T2),
match(L, right(−, P, O)),
not neg far(L, right(−, P, O), T2). (13)
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Rules (12) and (13) make positive and negative au-
thorization decisions for the group subject requests re-
spectively and have similar meaning with rules (10) and
(11).

3.3 Transformation from AL to LAns

As shown earlier, a rule rD in the domain description
DAL is of the following form

h0 if b1, b2, . . . , bm, with absence bm+1, . . . , bn. (14)

where h0 is the head statement denoted by head(rD) and
bis are body statements denoted by body(rD). We call the
set of statements {b1, b2, . . . , bm} positive body state-
ments, denoted by pos(rD), and the set of statements
{bm+1, bm+2, . . . , bn} negative body statements, denoted
by neg(rD). If there is no confusion in context, we use
positive statements and negative statements to express
them respectively. In (14), if m = 0 and n = 0, the rule
simply becomes h0 and is called a fact.

In the next subsections we provide translation func-
tions for DAL and QAL. The function TansRules(DAL)
translates the rules in the domain description DAL into
an answer set program P. We divide the process into
three phases, body translation(see subsection 3.3.1), head
translation(see subsection 3.3.2), and adding related rules
(see subsections 3.2.2, 3.2.3, and 3.2.4). For query in lan-
guage AL, we provide TransQuery(QAL) to translate it
into a program Π and ground literals ϕ(+) and ϕ(−).

In language AL, there are function symbols, assert-
atom and auth-atom. Correspondingly there are func-
tions exp(a1, . . . , an) and right(sign, priv, obj) in lan-
guage LAns. In our translation, if there is no confusion
in the context, we use exp and right to denote them in
both languages.

3.3.1 Body transformation

In language AL, there are four types of body state-
ments, relation statement, assert statement, delegation
statement, and auth statement. As delegation statement
and auth statement have similar structure, we give their
transformations together. For each rule rD, its body state-
ment bi is one of the following cases.

1. Relation statement:
local says below(arg1, arg2)
local says neq(arg1, arg2)
local says eq(arg1, arg2)

Replace them respectively in program P using:

below(arg1, arg2). (15)

neq(arg1, arg2). (16)

eq(arg1, arg2). (17)

Where arg1 and arg2 in below(arg1, arg2) are of ob-
ject or privilege entity sort, arg1 and arg2 in neg(arg1,
arg2) and eq(arg1, arg2) are of same type entity sort
to specify they are equal or not equal. In Smodels,
neq and eq are internal function and work as a con-
straint for the variables in the rules.

2. Assert body statement:
issuer asserts exp.

Replace it in program P using

assert(issuer, exp) (18)

where issuer is a subject constant or variable, and
exp is an assert atom.

3. Delegation body statement or auth body statement:
issuer delegates right with depth k to delegatee
issuer grants right to grantee.

If issuer is a subject constant or variable, we replace
the statements in program P using

delegate(issuer, delegatee, right, k, T ) (19)

auth(issuer, grantee, right, T ), (20)

where k is delegation depth, T a step variable that
means how many steps the delegation/right has gone
through from issuer to delegatee/grantee.

We translate the positive statements as above, and
for the negative body statements, we do the same trans-
lation and just add not before them.

3.3.2 Head transformation

In language AL, there are also four types of head state-
ments, relation statement, assert statement, delegation
statement, and auth statement. If the head statement h0

is a relation statement or an assert statement, the trans-
lations are same as the body statements. We adopt the
rules (15), (18) to translate them respectively. In rela-
tion head statements, there are no statements for atom
neq and eq that just be used as a variable constraints
in body statements. Here we present the translation for
auth head statement, and delegation head statement.

1. Auth head statement:
issuer grants right to grantee

If grantee is a subject constant or variable, we replace
it by

auth(issuer, grantee, right(Sn, P, O), 1) (21)

where 1 means the right is granted from issuer to
grantee directly.
We further add the following propagation rules for it:

auth ( issuer, grantee, right(Sn, P1, O), 1) ←
auth(issuer, grantee, right(Sn, P, O), 1),
below(P1, P ).
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auth ( issuer, grantee, right(Sn, P, O1), 1) ←
auth(issuer, grantee, right(Sn, P, O), 1),
below(O1, O).

If grantee is a complex structure, subject set, thresh-
old, or subject extent set, we introduce group subject
entity lnew to denote the subjects in complex sub-
ject structures, and replace its head in program P as
follows

auth(issuer, lnew, right(Sn, P,O), 1) (22)

We also need to add the propagation rules similar to
the above ones and the following different rules for
different structures.
case 1: lnew is [s1, . . . , sn]

match(lnew, right) ←
auth(issuer, lnew, right, 1),
n{req(s1, right), . . . , req(sn, right)}n.

case 2: lnew is sthd(k, [s1, s2, . . . , sn])
match(lnew, right) ←

auth(issuer, lnew, right, 1),
k{req(s1, right), . . . , req(sn, right)}k.

case 3: lnew is dthd (k, S, sub assert exp(S) )
match(lnew, right) ←

auth(issuer, lnew, right, 1),
k{req(S, right) : assert(sub, exp(S)) }k.

case 4: lnew is [dthd (k1, S1, s1 assert exp1(S1) ), . . . ,
dthd (kn, Sn, sn assert expn(Sn) )].

match(lnew, right) ←
auth(issuer, lnew, right, 1),
k1{req(S1, right) : assert(s1, exp1(S1))}k1,

...
kn{req(Sn, right) : assert(sn, expn(Sn))}kn.

2. Delegation head statement:
issuer delegates right with depth k to delegatee

If delegatee is a subject constant or variable, we re-
place the statement in program P using

delegate(issuer, delegatee, right, k, 1) (23)

where k is the delegation depth, and 1 means the
issuer delegates the right to delegatee directly.
Moreover, we need to add the following implied rules
for it in program P:
Prop-delegation rules: Based on the structured re-
sources, the delegation can be propagated as follow-
ing rules.

delegate (issuer, delegatee, right(¤, P1, O), k, 1) ←
delegate(issuer, grantee, right(¤, P, O), k, 1),
below(P1, P ).

delegate (issuer, delegatee, right(¤, P,O1), k, 1) ←
delegate(issuer, delegatee, right(¤, P, O), k, 1),
below(O1, O).

Auth-delegation rule: When the issuer delegates a
right to the delegatee, the issuer will agree with the

delegatee to grant the right to other subjects within
delegation depth. The authorization step increases 1.

auth(issuer, S, right(Sn, P, O), T + 1) ←
delegate(issuer, delegatee, right(¤, P, O), k, 1),
auth(delegatee, S, right(Sn, P,O), T ).

Delegation-chain rule: The delegation can be re-
delegated within delegation depth.

delegate(issuer, S, right(¤, P, O),
min(k-Step, Dep), 1 + T ) ←

delegate(issuer, delegatee, right(¤, P,O), k, 1),
delegate(delegatee, S, right(¤, P, O), Dep, T ),
T < k.

Self-delegation rule: The delegatee can delegate
the right to himself/herself within k depth.

delegate(delegatee, delegatee, right,Dep, 1) ←
delegate(issuer, delegatee, right, k, 1),
Dep ≤ k.

Weak-delegation rule: If there is a delegation with
k steps, we can get the delegation with steps less than
k.

delegate(issuer, delegatee, right, Dep, 1) ←
delegate(issuer, delegatee, right, k, 1),
Dep < k.

If delegatee is a complex structure, subject set, static
threshold, or dynamic threshold, we introduce a new
group subject lnew to denote the subjects in complex
structures, and replace the statement in program P
using

delegate(issuer, lnew, right, k, 1).
We also need to add additional rules for it. Because
there are similar rules for different complex delegatee
structure, here we just present the rules for subject set
structure.
Prop-delegation rules: Based on the structured
resources, the delegation can be propagated similar
with those for single delegatee.

delegate(issuer, lnew, right(¤, P1, O), k, 1) ←
delegate(issuer, lnew, right(¤, P, O), k, 1),
below(P1, P ).

delegate(issuer, lnew, right(¤, P,O1), k, 1) ←
auth(issuer, lnew, right(¤, P, O), k, 1),
below(O1, O).

Auth-delegation rule: If an issuer delegates a right
to a group subject, and all the members in the group
authorize this right to a subject, then the issuer agree
with this authorization. The new authorization step
is 1 plus the biggest one among the group authoriza-
tions because the trust for the new authorization is
less than any group authorizations.

auth(issuer, S, right, T + 1) ←
delegate(issuer, lnew, right, k, 1),
auth(s1, S, right, T1),

...
auth(sn, S, right, Tn),
T = max(T1, . . . , Tn).



Title Suppressed Due to Excessive Length 11

Delegation-chain rule: If an issuer delegates a right
to a group subject, and all the members in the group
re-delegate this right to a subject, then the issuer
agree with this re-delegation. The new delegation depth
is the smallest one among k minus stepis and Depis
and the new delegation step is 1 plus the biggest one
among the group delegations.

delegate(issuer, S, right, T1, T2 + 1) ←
delegate(issuer, lnew, right, k, 1),
delegate(s1, S, right, Dep1, Step1),

...
delegate(sn, S, right, Depn, Stepn),

T1 = min(k-Step1, . . . , k-Stepn, Dep1, . . . , Depn),
T2 = max(Step1, . . . , Stepn),
T1 > 0.

3.3.3 Query Transformation

In language AL, there are two kinds of queries, single
subject query and group subject query. We present the
function TransQuery(QAL) for both of them and this
function returns program Π and ground literals ϕ(+)
and ϕ(−).

If QAL is a single subject query,

s requests right(+, p, o),

TransQuery returns program Π and ground literals ϕ(+)
and ϕ(−) as follows respectively,

{req(s, right(+, p, o))},
grant(s, right(+, p, o)), and
grant(s, right(−, p, o)).

If QAL is a group subject query,

[s1, s2, . . . , sn] requests right(+, p, o).

TransQuery returns program Π and ground literals ϕ(+)
and ϕ(−) as follows respectively,

{req( si, right(+, p, o)) | i = 1, . . . , n },
ggrant(l, right(+, p, o)), and
ggrant(l, right(−, p, o)),

where l is a group subject entity to denote the set of
subjects, [s1, . . . , sn].

4 Scenarios

In this section we represent two specific authorization
scenarios to demonstrate the features of language AL.

Scenario 1 A company chooses to have multiparty con-
trol for emergency key recovery. If a key needs to be
recovered, three persons are required to present their
individual PINs. They must be from different depart-
ments: a member of management, an individual from
auditing, and one individual from IT department. The

system trusts the manager of Human Resource Depart-
ment to identify the staff of the company. The domain
description DAL for this scenario then consists of the
following rules represented using language AL.

local grants right(+, recover, key) to
[ dthreshold(1, X, hrM asserts isAManager(X)),
dthreshold(1, Y, hrM asserts isAnAuditor(Y )),
dthreshold(1, Z, hrM asserts isATech(Z)) ].

hrM asserts isAManager(alice).
hrM asserts isAnAuditor(bob).
hrM asserts isAnAuditor(carol).
hrM asserts isATech(david).

We translate them into language LAns,

auth(local, l, right(+, recovery, key), 1).
match(l, right(+, recovery, key)) ←

auth(local, l, right(+, recovery, key), 1),
1{req(X, right(+, recovery, key)) :

assert(hrM, isAManager(X))}1,
1{req(Y, right(+, recovery, key)) :

assert(hrM, isAnAuditor(Y ))}1,
1{req(Z, right(+, recovery, key)) :

assert(hrM, isATech(Z))}1.
assert(hrM, isAManager(alice)).
assert(hrM, isAnAuditor(bob)).
assert(hrM, isAnAuditor(carol)).
assert(hrM, isATech(david)).

In this scenario, the program P consists of the above
translated rules, and those authorization rules we spec-
ified in section 3.2.3. If Alice, Bob, and David make a
request to recover a key together, that is,

[alice, bob, david] requests right(+, recovery, key).

After translation, we get program Π,

req(alice, right(+, recovery, key)),
req(bob, right(+, recovery, key)),
req(david, right(+, recovery, key)),

and the ground literal ϕ(+) is,

ggrant(l, right(+, recovery, key)).

where l is a group subject entity to represent the set of
subjects, [alice, bob, david].

Then program P ∪Π (Refer to the Appendix A for
complete program) has only one answer set, and ggrant(l,
right(+, recovery, key)) is in the answer set. So (P ∪
Π) |= ggrant(l, right(+, recovery, key)). That is the re-
quest is permitted.

Now if we consider that Alice, Bob, and Carol make
the same request, the rule for match(l, right(+, recovery,
key)) can not be satisfied. From the authorization rules
(6) and (7) in section 3.2.3, the system deny the request
from Alice, Bob, and Carol. A complete ASP program
representing this scenario is given in Appendix A.



12 Shujing Wang, Yan Zhang

Scenario 2 A server provides the services including http,
ftp, mysql, and smtp. It sets up a group for them, called
services. The server delegated the right of assigning all
the services to the security officer so with depth 3. The
security officer so grants the services to staff . The ser-
vice mysql can not be accessed if the staff is on holidays.
Officer so can get information of staff from the human
resource manager hrM . The policies and credentials are
described using language AL as follows.

local says below(http, services).
local says below(ftp, services).
local says below(mysql, services).
local says below(smtp, services).
local delegates right(¤, access, services)

with depth 3 to so.
so grants right(+, access, Y ) to X

if hrM asserts isStaff (X),
local says below(Y, services),
local says neq(Y, mysql).

so grants right(+, access, mysql) to X
if hrM asserts isStaff (X),
with absence hrM asserts onHoliday(X).

hrM asserts isStaff (alice).
hrM asserts isStaff (bob).
hrM asserts onHoliday(alice).

For this scenario, we give the complete LAns program
in Appendix B. Through Smodels, we get one and only
one answer set. Within this answer set, we can extract
the authorization path for Alice as follows:

auth(local, alice, right(+, access, http), 2)
auth(so, alice, right(+, access, http), 1)
grant(alice, right(+, access, http))
grant(alice, right(−, access,mysql))

The predicates auth are helpful for us to find the
authorization path. We can find that the authorization
passes from local to so, and then from so to alice. In
many applications, such authorization path and related
delegation chain play an essential role to identify the
validity of requests [9,18].

5 Computational Properties

In this section, we study basic computational properties
of language AL. In language AL, the authorization pol-
icy and associated delegations for a specific problem do-
main is represented as a domain description DAL, which
is a finite set of rules which is a policy base including lo-
cal policy and credentials from all trusted entities. Then
for each access request to the resource, the decision is
made on the basis of reasoning mechanism underlying
the framework we developed earlier.

From Definition 3, we can see that given a domain
description DAL and a query QAL (see Figure 1 for the
syntax of a query), there are three steps to answer this

query: (1) transfer DAL and QAL to a logic program T ;
(2) computer the answer sets of T ; (3)check if grant
(s, right(sn, p, o)) or ggrant(l, right(sn, p, o)) is in all an-
swer sets of T . Step 1 is achieved through two transfor-
mation functions: TransRules(DAL) = P and
TransQuery(QAL) = <Π, ϕ(+), ϕ(−)>. That is, T =
P ∪Π. For step 2, we provide function stable(T ) which
returns all answer sets of program T . Step 3 is just a
simple checking that can be done in linear time. So the
main computational cost for our approach is on Steps 1
and 2. The following proposition presents the complexity
result for achieving Step 1.

Proposition 1 Let DAL be a domain description of lan-
guage AL and QAL a query. Then TRanRules(DAL)
can be computed in time O(|DAL|) and TransQuery(QAL)
can be computed in time O(|QAL|)( here |DAL| is the size
of DAL and |QAL| is the length of QAL.).

Proof From the transformation process, it is clear that
TransQuery(QAL) entirely depends on the query for-
mula’s length. So it can be obtained in linear time in
terms of QAL’s size. On the other hand, rule transfor-
mation includes body transformation and head transfor-
mation. After body transformation, the number of rules
does not change. So |Pbody| = |DAL|. During head trans-
formation, for the complex structure in auth head and
delegation head transformation, |Phead| = c|DAL|, where
c is a constant number. So we conclude that |Phead| =
O(|DAL|).

Now we consider the computation of Step 2. For
stable(T ), we use Smodels to compute the answer sets of
logic programs. It is well known that deciding whether
a program has an answer set is NP-complete [3]. Conse-
quently, Smodels usually needs exponential time to com-
pute a program’s answer sets. Therefore, it is important
to identify proper subclasses of the authorization do-
mains where queries can be answered in polynomial time.
In the following section, we will define two subclasses of
language AL in which queries can be computed in poly-
nomial time.

The domain description of language AL includes in-
finite rules and the basic unit of a rule is a statement.
We have four types of statements, relation statement, as-
sertion statement, delegation statement, and auth state-
ment. To simplify our investigation, we consider each
statement as a predicate with n terms, p(t1, t2, . . . , tn)
in which p denotes the statement type, and tis are terms
to denote the variable parts in the statement. The four
types of statements have the following forms,

RelStmt(issuer, relAtomName, atomArg1, atomArg2)
AssertStmt(issuer, assertAtomName, atomArg1, . . . ,

atomArgn)
DelegationStmt(issuer, receiver, step, priv, obj)
AuthStmt(issuer, receiver, sign, priv, obj)
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For instance, we denote a relation statement, “local says
below(alice, postgraduate)” using predicate form,
RelStmt(local, below, alice, postgraduate). In such pred-
icate presentation, each term has a type which can be
subject, subject structure, object, privilege, sign, inte-
ger, relation atom name, or assert atom name. Subject
structures are special terms and have four types: subject
set, subject static threshold, subject dynamic threshold
and subject extended dynamic threshold. Subject set and
subject static threshold have static subject pools, while
subject dynamic threshold and subject extended dynamic
threshold have dynamic subject pools. In the static sub-
ject pool [s1, s2, . . . , sn], each si is a member of the static
subject pool. For a dynamic subject pool, each constant
subject in the domain of the application system can be
a member of the dynamic subject pool.

Definition 4 Term t1, and t2 are compatible, denoted
by t1 ' t2, if t1 and t2 are same type terms, and one of
the following conditions holds:

1. t1 and t2 are constant terms with the same name;
2. at least one of t1 and t2 is a variable term; or
3. t1 is a subject constant, t2 is a subject structure, and

t1 is a member of t2.

For example, if term t1 is a subject alice, t2 is a subject
variable S, t3 is a static threshold sth(2, [bob, carol, david]),
and t4 is a dynamic threshold dth(3, S, hrM asserts
isAStaff (S)), we say (t1, t2), (t1, t4), (t2, t3), and (t2, t4)
are compatible term pairs.

Definition 5 Two statements s1, s2 are compatible, de-
noted by s1 ' s2, if s1 and s2 have the predicate forms
s′1 and s′2 respectively, and

1. s′1 and s′2 are the same type predicates,
2. all the corresponding terms of s′1 and s′2 are compat-

ible.

From the above definitions, it is easy to see that a
statement is compatible to itself.

Definition 6 Let DAL be a domain description of lan-
guage AL and rp and rq be two rules in D. We define a
set S(rp) of statements with respect to rp as follows:

S0 = {head(rp)};
Si = Si−1 ∪ {head(r) | head(r′) ' s where s ∈
pos(r) and

r′ are those rules such that head(r′) ∈
Si−1};
S(rp) =

⋃∞
i=1 Si.

We say that rq is defeasible through rp in DAL if and only
if neg(rq) ∩c S(rp) 6= ∅ 34.

3 ∩c is to get a compatible joint set of two statement sets.
Formally, A ∩c B = {s1, s2|s1 ' s2, where s1 ∈ A, and s2 ∈
B.

4 See Section 3.3 for definitions of head(r), pos(r) and
neg(r) in language AL.

Intuitively, if rq is defeasible through rp in DAL, then
there exists a sequence of rules r1, r2, . . . , rl, . . . such that
head(rp) occurs in pos(r1), head(ri) occurs in pos(ri+1)
for all i = 1, . . ., and for some k, head(rk) occurs in
neg(rq). Under this condition, it is clear that by trig-
gering rule rp in DAL, it is possible to defeat rule rq if
rules r1, . . . , rk are triggered as well. As a special case
that S(rp) = {head(rp)}, rq is defeasible through rp iff
head(rp) ∈ neg(rq).

Definition 7 Given a domain description DAL, we de-
fine its defeasible graph DG = 〈V, E〉, where V is the
set of rules ri in DAL as the vertices and E the set of
〈ri, rj〉 which is a directed edge to denote rj is defeasible
through ri.

Consider a simple example. Suppose a, b, c, . . . are
statements , and a′, b′, c′, . . . are their corresponding com-
patible statements in language AL, and we have the fol-
lowing domain description DAL:

r1 : b if a.
r2 : c if b′.
r3 : d if with absence c.
r4 : e if with absence b.

Based on the definitions above, we conclude that rule r3

is defeasible through r1 and r2, and rule r4 is defeasible
through r1. Then we have the following defeasible graph:

©©©©©¼

HHHHHj

©©©©©*

r1

r2

r4 r3

Figure 2: The defeasible graph
The logic program P with answer set semantics consists
of finite set of rules. A rule r is expressed as follows:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

where each Li(0 ≤ i ≤ n) is a literal. The program P
is ground if each rule in P is ground. Let r be a ground
rule of the above form, we use pos(r) to denote the set
of literals in the body of r without negation as failure
{L1, . . . , Lm}, neg(r) to denote the set of literals in the
body of r with negation as failure {Lm+1, . . . , Ln}, and
body(r) to denote pos(r) ∪ neg(r). L0 is called the head
of the rule, denoted by head(r). By extending these no-
tations, we use pos(P), neg(P), body(P), and head(P)
to denote the unions of corresponding components of all
rules in program P, e.g. body(P) =

⋃
r∈P body(r).

We present the concepts of local stratification and
call consistence for extended logic programs [3,29].

Definition 8 Let P be an extended logic program and
Lit be the set of all ground literals of P.
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1. A local stratification for P is a function stratum from
Lit to the countable ordinals.

2. Given a local stratification stratum, we extend it to
ground literals with negation as failure by setting
stratum(not L) = stratum(L) + 1, where L is a
ground literal.

3. A rule L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in
P is locally stratified with respect to stratum if

stratum(L0) ≥ stratum(Li), where 1 ≤ i ≤
m, and
stratum(L0) > stratum(not Lj), where m +
1 ≤ j ≤ n.

4. P is called locally stratified with respect to stratum if
all of its rules are locally stratified. P is called locally
stratified if it is locally stratified with respect to some
local stratification.

Definition 9 An extended program is said to be call-
consistent if its dependency graph does not have a cycle
with an odd number of negative edges.

Lemma 1 Let P1, P2 be two locally stratified logic pro-
grams. Program P1∪P2 is locally stratified if head(P2)∩
body(P1) = ∅.

Proof Because P1 and P2 are two locally stratified propo-
sitional logic programs, their dependency graphes DP1

and DP2 both do not contain any negative cycles. Now
head(P2)∩ body(P1) = ∅. We assume program P1 ∪P2 is
not locally stratified and its dependency graph DP1∪P2

contains a cycle with at least one negative edge, denoted
by < a1, a2, . . . , a

−
i−1, ai, . . . , an, a1 >, in which ais are

atoms, the atom sequence means there are edges in de-
pendency graph to connect them one by one, a−i−1 means
there is a negative edge from ai−1 to ai.

From the above condition, there are the following
rules in program P1 ∪ P2:

r1 : a2 ← . . . , a1, . . .
r2 : a3 ← . . . , a2, . . .
· · ·

ri−1 : ai ← . . . , not ai−1, . . .
· · ·

rn−1 : an ← . . . , an−1, . . .
rn : a1 ← . . . , an, . . .

In the above rules, at lease one is from program P1.
Assume r1 is in program P1, rn should be in P1 also,
because a1 = head(rn), a1 ∈ body(r1) and head(P2) ∩
body(P1) = ∅. For the same reason, we conclude that
all of rn−1, rn−2, . . . , r2 should be in program P1. This
implies that P1 is not locally stratified. The contradiction
happens. Similarly, if we assume r1 is in program P2, we
will conclude that P2 is not locally stratified. So we prove
that if P1 and P2 are two locally stratified logic programs
and head(P2)∩ body(P1) = ∅, then the program P1 ∪ P2

is locally stratified too.

Lemma 2 Let P1, P2 be two call consistent logic pro-
grams. Program P1 ∪ P2 is call consistent if head(P2) ∩
body(P1) = ∅.

Proof The dependency graphes of program P1 and P2 do
not have a cycle with an odd number of negative edges
because P1 and P2 are call consistent. Now head(P2) ∩
body(P1) = ∅. Suppose program P1 ∪ P2 is not call con-
sistent and its dependency graph has a cycle with an odd
number of negative edges. We can construct an atom se-
quence < a1, a2, . . . , an, a1 > to denote a cycle with an
odd number of negative edges, where ais are atoms and
the sequence means there are positive or negative edges
to connect the atoms one by one. We get the following
rules in program P1 ∪ P2:

r1 : a2 ← . . . , [not]5 a1, . . .
r2 : a3 ← . . . , [not] a2, . . .
...

ri−1 : ai ← . . . , [not] ai+1, . . .
...

rn−1 : an ← . . . , [not] an−1, . . .
rn : a1 ← . . . , [not] an, . . .

In the above rules, at least one is from program P1.
We assume r1 is in program P1. Because head(P2) ∩
body(P1) = ∅, rn should be in program P1 as well. For the
same reason, we conclude that all of rn−1, rn−2, . . . , r2

should be in program P1. This implies that P1 is not
a call consistent program. The contradiction happens.
Similarly, if we assume r1 is in program P2, we will con-
clude that P2 is not a call consistent program. This im-
proves our result.

Lemma 3 Let DAL be a domain description and P the
translated logic program in language LAns. If the defea-
sible graph DG of DAL does not have a cycle, then P is
locally stratified.

Proof Suppose DAL is a domain description of language
AL and its defeasible graph does not have a cycle.

The semantics of language AL is to translate DAL
into a logic program P. The process includes three steps:
(a) translate rules in DAL into logic program rules and
obtain the logic program P ′1; (b) add the propagation
rule (1) into program P ′1 and get logic program P1; (c)
get logic program P2 which consists of authorization
rules and conflict decision rules (refer to Section 3.2.3
and 3.2.4) and P = P1 ∪ P2.

The basic unit of rules in DAL is a statement which
has a corespondent predicate in logic program. From the
translation process (refer to section 3.3), we have the
following observation:

5 [not] means ‘not’ is an option to denote that the following
atom is positive or negative.
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Observation: if the defeasible graph of DAL does
not have a cycle, then the dependency graph of
program P ′1 does not have a negative cycle. So
program P ′1 is locally stratified.6

Consider the program P1 which is program P ′1 plus the
propagation rule:

below(A1, A3) ← below(A1, A2), below(A2, A3).
Because in the domain description, the relation state-
ments related with below just are facts about resource
relationship and as conditions for authorization rules,
the program P1 is also locally stratified.

From the observation of authorization rules and con-
flict resolving rules in section 3.2.3 and section 3.2.4, ob-
viously P2 is locally stratified and head(P2)∩body(P1) =
∅. From Lemma 1, we conclude that the logic program
P = P1 ∪ P2 is locally stratified.

Lemma 4 Let DAL be a domain description and P the
translated logic program in language LAns. If the defea-
sible graph DG of DAL does not have a cycle with an odd
number edges, then P is call consistent.

Proof The Lemma 4 can be proved in a similar way of
that in Lemma 3.

Theorem 1 Let DAL be a domain description. If its de-
feasible graph DG does not have a cycle, then DAL has a
unique model that can be computed in polynomial time.

Proof From [3], a locally stratified AnsProlog program
has the unique answer set and can be computed in poly-
nomial time. Based on Lemma 3 and the definition of
semantics of domain description DAL, we can prove the
result.

Theorem 2 Let DAL be a domain description. If its de-
feasible graph DG does not have a cycle with an odd
number edges, then DAL has at lease one model that can
be computed in polynomial time.

Proof From [3], a call consistent AnsProlog program has
at lease one answer set and can be computed in poly-
nomial time. Based on Lemma 4 and the definition of
semantics of domain description DAL, we can prove the
result.

6 Related Work and Conclusion

In this paper, we developed an authorization language
AL to specify distributed authorization with delegation.
We used Answer Set Programming as a foundational
basis for its semantics and computation. As we have

6 The result can be proved directly from the definition of
defeasible graph of DAL and dependency graph of program
P ′1.

showed, AL has a rich expressive power representing not
only nonmonotonic policies and positive and negative au-
thorization, but also structured resources and privileges,
partial authorization and delegation, and separation of
duty policies.

As we indicated earlier, our formulation has imple-
mentation advantages due to recent development of An-
swer Set Programming technology in AI community7,
where many existing approaches do not have. The both
scenarios in section 4 have been fully implemented through
Answer Set Programming.

We also investigated the computational issue related
to language AL. Due to the intractability of answer set
programming, in our formulation, we dealt with this prob-
lem in two ways. One way is to employ the state of the art
technology of Answer Set Programming to develop opti-
mization strategies to improve the computation process
for query evaluation. We applied lparse to ground and
simplify the logic programs [21], which is a default front-
end to Smodels. The other way is to identify more general
tractable classes of AL domains by applying some com-
putational results in logic programs. We considered that
when an extended logic program is locally stratified or
call-consistent, then this program must have an answer
set, and such answer set can be computed in polynomial
time. By examining proper conditions, we identified two
classes of AL domains, for which their LAns translation
will always be locally stratified or call-consistent. In this
way, any query under those types of domains can be eval-
uated in polynomial time.

Our approach developed in this paper has been imple-
mented under the application domain of XML based re-
source management. The features of structured resources
and partial delegation and authorization are suitable to
specify delegable authorization for fine-grained XML re-
sources. The detailed system structure and algorithms
will be described in our another paper.

Delegation is an important feature that distinguishes
distributed authorization from traditional centralized au-
thorization. Some approaches use logic to specify this
problem [19,20,25], while other approaches use graph
representation [1,24,23]. As we pointed out previously,
[19] and [20] do not express the nonmonotonic policies
which is important for distributed environment. Although
DAP [25] has nonmonotonic features, it can not express
the complex policies such as delegation depth control,
partial delegation, threshold structure and separation of
duty. Also, unlike DAP , our AL is a high level for-
mal langauge which is easier for the end-user to write
a proper policy base. The graph-based approaches [1,23,
24], on the other hand, indeed address delegation depth
and conflict resolution issues, especially using weighted
graph, however, they do not support the complex au-
thorization and delegation representations such as sep-
aration of duty, threshold structure, and partial delega-

7 Please refer to http://www.tcs.hut.fi/Software/smodels/index.html
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tion and authorization. Furthermore, it is not known yet
whether these approaches have been implemented.

Our work presented in this paper can be further ex-
tended. One important topic is called delegation chain
discovery. To answer an access request, our current ap-
proach will only generate a result to grant, deny, or be
undecided to the request. However, very often, it is more
useful to also explain why such request can be granted,
denied or undecided. In a distributed environment, this
could be difficult to achieve because the underlying del-
egation procedure may be very complex. Using Answer
Set Programming, it is possible to retrieve such com-
plex delegation chains from the answer sets that we have
computed.
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Appendix A

The program for the scenario 1 in section 4:

time(1..6).
subjects(alice;bob;carol;david).
gsubs(l).

#domain subjects(X;Y;Z).
#domain gsubs(L).
#domain time(T;T1;T2).

% Beginning of translation
assert(hrM,isAManager(alice)).
assert(hrM,isAnAuditor(bob)).
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assert(hrM,isAnAuditor(carol)).
assert(hrM,isATech(david)).

% For auth transformation.
auth(local, l, right(pp,recovery,key),1).
match(l,right(pp,recovery,key)):-

auth(local,l,right(+,recovery,key),1),
1{req(X,right(pp,recovery,key)):

assert(hrM,isAManager(X))}1,
1{req(Y,right(pp,recovery,key)):

assert(hrM,isAnAuditor(Y))}1,
1{req(Z,right(pp,recovery,key)):

assert(hrM,isATech(Z))}1.

% Request transformation
req(alice,right(pp,recovery,key)).
req(bob,right(pp,recovery,key)).
req(david,right(pp,recovery,key)).

% Authorization rule.
exist_pos(L,right(pp,recovery,key)):-

auth(local,L,right(pp,recovery,key),T).
exist_neg(L,right(mm,recovery,key)):-

auth(local,L,right(mm,recovery,key),T).
ggrant(L,right(pp,recovery,key)):-

auth(local,L,right(pp,recovery,key),T),
match(L,right(pp,recovery,key)),
not exist_neg(L,right(mm,recovery,key)).

ggrant(L,right(mm, recovery,key)):-
not ggrant(L,right(pp,recovery,key).

Appendix B

The program for scenario 2 in section 4.

lenth(0..5). sign(pp;mm).
obj(http;smtp;ftp;mysql;services).
sub(alice;bob;local;so;hrM).

#domain lenth(T;T1;T2).
#domain lenth(Dep;Dep1).
#domain sign(Sn).
#domain obj(GO;O).
#domain sub(X;Y;Z).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
below(http, services).
below(mysql, services).
below(smtp,services).
below(ftp, services).

assert(hrM, isStaff(alice)).
assert(hrM, isStaff(bob)).
assert(hrM, onHoliday(alice)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
delegate(local, so,

right(both,access,services),3,1).
%% add implied rules.
delegate(local, so, right(both,access,O),3,1):-

delegate(local,so,
right(both,access,services),3,1),

below(O,services).

auth(local,X,right(Sn,access,services),T+1):-
delegate(local,so,right(both,access,O),3,1),
auth(so,X,right(Sn,access,O),T).

delegate(local,X,
right(both,access,O),min(3-T,Dep),1+T):-

delegate(local,so,right(both,access,O),3,1),
delegate(so,X,right(both,access,O),Dep,T),
T < 3.

delegate(so,so,right(pp,access,services),Dep,1):-
delegate(local,so,

right(both,access,services),3,1),
Dep <= 3.

delegate(local,so,
right(both,access,services),Dep,1):-

delegate(local,so,
right(both,access,services),3,1),

Dep < 3.

auth(so,X,right(pp,access,Q),1):-
assert(hrM,isStaff(X)),
below(Q,services), neq(Q,mysql).

auth(so,X,right(pp,access,mysql),1):-
assert(hrM,isStaff(X)),
not assert(hrM,onHoliday(X)).

% authorization rules.
exist_pos(X,right(pp,access,O)):-

auth(local,X,right(pp,access,O),T).

exist_neg(X,right(mm,access,O)):-
auth(local,X,right(mm,access,O),T).

grant(X,right(pp,access,O)):-
auth(local,X,right(pp,access,O),T),
not exist_neg(X,right(mm,access,O)).

grant(X,right(mm,access,O)):-
not exist_pos(X,right(pp,access,O)).

%conflict rules.
pos_far(X,right(pp,access,O),T1):-

auth(local, X, right(pp,access,O),T1),
auth(local, X, right(mm,access,O),T2),
T1>T2.

neg_far(X,right(mm,access,O),T1):-
auth(local, X, right(mm,access,O),T1),
auth(local, X, right(pp,access,O),T2),
T1>T2.

grant(X,right(pp,access,O)):-
auth(local, X, right(mm,access,O),T1),
neg_far(X,right(mm,access,O),T1),
auth(local, X, right(pp,access,O),T2),
not pos_far(X, right(pp,access,O),T2).

grant(X,right(mm,access,O)):-
auth(local,X,right(pp,access,O),T1),
auth(local, X, right(mm,access,O),T2),
not neg_far(X, right(mm,access,O),T2).
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