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Abstract—Handling many-objective problems is one of the
primary concerns to EMO researchers. In this paper, we discuss
a number of viable directions for developing a potential EMO
algorithm for many-objective optimization problems. Thereafter,
we suggest a reference-point based many-objective NSGA-II (or
MO-NSGA-II) that emphasizes population members which are
non-dominated yet close to a set of well-distributed reference
points. The proposed MO-NSGA-II is applied to a number
of many-objective test problems having three to 10 objectives
(constrained and unconstrained) and compared with a recently
suggested EMO algorithm (MOEA/D). The results reveal diffi-
culties of MOEA/D in solving large-sized and differently-scaled
problems, whereas MO-NSGA-II is reported to show a desirable
performance on all test-problems used in this study. Further
investigations are needed to test MO-NSGA-II’s full potential.

I. INTRODUCTION

Many-objective optimization is one of the main research

activities in EMO, mainly due to the fact that most existing

EMO algorithms are not efficient in handling many (more than

three or four) objectives. Both the domination principle and

concept of maintenance of diversity – the two factors that

made EMO popular in late nineties and in the beginning of

2000s – are questionable for solving many-objective problems.

Most real-world problems involve many objectives, however

due to lack of suitable algorithms they are down-sized to two

or three objectives and solved. Thus, despite the need for

solving many-objective optimization problems in practice and

the challenges offered due to large dimensionality of many-

objective optimization problems, the research in this direction

has been so far quite lukewarm. However, some efforts in this

direction are providing valuable insights [1], [2], [3], [4], [5],

[6].

In this paper, we outline some viable directions for devel-

oping an efficient EMO algorithm for many-objective opti-

mization problems. Following one of the principles, we then

propose a many-objective NSGA-II (MO-NSGA-II) that uses

a predefined set of reference points and systematically empha-

sizes population members that are non-dominated and close to

each reference point. The number of obtained trade-off points

at the end depends on the number of chosen reference points

and hence the issues of dimensionality and a large proportion

of non-dominated solutions are somewhat alleviated. Results

on unconstrained and constrained problems up to 10 objectives

show encouraging results and suggest its further application to

more complex problems.

II. MANY-OBJECTIVE PROBLEMS

We discuss difficulties that an EMO algorithm usually face

in handling many objectives and investigate if EMO algorithms

are useful at all in handling a large number of objectives.

A. Difficulties in Handling Many Objectives

It has been discussed elsewhere [7], [8] that the current

state-of-the-art EMO algorithms that work under the principle

of domination may face following difficulties:

1. A large fraction of population are non-dominated: It is well-

known [9] that with an increase in number of objectives, an

increasingly larger fraction of a randomly generated population

becomes non-dominated. Since most EMO algorithms em-

phasize non-dominated solutions in a population, in handling

many-objective problems, there are not much room for creating

new solutions in a generation. This slows down the search

process and therefore the overall EMO algorithm becomes

inefficient.

2. Evaluation of diversity measure becomes computationally

expensive: To determine the extent of crowding of solutions,

the identification of neighbors becomes computationally ex-

pensive in a large-dimensional space. Any compromise or

approximation in diversity estimate to make the computations

faster may cause an unacceptable distribution of solutions at

the end.

3. Recombination operation may be inefficient: In a many-

objective problem, if only a handful of solutions are to be

found, the solutions are likely to be widely separated from

each other. In a population having distant solutions, the effect

of recombination operator (which is considered as a key search

operator in an EMO) becomes questionable. Thus, although

parent solutions may be close to the Pareto-optimal front, their

offspring solutions need not be near the front.

4. Representation of trade-off surface is difficult: To represent

a higher dimensional trade-off surface, exponentially more

points are needed. Thus, the population size needed to rep-

resent the Pareto-optimal front becomes large. Although with

the computing hardware available today a large population can

be used in an EMO, it is certainly difficult for a decision-maker

to consider a large number of trade-off points.
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5. Visualization is difficult: Finally, although it is not a

matter for optimization, eventually a visualization of a higher-

dimensional trade-off front may be difficult for many-objective

problems.

The first two difficulties can only be alleviated by major

modifications to the existing EMO methodologies. The third

difficulty can be taken care of by the use of a mating restriction

scheme or special recombination scheme (such as SBX with a

large distribution index [10]). The fourth and fifth difficulties

are common to all many-objective optimization problems and

are of concerns to decision-making tasks usually followed after

a set of Pareto-optimal solutions are found.

B. Are EMO Hopeless for Many Objectives?

The above descriptions may provide an impression that

EMO algorithms may not be useful for handling many-

objective optimization problems. But we suggest different

remedies for the above difficulties.

First, existing EMO algorithms may still be useful in finding

a preferred subset of solutions from the complete Pareto-

optimal set. Although the preferred subset will still be many-

dimensional, since the targeted solutions are focused in a

small region on the Pareto-optimal front, most of the above

difficulties will be alleviated by this principle [11].

Second, many problems in practice, albeit having many

objectives, often degenerate to result in a low-dimensional

Pareto-optimal front [7], [3], [12]. In such problems, identifi-

cation of redundant objectives can be integrated with an EMO

to find the Pareto-optimal front that is low-dimensional.

Third, despite the use of existing EMO techniques to the

above two scenarios, the principle of EMO methodologies can

be modified in at least the following two ways to solve generic

many-objective optimization problems.

1. Use of special domination principle: The first difficulty

mentioned above can be alleviated by using a special domina-

tion principle that will adaptively discretize the Pareto-optimal

front and find a well-distributed set of points. For example, the

use of 𝜖-domination principle [13], [14] will make all points

within 𝜖 distance from a Pareto-optimal points 𝜖-dominated

and hence the process will generate into a finite number of

Pareto-optimal points as target. Such a consideration will also

alleviate the second difficulty of diversity preservation.

2. Use of predefined multiple targeted search: This principle

directly addresses the second difficulty mentioned above. In-

stead of adaptively creating a diverse set of solutions, multiple

predefined targeted searches can be set by the algorithm.

Since optimal points are found corresponding to each of the

targeted search task, the first difficulty of dealing with a large

non-dominated set does not arise. Recombination issue can

be alleviated by using a mating restriction scheme in which

two solutions from neighboring targets are participated in

the recombination operation. There are at least two ways to

implement the predefined multiple targeted search idea:

(a) A set of predefined search directions spanning the entire

range of Pareto-optimal front can be specified beforehand

and multiple searches can be performed along each direction.

Since the search directions are widely distributed, the obtained

optimal points are also likely to be widely distributed on

the Pareto-optimal front in most problems. To ensure the

true range of the Pareto-optimal set, ideal and nadir points

[15] must be known. However, if the objectives are somehow

normalized to take non-negative values (a trick often used in

multi-objective optimization studies), a uniformly distributed

set of search directions on the first quadrant can be used.

Recently proposed MOEA/D procedure [2] uses this concept.

(b) Instead of multiple search directions, multiple predefined

reference points can be specified for this purpose. Thereafter,

an achievement scalarizing function (or other MCDM tech-

niques) formed at each reference point can be solved to find

set of widely distributed set of Pareto-optimal points. One

such implementation was proposed recently [6] and this paper

suggests another approach following this principle.

MOEA/D [2] uses a predefined set of weight vectors to

maintain a diverse set of trade-off solutions. To start with,

every population member (with a size same as the number of

weight vectors) is associated with a weight vector randomly.

Thereafter, two solutions from neighboring weight vectors are

mated and an offspring solution is created. The offspring is

then associated with one or more weight vectors based on a

performance metric that uses either the Tchebyshev measure

or a penalized distance measure from the ideal point. An

external population maintains the non-dominated solutions.

The first two difficulties mentioned above are negotiated by

using an explicit set of weight vectors to find points and

the third difficulty is alleviated by using a mating restriction

scheme. However, MOEA/D requires two parameters – penalty

parameter and a niching parameter defining the extent of

neighborhood – that must be set right. Moreover, authors

of MOEA/D have not suggested any efficient procedure for

handling constraints using MOEA/D, but a penalty based

approach exists [16]

A recent study [6] extended the NSGA-II procedure to

suggest a hybrid NSGA-II (HN algorithm) for handling three

and four-objective problems. Combined population members

are projected on a hyper-plane and a clustering operation is

performed on the hyper-plane to select a desired number of

clusters (user-defined). Thereafter, based on the diversity of

the population, either a local search operation on a random

cluster member is used to move the solution closer to the

Pareto-optimal front or a diversity enhancement operator is

used to choose population members from all clusters. Since

no targeted and distributed search is used, the approach is more

generic than that in MOEA/D or even the procedure suggested

in this paper. However, the efficiency of HN algorithm for

problems having more than four objectives is yet to be

investigated to suggest its use for many-objective problems.

III. PROPOSED ALGORITHM: MO-NSGA-II

The basic framework of the proposed many-objective

NSGA-II (or MO-NSGA-II) remains similar to the original

NSGA-II algorithm [17] with significant changes in its selec-

tion mechanism. We first present a brief description of the



original NSGA-II algorithm.

Let us consider 𝑡-th generation of NSGA-II algorithm.

Suppose parent population at this generation is 𝑃𝑡 and its size

is 𝑁 , while the child population is 𝑄𝑡 which will also have

𝑁 members. The first step is to choose the best 𝑁 members

from the combined parent and child population 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

(of size 2𝑁 ), thus preserving the elite population members.

To achieve this, first, the combined population 𝑅𝑡 is sorted

according to different non-domination levels (𝐹1, 𝐹2 and so

on). Then, each non-domination level is selected one at a

time, starting from 𝐹1, till no further level can be included

without increasing the population size of 𝑃𝑡+1. Let us say the

last level included is the 𝑙-th level. Thus, all solutions from

level (𝑙+1) onwards are neglected. In most situations, the last

accepted level (𝑙-th level) cannot be completely included. In

such a case, only those solutions are kept that will maximize

the diversity in chosen solutions. In NSGA-II, this is achieved

through a computationally quick niche-preservation operator

which computes the crowding distance for every last level

member as the summation of objective-wise distance between

two neighboring solutions. Thereafter, the solutions having

larger crowding distance values are chosen.

We now discuss the modifications made on the NSGA-II

procedure. As mentioned before, MO-NSGA-II uses a prede-

fined set of reference points to ensure diversity in obtained

solutions. For 𝑀 objectives, Das and Dennis [18] suggested a

systematic procedure of creating a set of reference points on

a hyper-plane that lies on the first quadrant and makes equal

angle with each objective axis. The intercept on each axis is at

one and 𝑝 divisions are considered along each objective. The

total number of reference points is given by:

𝐻 =

(

𝑀 + 𝑝− 1

𝑝

)

. (1)

For a three-objective problem (𝑀 = 3), the reference points

are created on a triangle with apex at (1, 0, 0), (0, 1, 0) and

(0, 0, 1). If four divisions (𝑝 = 4) are chosen for each objective

axis, 𝐻 =
(

6

4

)

or 15 reference points will be created. In

the proposed MO-NSGA-II, in addition to emphasizing non-

dominated solutions, we then emphasize population members

which are closest to each of these reference points, thereby en-

suring a wide diversity among obtained solutions. We describe

the procedure in the following paragraphs.

First, all population members from non-dominated front

level 1 to level (𝑙 − 1) are included in 𝑃𝑡+1. For choosing

the remaining 𝑘 = 𝑁 −
∑𝑙−1

𝑖=1
𝐹𝑖 population members from

the last front 𝐹𝑙, all population members from level 1 to level

𝑙 are considered to constitute the set 𝑆𝑡 and following steps

are used:

1. Creation of hyper-plane: The ideal point of 𝑆𝑡 is determined

by identifying minimum value (𝑓𝑖) of each objective function

and by constructing the ideal point 𝑧 = (𝑓1, 𝑓2, . . . , 𝑓𝑀 ). Each

objective value of 𝑆𝑡 is then translated by subtracting objective

𝑓𝑖 by 𝑓𝑖, so that the ideal point of translated 𝑆𝑡 becomes a

zero vector. We denote this translated objective as 𝑓 ′
𝑖(x) =

𝑓𝑖(x)−𝑓𝑖. Thereafter, the extreme point in each objective axis

(with weight vector w being the axis direction) is identified

by finding the solution (x ∈ 𝑆𝑡) that makes the following

achievement scalarizing function minimum:

𝐴𝑆𝐹 (x,w) =
𝑀

max
𝑗=1

𝑓 ′
𝑖(x)/𝑤𝑖, for x ∈ 𝑆𝑡. (2)

For 𝑤𝑖 = 0, we replace it with 10−6. For each objective

direction, this will result in an extreme solution. These 𝑀
extreme solutions are then used to constitute a hyper-plane,

which is then extended to reach the translated objective axes.

The reference points (𝐻 of them) are then re-calculated

at this hyper-plane. Since the hyper-plane is constructed at

each generation from 𝑆𝑡 population members, the proposed

MO-NSGA-II procedure adaptively builds a suitable hyper-

planeb at every generation. This enables MO-NSGA-II to solve

problems having a Pareto-optimal front whose objective values

may be differently scaled. The ideal and extreme points are

updated if a better ideal or extreme point is found.

2. Emphasize less-crowded solutions: To determine an extent

of crowding of solutions (𝑆𝑡) near each reference point, we

project all solutions on the created hyper-plane, as shown

in Figure 1 and each projected solution is associated with a

reference point that is closest to the projected solution. Thus,
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Fig. 1. Projecting points on to the hyper-plane.

for each reference point, there will be a cluster of solutions

that are associated with it. With 𝐻 reference points, ideally a

population of size 𝑁 should have an average 𝜌ideal = 𝑁/𝐻
solutions per reference point. If any cluster around a reference

point has less solutions than 𝜌ideal, the reference point is said

to be deficient and is assigned a deficiency count equal to

(𝜌ideal−𝜌actual), where 𝜌actual is the actual count of projected

points associated with the reference point. Thereafter, the most

deficient reference point is chosen (tie is broken by choosing

a random cluster) and the solution in 𝐹𝑙 that has minimum

ASF value with respect to the most deficient reference point

is selected. The deficiency count of this reference point is then

reduced by one and the next most deficient reference point is

chosen and the closest solution is identified. This process is

continued till all 𝑘 members from 𝐹𝑙 are chosen to fill up

𝑁 members of 𝑃𝑡+1. As a final consideration, the cluster for

each reference point is checked and if it is empty, the reference

point is considered defunct, and its allocated ideal cluster size



𝜌ideal is distributed among its neighboring reference points

(say 𝑚 of them). In other words, the deficiency count of each

neighboring reference point is increased by 𝜌ideal/𝑚. This

aspect of our proposed algorithm helps solve problems having

a disjointed, discontinuous, or biased Pareto-optimal front. The

clustering procedure is demonstrated in Figure 2.
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Fig. 2. Clustering points on the hyper-plane.

3. Modify tournament selection: After 𝑃𝑡+1 is formed, it is

used to create a new offspring population 𝑄𝑡+1 by applying

tournament selection, recombination and mutation operators.

The tournament selection operator considers two solutions

from 𝑃𝑡+1 and selects the better solution. This is where we

use a hierarchy of considerations. First, if one solution belongs

to a better non-dominated level than the other, the former

is clearly chosen. Second, if both solutions being compared

belong to the same non-domination level but lie on clusters

of different reference points, the deficiency counts of their

respective reference points are compared. The one lying on a

cluster having larger deficiency count is chosen. Third, if two

solutions being compared lie on the same non-domination level

and also on the same cluster, their ASF values are computed

using the corresponding reference point and the one having

smaller value is chosen. All these careful comparisons make

sure non-dominated solutions are emphasized, followed by

solutions that are associated with less-represented reference

points, finally followed by solutions are that have better ASF

value for the reference points.

4. Recombination with a bias for near-parent solutions: Since

reference points are likely to be widely separated from each

other, the selected population members 𝑃𝑡+1 are also likely

to be distant from each other. Therefore, we suggest using

a recombination operator that will create offspring solutions

closer to the parents than away from them. For all our sim-

ulations we have used the simulated binary crossover (SBX)

operator [10] with a large distribution index so that there is a

significant probability of creating a child solution close to the

parent solutions.

After the offspring population 𝑄𝑡+1 is created, a combined

population 𝑅𝑡+1 = 𝑃𝑡+1 ∪ 𝑄𝑡+1 is formed and the above

procedure is applied again. The overall procedure is stopped

when a pre-specified number of generations have elapsed.

TABLE I
NUMBER OF CLUSTERS AND POPULATION SIZES USED FOR DIFFERENT

MANY-OBJECTIVE OPTIMIZATION PROBLEMS.

No. of MO-NSGA-II-II MOEA/D
𝑀 Clusters pop. size pop. size

3 91 92 91
5 126 128 126
8 330 332 330
10 220 220 220

The popularity of NSGA-II is attributed to its parameter-

less approach. The MO-NSGA-II proposed here also does

not require any additional parameter except an idea of the

total number of trade-off points (≈ 𝐻) desired by the user.

For the given number of objectives (𝑀 ) in the problem, the

corresponding number of divisions (𝑝) can be computed using

Equation 1.

IV. RESULTS

In this section, we present simulation results of MO-NSGA-

II. Wherever applicable, we compare its performance with

MOEA/D. The extended MOEA/D for constraint handling

[16] involves further parameters and is not considered here.

Besides, we shows a few problem classes in which MOEA/D

does not work well, whereas M-MSGA-II has an edge.

In all simulations, we have used a population of size 𝑁
that is smallest multiple of four higher than 𝐻 . Table I shows

the number of reference points and population size used for

different test-problems used in this study. We have also set

𝑝𝑐 = 1, 𝑝𝑚 = 1/𝑛 (𝑛 is the number of variables), 𝜂𝑐 =
20 and 𝑒𝑡𝑎𝑚 = 20. In all cases, we apply all algorithms 20

times from different initial populations. In order to have a

fair comparison for both the algorithms, weight vectors for

MOEA/D are derived from the reference points used in MO-

NSGA-II.

A. Unconstrained Problems

First, we consider the well-known DTLZ1, DTLZ2, DTLZ3

and DTLZ4 problems [19]. We vary the number of objectives

from three to 10. Figure 3 shows the final solutions for the

three-objective DTLZ1 problem using 𝑝 = 12. Equation 1

reveals that this will form
(

𝐻=3+12−1

12

)

or 91 points. For this

problem, we have chosen a population of size 92. The figure

demonstrates the efficacy of MO-NSGA-II.

Similar results are shown for three-objective DTLZ2 with

𝑝 = 12. Again, a nicely distributed set of points are obtained.

Results in three, five, eight and 10-objective problems are

shown in Table II. Since visual illustration is not possible for

more than three-objective problems, we present measures that

will test both convergence and diversity of obtained solutions.

The column showing the Convergence Error presents

the worst, average, and best convergence error computed as

follows. Since the exact Pareto-optimal front is known for

these problems in the form of Φ(f∗) = 0, the worst, average,

and best ∣Φ(f∗)∣ for all obtained non-dominated solutions

are presented. A small value is desired for a well-converged

set of solutions. The next five columns represent a diversity
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three-objective DTLZ2.

0

0.5

1

0

5

10

0

20

40

60

80

100

120

f
2

f
1

f
3

0

0.5

1

0

5

10

0

50

100

f
1

f
2

f
3

Fig. 8. Front obtained by MO-NSGA-II for scaled
three-objective DTLZ2.

estimate of solutions. All 𝐻 reference points are projected

on to the Pareto-optimal surface (Φ(f∗) = 0). Thereafter, the

Euclidean distance between the projected reference point and

the closest obtained point is computed. An average distance

(𝑑) between two neighboring reference points is calculated.

The table shows the number of points out of 𝐻 points that are

within 𝜁% of 𝑑 and 𝜁 is varied from 5 to 100. Closer the value

to 𝐻 , better is the diversity in solutions. In DTLZ1, DTLZ2

and DTLZ3 problems, MOEA/D with PBI approach seems

to perform well up to 8-objective problems, but MO-NSGA-

II performs better on 10-objective problems, in general. For

DTLZ4, the performance of MOEA/D is poor. Also, in most

occasions, the convergence of solutions to the Pareto-optimal

front is better with MO-NSGA-II.

B. More Unconstrained Problems

The above DTLZ problems have one aspect common – all

objectives are equally scaled for the Pareto-optimal solutions.

To investigate whether the performance of both MOEA/D and

MO-NSGA-II methods are due to this property of the DTLZ1-

4 problems, we modify DTLZ1 and DTLZ2 to have differently

scaled objective values. Objective 𝑓𝑖 gets multiplied by 10𝑖−1,

so that for the three-objective DTLZ1, the first objective is

multiplied by one and the third objective is multiplied by 100.

Both MO-NSGA-II and MOEA/D (with PBI approach)

are applied on these two problems with identical parameter

settings. Figure 5 shows final front obtained by MOEA/D

and Figure 8 shows the same by MO-NSGA-II on scaled

DTLZ1 problem. The strength of MO-NSGA-II in handling

scaled problems is clear from this study. Apparently, MOEA/D

suffers from scaling of objectives. Similar results are observed

for the scaled DTLZ2 problem as well (see Figures 7 and

8). Table III shows convergence and diversity measures for

problems up to 10 objectives of the scaled DTLZ1 and DTLZ2

problems. For the 10-objective problems, we have used a

scaling factor of 3𝑖−1, so that 𝑓10 is multiplied by 39 or 19,683.

The original MOEA/D study [2] also suggested a normalized

Tchebyshev approach for handling scaled problems. We apply

the modified MOEA/D algorithm to the above scaled problems

using similar population size and other parameters as before.

Table IV shows that for three-objective DTLZ1 and DTLZ2

problems, out of 91 weight vectors, only 4-12 of them could

find a representative solution. Based on this poor outcome,

we do not show results of this approach on higher-objective

scaled problems.

Next, we consider a three-objective WFG-illustrated prob-

lem [20] for which the Pareto-optimal front is inverted to

that in DTLZ2. While the vertices of the triangular hyper-

plane lies on the objective axes, the vertices of the Pareto-

optimal front lie on the three orthogonal planes. All parameter

settings are same as before. Figure 9 shows the obtained

Pareto-optimal solutions, all 91 reference points, the defunct

reference points (holes), and neighboring reference points to

the defunct reference points. It is interesting to observe how



TABLE II
CONVERGENCE AND DIVERSITY MEASURES FOR MO-NSGA-II AND MOEA/D ON DTLZ PROBLEMS.

MO-NSGA-II MOEA/D
𝑀 / Convergence Diversity estimate: No. of Points Convergence Diversity estimate: No. of Points

Problem 𝐻 Gen. Error 5% 10% 20% 50% 100% Error 5% 10% 20% 50% 100%

DTLZ1 4.11× 10
−4 85 88 90 90 91 7.75× 10−4

89 91 91 91 91

3 750 1.43× 10
−4 87 90 91 91 91 4.00× 10−4

91 91 91 91 91

𝐻 = 91 1.64× 10
−5 89 90 91 91 91 1.50× 10−4

91 91 91 91 91

2.72× 10
−5 124 126 126 126 126 1.75× 10−4

126 126 126 126 126

5 1500 2.70× 10
−6

126 126 126 126 126 4.95× 10−5
126 126 126 126 126

𝐻 = 126 2.70× 10
−7

126 126 126 126 126 1.28× 10−5
126 126 126 126 126

2.00× 10
−7 234 301 322 329 330 1.89× 10−5

330 330 330 330 330

8 2500 1.00× 10
−7 251 307 324 330 330 1.74× 10−6

330 330 330 330 330

𝐻 = 330 4.82× 10
−11 266 310 325 330 330 3.74× 10−7

330 330 330 330 330

1.40× 10
−6

219 220 220 220 220 3.07× 10−3 212 220 220 220 220

10 5000 1.00× 10
−7

220 220 220 220 220 3.81× 10−5 219 220 220 220 220

𝐻 = 220 3.82× 10
−12

220 220 220 220 220 9.25× 10−4
220 220 220 220 220

DTLZ2 2.78× 10
−6 82 88 89 91 91 3.00× 10−6

91 91 91 91 91

3 750 1.22× 10
−6 83 89 91 91 91 2.74× 10−6

91 91 91 91 91

𝐻 = 91 5.56× 10
−7 85 90 91 91 91 9.79× 10−7

91 91 91 91 91

2.03× 10−6 121 124 126 126 126 4.17× 10
−7

126 126 126 126 126

5 1500 8.61× 10−7 123 125 126 126 126 5.21× 10
−7

126 126 126 126 126

𝐻 = 126 4.34× 10−7 124 126 126 126 126 2.31× 10
−7

126 126 126 126 126

3.38× 10−7 328 330 330 330 330 2.10× 10
−7

330 330 330 330 330

8 3500 1.97× 10−7 329 330 330 330 330 1.00× 10
−8

330 330 330 330 330

𝐻 = 330 9.33× 10−8
330 330 330 330 330 1.20× 10

−11
330 330 330 330 330

6.95× 10
−7

220 220 220 220 220 2.00× 10−5 200 200 200 200 200

10 4000 3.28× 10−7
220 220 220 220 220 2.22× 10

−7 209 209 210 210 210

𝐻 = 220 1.40× 10−7
220 220 220 220 220 2.07× 10

−8 210 210 210 210 210

DTLZ3 7.75× 10
−3 0 24 79 89 90 9.56× 10−3 0 32 85 91 91

3 1000 3.60× 10
−3

36 78 86 91 91 6.83× 10−3 4 86 91 91 91

𝐻 = 91 1.40× 10
−3 61 81 88 91 91 3.18× 10−3

91 86 91 91 91

9.12× 10−4 122 124 125 126 126 2.99× 10
−4

126 126 126 126 126

5 3000 6.23× 10−4 123 125 126 126 126 1.34× 10
−4

126 126 126 126 126

𝐻 = 126 1.66× 10−4 124 126 126 126 126 7.53× 10
−5

126 126 126 126 126

1.69× 10−5 313 323 327 330 330 1.16× 10
−5

330 330 330 330 330

8 4500 2.51× 10−6 317 326 328 330 330 1.00× 10
−6

330 330 330 330 330

𝐻 = 330 1.67× 10
−7 320 329 330 330 330 2.10× 10−7

330 330 330 330 330

1.98× 10
−4

216 216 217 220 220 7.01× 10−3 149 161 169 170 170

10 6000 3.76× 10
−5

219 220 220 220 220 1.81× 10−4 156 170 178 179 180

𝐻 = 220 2.83× 10
−6

220 220 220 220 220 3.20× 10−3 186 195 196 197 200

DTLZ4 5.80× 10
−8

8 8 8 9 15 1.87× 10−4 1 1 1 1 1

3 1500 7.58× 10
−9

83 88 89 90 91 6.66× 10−8 1 1 1 1 1

𝐻 = 91 1.00× 10
−10

86 89 90 91 91 1.00× 10−10 1 1 1 1 1

5.99× 10
−8

41 41 41 41 66 6.18× 10−7 1 1 1 1 1

5 3000 4.23× 10
−9

47 48 48 48 71 2.83× 10−7 1 1 1 1 1

𝐻 = 126 1.00× 10
−10

125 126 126 126 126 1.00× 10−10 55 55 55 55 55

1.26× 10
−7

205 210 210 210 213 7.08× 10−7 1 1 1 1 1

8 4000 5.34× 10
−8

321 327 329 330 330 1.40× 10−7 35 35 35 35 41

𝐻 = 330 1.00× 10
−10

325 329 330 330 330 1.00× 10−8 145 145 145 145 154

multiple reference points become defunct with no associated

Pareto-optimal solutions and how neighboring reference points

to the defunct ones help find boundary Pareto-optimal points.

Figure 10 shows that MO-NSGA-II obtained solutions that are

close to the true Pareto-optimal surface.

C. Constrained Problems

To test how our proposed MO-NSGA-II performs on con-

strained problems, we consider two three-objective problems:

Constr1 :
Minimize 𝑓𝑖 = 𝑥𝑖, 𝑖 = 1, 2, 3

subject to 𝑔𝑗 = (𝑥𝑗/2)
2 +

(

∑3

𝑖=1,𝑖 ∕=𝑗 𝑥
2
𝑖

)

≥ 1, 𝑗 = 1, 2, 3.

(3)

All Pareto-optimal solutions make at least one constraint active

and lie on specific patches of the ellipsoids.

The second constrained problem Constr2 is the DTLZ1

problem with the following constraint:

𝑔(x) =
𝑀
∑

𝑖=1

(𝑓𝑖(x)− 𝜆)2 − 0.25𝑀𝜆2 ≥ 0, (4)

where 𝜆 =

∑

𝑀

𝑖=1
𝑓𝑖

𝑀
. The constraint makes an infeasible hole

in the middle of the triangular Pareto-optimal front.

To handle constraints, we use the constrained domination

principle [17], instead of the original domination principle in

deciding non-dominated front members. The rest of the MO-

NSGA-II is identical to that described before. MO-NSGA-



TABLE III
CONVERGENCE AND DIVERSITY MEASURES IN THE CASE OF SCALED DTLZ PROBLEMS.

MO-NSGA-II MOEA/D
𝑀 / Convergence Diversity estimate: No. of Points Convergence Diversity estimate: No. of Points

Problem 𝐻 Gen. Error 5% 10% 20% 50% 100% Error 5% 10% 20% 50% 100%

DTLZ1 2.54× 10−4
88 91 91 91 91 5.25× 10−4 1 1 2 3 6

3 750 7.11× 10−5
90 91 91 91 91 2.49× 10−4 1 1 2 3 6

𝐻 = 91 1.67× 10−5
90 91 91 91 91 1.15× 10−4 1 1 2 3 6

6.32× 10−5
126 126 126 126 126 2.50× 10−4 15 21 29 46 56

5 1500 5.20× 10−6
126 126 126 126 126 1.97× 10−4 15 21 29 46 56

𝐻 = 126 4.31× 10−7
126 126 126 126 126 1.23× 10−4 15 21 29 46 56

7.15× 10−5
326 330 330 330 330 4.67× 10−6 120 126 161 203 210

8 2500 1.45× 10−6
329 330 330 330 330 1.50× 10−6 120 126 164 203 210

𝐻 = 330 1.56× 10−7
330 330 330 330 330 6.55× 10−7 120 126 164 203 210

4.62× 10−6
220 220 220 220 220 1.27× 10−3 55 77 83 119 156

10 5000 3.10× 10−7
220 220 220 220 220 1.15× 10−2 55 77 83 119 156

𝐻 = 220 8.94× 10−9
220 220 220 220 220 1.21× 10−2 55 77 83 119 156

DTLZ2 1.47× 10−6
57 75 85 90 91 6.11× 10−7 1 1 1 1 1

3 750 6.22× 10−7
59 76 87 91 91 3.34× 10−7 1 1 1 1 1

𝐻 = 91 2.92× 10−7
62 79 88 91 91 1.00× 10−10 1 1 1 1 1

3.05× 10−6
61 67 112 126 126 2.49× 10−7 5 6 11 19 21

5 1500 1.15× 10−6
61 70 115 126 126 1.40× 10−7 5 6 11 19 21

𝐻 = 126 5.68× 10−7
63 78 121 126 126 1.00× 10−10 5 6 11 19 21

1.26× 10−6
129 148 168 186 211 8.05× 10−8 70 70 105 126 126

8 3500 3.46× 10−7
144 156 174 192 214 1.00× 10−10 70 70 105 126 126

𝐻 = 330 1.60× 10−7
148 161 176 195 216 1.00× 10−10 70 70 105 126 126

9.14× 10−7
166 178 220 220 220 1.23× 10−8 35 50 61 84 112

10 4000 4.78× 10−7
173 204 220 220 220 3.25× 10−9 35 50 61 84 112

𝐻 = 220 1.89× 10−7
175 219 220 220 220 2.78× 10−9 35 50 61 84 112
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Fig. 9. Reference points and obtained solutions by MO-NSGA-II for WFG-
illustrated problem.

II parameters are also same as before. Figures 11 and 12

demonstrate clearly that MO-NSGA-II is able to find the

feasible Pareto-optimal solutions close to the chosen reference

points.

Table V shows the performance of MO-NSGA-II on

Constr1 problem having up to 10 objectives. MO-NSGA-

II approach is also able to find feasible front for higher-

objective version of Constr2 problem as well, but due to

space restrictions, we do not show those results here.

V. CONCLUSIONS

There is a growing need for efficient algorithms for handling

many-objective optimization problems. In this paper, we have

suggested difficulties of existing domination-based EMO al-

gorithms for solving many-objective problems and proposed a

TABLE IV
CONVERGENCE AND DIVERSITY MEASURES FOR THREE-OBJECTIVE

SCALED DTLZ PROBLEMS USING NORMALIZED TCHEBYSHEV METRIC

BASED MOEA/D.

MOEA/D-TCH
Convergence Diversity estimate: Points out of 91

Problem Error 5% 10% 20% 50% 100%

DTLZ1 2.44× 10−4 4 6 6 6 8

3-obj 7.08× 10−5 4 6 6 6 8

4.80× 10−5 6 6 8 8 10

DTLZ2 1.26× 10−7 6 10 10 10 12

3-obj 1.00× 10−8 8 10 10 10 12

9.78× 10−9 8 10 10 10 12

TABLE V
PERFORMANCE OF MO-NSGA-II ON Constr1 PROBLEM HAVING THREE

TO 10 OBJECTIVES. MORE POINTS, BETTER IS THE DIVERSITY.

Convergence Diversity estimate: No. of Points
𝑀 Gen. Error 5% 10% 20% 50% 100%

2.51× 10−3 7 16 33 62 76

3 750 8.03× 10−4 9 18 35 66 79

2.05× 10−4 10 22 40 71 87

6.99× 10−3 27 51 81 115 124

5 1500 1.71× 10−3 28 54 86 116 124

4.72× 10−4 33 58 90 117 125

1.28× 10−2 83 175 254 309 323

8 3000 3.72× 10−3 100 185 257 313 325

1.01× 10−3 108 189 262 315 327

2.81× 10−3 158 197 208 214 218

10 5000 7.77× 10−4 188 202 209 216 218

1.84× 10−4 195 203 211 217 219
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Fig. 10. Trade-off front obtained by MO-NSGA-II for WFG-illustrated
problem.
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Fig. 12. Trade-off front obtained by MO-NSGA-II for problem Constr2.

reference-point based NSGA-II (or MO-NSGA-II) algorithm.

The procedure uses an adaptive reference-point update scheme,

a clustering based selection scheme and preference for less-

crowded reference points for finding and maintaining trade-off

solutions. On a number of unconstrained and constrained prob-

lems having three to 10 objectives, MO-NSGA-II has consis-

tently produced well-converged and well-diversified solutions.

A nice feature of the proposed MO-NSGA-II algorithm is that

it does not require any additional parameter. With these proof-

of-principle studies, more rigorous tests are now needed to

fully investigate the potential of MO-NSGA-II.

ACKNOWLEDGMENT

The authors would like to thank Michigan State University,

East Lansing, for supporting this work during their stay.

REFERENCES

[1] E. J. Hughes, “Evolutionary many-objective optimisation: many once
or one many?” in IEEE Congress on Evolutionary Computation (CEC-

2005), 2005, pp. 222–227.
[2] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm

based on decomposition,” Evolutionary Computation, IEEE Transactions

on, vol. 11, no. 6, pp. 712–731, 2007.
[3] D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, “Ob-

jective reduction in many-objective optimization: Linear and nonlinear
algorithms,” IEEE Transactions on Evolutionary Computation, in press.
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