
Handling Massive N -Gram Datasets E�iciently

GIULIO ERMANNO PIBIRI and ROSSANO VENTURINI, University of Pisa and ISTI-CNR, Italy

Abstract. This paper deals with the two fundamental problems concerning the handling of large n-gram
language models: indexing, that is compressing the n-gram strings and associated satellite data without
compromising their retrieval speed; and estimation, that is computing the probability distribution of the strings
from a large textual source. Performing these two tasks e�ciently is fundamental for several applications in the
�elds of Information Retrieval, Natural Language Processing and Machine Learning, such as auto-completion
in search engines and machine translation.

Regarding the problem of indexing, we describe compressed, exact and lossless data structures that achieve,
at the same time, high space reductions and no time degradation with respect to state-of-the-art solutions
and related software packages. In particular, we present a compressed trie data structure in which each word
following a context of �xed length k , i.e., its preceding k words, is encoded as an integer whose value is
proportional to the number of words that follow such context. Since the number of words following a given
context is typically very small in natural languages, we lower the space of representation to compression levels
that were never achieved before. Despite the signi�cant savings in space, our technique introduces a negligible
penalty at query time. Compared to the state-of-the-art proposals, our data structures outperform all of them
for space usage, without compromising their time performance. More precisely, the most space-e�cient
proposals in the literature, that are both quantized and lossy, are not smaller than our trie data structure and
up to 5 times slower. Conversely, we are as fast as the fastest competitor, but also retain an advantage of up to
65% in absolute space.

Regarding the problem of estimation, we present a novel algorithm for estimating modi�ed Kneser-Ney

language models, that have emerged as the de-facto choice for language modeling in both academia and
industry, thanks to their relatively low perplexity performance. Estimating such models from large textual
sources poses the challenge of devising algorithms that make a parsimonious use of the disk. The state-of-the-
art algorithm uses three sorting steps in external memory: we show an improved construction that requires
only one sorting step thanks to exploiting the properties of the extracted n-gram strings. With an extensive
experimental analysis performed on billions of n-grams, we show an average improvement of 4.5× on the
total running time of the state-of-the-art approach.

Authors’ address: Giulio Ermanno Pibiri; Rossano Venturini, University of Pisa and ISTI-CNR, Pisa, Italy, giulio.pibiri@di.
unipi.it, rossano.venturini@unipi.it.

© 2018

ar
X

iv
:1

80
6.

09
44

7v
1

 [
cs

.I
R

]
 2

5
Ju

n
20

18

2 Giulio Ermanno Pibiri and Rossano Venturini

1 INTRODUCTION

The use of n-grams is wide and vital for many tasks in Information Retrieval, Natural Language
Processing and Machine Learning, such as: auto-completion in search engines [2, 37, 38], spelling
correction [34], similarity search [33], identi�cation of text reuse and plagiarism [28, 48], automatic
speech recognition [30] and machine translation [25, 44], to mention some of the most notable.

As an example, query auto-completion is one of the key features that any modern search engine
o�ers to help users formulate their queries. The objective is to predict the query by saving keystrokes:
this is implemented by reporting the top-k most frequently-searched n-grams that follow the words
typed by the user [2, 37, 38]. The identi�cation of such patterns is possible by traversing a data
structure that stores the n-grams as seen by previous user searches. Given the number of users
served by large-scale search engines and the high query rates, it is of utmost importance that such
data structure traversals are carried out in a handful of microseconds [2, 15, 30, 37, 38]. Another
noticeable example is spelling correction in text editors and web search. In their basic formulation,
n-gram spelling correction techniques work by looking up every n-gram in the input string in
a pre-built data structure in order to assess their existence or return a statistic, e.g., a frequency
count, to guide the correction [34]. If the n-gram is not found in the data structure it is marked as a
misspelled pattern: in such case correction happens by suggesting the most frequent word that
follows the pattern with the longest matching history [15, 30, 34].

At the core of all the mentioned applications lies an e�cient data structure mapping n-grams to
their associated satellite data, e.g., a frequency count representing the number of occurrences of the
n-gram or probability/backo� weights for word-predicting computations [25, 44]. The e�ciency of
the data structure should come both in time and space, because modern string search and machine
translation systems make very frequent queries over databases containing several billion n-grams
that often do not �t in internal memory [15, 30]. To reduce the memory-access rate and, hence, speed
up the execution of the retrieval algorithms, the design of an e�cient compressed representation
of the data structure appears as mandatory. While several solutions have been proposed for the
indexing and retrieval of n-grams, either based on tries [23] or hashing [35], their practicality is
actually limited because of some important ine�ciencies that we discuss below.

Context information, such as the fact that relatively few words may follow a given context, is not
currently exploited to achieve better compression ratios. When query processing speed is the main
concern, space e�ciency is almost completely neglected by not compressing the data structure
using sophisticated encoding techniques [25]. In fact, space reductions are usually achieved by
either: lossy quantization of satellite values, or by randomized approaches with false positive
allowed [52]. The most space-e�cient and lossless proposals still employ binary search over the
compressed representation to lookup for a n-gram: this results in a severe ine�ciency during query
processing because of the lack of a compression strategy with a fast random access operation [44].
To support random access, current methods leverage on block-wise compression with expensive
decompression of a block every time an element of the block has to be retrieved. Finally, hashing
schemes based on open addressing with linear probing result extremely large for static corpora as
long as the tables are allocated with 30 − 50% extra space to allow fast random access [25, 44].
Since a solution that is compact, fast and lossless at the same time is still missing, the �rst aim

of this paper is that of addressing the aforementioned ine�ciencies by introducing compressed
data structures that, despite their small memory footprint, support e�cient random access to the
satellite n-gram values. We refer to such problem as the on of indexing n-gram datasets.

The other correlated problem that we study in this paper is the one of computing the probability
distribution of the n-grams extracted from large textual collections. We refer to this second problem
as the one of estimation. In other words, we would like to create and e�cient, compressed, index

Handling Massive N -Gram Datasets E�iciently 3

that maps the n-grams of a large text to its probability of occurrence in the text. Clearly, the way
such probability is computed depends on the chosen model. This is an old problem and has received
a lot of attention: not surprisingly, several models have been proposed in the literature, such as
Laplace, Good-Turing, Katz, Jelinek-Mercer, Witten-Bell and Kneser-Ney (see [9, 10] and references
therein for a complete description and comparison).
Among the many, Kneser-Ney language models [31] and, in particular, their modi�ed version

introduced by Chen and Goodman [9], have gained popularity thanks to their relatively low-
perplexity performance. This makes modi�ed Kneser-Ney the de-facto choice for language model
toolkits. The following software libraries, widely used in both academia and industry (e.g., Google [5,
8] and Facebook [11]), all support modi�ed Kneser-Ney smoothing: KenLM [25], BerkeleyLM [44],
RandLM [52], Expgram [57], MSRLM [42], SRILM [51], IRSTLM [21] and the recent approach
based on su�x trees by Shareghi et al. [49, 50]. For such reasons, Kneser-Ney is the model we
consider in this work too and that we review in Section 4.
The current limitation of the mentioned software libraries is that estimation of such models

occurs in internal memory and, as a result, these are not able to scale to the dimensions we consider
in this work. An exception is represented by the work of Hea�eld, Pouzyrevsky, Clark, and Koehn
[26] (KenLM) that contributed an estimation algorithm involving three steps of sorting in external
memory. Their solution embodies the current state-of-art solution to the problem: the algorithm
takes, on average, as low as 20% of the CPU and 10% of the RAM of the cited toolkits [26]. Therefore,
our work aims at improving upon the I/O e�ciency of this approach.

1.1 Our contributions

(1) We introduce a compressed trie data structure in which each level of the trie is modeled as a
monotone integer sequence that we encode with Elias-Fano [18, 19] as to e�ciently support
random access operations and successor queries over the compressed sequence. Our hashing
approach leverages on minimal perfect hash in order to use tables of size equal to the number of
stored patterns per level, with one random access to retrieve the relative n-gram information.

(2) We describe a technique for lowering the space usage of the trie data structure, by reducing
the magnitude of the integers that form its monotone sequences. Our technique is based on
the observation that few distinct words follow a prede�ned context, in any natural language.
In particular, each word following a context of �xed length k , i.e., its preceding k words, is
encoded as an integer whose value is proportional to the number of words that follow such
context.

(3) We present an extensive experimental analysis to demonstrate that our technique o�ers a
signi�cantly better compression with respect to the plain Elias-Fano trie, while only introducing
a slight penalty at query processing time. Our data structures outperform all proposals at the
state-of-the-art for space usage, without compromising their time performance. More precisely,
the most space-e�cient proposals in the literature, that are both quantized and lossy, are no
better than our trie data structure and up to 5 times slower. Conversely, we are as fast as the
fastest competitor, but also retain an advantage of up to 65% in absolute space.

(4) We design a faster estimation algorithm that requires only one step of sorting in external
memory, as opposed to the state-of-the-art approach [26] that requires three steps of sorting.
The result is achieved by the careful exploitation of the properties of the extracted n-gram
strings. Thanks to such properties, we show how it is possible to perform the whole estimation
on the context-sorted strings and, yet, be able to e�ciently lay out a reverse trie data structure,
indexing such strings in su�x order. We show that saving two steps of sorting in external
memory yields a solution that is 2.87× faster on average than the fastest algorithm proposed in
the literature.

4 Giulio Ermanno Pibiri and Rossano Venturini

(5) We introduce many optimizations to further enhance the running time of our proposal, such
as: asynchronous CPU and I/O threads, parallel LSD radix sort, block-wise compression and
multi-threading. With an extensive experimental analysis conducted over large textual datasets,
we study the behavior of our solution at each step of estimation; quantify the impact of the
introduced optimizations and consider the comparison against the state-of-the-art. The devised
optimizations further improve the running time by 1.6× on average, making our algorithm
4.5× faster than the state-of-the-art solution.

1.2 Paper organization

Although the two problems we address in this paper, i.e., indexing and estimation, are strictly
correlated, we treat them one after the other in order to introduce the whole material in an
incremental way without burdening the exposition. In particular, we show the experimental
evaluation right after the description of our techniques for each problem, rather than deferring it to
the end of the paper. We believe this form is the most suitable to convey the results that we want
to document with this paper. In our intention, each section of this document is an independent
unit of exposition. Based on the following observations, the paper is structured as follows.
Section 2 �xes the notation and provides some basic notions about the n-grams. More detailed

background will be provided when needed in the relevant (sub-)sections of the paper.
Section 3 treats the problem of indexing. Subsection 3.1 reviews the standard data structures

used to index n-gram datasets in compressed space and how these are used by the proposals in
the literature. Subsections 3.2 and 3.3 describe our compressed data structures, whose e�ciency is
validated in Subsection 3.4 with a rich set of experiments.

Section 4 treats the problem of estimation. After reviewing the Kneser-Net smoothing technique
in Subsection 4.1, we describe the state-of-the-art approach in Subsection 4.2 because we aim
at improving the e�ciency of that algorithm. We present our improved estimation process in
Subsection 4.3 and test its performance in Subsection 4.4. We conclude the paper in Section 5.

2 BACKGROUND AND NOTATION

A language model (LM) is a probability distribution P(S) that describes how often a stringwn

1 =

w1 · · ·wn drawn from the set S appears in some domain on interest. The central goal of a language
model is to compute the probability of the word wn given its preceding history of n − 1 words,
called the context, that is: P(wn |w

n−1
1) for all wn

1 ∈ S. Informally, the goal is to predict the “next”
word following a given context.

When e�ciency is the main concern,n-gram languagemodels are adopted. An-gram is a sequence
of at most n tokens. A token can be either a single character or a word, the latter intended as a
sequence of characters delimited by a special symbol, e.g., a whitespace character. Unless otherwise
speci�ed, throughout the paper we consider n-grams as consisting of words. Since we impose
that 1 ≤ n ≤ N , where N is a small constant, (e.g., typically N = 5), dealing with strings of this
form permits to work with a context of at most N − 1 preceding words. This ultimately implies
that the aforementioned probability P(wn |w

n−1
1) =

∏
n+1
k=1 P(wk |w

k−1
1) can be approximated with∏

n+1
k=1 P(wk |w

k−1
k−N−1

). The way each N -gram probability P(wk |w
k−1
k−N−1

) is computed depends on the
chosen model.

Several models have been proposed in the literature, such as Laplace, Good-Turing, Katz, Jelinek-
Mercer, Witten-Bell and Kneser-Ney (see [9, 10] and references therein for a complete description
and comparison). For a n-gram backo�-smoothed language model, the probability of wn with

Handling Massive N -Gram Datasets E�iciently 5

contextwn−1
1 is assigned according to the following recursive equation

P(wn |w
n−1
1) =

{
P(wn |w

n−1
1) if n-gramwn

1 ∈ S

b(wn−1
1)P(wn |w

n−1
2) otherwise

that is: if the model has enough information we use the full distribution P(wn |w
n−1
1), otherwise we

backo� to the lower-order distribution P(wn |w
n−1
2) with penalty b(wn−1

1).
Clearly, the bigger the language model the more accurate the computed probability will be.

In other words, predictions will be more accurate when more n-grams are used to estimate the
probability of a word following a given context. Therefore, we would like to handle as manyn-grams
as possible: this paper describes techniques to handle several billions of n-grams. Such n-gram
strings are extracted from text, from any of its di�erent incarnations, e.g., web pages, novels, code
fragments and scienti�c articles, by adopting a sliding-window approach. A window of n words,
for 1 ≤ n ≤ N , slides over a text counting the number of times such n words appear in the text.
This counting process is usually implemented using a hash data structure, whose keys are the
distinct n-gram strings and the values the accumulated frequency counts: if the extracted n-gram is
not already present in the table, a new entry is allocated with associated value 1; otherwise the
corresponding value is incremented by 1. This process is repeated for di�erent widow sizes over
huge text corpora: this gives birth to colossal datasets in terms of number of distinct strings. As
a concrete example, if all distinct n-grams for the values of n ranging from 1 to 5 are extracted
from the Agner Fog’s manual Optimizing software in C++ [22], we obtain the following numbers of
distinct n-grams: 8761 1-grams, 38 900 2-grams, 61 516 3-grams, 70 186 4-grams and 73 187 5-grams.
Thus more than 250 thousands distinct grams for already 164 pages written in English. Google did
the same but on approximately 8 million books, or 6% of all books ever published [36], yielding a
dataset of more than 11 billion N -grams (see also Table 1). This motivates and helps understanding
the need for e�cient data structures, in both memory footprint and access speed, able to manage
such quantity of strings.

3 COMPRESSED INDEXES

The problem we tackle in this section of the paper is the one of representing in compressed space a
dataset of n-gram strings and their associated values, being either frequency counts (integers) or
probabilities (�oating points). Given a n-gram string, the compressed data structure should allow
fast random access to the corresponding associated value by means of the operation Lookup.

3.1 Related Work

In this subsection we �rst discuss the classic data structures used to represent e�ciently large
n-gram datasets, highlighting the advantages/disadvantages of these approaches in relation to the
structural properties that n-gram datasets exhibit. Next, we consider how these approaches have
been adopted by di�erent proposals in the literature. Two di�erent data structures are mostly used
to store large and sparse n-grams datasets: tries [23] and hash tables [35].

Tries.A trie is a tree data structure devised for e�cient indexing and search of string dictionaries, in
which the common pre�xes shared by the strings are represented once to achieve compact storage.
This property makes this data structure useful for storing the n-gram strings in compressed space.
In this case, each constituent word of a n-gram is associated a node in the trie and di�erent n-grams
correspond to di�erent root-to-leaf paths. These paths must be traversed to resolve a query, which
retrieves the string itself or an associated satellite value, e.g., a frequency count. Conceptually, a
trie implementation has to store a triplet for any node: the associated word, satellite value and a

6 Giulio Ermanno Pibiri and Rossano Venturini

pointer to each child node. As n is typically very small and each node has many children, tries are
of short height and dense. Therefore, these are implemented as a collection of (few) sorted arrays:
for each level of the trie, a separate array is built to contain all the triplets for that level, sorted by
the words. In this implementation, a pair of adjacent pointers indicates the sub-array listing all the
children for a word, which can be inspected by binary search.

Hash tables. Hashing is another way to implement associative arrays: for each value of n from 1
to N a separate hash table stores all grams of order n. At the location indicated by the hash function
the following information is stored: a �ngerprint value to lower the probability of a false positive
(typically the 4 or 8-byte hash of the n-gram itself) and the satellite data for the n-gram. This data
structure permits to access the speci�ed n-gram data in expected constant time. Open addressing
with linear probing is usually preferred over chaining for its better locality of accesses.

Tries are usually designed for space-e�ciency as the formed sorted arrays are highly compressible.
However, retrieval for the value of a n-gram involves exactly n searches in the constituent arrays.
Conversely, hashing is designed for speed but sacri�ces space-e�ciency since its keys, along with
their �ngerprint values, are randomly distributed and, therefore, incompressible. Moreover, hashing
is a randomized solution, i.e., there is a non-null probability of retrieving a frequency count for
a n-gram not really belonging to the indexed corpus (false positive). Such probability equals 2−δ ,
where δ indicates the number of bits dedicated to the �ngerprint values: larger values of δ yield a
smaller probability of false positive but also increase the space of the data structure.

State-of-the-art. The paper by Pauls and Klein [44] proposes trie-based data structures in which
the nodes are represented via sorted arrays or with hash tables with linear probing. The trie sorted
arrays are compressed using a variable-length block encoding: a con�gurable radix r = 2k is chosen
and the number of digits d to represents a number in base r is written in unary. The representation
then terminates with the d digits, each of which requires exactly k bits. To preserve the property of
looking up a record by binary search, each sorted array is divided into blocks of 128 bytes. The
encoding is used to compress words, pointers and the positions that frequency counts take in a
unique-value array that collect all distinct counts. The hash-based variant is likely to be faster than
the sorted array variant, but requires extra table allocation space to avoid excessive collisions.

Hea�eld [25] improves the sorted array trie implementation with some optimizations. The keys
in the arrays are replaced by their hashes and sorted, so that these are uniformly distributed over
their ranges. Now �nding a word ID in a trie level of sizem can be done in1 O(log logm) with high
probability by using interpolation search [16]. Records in each sorted arrays are minimally sized at
the bit level, improving the memory consumption over [44]. Pointers are compressed using the
integer compressor devised in [46]. Values can also be quantized using the binning method [20]
that sorts the values, divides them into equally-sized bins and then elects the average value of the
bin as the representative of the bin. The number of chosen quantization bits directly controls the
number of created bins and, hence, the trade-o� between space and accuracy.
Talbot and Osborne [52] use Bloom �lters [4] with lossy quantization of frequency counts to

achieve small memory footprint. In particular, the raw frequency count fд of gram д is quantized

using a logarithmic codebook, i.e., f̃д = 1 + log
b
fд . The scale is determined by the base b of the

logarithm: in the implementation b is set to 21/v , where v is the quantization range used by the

model, e.g., v = 8. Given the quantized count f̃д of gram д, a Bloom �lter is trained by entering
composite events into the �lter, represented by д with an appended integer value j, which is

incremented from 1 to f̃д . Then at query time, to retrieve f̃д , the �lter is queried with a 1 appended

1Unless otherwise speci�ed, all logarithms are in base 2 and log x = ⌈log2(x + 1)⌉, x ≥ 0.

Handling Massive N -Gram Datasets E�iciently 7

to д. This event is hashed using the k hash functions of the �lter: if all of them test positive, then
the count is incremented and the process repeated. The procedure terminates as soon as any of
the k hash functions hits a 0 and the previous count is reported. This procedure avoids a space
requirement for the counts proportional to the number of grams in the corpus because only the
codebook needs to be stored. The one-sided error of the �lter and the training scheme ensure that
the actual quantized count cannot be larger than the reported value. As the counts are quantized
using a logarithmic-scaled codebook, the count will be incremented only a small number of times.
The quantized logarithmic count is �nally converted back to a linear count.

The use of the succinct encoding LOUDS (Level-Order Unary-Degree Sequence) [29] is advocated
in [57] to implicitly represent the trie nodes. In particular, the pointers for a trie ofm nodes are
encoded using a bitvector of 2m+1 bits. Bit-level searches on such bitvector allow forward/backward
navigation of the trie structure. Words and frequency counts are compressed using Variable-Byte
encoding [47, 53], with an additional bitvector used to indicate the boundaries of such byte sequences
as to support random access to each element. The paper also discusses the use of block-wise
compression (basically gzip on blocks of 8 KB) though it is not used in the implementation for time
e�ciency reasons. Shareghi et al. [49, 50] also consider the usage of succinct data structures to
represent su�x trees that can be used to compute Kneser-Ney probabilities on-the-�y. Experimental
results indicate that the method is practical for large-scale language modeling although signi�cantly
slower to query than leading toolkits for language modeling [25].
Because of the importance of strings as one of the most common computerized kind of infor-

mation, the problem of representing trie-based storage for string dictionaries is among one of the
most studied in computer science, with many and di�erent solutions available [13, 27, 41]. It goes
without saying that, given the properties that n-gram datasets exhibit, generic trie implementations
are not suitable for their e�cient treatment. However, comparing with the performance of such
implementations gives useful insights about the performance gap with respect to a general solution.
We mentionMarisa [59] as the best and practical general-purpose trie implementation. The core
idea is to use Patricia tries [40] to recursively represent the nodes of a Patricia trie. This clearly
comes with a space/time trade o�: the more levels of recursion are used, the greater the space
saving but also the higher the retrieval time.

3.2 Elias-Fano Tries

In this subsection we present our main result: a compressed trie data structure, based on the
Elias-Fano representation [18, 19] of monotone integer sequences for its e�cient random access
and search operations. As we will see, the constant-time random access of Elias-Fano makes it the
right choice for the encoding of the sorted-array trie levels, given that we fundamentally need to
randomly access the sub-array pointed to by a pair of pointers. Such pair is retrieved in constant
time too. Now every access performed by binary search takes O(1) without requiring any block
decompression, di�erently from currently employed strategies [44].

We also introduce a novel technique to lower the memory footprint of the trie levels by losslessly
reducing the entity of their constituent integers. This reduction is achieved by mapping a word ID
conditionally to its context of �xed length k , i.e., its k preceding words.

3.2.1 Core Data Structure. This subsection contains the core description of the compressed
trie data structure: we dedicate one paragraph to each of its main building components, i.e., how
the grams, satellite data and pointers are represented; how searches are implemented.
As it is standard, a unique integer ID is assigned to each distinct token (uni-gram) to form the

vocabulary V of the indexed corpus. Uni-grams are indexed using a hash data structure that stores
for each gram its ID in order to retrieve it when needed in O(1). If we sort the n-grams following

8 Giulio Ermanno Pibiri and Rossano Venturini

B C

B

C D

D

B D

C

A D

A

A C

C

B

C D D D

1

2

3

(a)

2 4 5 8 9 10 13

0 1 2 3

0 2 5 7 9

0 2 3 4 5 5 8 9 11

0 0 1 3 4 4 4 4 6 7

1

2

3

(b)

Fig. 1. On the le� (a): example of a trie of order 3, representing the set of grams {A, AA, AAC, AC, B, BB,

BBC, BBD, BC, BCD, BD, CA, CD, DB, DBB, DBC, DDD}. On the right (b): the sorted-array representation

of the trie. Light-gray arrays represent the pointers.

the token-ID order, we have that all the successors of gram wn−1
1 = w1, . . . ,wn−1, i.e., all grams

whose pre�x iswn−1
1 , form a strictly increasing integer sequence. For example, suppose we have the

uni-grams2 {A, B, C, D}, which are assigned IDs {0, 1, 2, 3} respectively. Now consider the bi-grams
{AA, AC, BB, BC, BD, CA, CD,DB,DD} sorted by IDs. The sequence of the successors of A, referred
to as the range of A, is ⟨A,C⟩, i.e., ⟨0, 2⟩; the sequence of the successors of B, is ⟨B, C, D⟩, i.e.,
⟨1, 2, 3⟩ and so on. Figure 1 shows a graphical representation of what described. Concatenating the
ranges, we obtain the integer sequence ⟨0, 2, 1, 2, 3, 0, 3, 1, 3⟩. In order to distinguish the successors
of a gram from others, we also maintain where each range begins in a monotone integer sequence
of pointers. In our example, the sequence of pointers is ⟨0, 2, 5, 7, 9⟩ (we also store a �nal dummy
pointer to be able to obtain the last range length by taking the di�erence between the last and
previous pointer). The ID assigned to a uni-gram is also used as the position at which we read the
uni-gram pointer in the uni-grams pointer sequence.

Therefore, apart from uni-grams that are stored in a hash table, each level of the trie is composed
by two integer sequences: one for the representation of the gram-IDs, the other for the pointers.
Now, what we need is an e�cient encoding for integer sequences. Among the many integer
compressors available in the literature (see the book by Salomon [47] for a complete overview),
we choose Elias-Fano (along with its partitioned variant [43]), which has been recently applied to
inverted index compression showing an excellent time/space trade o� [43, 45, 55]. We now describe
this elegant integer encoding.

Elias-Fano. Given a monotonically increasing sequence S(m,u) ofm positive integers drawn from
a universe of size u (i.e., S[i − 1] ≤ S[i], for any 1 ≤ i < m, with S[m − 1] < u), we write each
S[i] in binary using ⌈logu⌉ bits. The binary representation of each integer is then split into two
parts: a low part consisting in the right-most ℓ = ⌈log u

m
⌉ bits that we call low bits and a high part

consisting in the remaining ⌈logu⌉ − ℓ bits that we similarly call high bits. Let us call ℓi and hi
the values of low and high bits of S[i] respectively (notice that, given S[i]: hi = S[i] ≫ ℓ and
ℓi = S[i]&((1 ≪ ℓ) − 1), where ≪ and ≫ are the left and right shift operators respectively, &
the bitwise AND). The Elias-Fano representation of S is given by the encoding of the high and
low parts. The array L = [ℓ0, . . . , ℓm−1] is written explicitly inm⌈log u

m
⌉ bits and represents the

encoding of the low parts. Concerning the high bits, we represent them in negated unary3 using a

2Throughout this subsection we consider, for simplicity, a n-gram as consisting of n capital letters.
3The negated unary representation of an integer x is the bitwise NOT of its unary representation U (x). As an example:
U (5) = 000001 and NOT(U (5)) = 111110.

Handling Massive N -Gram Datasets E�iciently 9

bit vector ofm + 2 ⌊logm ⌋ ≤ 2m bits as follows. We start from a 0-valued bit vector H and set the bit
in position hi + i , for all i = 0, . . . ,m − 1. Finally the Elias-Fano representation of S is given by the
concatenation of H and L and overall takes

EF(S(m,u)) =m
⌈
log

u

m

⌉
+ 2m bits. (1)

Despite its simplicity, it is possible to randomly access an integer from a sequence compressed
with Elias-Fano without decompressing it. The operation is supported using an auxiliary data
structure that is built on bit vector H , able to e�ciently answer Select1(i) queries, that return
the position in H of the i-th 1 bit. This auxiliary data structure is succinct in the sense that it is
negligibly small compared to EF(S(m,u)), requiring only o(m) additional bits [12, 54]. Using the
Select1 primitive, it is possible to implement Access(i), which returns S[i] for any 0 ≤ i < m, in
O(1). We basically have to re-link together the high and low bits of an integer, previously split
up during the encoding phase. While the low bits ℓi are trivial to retrieve as we need to read
the range of bits [iℓ, (i + 1)ℓ) from L, the high bits deserve a bit more care. Since we write in
negated unary how many integers share the same high part, we have a bit set for every integer
of S and a zero for every distinct high part. Therefore, to retrieve the high bits of the i-th integer,
we need to know how many zeros are present in H [0, Select1(i)). This quantity is evaluated on H

in O(1) as Rank0(Select1(i)) = Select1(i) − i . Finally, linking the high and low bits is as simple as:
Access(i) = ((Select1(i) − i) ≪ ℓ)|ℓi , where ≪ is the left shift operator and | the bitwise OR.

Partitioned Elias-Fano. The crucial characteristic of the Elias-Fano space bound (1) is that it only
depends on two parameters, i.e., the lengthm and universeu of the sequence, which poorly describe
the sequence itself. If the sequence presents regions of close identi�ers, i.e., formed by integers that
slightly di�er from one another, Elias-Fano fails to exploit such natural clusters. Clearly, we would
obtain a better space usage if such regions were encoded separately. Partitioning the sequence
into chunks to better adapt to such regions of close identi�ers is the key idea of the partitioned
Elias-Fano representation (PEF in the following) [43].

The core idea is as follows. We partition a sequence S(m,u) intom/b chunks, each of b integers.
The �rst level L of the representation is made up of the last elements of each chunk, i.e., L =
[S[b − 1],S[2b − 1], . . . ,S[m − 1]]. This level is encoded with Elias-Fano. The second level is
represented by the encoding of the chunks themselves. The main reason for introducing this two-
level representation, is that now the elements of the j-th chunk are encoded with a smaller universe,
i.e., L[j]−L[j−1]−1. This is, however, a uniform-partitioning strategy that may be suboptimal, since
we cannot expect clusters of integers be aligned to such boundaries. As the problem of choosing
the best possible partition is posed, an algorithm based on dynamic programming is presented
in [43] which, in O(m log1+ϵ

1
ϵ
) time, yields a partition whose cost (i.e., the space taken by the

encoded sequence) is at most (1 + ϵ) times away from an optimal one, for any ϵ ∈ (0, 1). To support
variable-size partitions, another sequence E is maintained in the �rst level of the representation,
which encodes (again with Elias-Fano) the sizes of the chunks in the second level.

This sequence organization introduces a level of indirection when resolving the queries, because
a �rst search must be spent in the �rst level of the representation to identify the block in which the
searched ID is located. We will return to and stress this point in the experimental Subsection 3.4.

Gram-ID sequences and pointers.While the sequences of pointers are monotonically increasing
by construction and, therefore, immediately Elias-Fano encodable, the gram-ID sequences could
not. However, a gram-ID sequence can be transformed into a monotone one, though not strictly
increasing, by taking range-wise pre�x sums: to the values of a range we sum the last pre�x sum
(initially equal to 0). Then, our exemplar sequence becomes ⟨0, 2, 3, 4, 5, 5, 8, 9, 11⟩. The last pre�x

10 Giulio Ermanno Pibiri and Rossano Venturini

sum is initially 0, therefore the range of A remains the same, i.e., ⟨0, 2⟩. Now the last pre�x sum is
2, so we sum 2 to the values in the range of B, yielding ⟨3, 4, 5⟩, and so on. In particular, if we sort
the vocabulary IDs in decreasing order of occurrence, we make small IDs appear more often than
large ones and this is highly bene�cial for the growth of the universe u and, hence, for Elias-Fano
whose space occupancy critically depends on it. We emphasize this point again: for each uni-gram
in the vocabulary we count the number of times it appears in all gram-ID sequences. Notice that
the number of occurrences of a n-gram can be di�erent than its frequency count as reported in the
indexed corpus. The reason is that such corpora often do not include the n-grams appearing less
than a prede�ned frequency threshold.

Frequency counts. To represent the frequency counts, we use the unique-value array technique,
i.e., each count is represented by its rank in an array, one for each separate value of n, that collects
all distinct frequency counts. The reason for this is that the distribution of the frequency counts is
extremely skewed (see Table 1), i.e., relatively few n-grams are very frequent while most of them
appear only a few times. Now each level of the trie, besides the sequences of gram-IDs and pointers,
has also to store the sequence made by all the frequency count ranks. Unfortunately, this sequence
of ranks is not monotone, yet it follows the aforementioned highly repetitive distribution. Therefore,
we assigned to each count rank a codeword of variable length. As similarly done for the gram-IDs,
by assigning smaller codewords to more repetitive count ranks, we have most ranks encoded with
just a few bits. More speci�cally, starting from k = 1, we �rst assign all the 2k codewords of length
k before increasing k by 1 and repeating the process until all count ranks have been considered.
Therefore, we �rst assign codewords 0 and 1, then codewords 00, 01, 10, 11, 000 and so on. All
codewords are then concatenated one after the other in a bitvector B. Following [24], to the i-th
value we give codeword c = i + 2 − 2ℓc , where ℓc = ⌊log(i + 2)⌋ is the number of bits dedicated to
the codeword. From codeword c and its length ℓc in bits, we can retrieve i by taking the inverse of
the previous formula, i.e., i = c − 2 + 2ℓc . Besides the bitvector for the codewords themselves, we
also need to know where each codeword begins and ends. We can use another bitvector for this
purpose, say L, that stores a 1 for the starting position of every codeword. A small additional data
structure built on L allows e�cient computation of Select1, which we use to retrieve ℓc . In fact,
b = Select1(i) gives us the starting position of the i-th codeword. Its length is easily computed by
scanning L upward from position b until we hit the next 1, say in position e . Finally ℓc = e − b and
c = B[b, e − 1].

In conclusion, each level k of the trie stores three sequences: the gram-ID sequenceGk , the count
ranks sequence Rk and the pointer sequence Pk . Two exceptions are represented by uni-grams and
maximum-order grams, for which gram-ID and pointer sequences are missing respectively.

Lookup. We now describe how the Lookup operation is supported, i.e., how to retrieve the fre-
quency count given a gramwn

1 for some 1 ≤ n ≤ N . We �rst perform n vocabulary lookups to map
the gram tokens into its constituent IDs. We write these IDs into an arrayW [1..n]. This preliminary
query-mapping step takes O(n). Now, the search procedure basically has to locateW [i] in the i-th
level of the trie.
If n = 1, then our search terminates: at the position k1 = W [1] we read the rank r1 = R1[k1]

to �nally access C1[r1]. If, instead, n is greater than 1, the position k1 is used to retrieve the pair
of pointers ⟨P1[k1], P1[k1 + 1]⟩ in constant time, which delimits the range of IDs in which we
have to search forW [2] in the second level of the trie. This range is inspected by binary search,
taking O(log(P1[k1 + 1] − P1[k1])) as each access to an Elias-Fano-encoded sequence is performed
in constant time. Let k2 be the position at whichW [2] is found in the range. Again, if n = 2, the
search terminates by accessing C2[r2] where r2 is the rank R2[k2]. If n is greater than 2, we fetch

Handling Massive N -Gram Datasets E�iciently 11
k
+
1

<latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit>

k
+
1

<latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit>

w
<latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit>

mapper

levels
<latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit>

mapped

levels
<latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit>

(a)

k 3-grams 4-grams 5-grams

E
u
ro
p
a
rl 0 2404 2782 2920

1 213 (×11.28) 480 (×5.79) 646 (×4.52)

2 2404 48 (×57.95) 101 (×28.91)

Y
a
h
o
oV

2 0 7350 7197 7417

1 753 (×9.76) 1461 (×4.93) 1963 (×3.78)

2 7350 104 (×69.20) 249 (×29.79)

G
o
o
g
le
V
2 0 4050 6631 6793

1 1025 (×3.95) 2192 (×3.03) 2772 (×2.45)

2 4050 221 (×30.00) 503 (×13.50)

(b)

Fig. 2. The action performed by the context-based identifier remapping strategy. The last word IDw of any

sub-path of length k + 1, e.g., the blue one, is replaced with the position it takes within its sibling IDs. These

sibling IDs are found at the end (the dark gray triangle) of the search of w along the same path, e.g., the

red one, in the first k + 1 levels of the trie. E�ect of the context-based remapping on the average gap (ratio

between universe and size) of the gram-ID sequences of the datasets used in the experiments, with context

length k = 0, 1, 2.

the pair ⟨P2[k2], P2[k2 + 1]⟩ to continue the search ofW [3] in the third level of the trie, and so on.
This search step is repeated for n − 1 times in total, to �nally return the count Cn[rn] ofwn

1 .

3.2.2 Context-based Identi�er Remapping. In this subsection we describe a novel tech-
nique that lowers the space occupancy of the gram-ID sequences that constitute, as we have seen,
the main component of the trie data structure.

The idea is to map a wordw occurring after the contextwk

1 to an integer whose value is bounded
by the number of words that follow such context, and not bounded by the total vocabulary size |V |.
Speci�cally,w is mapped to the position it occupies within its siblings, i.e., the words following the
gramwk

1 . We call this technique context-based identi�er remapping because each ID is re-mapped
to the position it takes relatively to a context.
Figure 2a shows a representation of the action performed by the remapping strategy: the last

word IDw of any sub-path of length k + 1 (e.g., the blue one in the �gure) is searched along the
same path occurring in the �rst k + 1 levels of the trie (e.g., the red one in the �gure). This can be
graphically interpreted as if the blue path were projected to the red path in order to searchw along
its sibling IDs, that are the ones occurring after the gramwk

1 (the small dark gray triangle in the
�gure). We stress that this projection is always possible, i.e., we are guaranteed to �nd any sub-path
of length k + 1 in the �rst k + 1 levels of the trie, because of the sliding-window extraction process
described in Section 2. Figure 2a also highlights that using a context of length k will partition the
levels of the trie into two categories: the so-called mapper levels and the mapped levels. The �rst
k + 1 levels of trie act, in fact, as a mapper structure whose role is to map any word ID through
searches; all the other n − k − 1 levels are the ones formed by the remapped IDs.

The salient feature of our strategy is that it takes full advantage of the n-gram model represented
by the trie structure itself in that it does not need any redundancy to perform the mapping of IDs,
because these are mapped by means of searches in the �rst k + 1 levels of the trie. The strategy
also allows a great deal of �exibility, in that we can choose the length k of the context. In general,

12 Giulio Ermanno Pibiri and Rossano Venturini

D
3

D
3

B C
1 2

0 1 1

D
1

B
0

C
2

D
1

A
0

D
3

C D
2 3

1 2 1

C
1

B
0

D
2

B
1

C
2

1

C
1

A
0

A
0

Fig. 3. Example of a trie of order 3, representing the set of grams {A, AA, AAC, AC, B, BB, BBC, BBD, BC,

BCD, BD, CA, CD, DB, DBB, DBC, DDD}. Vocabulary IDs are represented in blue while level-3 IDs in red.

The green IDs are derived by applying a context-based remapping with context length 1.

with a n-gram dataset of order N ≥ 2, we can choose between N − 2 distinct context lengths k , i.e.,
1 ≤ k ≤ N − 2. Clearly, the greater the context length we use, the smaller the remapped IDs will be
but the more the searches will take. The choice of the proper context length to use should take into
account the characteristics of the n-gram dataset; in particular the number of grams per order.

Inwhat followswemotivatewhy the introduced remapping strategy o�ers a valuable contribution
to the overall space reduction of the trie data structure, throughout some didactic and real examples.
As we will see in the experimental Subsection 3.4, the dataset vocabulary can contain several million
tokens, whereas the number of words that naturally occur after another is typically very small. Even
in the case of stopwords, such as “the” or “are”, the number of words that can follow is far less than
thewhole number of distinct words for any n-gram dataset. This ultimatelymeans that the remapped
integers forming the gram-ID sequences of the trie will be much smaller than the original ones,
which can indeed range from 0 to |V |−1. Lowering the values of the integers clearly helps in reducing
the memory footprint of the levels of the trie because any integer compressor takes advantage of
encoding smaller integers, since fewer bits are needed for their representation [39, 43, 45]. In our
case the gram-ID sequences are encoded with Elias-Fano: from Subsection 3.2.1Ãň, equation (1),
we know that Elias-Fano spends ⌈log u

m
⌉ + 2 bits per integer, thus a number of bits proportional

to the average gap u/m between its values. The remapping strategy reduces the universe u of
representation, thus lowering the average gap and space of the sequence.
This e�ect is illustrated by the numbers in Figure 2b that shows how the average gap of the

gram-ID sequences of the datasets we used in the experiments (see also Table 1) is a�ected by
the context-based remapping. As uni-grams and bi-grams constitute the mapper levels, these are
kept un-mapped: we show the statistic for the mapped levels, i.e., the third, fourth and �fth, of a
trie of order 5 built from the n-grams of the datasets. For each dataset we did the experiment for
context lengths 0, 1 and 2. As we can see by considering Europarl, our technique with a context of
length 1 achieves an average reduction of 7.2 times (up to 11.3 on tri-grams). With a context of
length 2, instead, we obtain an average reduction of 43.4 times (up to 58 on 4-grams). Very similar
considerations and numbers hold for the YahooV2 dataset as well. The reduction on the GoogleV2
dataset is less dramatic instead, being on average of 3 times with context-length 1 and of 16.75
times with context-length 2.

Example. To better understand how the remapping algorithm works, we consider now a small
didactic example. We continue with the example from Subsection 3.2.1 and represented in Figure 3.

Handling Massive N -Gram Datasets E�iciently 13

The blue IDs are the vocabulary IDs and the red ones are the last token IDs of the tri-grams as
assigned by the vocabulary. We now explain how the remapped IDs, represented in greed, are
derived by the model using our technique with a context of length 1. Consider the tri-gram BCD.
The default ID of D is 3. We now rewrite this ID as the position that D takes within the successors
of the word preceding it, i.e., C (context 1). As we can see, D appears in position 1 within the
successors of C, therefore its new ID will be 1. Another example: take DBB. The default ID of B is
1, but it occurs in position 0 within the successors of its parent B, therefore its new ID is 0. The
example in Figure 3 illustrates how to map tri-grams using a context of length 1: this is clearly
the only one possible as the �rst two levels of the trie must be used to retrieve the mapped ID at
query time. However, if we have a gram of order 4, i.e.,w4

1 , we can choose to mapw4 as the position
it takes within the successors ofw3 (context length 1) or within the successors ofw2w3 (context
length 2).

Lookup. The described remapping strategy comes with an overhead at query time as the search
algorithm described in Subsection 3.2.1 must map the default vocabulary ID to its remapped ID,
before it can be searched in the proper gram sequence. If the remapping strategy is applied with
a context of length k , it involves k × (N − k − 1) additional searches. As an example, by looking
at Figure 3, before searching the mapped ID 1 of D for the tri-gram BCD, we have to map the
vocabulary ID of D, i.e., 3, to 1. For this task, we search 3 within the successors of C. As 3 is found
in position 1, we now know that we have to search for 1 within the successors of BC. On the one
hand, the context-based remapping will assign smaller IDs as the length of the context rises, on the
other hand it will also spend more time at query processing. In conclusion, we have a space/time
trade-o� that we explore with an extensive experimental analysis in Subsection 3.4.

3.3 Hashing

Since the indexed n-gram corpus is static, we obtain a full hash utilization by resorting to Minimal
Perfect Hash (MPH). We indexed all grams of the same order n into a separate MPH table Tn , each
with its ownMPH functionhn . This introduces a twofold advantage over the linear probing approach
used in the literature [25, 44]: use a hash table of size equal to the exact number of grams per order
(no extra space allocation is required) and avoid the linear probing search phase by requiring one
single access to the required hash location. We use the publicly available implementation of MPH
as described in [3] and available at https://github.com/ot/emphf. This implementation requires 2.61
bits per key on average. At the hash location for a n-gram we store: its 8-byte hash key as to have a
false positive probability of 2−64 (4-byte hash keys are supported as well) and the position of the
frequency count in the unique-value arrayCn which keeps all distinct frequency counts for order n
As already motivated, these unique-value arrays, one for each di�erent order of n, are negligibly
small compared to the number of grams themselves and act as a direct map from the position of
the count to its value. Although these unique values could be sorted and compressed, we do not
perform any space optimization as these are too few to yield any improvement but we store them
uncompressed and byte-aligned, in order to favor lookup time. We also use this hash approach to
implement the vocabulary of the previously introduced trie data structure.

Lookup. Given n-gram д we compute the position p = hn(д) in the relevant table Tn , then we
access the count rank r stored at position p and �nally retrieve the count value Cn[r].

https://github.com/ot/emphf

14 Giulio Ermanno Pibiri and Rossano Venturini

n
Europarl YahooV2 GoogleV2

n-grams counts n-grams counts n-grams counts

1 304 579 4518 3 475 482 23 785 24 357 349 246 490

2 5 192 260 4663 53 844 927 31 711 665 752 080 722 966

3 18 908 249 2975 187 639 522 19 856 7 384 478 110 683 653

4 33 862 651 1744 287 562 409 10 761 1 642 783 634 133 491

5 43 160 518 1032 295 701 337 6167 1 413 870 914 104 025

total n-grams 101 428 257 7147 828 223 677 45 285 11 131 242 087 1 073 473

gzip 6.98 6.45 6.20

Table 1. Number of n-grams and distinct frequency counts for the datasets used in the experiments. We also

report the average bytes per gram achieved by gzip as a useful baseline for comparison.

3.4 Experiments

In this subsection, we �rst present experiments to validate the e�ectiveness of our compressed data
structures in relation to the corresponding query processing speed; then we compare our proposals
against several solutions available in the state-of-the-art.

Datasets.We performed our experiments on the following standard datasets.

• Europarl consists in all unprunedn-grams extracted from the English Europarl parallel corpus [32],
available at: http://www.statmt.org/europarl.

• YahooV2 [1] is a collection of English n-grams with minimum frequency count equal to 2,
extracted from a corpus of 14.6 million documents crawled from more than 12 000 sites during
2006. The dataset is available at: http://webscope.sandbox.yahoo.com/catalog.php?datatype=l.

• GoogleV2 is the latest English version of Web1T [6], whose n-grams have a minimum frequency
count of 40. This collection roughly corresponds to 6% of the books ever published. The dataset
is available at: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.

Each dataset comprises all n-grams for 1 ≤ n ≤ N = 5 and associated frequency counts. Table 1
shows the basic statistics of the datasets. We choose these datasets in order to test our data structures
on di�erent corpora sizes: starting from the left of Table 1 each dataset has roughly 10 times the
number of n-grams of the previous one.

Compared indexes. We compare the performance of our data structures against the following
software packages that use the approaches introduced in Subsection 3.1.

• BerkeleyLM implements two trie data structures based on sorted arrays and hash tables to
represent the nodes of the trie [44]. The code is written in Java and available at: https://github.
com/adampauls/berkeleylm.

• Expgrammakes use of the LOUDS succinct encoding [29] to implicitly represent the trie structure,
while the frequency counts are compressed using VByte encoding [57]. The code is written in
C++ and available at: https://github.com/tarowatanabe/expgram.

• KenLM implements a trie with interpolation search and a hashing with linear probing [25]. The
code is written in C++ and available at: http://khea�eld.com/code/kenlm.

• Marisa is a general-purposes string dictionary implementation in which Patricia tries are recur-
sively used to represent the nodes of a Patricia trie [59]. The code is written in C++ and available
at: https://github.com/s-yata/marisa-trie.

http://www.statmt.org/europarl
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://github.com/adampauls/berkeleylm
https://github.com/adampauls/berkeleylm
https://github.com/tarowatanabe/expgram
http://kheafield.com/code/kenlm
https://github.com/s-yata/marisa-trie

Handling Massive N -Gram Datasets E�iciently 15

Europarl YahooV2 GoogleV2

bytes/gram µsec/query bytes/gram µsec/query bytes/gram µsec/query

EF 1.97 1.28 2.17 1.60 2.13 2.09

PEF 1.87 (−4.99%) 1.35 (+5.93%) 1.91 (−12.03%) 1.73 (+8.00%) 1.52 (−28.60%) 1.91 (−8.79%)

C
O
N
T
E
X
T
-B
A
S
E
D

ID
R
E
M
A
P
P
IN

G

k
=
1 EF 1.67 (−15.30%) 1.58 (+23.86%) 1.89 (−12.92%) 2.05 (+28.07%) 1.91 (−10.24%) 3.03 (+44.61%)

PEF 1.53 (−22.36%) 1.61 (+25.89%) 1.63 (−24.91%) 2.16 (+35.22%) 1.31 (−38.71%) 2.30 (+9.88%)

k
=
2 EF 1.46 (−25.62%) 1.60 (+25.17%) 1.68 (−22.32%) 2.08 (+30.23%) — —

PEF 1.28 (−34.87%) 1.64 (+28.12%) 1.38 (−36.15%) 2.15 (+34.81%) — —

Table 2. Average bytes per gram (bytes/gram) and average Lookup time per query in micro seconds

(µsec/query). The bytes/gram cost also includes the space of representation for the pointer sequences.

• RandLM employs Bloom �lters with lossy quantization of frequency counts to attain to low
memory footprint [52]. The code is written in C++ and available at: https://sourceforge.net/
projects/randlm.

Experimental setting and methodology. All experiments have been performed on a machine
with 16 Intel Xeon E5-2630 v3 cores (32 threads) clocked at 2.4 Ghz, with 193 GBs of RAM, running
Linux 3.13.0, 64 bits. Our implementation is in standard C++11 and compiled with gcc 5.4.1 with the
highest optimization settings. Template specialization has been preferred over inheritance to avoid
the virtual method call overhead, which can be disruptive for the very �ne-grained operations we
consider. Except for the instructions to count the number of bits set in a word (popcount), and to
�nd the position of the least signi�cant bit (number of trailing zeroes), no special processor feature
was used. In particular, we did not add any SIMD (Single Instruction Multiple Data) instruction to
our code.
The data structures were saved to disk after construction, and loaded into main memory to be

queried. For the scanning of input �les we used the posix_madvice system, called with the parameter
POSIX_MADV_SEQUENTIAL to instruct the kernel to optimize the sequential access to the mapped
memory region. The implementation of our data structures, as well as the utilities to prepare the
datasets for indexing and unit tests, is freely available at: https://github.com/jermp/tongrams.
To test the speed of Lookup queries, we use a query set consisting of 5 million n-grams for

YahooV2 and GoogleV2 and of 0.5 million for Europarl, drawn at random from the entire datasets.
In order to smooth the e�ect of �uctuations during measurements, we repeat each experiment �ve
times and consider the mean. The shown query results are, therefore, average times. All query
algorithms were run on a single core.

3.4.1 Elias-Fano Tries. In this subsection we test the e�ciency of our trie data structure. As
already done for the description in Subsection 3.2.1, we dedicate one paragraph to the validation
of each of the main building components of the trie, as well as to the introduced performance
optimizations.

Gram-ID sequences. Table 2 shows the average number of bytes per gram including the cost of
pointers, and lookup speed per query. The �rst two rows refers to the trie data structure described
in Subsection 3.2.1, when the sorted arrays are encoded with Elias-Fano (EF) and partitioned Elias-
Fano (PEF) [43]. Subsequent rows indicate the space gains obtained by applying the context-based
remapping strategy using EF and PEF for contexts of lengths respectively 1 and 2. For GoogleV2

https://sourceforge.net/projects/randlm
https://sourceforge.net/projects/randlm
https://github.com/jermp/tongrams

16 Giulio Ermanno Pibiri and Rossano Venturini

25 26 27 28 29 210

block size

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

b
y
te

s/
g
ra

m
2-grams 3-grams 4-grams 5-grams

1.25

1.30

1.35

1.40

1.45

1.50

1.55

µ
se

c/
q
u
e
ry

Fig. 4. Bytes per gram (le� vertical axis) and µs per query (right vertical axis, black dashed line) by varying

block size in PEF uniform on the gram-ID sequences of Europarl.

we use a context of length 1, as the tri-grams alone roughly constitute 66% of the whole the dataset,
thus it would make little sense to optimize only the space of 4- and 5-grams that take 27.46% of the
dataset.

As expected, partitioning the gram sequences using PEF yields a better space occupancy. Though
the paper by Ottaviano and Venturini [43] describes a dynamic programming algorithm that �nds
the partitioning able of minimizing the space occupancy of a monotone sequence (we refer to this
scheme as PEF-OPT in the following), we instead adopt a uniform partitioning strategy. Partitioning
the sequence uniformly has several advantages over variable-length partitions for our setting. As
we have seen in Subsection 3.2.1, trie searches are carried out by performing a preliminary random
access to the endpoints of the range pointed to by a pointer pair. Then a search in the range follows
to determine the position of the gram-ID. Partitioning the sequence by variable-length blocks
introduces an additional search over the sequence of partition endpoints to determine the proper
block in which the search must continue. While this preliminary search only introduces a minor
overhead in query processing for inverted index queries [43] (as it has to be performed once and
successive accesses are only directed to forward positions of the sequence), it is instead the major
bottleneck when random access operations are very frequent as in our case. By resorting on uniform
partitions, we eliminate this �rst search and the cost of representation for the variable-length sizes.
To speed up queries even further, we also keep the upper bounds of the blocks uncompressed and
bit-aligned.

As the problem of deciding the optimal block size is posed, Figure 4 shows the space/time trade-o�
obtained by varying the block size on the gram-ID sequences. The plots for YahooV2 and GoogleV2
datasets exhibit the same shape, therefore we report the one for Europarl. The dashed black line
illustrates how the average Lookup time varies when all the gram-ID sequences are partitioned
using the same block size. The �gure suggests to use partitions of 64 integers for bi-gram sequences,
and of 128 for all other orders, i.e., for N ≥ 3, given that the space usage remains low without
increasing much the query processing speed. With this choice of block sizes, the loss in space with
respect to PEF-OPT is small and equal to 3.32% for Europarl; 5.29% for YahooV2 and 7.33% for
GoogleV2.

Shrinking the size of blocks speeds up searches over plain Elias-Fano because a successor query
has to be resolved over an interval potentially much smaller than a range length. This behavior is
clearly highlighted by the shape of the black dashed line of Figure 4. However, excessively reducing
the block size may ruin the advantage in space reduction. Therefore it is convenient to use small

Handling Massive N -Gram Datasets E�iciently 17

Europarl YahooV2 GoogleV2

Variable-len. codewords 0.36 0.47 1.46

Prefix sums + EF 0.35 (−1.59%) 0.62 (+32.46%) 1.59 (+9.17%)

Prefix sums + PEF 0.30 (−16.65%) 0.51 (+8.67%) 1.30 (−11.03%)

Variable-len. block-coding 0.76 (+155.63%) 0.79 (+55.86%) 1.32 (+1.44%)

Packed 1.63 (+444.74%) 2.00 (+294.17%) 2.63 (+102.43%)

VByte 3.21 (+975.40%) 3.32 (+554.66%) —

Table 3. Average bytes per count for di�erent techniques.

block sizes for the most traversed sequences, e.g., the bi-gram sequences, that indeed must be
searched several times during the query-mapping phase when the context-based remapping is
adopted. In conclusion, as we can see by the second row of Table 2, there is no practical di�erence
between the query processing speed of EF and PEF: this latter sequence organization brings a
negligible overhead in query processing speed (less than 8% on Europarl and YahooV2), while
maintaining a noticeable space reduction (up to 29% on GoogleV2).

Context-based identi�er remapping. Concerning the e�cacy of the context-based remapping,
we have that remapping the gram IDs with a context of length k = 1 is already able of reducing the
space of the sequences by ≈13% on average when sequences are encoded with Elias-Fano, with
respect to the EF cost. If we consider a context of length k = 2 we double the gain, allowing for
more than 28% of space reduction without a�ecting the lookup time with respect to the case k = 1.
As a �rst conclusion, when space e�ciency is the main concern, it is always convenient to apply
the remapping strategy with a context of length 2. The gain of the strategy is even more evident
with PEF: this is no surprise as the encoder can better exploit the reduced IDs by encoding all the
integers belonging to a block with a universe relative to the block and not to the whole sequence.
This results in a space reduction of more than 36% on average and up to 39% on GoogleV2.

Regarding the query processing speed, as explained in Subsection 3.2.2, the remapping strategy
comes with a penalty at query time as we have to map an ID before it can be searched in the proper
gram sequence. On average, by looking at Table 2, we found that 30% more time is spent with
respect to the Elias-Fano baseline. Notice that PEF does not introduce any time degradation with
respect to EF with context-based remapping: it is actually faster on GoogleV2.

Frequency counts. For the representation of frequency counts we compare three di�erent en-
coding schemes: the �rst one refers to the strategy described in Subsection 3.2.1 that assigns
variable-length codewords to the ranks of the counts and keeps track of codewords length using a
binary vector (Variable-len. codewords); the other two schemes transform the sequence of count
ranks into a non-decreasing sequence by taking its pre�x sums and then applies EF or PEF (Prefix
sums + EF/PEF).

Table 3 shows the average number of bytes per count for these di�erent strategies. The reported
space also includes the space for the storage of the arrays containing the distinct counts for each
order of N . As already pointed out, these take a negligible amount of space because the distribution
of frequency counts is highly repetitive (see Table 1). The percentages of Prefix sums + EF/PEF are
done with respect to the �rst row of the table, i.e., Variable-len. codewords.
The time for retrieving a count was pretty much the same for all the three techniques. Pre�x-

summing the sequence and apply EF does not bring any advantage over the codeword assignment

18 Giulio Ermanno Pibiri and Rossano Venturini

technique because its space is practically the same on Europarl but it is actually larger on both
YahooV2 (by up to 32%) and GoogleV2. These two reasons together place the codeword assignment
technique in net advantage over EF. PEF, instead, o�ers a better space occupancy of more than 16%

on Europarl and 10% on GoogleV2. Therefore, in the following we assume this representation for
frequency counts, except for YahooV2, where we adopt Variable-len. codewords.

We also report the space occupancy for the counts representation of BerkeleyLM and Expgram

which, di�erently from all other competitors, can also be used to index frequency counts.BerkeleyLM
COMPRESSED variant uses the Variable-len. block-coding mechanism explained in Subsection 3.1
to compress count ranks, whereas the HASH variant stores bit-packed count ranks, referred to
as Packed in the table, using the minimum number of bits necessary for their representation (see
Table 1). Expgram, instead, does not store count ranks but directly compress the counts themselves
using Variable-Byte encoding (VByte) with an additional binary vector as to be able of randomly
accessing the counts sequence. The available RAM of our test machine (193 GBs) was not su�cient
to successfully build Expgram on GoogleV2. The same holds for KenLM and Marisa, as we are
going to see next. Therefore, we report its space for Europarl and YahooV2.
We �rst observe that rank-encoding schemes are far more advantageous than compressing

the counts themselves, as done by Expgram. Moreover, none of the these techniques beats the
three ones we previously introduced, except for the BerkeleyLM COMPRESSED variant which is
≈10% smaller on GoogleV2 with respect to Variable-len. codewords. However, note that this gap is
completely bridged as soon as we adopt the combination Prefix sums + PEF.

Time and space breakdowns. Before concluding the subsection, we use the analysis to �x two
di�erent trie data structures that respectively privilege space e�ciency and query time: we call
them PEF-RTrie (the R stands for remapped) and PEF-Trie. For the PEF-RTrie variant we use PEF for
representing the gram-ID sequences; Prefix sums + PEF for the counts on Europarl and GoogleV2

but Variable-len. codewords for YahooV2. We also use the maximum applicable context length for
the context-based remapping technique, i.e., 2 for Europarl and YahooV2; 1 for GoogleV2. For the
PEF-Trie variant we choose a data structure using PEF for representing gram-ID sequences and
Variable-len. codewords for the counts, without remapping.

The corresponding size breakdowns are shown in Figures 5c and 5d respectively. Pointer se-
quences take very little space for both data structures (approximately 10.3%), while most of the
di�erence lies, not surprisingly, in the space of the gram-ID sequences (roughly 70% for Europarl
and YahooV2; 40% for GoogleV2). The timing breakdowns in Figures 5a and 5b clearly highlight,
instead, how the context-based remapping technique rises the time we spend in the query-mapping
phase, during which the IDs are mapped to their reduced IDs. In such case, the two phases of query
mapping and search are almost the same, while in the PEF-Trie the search phase dominates.

3.4.2 Hashing. We build ourMPH tables using 8-byte hash keys, as to yield a false positive
rate of 2−64. For each di�erent value ofnwe store the distinct count values in an array, uncompressed
and byte-aligned using 4 bytes per distinct count on Europarl and YahooV2; 8 bytes on GoogleV2.
For all the three datasets, the number of bytes per gram, including also the cost of the hash

function itself (0.33 bytes per gram) is 8.33. The number of bytes per count is given by the sum
of the cost for the ranks and the distinct counts themselves and is equal to 1.41, 1.74 and 2.43 for
Europarl, YahooV2 and GoogleV2 respectively. Not surprisingly, the majority of space is taken by
the hash keys: clients willing to reduce this memory impact can use 4-byte hash keys instead, at the
price of a higher false positive rate (2−32). Therefore, it is worth observing that spending additional
e�ort in trying to lower the space occupancy of the counts only results in poor improvements as
we pay for the high cost of the hash keys.

Handling Massive N -Gram Datasets E�iciently 19

query mapping search count lookup

34% 41%
25%

41% 42%

17%
34%

48%

18%

Europarl YahooV2 GoogleV2

(a) PEF-RTrie

query mapping search count lookup

24%

59%

17%22%

56%

22%21%

57%

22%

Europarl YahooV2 GoogleV2

(b) PEF-Trie

grams counts pointers

70%

18% 12%

60%

27%
13%

41%
50%

9%

Europarl YahooV2 GoogleV2

(c) PEF-RTrie

grams counts pointers

73%

17% 10%

69%

21%
10%

43% 49%

8%

Europarl YahooV2 GoogleV2

(d) PEF-Trie

Fig. 5. Trie data structures timing (a-b) and size (c-d) breakdowns in percentage on the tested datasets. For

the timing breakdowns we distinguish the three phases of query mapping, ID-search and final count lookup.

For the space breakdowns we distinguish, instead, the contribution of gram-ID, count and pointer sequences.

The constant-time access capability of hashing makes gram lookup extremely fast, by requiring
on average 1/3 of a micro second per lookup (exact numbers are reported in Table 4). In particular,
all the time is spent in computing the hash function itself and access the relative table location: the
�nal count lookup is completely negligible.

3.4.3 Overall Comparison. In this subsection we compare the performance of our selected
trie-based solutions, i.e., the PEF-RTrie and PEF-Trie, as well as our minimal perfect hash approach
against the competitors introduced at the beginning of this subsection. The results of the comparison
are shown in Table 4, where we report the space taken by the representation of the gram-ID
sequences and average Lookup time per query in micro seconds. For the trie data structures, the
reported space also includes the cost of representation for the pointers. We compare the space of
representation for the n-grams excluding their associated information because this varies according
to the chosen implementation: for example, KenLM can only store probabilities and backo�s,
whereas BerkeleyLM can be used to store either counts or probabilities. For those competitors
storing frequency counts, we already discussed their count representation in Subsection 3.4.1.
Expgram, KenLM andMarisa require too much memory for the building of their data structures
on GoogleV2, therefore we mark as empty their entry in the table for this dataset.
Except for the last two rows of the table in which we compare the performance of our MPH

table against KenLM probing (P.), we write for each competitor two percentages indicating its score
against our selected trie data structures PEF-Trie and PEF-RTrie, respectively. Let us now examine
each row, one by one. In the following discussion, unless explicitly stated, the numbers cited as
percentages refer to average values over the di�erent datasets.
BerkeleyLM COMPRESSED (C.) variant results 21% larger than our PEF-RTrie implementation

and slower by more than 70%. It gains, instead, an advantage of roughly 9% over our PEF-Trie data
structure, but it is also more than 2 times slower. The HASH variant uses hash tables with linear
probing to represent the nodes of the trie. Therefore, we test it with a small extra space factor of

20 Giulio Ermanno Pibiri and Rossano Venturini

Europarl YahooV2 GoogleV2

bytes/gram µsec/query bytes/gram µsec/query bytes/gram µsec/query

PEF-Trie 1.87 1.35 1.91 1.73 1.52 1.91

PEF-RTrie 1.28 1.64 1.38 2.15 1.31 2.30

BerkeleyLM C. 1.70 (−8.89%) 2.83 (+108.88%) 1.69 (−11.41%) 3.48 (+101.84%) 1.45 (−4.87%) 4.13 (+116.57%)

(+32.90%) (+72.70%) (+22.04%) (+61.70%) (+10.83%) (+79.76%)

BerkeleyLM H.3 6.70 (+258.81%) 0.97 (−28.46%) 7.82 (+310.38%) 1.13 (−34.35%) 9.24 (+507.79%) 2.18 (+13.95%)

(+423.40%) (−40.85%) (+465.36%) (−47.41%) (+608.07%) (−5.42%)

BerkeleyLM H.50 7.96 (+326.03%) 0.97 (−28.49%) 9.37 (+391.32%) 0.96 (−44.27%) — —
(+521.45%) (−40.88%) (+576.87%) (−55.35%)

Expgram 2.06 (+10.18%) 2.80 (+106.61%) 2.24 (+17.36%) 9.23 (+435.33%) — —
(+60.73%) (+70.82%) (+61.68%) (+328.87%)

KenLM T. 2.99 (+60.11%) 1.28 (−5.47%) 3.44 (+80.39%) 1.94 (+12.32%) — —
(+133.56%) (−21.84%) (+148.52%) (−10.01%)

Marisa 3.61 (+93.09%) 2.06 (+52.00%) 3.81 (+99.60%) 3.24 (+87.96%) — —
(+181.66%) (+25.67%) (+174.98%) (+50.58%)

RandLM 1.81 (−3.06%) 4.39 (+224.20%) 2.02 (+6.18%) 5.08 (+194.35%) 2.60 (+70.73%) 9.25 (+384.54%)

(+41.41%) (+168.04%) (+46.29%) (+135.82%) (+98.90%) (+302.19%)

MPH 8.33 0.26 8.33 0.32 8.33 0.37

KenLM P.3 9.40 (+12.87%) 0.43 (+62.60%) 9.41 (+13.03%) 0.38 (+20.08%) — —
KenLM P.50 16.91 (+103.11%) 0.31 (+16.83%) 16.92 (+103.25%) 0.34 (+7.84%) — —

Table 4. Average bytes per gram (bytes/gram) and average Lookup time per query in micro seconds per query

(µsec/query). For our data structures, i.e., PEF-Trie and PEF-RTrie, the bytes/gram cost also includes the space

of representation for the pointer sequences.

3% for table allocation (H.3) and with 50% (H.50), which is also used as the default value in the
implementation, as to obtain di�erent time/space trade-o�s. Clearly the space occupancy of both
hash variants do not compete with the ones of our proposals as these are from 3 to 7 times larger,
but the O(1)-lookup capabilities of hashing makes it faster than a sorted array trie implementation:
while this is no surprise, notice that our PEF-Trie data structure is anyway competitive as it is
actually faster on GoogleV2.
Expgram is 13.5% larger than PEF-Trie and also 2 and 5 times slower on Europarl and YahooV2

respectively. Our PEF-RTrie data structure retains an advantage in space of 60% and it is still
signi�cantly faster: of about 72% on Europarl and 4.3 times on YahooV2.

KenLM is the fastest trie language model implementation in the literature. As we can see, our
PEF-Trie variant retains 70% of its space with a negligible penalty at query time. Compared to
PEF-RTrie, it results a little faster, i.e., 15%, but also 2.3 and 2.5 times larger on Europarl and
YahooV2 respectively.

We also tested the performance of Marisa even though it is not a trie optimized for language
models as to understand how our data structures compare against a general-purpose string dictio-
nary implementation. We outperform Marisa in both space and time: compared to PEF-RTrie, it is
2.7 times larger and 38% slower; with respect to PEF-Trie it is more than 90% larger and 70% slower.
RandLM is designed for small memory footprint and returns approximated frequency counts

when queried. We build its data structures using the default setting recommended in the docu-
mentation: 8 bits for frequency count quantization and 8 bits per value as to yield a false positive
rate of 1

256
. While being from 2.3 to 5 times slower than our exact and lossless approach, it is quite

compact because the quantized frequency counts are recomputed on the �y using the procedure
described in Subsection 3.1. Therefore, while its space occupancy results even larger with respect

Handling Massive N -Gram Datasets E�iciently 21

Europarl YahooV2

bytes/gram µsec/query bytes/gram µsec/query

PEF-Trie 3.48 0.25 3.64 0.38

PEF-RTrie 2.91 0.28 3.06 0.43

BerkeleyLM C. 6.50 (+87.03%) 1.19 (+371.79%) 6.39 (+75.72%) 1.08 (+187.45%)

(+123.47%) (+322.22%) (+109.21%) (+152.17%)

BerkeleyLM H.3 9.36 (+169.17%) 0.84 (+233.63%) 8.75 (+140.41%) 0.74 (+95.77%)

(+221.61%) (+198.58%) (+186.23%) (+71.75%)

BerkeleyLM H.50 12.31 (+254.00%) 0.35 (+39.00%) 12.01 (+230.05%) 0.30 (−19.39%)

(+322.97%) (+24.39%) (+292.95%) (−29.28%)

Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 5.80 (+59.41%) 14.05 (+3637.90%)

(+42.59%) (+1264.67%) (+89.79%) (+3179.16%)

KenLM T. 4.58 (+31.80%) 0.23 (−8.00%) 5.04 (+38.53%) 0.39 (+4.57%)

(+57.48%) (−17.66%) (+64.93%) (−8.26%)

RandLM 4.01 (+15.42%) 6.48 (+2477.95%) 3.86 (+6.03%) 6.25 (+1561.20%)

(+37.90%) (+2207.12%) (+26.24%) (+1357.33%)

MPH 9.92 0.15 9.94 0.24

KenLM P.3 14.77 (+48.90%) 0.32 (+106.38%) 14.84 (+49.24%) 0.30 (+24.82%)

KenLM P.50 21.48 (+116.59%) 0.10 (−36.37%) 21.57 (+116.89%) 0.15 (−40.16%)

Table 5. Perplexity benchmark results reporting average number of bytes per gram (bytes/gram) and micro

seconds per query (µsec/query) using modified Kneser-Ney 5-gram language models built from Europarl and

YahooV2 counts.

to our grams representation by 61%, it is still no better than the whole space of our PEF-RTrie data
structure. With respect to the whole space of PEF-Trie, it retains instead an advantage of 15.6%.
This space advantage is, however, compensated by a loss in precision and a much higher query
time (up to 5 times slower on GoogleV2).
The last two rows of Table 4 regard the performance of ourMPH table with respect to KenLM

PROBING. As similarly done for BerkeleyLM H., we also test the PROBING data structure with
3% (P.3) and 50% (P.50) extra space allocation factor for the tables. While being larger as expected,
the KenLM implementation makes use of expensive hash key recombinations that yields a slower
random access capability with respect to our minimal perfect hashing approach.

We �nally compare the total space occupancy, as given by the sum of the space of gram-ID sequences,
frequency counts and pointers, of our trie data structures against the gzip baseline reported in
Table 1. The total average bytes per represented n-gram for PEF-Trie are 2.17, 2.38 and 2.82 on the
three datasets Europarl, YahooV2 and GoogleV2 respectively. Table 1 shows that gzip takes, instead,
6.98, 6.45 and 6.2 bytes per gram. This means that our PEF-Trie is 3.2×, 2.7× and 2.2× smaller than
gzip and it does also support e�cient search of individual n-grams. Finally, our PEF-RTrie is 4.4×,
3.5×, 2.4× smaller.

Perplexity benchmark. Besides the e�cient indexing of frequency counts, our data structures
can also be used to map n-grams to language model probabilities and backo�s. As done by KenLM,
we also use the binning method [20] to quantize probabilities and backo�s, but allowing any

22 Giulio Ermanno Pibiri and Rossano Venturini

quantization bits ranging from 2 to 32. Uni-grams values are stored unquantized to favor query
speed: as vocabulary size is typically very small compared to the number of total n-grams, this
has a minimal impact on the space of the data structure. Our trie implementation is reversed as to
permit a more e�cient computation of sentence-level probabilities, with a stateful scoring function
that carries its state on from a query to the next, as similarly done by KenLM and BerkeleyLM.
For the perplexity benchmark we used the standard query dataset publicly available at http:

//www.statmt.org/lm-benchmark, that contains 306 688 sentences, for a total of 7 790 011 tokens [7].
We used the utilities of Expgram to build modi�ed Kneser-Ney [9, 10] 5-gram language models from
the counts of Europarl and YahooV2 that have an OOV (out of vocabulary) rate of, respectively, 16%
and 1.82% on the test query �le. As Expgram only builds quantized models using 8 quantization bits
for both probabilities and backo�s, we also use this number of quantization bits for our tries and
KenLM trie. For all data structures, BerkeleyLM truncates the mantissa of �oating-point values to
24 bits and then stores indices to distinct probabilities and backo�s. RandLM was build, as already
said, with the default parameters recommended in the documentation.

Table 5 shows the results of the benchmark. As we can see, the PEF-Trie data structure is as fast as
theKenLM trie while beingmore than 30%more compact on average, whereas the PEF-RTrie variant
doubles the space gains with negligible loss in query processing speed (13% slower). We instead
signi�cantly outperform all other competitors in both space and time, including the BerkeleyLM
H.3 variant. In particular, notice that we are also smaller than RandLM which is randomized and,
therefore, less accurate. The query time of BerkeleyLM H.50 is smaller on YahooV2; however, it
also uses from 3 up to 4 times the space of our tries.
The last two rows of the table are dedicated to the comparison of ourMPH table with KenLM

PROBING. While our data structure stores quantized probabilities and backo�s, KenLM stores
uncompressed values for all orders of N . We found out that storing unquantized values results in
indistinguishable di�erences in perplexity while unnecessarily increasing the space of the data
structure, as it is apparent in the results. The expensive hash key recombinations necessary for
random access are avoided during perplexity computation for the left-to-right nature of the query
access pattern. This makes, not surprisingly, a linear probing implementation actually faster, by
38% on average, than a minimal perfect hash approach when a large multiplicative factor is used
for tables allocation (P.50). The price to pay is, however, the double of the space. On the other hand,
the P.3 variant is larger (by 50%) and slower (by 60% on average).

4 FAST ESTIMATION

The problemwe tackle in this section of the paper is the one of computing theKneser-Ney probability
and backo� penalty for every n-gram, 1 ≤ n ≤ N , extracted from a large textual source.

4.1 Preliminaries and Related Work

Since the sorted orders de�ned over a set of n-grams are central to the description of the algorithms
we are going to consider, we now de�ne them. Consider a set of n-grams. The set is put into
sorted order by sorting the n-grams on their words, as considered in a speci�c order. If this speci�c
order is N ,N − 1, . . . , 1, i.e., we sort n-grams from the last word up to the �rst, then the block is
su�x-sorted: last word is primary. If the considered order is N − 1,N − 2, . . . , 1,N , then the block
is context-sorted: penultimate word is primary.
During the estimation process, we deal with the following assumptions:

(1) the uncompressed n-gram strings with associated satellite values, 1 ≤ n ≤ N do not �t in
internal memory and we necessarily need to rely on disk usage;

http://www.statmt.org/lm-benchmark
http://www.statmt.org/lm-benchmark

Handling Massive N -Gram Datasets E�iciently 23

(2) the estimate is performed without pruning [26], thus the minimum occurrence count for an
n-gram is 1;

(3) the compressed index built over the n-gram strings (e.g., the trie presented in Subsection 3.2)
must reside in internal memory to allow fast query processing (perplexity and machine transla-
tion) [25, 44, 45].

Modi�ed Kneser-Ney smoothing. The modi�ed version of Kneser-Ney smoothing [31] was
introduced by Chen and Goodman [10] and uses, instead of a single discount value, multiple
discounts Dn for all n-grams wn

1 having occurrence count c(wn

1) equal to 1, 2 and 3. Under the
Kneser-Ney model, the conditional probability is computed recursively according to

P(wn |w
n−1
1) = u(wn |w

n−1
1) + b(wn−1

1)P(wn |w
n−1
2) (2)

that is, all lower-order probabilities are interpolated together, where u(wn |w
n−1
1) and b(wn−1

1) are,
respectively, the normalized probability and context backo� for n-gramwn

1

u(wn |w
n−1
1) =

c(wn

1) − Dn(c(w
n

1))∑
x c(w

n−1
1 x)

(3)

b(wn−1
1) =

∑2
k=1 Dn(k)Nk (w

n−1
1 •) + Dn(3)N3+(w

n−1
1 •)

∑
x c(w

n−1
1 x)

(4)

where Nk (w
n−1
1 •) = |{x : c(wn−1

1 x) = k}| represents the number of n-grams having contextwn−1
1

and count equal to k ; N3+(w
n−1
1 •) = |{x : c(wn−1

1 x) ≥ 3}|. Recursion terminates when uni-grams are
interpolated with the probability of the unknownword ⟨unk⟩ (uniformly distributed by assumption):
P(wn) = u(wn)+b(ε) × P(⟨unk⟩), where P(⟨unk⟩) =

1
V
, where we denote by ε the empty string and

by V the size of the vocabulary.
Following [9, 10], closed-form discounts Dn(k) are computed as

Dn(k) =




0, k = 0

k − (k + 1)
tn,1tn,k+1

(tn,1+2tn,2)tn,k
, k = 1, 2, 3

Dn(3), otherwise

(5)

with the smoothing statistic tn,k representing the number of n-grams with count k , i.e., tn,k =
|{wn

1 : c(wn

1) = k}| for k = 1, 2, 3 and 4.

State-of-the-art. The use of theMap+Reduce paradigm for the problem has been advocated in [5].
As reported in the paper, estimation involved hundreds of machines for a few days. Our work does
not consider distributed computations, rather it shows how to let the estimation process scale well
on the cores of a single target machine. Nguyen et al. [42] (MSRLM) also considered estimation
on a single machine, using a parallel merge sort implementation. However, part of the estimation
process is delayed until query-time: while this allows to save some resources during estimation, it
also imposes a signi�cant burden during the most e�ciency-demanding use of language models,
that is query processing [9, 25]. We, instead, prefer to follow the approach of [26] that performs
all steps of estimation as to permit the building of an e�cient, static, compressed index over the
computed model.

24 Giulio Ermanno Pibiri and Rossano Venturini

The works done by Stolcke [51] (SRILM), Federico et al. [21] (IRSTLM), Pauls and Klein [44]
(BerkeleyLM) and Watanabe et al. [57] (Expgram) build Kneser-Ney language models in inter-
nal memory without resorting on sophisticated software optimizations and data compression
techniques: as a result, are not able to scale to the dimensions we consider in this work.

Hea�eld, Pouzyrevsky, Clark, and Koehn [26] (KenLM) contributed an estimation algorithm
involving three steps of sorting in external memory. Their solution, referred to as the 3-Sort

algorithm in the following, signi�cantly outperforms the approaches that we have mentioned
above, making it the state-of-art solution to the problem. Indeed, as the authors reported in the
paper [26], their algorithm takes, on average, as low as 20% of the CPU and 10% of the RAM of
both SRILM and IRSTLM.

Shareghi et al. [49] resort on compressed su�x trees to compute on-the-�y the Kneser-Ney
probabilities. The experimental analysis reported in the paper compares against SRILM and shows
that such approach is comparable in building time with SRILM indexes but several orders of
magnitude (e.g., 1000×) slower to query. In [50] the same authors improved over their previous
work [49] by pre-computing some modi�ed counts to speed up the on-the-�y calculation of the
Kneser-Ney probabilities. Although pre-computing allows for signi�cant improvement at query
time (by up to 2500× faster than the previous solution) at the price of a larger index construction
time (70% more time), the resulting language model is still 5× slower than KenLM.

For the reasons discussed in this paragraph, we aim at improving upon the I/O e�ciency of the
3-Sort approach of KenLM that we describe in details in Subsection 4.2.

4.2 The 3-Sort algorithm

In this section we review the algorithm devised by Hea�eld, Pouzyrevsky, Clark, and Koehn [26]
since our work aims at improving its I/O e�ciency. As already reported, the algorithm is the fastest
implementation of modi�ed Kneser-Ney smoothing up to date, as it takes takes 25.4% and 7.7% of,
respectively, CPU time and RAM of SRILM; 16.4% and 16.6% of CPU and RAM of IRSTLM [26].

As an overview, the algorithm consists in four streaming passes over the data, that we are going
to detail next: (1) counting, (2) adjusting counts, (3) normalization and (4) interpolation. Since all
n-grams, 1 < n ≤ N , are sorted between these steps in the next-step desired order, thus three times
in total, we refer to this approach as the 3-Sort algorithm.

(1) Counting. The �rst step computes the unpruned occurrence counts of all N -grams (with order
exactly N) by streaming through the textual corpus. Lower-order n-grams are not counted since
raw occurrence counts for N -grams are su�cient to derive smoothing statistics. In particular,
N -gram tokens are replaced with 4-byte vocabulary identi�ers and uni-gram strings are written
to disk as plain text. Their 8-byte Murmur hash is retained in internal memory. The occurrence
counts, represented as 8-byte numbers, are accumulated in an open-addressing hash table with
linear probing: the counts are written to disk in a su�x-sorted block as records of the form
⟨wN

1 , c(w
N

1)⟩ whenever the table reaches a speci�ed amount of internal memory.
(2) Adjusting. All blocks sorted in su�x order are merged together in a single block BN . For

1 ≤ n < N , the modi�ed count c(wn

1) for w
n

1 is equal to |{x : xwn

1 }|, that is, informally, the
number of distinct words to the left of wn

1 . These are also called the left extensions of wn

1 . By
streaming through BN it is su�cient to compare consecutive entries to decide whether to
write the record ⟨wn

1 , c(w
n

1)⟩ to a new block Bn or increment the currently computed c(wn

1).
During the same pass, smoothing statistics tn,k are collected and discount coe�cients Dn(k)

are calculated as in formula (5).

Handling Massive N -Gram Datasets E�iciently 25

u(w3|w2) + •× P(w3)
<latexit sha1_base64="NYhk0/Jq+sd9qAWyzq/L4dSKPCU=">AAACZnicbVDLSsNAFJ3Gd31VRVy4GSyCIpSkCroU3bisYFVoQpiZ3urgZBJmbtQS+xF+jVv9DP/Az3BSu7DVCxcO577OPTxT0qLvf1a8qemZ2bn5heri0vLKam1t/dqmuRHQFqlKzS1nFpTU0EaJCm4zAyzhCm74w3lZv3kEY2Wqr7CfQZSwOy17UjB0VFw7yPee4sOXp7i5Tw9oyHOlAGmIMgFLw4ThPedFa1A27ce1ut/wh0H/gmAE6mQUrXitUg+7qcgT0CgUs7YT+BlGBTMohYJBNcwtZEw8sDvoOKiZuxoVw68GdNcxXdpLjUuNdMj+nihYYm0/4a6z1GknayX5X62TY+8kKqTOcgQtfg71ckUxpaVFtCsNCFR9B5gw0mml4p4ZJtAZWR1bdRVERamu3DN2X0kO7ks98aREpqSIilIUswjPOKg6W4NJE/+C62Yj8BvB5VH99Gxk8DzZJjtkjwTkmJySC9IibSLIK3kj7+Sj8uWteJve1k+rVxnNbJCx8Og3znC53g==</latexit><latexit sha1_base64="NYhk0/Jq+sd9qAWyzq/L4dSKPCU=">AAACZnicbVDLSsNAFJ3Gd31VRVy4GSyCIpSkCroU3bisYFVoQpiZ3urgZBJmbtQS+xF+jVv9DP/Az3BSu7DVCxcO577OPTxT0qLvf1a8qemZ2bn5heri0vLKam1t/dqmuRHQFqlKzS1nFpTU0EaJCm4zAyzhCm74w3lZv3kEY2Wqr7CfQZSwOy17UjB0VFw7yPee4sOXp7i5Tw9oyHOlAGmIMgFLw4ThPedFa1A27ce1ut/wh0H/gmAE6mQUrXitUg+7qcgT0CgUs7YT+BlGBTMohYJBNcwtZEw8sDvoOKiZuxoVw68GdNcxXdpLjUuNdMj+nihYYm0/4a6z1GknayX5X62TY+8kKqTOcgQtfg71ckUxpaVFtCsNCFR9B5gw0mml4p4ZJtAZWR1bdRVERamu3DN2X0kO7ks98aREpqSIilIUswjPOKg6W4NJE/+C62Yj8BvB5VH99Gxk8DzZJjtkjwTkmJySC9IibSLIK3kj7+Sj8uWteJve1k+rVxnNbJCx8Og3znC53g==</latexit><latexit sha1_base64="NYhk0/Jq+sd9qAWyzq/L4dSKPCU=">AAACZnicbVDLSsNAFJ3Gd31VRVy4GSyCIpSkCroU3bisYFVoQpiZ3urgZBJmbtQS+xF+jVv9DP/Az3BSu7DVCxcO577OPTxT0qLvf1a8qemZ2bn5heri0vLKam1t/dqmuRHQFqlKzS1nFpTU0EaJCm4zAyzhCm74w3lZv3kEY2Wqr7CfQZSwOy17UjB0VFw7yPee4sOXp7i5Tw9oyHOlAGmIMgFLw4ThPedFa1A27ce1ut/wh0H/gmAE6mQUrXitUg+7qcgT0CgUs7YT+BlGBTMohYJBNcwtZEw8sDvoOKiZuxoVw68GdNcxXdpLjUuNdMj+nihYYm0/4a6z1GknayX5X62TY+8kKqTOcgQtfg71ckUxpaVFtCsNCFR9B5gw0mml4p4ZJtAZWR1bdRVERamu3DN2X0kO7ks98aREpqSIilIUswjPOKg6W4NJE/+C62Yj8BvB5VH99Gxk8DzZJjtkjwTkmJySC9IibSLIK3kj7+Sj8uWteJve1k+rVxnNbJCx8Og3znC53g==</latexit><latexit sha1_base64="NYhk0/Jq+sd9qAWyzq/L4dSKPCU=">AAACZnicbVDLSsNAFJ3Gd31VRVy4GSyCIpSkCroU3bisYFVoQpiZ3urgZBJmbtQS+xF+jVv9DP/Az3BSu7DVCxcO577OPTxT0qLvf1a8qemZ2bn5heri0vLKam1t/dqmuRHQFqlKzS1nFpTU0EaJCm4zAyzhCm74w3lZv3kEY2Wqr7CfQZSwOy17UjB0VFw7yPee4sOXp7i5Tw9oyHOlAGmIMgFLw4ThPedFa1A27ce1ut/wh0H/gmAE6mQUrXitUg+7qcgT0CgUs7YT+BlGBTMohYJBNcwtZEw8sDvoOKiZuxoVw68GdNcxXdpLjUuNdMj+nihYYm0/4a6z1GknayX5X62TY+8kKqTOcgQtfg71ckUxpaVFtCsNCFR9B5gw0mml4p4ZJtAZWR1bdRVERamu3DN2X0kO7ks98aREpqSIilIUswjPOKg6W4NJE/+C62Yj8BvB5VH99Gxk8DzZJjtkjwTkmJySC9IibSLIK3kj7+Sj8uWteJve1k+rVxnNbJCx8Og3znC53g==</latexit>

u(w3) + •×

1

V
<latexit sha1_base64="xmIHY2lmaKRa33RdEOrAtRXyRss=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzXs8bL4OyYnlA/zKQEpD6KGAz1I8147hV5p7BdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDGrGOTjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrA1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8DmEW3DQ==</latexit><latexit sha1_base64="xmIHY2lmaKRa33RdEOrAtRXyRss=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzXs8bL4OyYnlA/zKQEpD6KGAz1I8147hV5p7BdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDGrGOTjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrA1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8DmEW3DQ==</latexit><latexit sha1_base64="xmIHY2lmaKRa33RdEOrAtRXyRss=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzXs8bL4OyYnlA/zKQEpD6KGAz1I8147hV5p7BdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDGrGOTjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrA1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8DmEW3DQ==</latexit><latexit sha1_base64="xmIHY2lmaKRa33RdEOrAtRXyRss=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzXs8bL4OyYnlA/zKQEpD6KGAz1I8147hV5p7BdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDGrGOTjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrA1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8DmEW3DQ==</latexit>

u(w3|w2w1) + •× P(w3|w2) = P(w3|w2w1)

b(w2w1)

b(w2)

b(ε)

(a)

1 2

3

R S C

(b)

Fig. 6. On the le� (a): The Kneser-Ney interpolated probabilities for a 3-gram, calculated in a bo�om-up

fashion (from 1-gram to 3-gram). On the right (b): Sorting passes performed between random order (R), su�ix

order (S) and context order (C). Black arrows describe the path followed by the 3-Sort algorithm; the red,

dashed, arrow the one followed by the 1-Sort algorithm.

(3) Normalization. This step computes normalized probabilities and backo�s according to, re-
spectively, formulas (3) and (4). For such purpose, the blocks Bn , 1 < n ≤ N , produced during
the previous step of Adjusting, are sorted in context order such that, for each contextwn−1

1 , the
entrieswn−1

1 x are consecutive. Again, a streaming pass through each Bn su�ces to emit records
of the form ⟨wn

1 ,u(wn |w
n−1
1),b(wn−1

1)⟩. The information stored in the record, enclosed in the
red rectangles in Figure 6a, is one needed to perform interpolation. The computed backo�s are
saved twice on disk, also as bare values without keys, one �le per order 1 ≤ n < N to facilitate
the next step of joining.

(4) Interpolation and joining. The last streaming step performs interpolation of all orders to
compute the �nal Kneser-Ney probability as in equation (2). The blocks Bn are sorted again
in su�x order so that P(wn) is computed before it is needed to compute P(wn |wn−1), which in
turn is computed before P(wn |wn−2wn−1), and so on. Figure 6a o�ers a pictorial representation
of this bottom-up process for a 3-gram. Note that the backo�s for the contexts that are needed
for interpolation were saved in-line with the stringwn

1 during the previous step. Also note that
since normalization streamed through the blocks sorted in context order, the backo�s were
saved to disk in su�x order. Therefore, during this step the two quantities P(wn |w

n−1
1) and

b(wn

1) are joined together, for 1 ≤ n < N (N -grams do not have backo�).

4.3 Improved construction: the 1-Sort algorithm

In this section we introduce our main result that is an estimation algorithm for unpruned, modi�ed,
Kneser-Ney language models which substantially improve upon the I/O e�ciency of 3-Sort by
requiring only one sorting in external memory. As apparent from the description in Subsection 4.2,
the running time of 3-Sort is dominated by the cost of sorting in external memory, which is paid three
times in total: (1) from extraction order (unsorted) to su�x order, (2) from su�x order to context
order and then (3) from context order to, again, su�x order. This round-trip is the performance
bottleneck of 3-Sort and it is graphically represented in Figure 6b. The natural question is whether it
is possible to avoid the round-trip and perform the whole estimation by exploiting a single ordering
over the N -gram strings. This section of the paper answers positively to such question.

In what follows we detail the steps performed by our algorithm in comparison with 3-Sort and,
thus, show how to save two steps of sorting. As a general overview, the algorithm performs three

26 Giulio Ermanno Pibiri and Rossano Venturini

steps: (1) counting N -grams; (2) computing discount coe�cients; (3) normalization, interpolation,
joining and index construction in a single pass.

4.3.1 Counting. This �rst step is performed similarly to the counting step of 3-Sort. In par-
ticular, we allocate an in-memory block of bytes able of accommodating the largest number of
N -grams as possible, i.e., without taking more space than the amount of RAM speci�ed by the
user. Speci�cally, the block stores records of the form ⟨wN

1 , c(w
N

1)⟩, each taking 4N bytes for its
vocabulary identi�ers, plus an 8-byte frequency count. In order to tell whether a N -gram was
already seen or not during the scanning of the input, we associate a 4-byte identi�er to each distinct
N -gram by resorting to an open-addressing hash set.

If a cell of the set is not empty and contains the identi�er k ≥ 0, our probe consists in comparing
the extracted N -gram string with the 4N bytes stored in the block starting from position k×(4N +8).
If the comparison yields equality, then we increment the corresponding counter, otherwise we
advance to the next probe position. If any probed cell is found to be empty, then we write there the
next available identi�er (equal to the number of distinct seen N -grams) and append a new record
to the in-memory block.
As soon as we completely �ll the block, we use a parallel thread to sort and write it to disk,

thus hash deduplication of the text and I/O happen simultaneously. The key di�erence of this step
with respect to the one of 3-Sort, lies in the fact that we sort the blocks in context order instead of
su�x order. The reason for this choice will become clear as we proceed in the description of the
subsequent steps.

4.3.2 Adjusting. All blocks written to disk by the previous step are merged together to obtain
a single block BN , listing all distinct N -grams sorted in context order. During the process of merging
the blocks, we collect the smoothing statistics tn,k in order to use the closed-form estimate of
discount coe�cients as in formula (5). Because smoothing statistics and, thus, discount coe�cients,
depend on the modi�ed counts of the n-grams, the key ingredient we develop in this subsection is a
linear-time algorithm that computes the modi�ed counts of all n-grams for 1 ≤ n < N by scanning

the context-sorted block BN . In particular, the merged records are accumulated in an in-memory
block before writing them to disk. When the block �lls up, we run this algorithm over the block.
We repeat the process until the input block BN is processed completely. At the end of the process,
we use formula (5) to compute the discount coe�cients.

Before illustrating the algorithm for computing the modi�ed counts over the context-sorted
block BN , we �rst discuss its immediate advantage and then introduce the property of N -grams that
the algorithm exploits. Recall that 3-Sort computes the modi�ed counts of the n-grams by scanning
BN as sorted in su�x order (Subsection 4.2). Because the next step of estimation is normalization
and it requires context order, computing discount coe�cients directly over the strings sorted in
context order has the bene�t of avoiding to sort from su�x to context. We are, therefore, eliminating
the sorting step 2 of Figure 6b.

Exploiting the completeness of N -gram strings. First of all, observe that since estimation is
done without pruning by assumption and N -grams are extracted using a window of size N that
slides by one word at a time, the strings in BN cover the input text completely. This means that all
the substrings of length 1 ≤ n < N of each N -gram occur as substrings of some other N -gram
in BN . Refer to Figure 7 and consider the �rst 5-gram ABAAC in the context-sorted block at the
bottom of the picture. For example, we know that its sub-string BAA must appear at positions 0, 1
and 2 of some other N -grams (the ones of index 6, 0 and 1, respectively). In particular we know
that its pre�x of length 4, i.e., ABAA will be matched at position 1 in some other N -gram (the one
of index 1, in this case). We will return to this point later on, in Subsection 4.3.3.

Handling Massive N -Gram Datasets E�iciently 27

A B X

A B X A C C X

B A C X X C X

A X A X X A B C B A C X

X X A X X B A A C B A C

C

A

A B AA

0 1 2 3 4 5 6 7 8 9 10 11

C

A

A

B

A

A

A

B

A

X

C

A

B

C

A

B

A

X

X

X

A

B

A

X

X

A

B

C

A

A

B

C

A

A

B

X

C

A

B

C

X

X

C

A

B

X

X

X

C

A

X

X

X

X

C

A

X

X

X

X

0 1 2 3 4 5 6 7 8 9 10 11

5

1

2

3

4

4

3

2

1

0

Fig. 7. An example of a 5-gram block sorted in context order and the relation with its reverse trie representation.

The bo�om level of the trie is obtained by permuting the first words of the strings in the context-sorted block,

according to the lexicographic position of their last words. The le� extensions (words in red) of AC must be

found in the region highlighted by the red rectangle, which is the run of entries whose context of length 1 is

equal to A. These correspond to the children of CA in the trie representation.

This observation means that all lower-order n-grams strings are implicitly contained in the single
source block BN . Two important facts are direct consequences of this property.

(1) A sorted scan of the n-grams can be performed by just scanning BN , without the need of
replicating on disk all other n-gram strings, for 1 ≤ n < N , as done by 3-Sort during the
Adjusting step.

(2) The number of distinct left extensions, i.e., the distinct words appearing to the left, of a n-gram
wn

1 can be computed by scanning the N -grams whose context of length n − 1 is equal town−1
1 .

About the fact (2), observe that we could compute the left extensions for a n-gram by directly
scanning the N -grams having that n-gram as context of length n. Consider the example in Figure 7.
We could scan the entries of index 6 and 7 to compute the distinct left extensions (words in red)
of the bi-gram AC, instead of the entries of index 0, 1, 2 and 3. The problem with this approach is
that we would not be able to compute the quantity for (N − 1)-grams because, obviously, a context
of length N − 1 can not be extended to the left. Moreover, consider now the �rst 5-gram ABAAC.
Since interpolation produces the probabilities for all its su�xes, i.e., for C, AC, AAC and BAAC, we
need the modi�ed counts for that su�xes and not for its contexts A, AA, BAA and ABAA that we
could have computed with the other approach.

28 Giulio Ermanno Pibiri and Rossano Venturini

Computing distinct left extensions in context order. We now introduce the linear-time algo-
rithm for computing the distinct left extensions in context order. For ease of explanation, let us
consider a N -gramwN

1 as composed by three pieces, in order: P , Cn−1 andwN , where Cn−1 is the
context of length n − 1 and P is the remaining pre�x. Our aim is to compute the number of distinct
wordswN−n−1 to the left of the n-gram Cn−1wN , because this quantity will be its adjusted count
c(Cn−1wN). Since BN is sorted in context order, the entries PCn−1 are consecutive for every context
Cn−1, but entries Cn−1wN could not (entries Cn−1wN are consecutive in su�x order). However, we
know that every left extension must necessarily appear to the left of the context Cn−1, and thus we
need to only scan the entries having such context.
The quantity c(Cn−1wN) is computed using a direct-address table of size Θ(V) in which we

store, for each distinctwN , the last seen left word and the number of distinct left words seen so
far. As long as context Cn−1 remains the same during the scan of the block, we look at the table
entry corresponding towN and consider its last seen left word: if di�erent fromwN−n−1 then we
increment its count by one and update the last seen left word with the current one, otherwise we
do nothing. This update step takes O(1) worst-case. We are sure to count correctly the number
of left extensions because left words are seen in sorted order. Figure 7 shows an example for the
bi-gram AC. In this case its context of length n − 1 is the uni-gram A. We are sure to �nd all the
distinct left extensions of AC in the range of entries having A as context of length 1, i.e., the ones
spanned by the light red rectangle. In particular AC can be extended to the left with words A and B,
as depicted in red in the picture, thus c(AC) = 2. Observe that these corresponds to the children
of the bi-gram CA in the reverse trie representation [25, 45] of the block in the upper part of the
picture. The trie stores the strings in su�x order. In other words, the node spelling out the bi-gram
CA will store two pointers (one for A and one for B). Again, we will return to this point when we
will discuss how to lay out e�ciently the reverse trie, in Subsection 4.3.3.

At the end of the scan of all entries with the same context Cn−1, it is therefore guaranteed that
the table contains the modi�ed counts for all the n-grams Cn−1x . When the context Cn−1 changes,
then we would need a fast way of zeroing all counts in the table. Instead, we do not re-initialize the
table explicitly which would cost Θ(V) time, but we associate each context an increasing identi�er.
During the update step we �rst check the context identi�er for the current wordwN : if di�erent
from the current one, we set its count in the table to zero and increase by one its range identi�er.

Before concluding, there are two corner (simpli�ed) cases that we must mention for completeness:
the one of N -grams and the one of 1-grams. The former because N -grams do not have modi�ed
counts, rather their counts are equal to the raw frequency counts written in the block BN ; the latter
because their context is empty and we do not have to re-initialize their counts in the table when
we switch range. This concludes the description of the linear-time algorithm that uses Θ(V) space
to compute the modi�ed counts of all n-grams over a context-sorted block of N -grams.

Collecting smoothing statistics. We are left to describe how we collect the smoothing statistics
tn,k for k ∈ [1, 4] by using the introduced algorithm. For each order n, we maintain an array T of 4
counters, where T [k − 1] will store the quantity |{wn

1 : c(wn

1) = k}|. A trivial solution scans the
table of size Θ(V) used by the algorithm whenever we change context and update the counters
accordingly. This approach is clearly unfeasible in terms of running time. Instead, we can update
each T [k − 1] in O(1) on-the-�y, during the updating step of the algorithm, as follows. Whenever
we increment the occurrence ofwN from k to k + 1, we just have to check k : if 1 < k ≤ 4 then we
increment T [k − 1] and decrement T [k − 2]; if k = 1 then we only increment T [0] while if k > 4

we only decrement T [3]. Whenever we change context, these local counts are �rst summed to the
global ones and then re-initialized.

Handling Massive N -Gram Datasets E�iciently 29

4.3.3 All in the last step. In the last step of estimation, the algorithm performs normalization,
interpolation, joining and indexing at the same time, i.e., without requiring a di�erent scan, nor a
sorting step, for each phase.
The output of this last step is the compressed, static, trie index that maps the extracted n-gram

strings to their Kneser-Ney probabilities and backo�s, described in Subsection 3.2.1. In particular it
is the reverse trie variant, such as the one depicted in Figure 7, because it optimizes the left-to-right
pattern of lookups performed by perplexity scoring (see Subsection 3.4.3) [25, 44, 45].

Normalization and interpolation. In Subsection 4.3.2 we have shown how we can compute the
modi�ed counts over the block BN sorted in context order. Thanks to this tool, we can therefore
calculate pseudo probabilities and backo� values using formulas (3) and (4) respectively, by just
scanning BN and using a direct-address table of size Θ(V) to read the modi�ed counts.
In order to interpolate all di�erent orders, we produce pseudo probabilities and backo�s for

all n-grams sharing the same context, starting from order 1 up to N . This guarantees that as
soon as we compute u(wN |wN−1

N−n−1
), we can directly interpolate it with P(wN |wN−1

N−n−2
) that has

been already computed. Normalization and interpolation are, therefore, carried on as explained in
Subsection 4.2, but without requiring two separate sorting passes over the N -gram strings. Another
crucial di�erence is that the two phases are performed during the same scan of only one block, i.e.,
BN , and we do not need to jointly iterate through N distinct �les, one for each value of n, as done
by 3-Sort.

The net result is that we avoid to sort from context to su�x in order to perform interpolation, thus
eliminating the sorting step 3 of Figure 6b. Summing up, given that we have formerly shown how
to save the sorting from su�x to context too (Subsection 4.3.2), we have completely eliminated the
round-trip of 3-Sort mentioned at the beginning of Subsection 4.3.

Joining and indexing. We now show how to join probabilities and backo�s values, and how
to build the reverse trie during the same pass. For this purpose, we exploit the property already
mentioned in Subsection 4.3.2, that is: every pre�x of length N − 1 must be matched at position 1 in

some other N -gram. This property gives us two important guarantees.

(1) The �rst N − 1 levels of the reverse trie can be built by streaming through the N -grams in
context order.

(2) Backo�s are emitted in su�x order.

In the following we exploit these two guarantees to build the trie and perform joining, respectively.
By looking at Figure 7, we can graphically visualize these two points. Regarding point (1), we

see that the �rst 4 levels of the trie are indeed the contexts of length 4 of the N -gram strings in
the context-sorted block. For example, the pre�x of length 4 of ACBAC is found in the N -gram of
index 5; the one of XXXAB in the N -gram of index 11 instead. Notice that we always �nd the match
at position 1, thus the �rst 4 levels of the trie store such pre�xes. Regarding point (2), consider
the �rst N -gram ABAAC. Since interpolation produces the probabilities for all the su�xes, i.e., for
C, AC, AAC and BAAC, we compute the backo�s for their contexts, i.e., for b(ε), b(A), b(AA) and
b(BAA), which appear in sorted order in the block. Refer to Figure 6a too, for a graphical example.
Backo�s are, therefore, computed in su�x order and can be written directly in the corresponding
trie nodes.

Exploiting the relation between context and su�x order. Now that we have discussed how
to handle the �rst N − 1 levels of the trie and perform joining, we are left to consider its bottom
level and how we write the probabilities in the nodes of the trie. In fact, notice that: regarding point

30 Giulio Ermanno Pibiri and Rossano Venturini

n 1BillionWord Wikipedia17 ClueWeb09

1 2 438 616 5 681 625 4 291 588

2 43 179 094 141 639 447 236 626 867

3 203 793 974 587 261 939 977 038 965

4 427 172 514 1 115 647 651 1 710 815 581

5 588 390 914 1 463 820 688 2 129 634 982

total n-grams 1 264 975 112 3 314 051 350 5 058 407 983

Table 6. Number of n-grams for the datasets used in the experiments.

(1), since a context of length N − 1 does not extend to the left, we can not build the bottom level
directly; regarding point (2), interpolation produces the probabilities for the su�xes but we rather
would need the ones for the contexts, in order to write them in the trie, as already done for the
backo�s. We clarify this latter point by continuing the above example for ABAAC. We interpolate
its constituent n-grams: C, AC, AAC, ecc, but we would actually need the probabilities for A, AA,
BAA, ecc, in order to write them in the su�x trie as already done for the backo�s.
To address these two problems, we exploit the following property, that established the relation

between context and su�x order. A context-sorted block can be sorted e�ciently in su�x order by

considering the last word only, because the pre�xes of length N − 1 are already sorted by de�nition.
This property implies that: the bottom level of the trie can be built by placing the �rst words of the

strings of the context-sorted block in the lexicographic positions of their last words. Thanks to this
property, although the algorithm operates over the strings sorted in context order, it is still able to
e�ciently lay out the strings in su�x order.

The relation is depicted in Figure 7 by the dashed lines. For example, consider the �rst N -gram
ABAAC. We know that such string will terminate with A (�rst word) in the bottom level of the trie.
The position at which we have to place this �rst word is the lexicographic position of the last word,
i.e., the C. Since the lexicographic position of the C is 6 within all the last words of the N -grams, A
is placed in position 6.

In order to place word identi�ers and probabilities in correct position, we use a count-indexing
technique, instead of storing the permutation explicitly that would costmN logmN bits of space,
wheremN is the total number of N -grams. For each vocabulary word, we maintain the number of
times it appears as last word of a N -gram in a direct-address table of size V . Pre�x-summing such
counts (shifted by one position to the right) gives us in O(1), for each distinct word identi�er i , the
position in the array, that represents the bottom level of the trie, at which we have to write the �rst
occurrence of i . Given such position, we write the integer i in O(1) and increment the position in
the table by one. This is the same procedure as used by counting sort and requires only V integer
counters. In the example of Figure 7, we obtain the initial positions [0, 4, 6, 8] for, respectively, A, B,
C and X. Thus we know that the �rst occurrence of, say, B, will be placed in the bottom level at
position 4; the second occurrence at position 5. The same technique is also used to place the �nal
interpolated probabilities in the correct trie nodes for all other orders 1 < n < N .
Finally, we also have to write the pointers for each node of the trie. As already observed in

Subsection 4.3.2, a pointer represents the number of successors of a given n-gram, thus these are
the same as the modi�ed counts. In conclusion, the computation of the pointers requires no extra
e�ort.

Handling Massive N -Gram Datasets E�iciently 31

4.4 Experiments

The experiments we now show have the purpose of: �rst characterizing the running time of our
solution, i.e., the 1-Sort algorithm; introducing optimizations and �nally considering the comparison
against the 3-Sort approach.

Datasets. We performed our experiments using the following textual collections in the English
language.

• 1BillionWordthat is the concatenation of all the news �les contained in the training directory of
the dataset described in [7] and publicly available at: http://www.statmt.org/lm-benchmark;

• Wikipedia17that is the latest Wikipedia dump, collected from October to December 2017 and
publicly available at: https://dumps.wikimedia.org/enwiki/latest;

• ClueWeb09 that is a sampling of 5 million pages drawn from the ClueWeb 2009 TREC Category
B test collection, consisting of English web pages crawled between January and February 2009,
available at: http://www.lemurproject.org/clueweb09.

From each dataset we removed all non-ASCII characters and markup tags. We use the (standard)
value of N = 5 in every experiment. The datasets are of increasing size, reported as the number of
n-grams in Table 6: this will be useful to show the behavior of our solution by varying the size of
the input.

Experimental setting and methodology. All experiments have been performed on a machine
with 4 Intel i7-7700 cores clocked at 3.6GHz, with 64GB of RAM DDR3, running Linux 4.4.0, 64
bits. RAM is clocked at 2.133GHz. The machine is equipped with a mechanical disk of 3TBWDC

WD30EFRX-68E, with standard page size of 4KB.
We implemented the 1-Sort algorithm in standard C++11: the source code will be released

upon publication of the paper. As our competitor, we use the C++ implementation of 3-Sort as
provided by the authors of [26] and available at http://khea�eld.com/code/kenlm. We refer to this
implementation as KenLM, which is the lead toolkit for language modeling [25]. As a matter of
fact, KenLM provides the fastest estimation algorithm, signi�cantly outperforming the previous
approaches [26]: it takes on average 20% of the CPU and 10% of the RAM of SRILM and IRSTLM.
This is also con�rmed by other recent experiments, showing KenLM to be up to 10× faster to build
for the typical values of n ≤ 5 than approaches based on compressed su�x trees [50].
All code compiled with gcc 5.4.0, using the highest optimization setting.

4.4.1 Preliminary analysis. As a �rst set of experiments we show the running time of our
algorithm by varying the amount of internal memory and by expecting the CPU and I/O activity.

Varying the amount of internal memory. As a �rst experiment, we show the running time
of our algorithm at each step of estimation, by varying the allowed amount of internal memory.
We show the results using three values: 4GB, 16GB and the maximum available RAM, 64GB. This
experiment aims at showing which steps are the most expensive and �x the amount of internal
memory that we will use for the subsequent analysis. The plots in Figure 8 illustrate the results.
Above each bar, we report two numbers: the �rst indicating the number of minutes spent during the
step, the second indicating the percentage with respect to the total running time of the algorithm.
This grand total measures the time of the whole estimation process, i.e., the time it takes from the
scanning of the input text to the �ushing on disk of the compressed index built over the extracted
strings. Some considerations are in order.

First of all, we can observe that, not surprisingly, the size of the language model has a signi�cant
impact not only on the total running time but also on which step becomes the most expensive.

http://www.statmt.org/lm-benchmark
https://dumps.wikimedia.org/enwiki/latest
http://www.lemurproject.org/clueweb09
http://kheafield.com/code/kenlm

32 Giulio Ermanno Pibiri and Rossano Venturini

4GB 16GB 64GB

5.4
57%

6.6
62%

8.4
68%

1.3
13%

1.2
11%

1.1
9%

2.8
30%

2.8
27%

2.8
23%

Counting Adjusting Last

(a) 1BillionWord

4GB 16GB 64GB

13.2
37%

14.5
39%

18.0
46%

12.6
35%

12.1
32%

11.3
29%10.1

28%
10.5
28% 9.7

25%

Counting Adjusting Last

(b) Wikipedia17

4GB 16GB 64GB

22.0
35%

21.8
35%

27.2
43%23.8

38% 21.9
35% 19.6

31%16.8
27%

18.0
29% 16.5

26%

Counting Adjusting Last

(c) ClueWeb09

Fig. 8. Time spent at each step of estimation by using di�erent amounts of internal memory.

In fact, while on the 1BillionWord dataset the Counting and Last step contribute for more than
80% of the total running time and the Adjusting step has a quite low impact, the trend changes
signi�cantly on the larger datasets. In fact, on Wikipedia17 and ClueWeb09 the total running time
is almost evenly distributed across the three steps. Notice, in particular, that the time for Adjusting
rises signi�cantly. This is due to the number of N -gram blocks written to disk during the Counting
step and that are merged together during the Adjusting step. On the smaller dataset 1BillionWord,
we have relatively few blocks to merge, thus Adjusting is performed quickly. Clearly, using more
internal memory helps in lowering the number of blocks to merge and, thus, reducing the time for
Adjusting.

We also observe that the step of Counting and the Last one do not vary much when more memory
is available. Concerning the Counting step, more memory is not useful to lower the running time
because using larger hash sets also means sorting larger blocks of N -grams. Indeed, observe that the
total running time of Counting (slightly) increases by increasing the amount of memory. However,
as we have discussed above, using more memory for sorting implies fewer of blocks to merge, thus
internal memory size has an impact only on the Adjusting step. For the open-address hash set
implementation that we use in the Counting step, we experimented with linear probing, quadratic
probing and double hashing. No signi�cant di�erence among the three strategies was observed,
thus we prefer linear probing for its better locality of accesses. Concerning the last step, we need
to scan the merged N -gram �le once. We use a standard bu�ered-scan approach using blocks of
64MB by default. Using larger blocks does not impact the running time.

Since similar observations also hold true for KenLM, we choose the middle value of 16GB for all
datasets as the quantity of memory we use for all the following experiments.

Inspecting CPU and I/O activity. It is now interesting to quantify the impact that CPU and I/O
operations have on the total running time of each step. Under a di�erent perspective, this analysis
is also useful to understand and how disk usage is impacted by the size of the language model. The
plots in Figure 9 illustrate such impact, i.e., the time spent by CPU and I/O at each step by using
the amount of RAM that we �xed before (16GB).

Dealingwith external memory poses the challenge of trying to avoid CPU idle time by overlapping
CPU computation with I/O activity. For such reason, we use asynchronous threads to handle
input/output operations, so that while the CPU is performing internal processing, data is read or
written to disk simultaneously [17]. This is a feature of particular importance for on-disk programs
such as the ones we are considering, given the huge discrepancy in speed of modern processors
and (mechanical) disks. Clearly, a perfect overlapping between CPU and I/O time would mean to
only pay the maximum of the two. Consequently, the sum of three percentages for CPU, IN and

Handling Massive N -Gram Datasets E�iciently 33

Counting Adjusting Last

4.8
73%

0.6
52%

2.8
100%

1.2
17%

0.1
5%

0.1
2%

0.7
11%

0.8
65%

0.0
1%

CPU IN OUT

(a) 1BillionWord

Counting Adjusting Last

9.3
64%

2.8
23%

10.3
98%

5.0
34%

9.2
77%

3.5
34%

1.8
12% 0.3

2%
0.4
4%

CPU IN OUT

(b) Wikipedia17

Counting Adjusting Last

13.7
63%

5.0
23%

16.4
91%

7.9
36%

16.9
77%

8.2
45%

2.8
13% 0.4

2%

1.3
7%

CPU IN OUT

(c) ClueWeb09

Fig. 9. Time spent by CPU computation and I/O activity at each step of estimation.

OUT time for a given step in Figure 9, may exceed 100% because these are handled by di�erent
threads. Let us now consider each step in order.
During the Counting step, while the reader thread is scanning the input and probing the hash

set, the writer thread is asynchronously sorting the previous N -gram block and �ushing it to disk.
While sorting is strictly CPU-bound because it is performed in memory, the scanning of the input
text imposes some CPU idle time as apparent for the plots of the larger datasets Wikipedia17 and
ClueWeb09. However, probing the hash set and sorting contribute to most of the time spent during
the Counting step. In fact, the plots report that the sum of CPU and IN percentages yields almost
the whole running time of Counting, whereas the OUT time is completely overlapped with CPU
processing.
The total running time of the Adjusting step is, instead, dominated by the cost of reading the

blocks from the disk. This is no surprise given that multiple input streams are contending the disk
for input operations, thus incurring in more disk seeks [56]. As a result, on the larger datasets
Wikipedia17 and ClueWeb09 we can see the IN time taking 77% of the total: this causes the CPU
utilization to drop down to roughly 23%, by experiencing idle time. Indeed, the time taken by
the algorithm described in Subsection 4.3.2 is negligible compared to the overall running time of
the step and contributes to a small percentage of the CPU: it is just 0.42, 1.2 and 1.8 minutes on
1BillionWord,Wikipedia17 and ClueWeb09 respectively. The remaining part of the CPU is spent
by iterating through the fetched block of N -grams and comparing records during the merging
process.

During the Last step, while the reader thread is loading a block from disk, the CPU is processing
the previous block. Therefore, we have a good overlap between CPU and reading time from disk.
This is possible because disk reads are issued to a single source, i.e., the merged N -gram �le, thus
we avoid the disk seeks experienced during the Adjusting step. As a result, all time is spent by the
CPU.

4.4.2 Optimizing our solution. In this subsection we devise and quantify the impact of one
performance optimization for each step of estimation.

Counting: implementing a parallel radix sort. In order to lower the total running time of the
Counting step, it is important to guarantee a good overlap between input scanning and sorting in
order to only pay the maximum of the two latencies and not the sum of the two. For this reason, we
use LSD (least-signi�cant-digit) radix sort [14], instead of the general-purpose std::sort. This sorting
algorithm is the right choice in our setting because eachN -gram is a (short) string of exactlyN word
identi�ers, thus N passes of counting sort, i.e., one for each word index j , j = N − 1, 0, 1, . . . ,N − 2,

34 Giulio Ermanno Pibiri and Rossano Venturini

(a) Wikipedia17

CPU IN total bytes/gram

Uncompressed 2.81 9.24 12.05 28.00

FC bit-aligned 5.77 (0.49×) 0.10 (97.08×) 5.86 (2.06×) 9.00 (3.11×)

FC byte-aligned 3.94 (0.71×) 1.22 (7.60×) 5.03 (2.40×) 11.00 (2.54×)

(b) ClueWeb09

CPU IN total bytes/gram

Uncompressed 4.98 16.91 21.89 28.00

FC bit-aligned 9.29 (0.54×) 5.25 (3.22×) 14.55 (1.50×) 9.75 (2.87×)

FC byte-aligned 7.61 (0.65×) 4.23 (4.00×) 11.55 (1.89×) 11.65 (2.40×)

Table 7. The e�ect of compressing blocks during the Adjusting step, on Wikipedia17 and ClueWeb09 datasets.

The table reports: the time in minutes spent by computation (CPU), reading from disk (IN) and globally (total)

and the average bytes per gram achieved by the di�erent implementations.

are su�cient (and necessary) to sort a block in context order. The time complexity to sort a block
ofm N -grams is Θ((m +V) × N), which is Θ(m × N) given that V = O(m).
Moreover, each step of counting sort on column index j is implemented in parallel, as follows.

Let K be the number of threads used for sorting. We allocate a tableC[K + 1][V] of counters, where
C[t + 1] will store the number of occurrences of each word identi�er in the partition of Θ(m

K
)

records assigned to thread t . Then each thread t , for 0 ≤ t < K , runs in parallel and increments by
one the entry C[t + 1][i] whenever it encounters the word identi�er i . Now, pre�x-summing the
counters by a column-major scan ofC transforms each entryC[t][i] into the (sorted) position in the
output block at which thread t has to write the record having i as its j-th word identi�er.

Thanks to this strategy and by using all the available cores on our test machine (K = 4), the time
for the Counting step improves substantially because sorting N -gram blocks becomes completely
overlapped with input scanning and probing of the hash set: from 6.6 minutes we pass to 3.5
minutes on 1BillionWord (1.88×); from 14.5 to 10 minutes on Wikipedia17 (1.45×); from 21.8 to
15.8 on ClueWeb09 (1.38×). In our experiments, we found out that this parallel implementation
of radix sort is also roughly 1.8× faster on average than gnu::parallel_sort. As an example, to sort
a N -gram block of 8GB, the gnu::parallel_sort takes 30 seconds while our parallel LSD radix sort
takes 16.4 seconds.

Adjusting: compressing N -gram blocks. The high cost of reading the N -gram �les from disk
during the Adjusting step suggests that all e�orts spent in enhancing its running time should
be devoted in reducing the loading time from disk, because lowering the CPU cost will result in
a negligible improvement. For this reason we compress the N -gram blocks created during the
Counting step. Compressing the blocks has the potential of reducing the time spent in reading
from disk because more (compressed) N -grams are transferred from disk to memory during an
input operation.

What we need is a compressed stream representation that supports fast sequential decoding. We
adapt a front-coding [58] representation of a N -gram block, as follows. We �x a window size in bytes
(64MB by default, in our implementation) and compress as many records ⟨wN

1 , c(w
N

1)⟩ as possible,

Handling Massive N -Gram Datasets E�iciently 35

i.e., that can be contained in the window. When encoding/decoding a window, we maintain the
following invariant: a record is either written uncompressed, or compressed with respect to the
previous one. In particular, a record is encoded as a pair ⟨ℓ, s⟩, where ℓ is the number of words
identi�er we have to copy from the previous record (in context order) and s is the remaining part
of the string. The �rst record of each window is written uncompressed.

We can use the minimum number of bits or bytes to represent each word identi�er and frequency
count. We refer to such strategies as, respectively, FC bit-aligned and FC byte-aligned, whose
impact is evaluated in Table 7. As we can see from the data reported in the table, the bit-aligned
version o�ers a 3× space reduction: from 28 bytes per record of the uncompressed version, we pass
to an average of 9 bytes per record onWikipedia17 and to 9.75 bytes per record on ClueWeb09. As
a net result, the Adjusting step onWikipedia17 and ClueWeb09 runs 2× and 1.5× faster. Indeed, we
can observe that the input time decreases signi�cantly: it is almost 100× smaller onWikipedia17

and more than 3× smaller on ClueWeb09. However, notice that the CPU time rises as well, roughly
2×, due to decoding from a compressed stream: we trade CPU time for less reading from disk. The
byte-aligned version, FC byte-aligned, avoids the many bit-level instructions to decode a record.
Not surprisingly, we can see that this strategy is actually faster than the bit-aligned version by 25%

on average, while only allowing a slight worse compression (2.5× on average compared to 3×). In
conclusion, compressing the N -gram blocks with byte-aligned front-coding yields an improvement
of 2.4× and 1.9× onWikipedia17 and ClueWeb09 datasets, respectively. Therefore, for the rest of
the experiments we use the FC byte-aligned representation of the blocks. On the smaller dataset
1BillionWord, however, compressing the blocks does not yield an appreciable improvement since
input time from disk takes a negligible fraction of the total running time of the step (see Figure 9a).

Last: processing N -gram blocks in parallel. As discussed in Subsection 4.4.1, the last step of
estimation is CPU-bound. Thus, we can use multi-threading to speed up the execution of the step.
If K is the chosen parallelism degree, we use 1 reader thread to load the next K − 1 blocks from
the merged N -gram �le and K − 1 worker threads to process these blocks in parallel. While each
worker thread independently executes the algorithm described in Subsection 4.3.3 on its own block,
the reader thread asynchronously loads the next K − 1 blocks in memory. The main challenge
of this approach lies in computing the partition of each level of the trie that has to written by a
worker thread. For such purpose, we adopted a similar partitioning strategy to the one described
in the previous subsection: in a �rst phase, each worker thread computes the number of distinct
n-grams in its own block; in a second phase these counts are combined to obtain the o�sets of the
global partition of the trie. Although the �rst phase is performed in parallel, it has an impact on
the achieved scalability.
On our test machine, we have K = 4, thus we use 3 worker threads and 1 reader thread. On

1BillionWord we reduce the running time from 2.8 to 1.33 minutes (2.1×); on Wikipedia17 from
10.53 to 6.85 minutes (1.54×); on ClueWeb09 from 18 to 11.8 minutes (1.52×).

4.4.3 Overall comparison. In this subsection we compare the performance of our solution,
featuring all the optimizations that we have discussed before, against the state-of-the-art imple-
mentation of 3-Sort, that is KenLM. The �rst comparison plots we show are illustrated in Figure 10.
The plots strictly con�rm the thesis of this paper. The round-trip performed by 3-Sort, i.e., the
sorting from su�x to context and then back from context to su�x (see Figure 6b), results in a severe
penalty on the total running time of the estimation process: our improved 1-Sort algorithm exploits
the properties of the extracted N -gram strings in order to completely avoid the round-trip. Overall,
this makes our approach run 4×, 4.9× and 5.3× faster than KenLM, respectively on 1BillionWord,
Wikipedia17 and ClueWeb09. Let us now discuss each step separately.

36 Giulio Ermanno Pibiri and Rossano Venturini

Counting Adjusting Last

4.0

6.2

13.9

3.5
1.1X 1.2

5.3X
1.3

10.5X

KenLM Our

(a) 1BillionWord

Counting Adjusting Last

10.5

29.9

68.9

10.1
1.0X 5.0

6.0X
6.9

10.0X

KenLM Our

(b) Wikipedia17

Counting Adjusting Last

18.4

55.0

135.6

15.8
1.2X

11.6
4.8X

11.8
11.5X

KenLM Our

(c) ClueWeb09

Fig. 10. Comparison between KenLM and our algorithm at each step of estimation.

As already commented in Subsection 4.3.1, the �rst step of Counting is performed similarly by
the two algorithms and this is the reason why the corresponding running times are comparable.
In fact, both algorithms use a separate thread to sort the previously-formed block in parallel and
�ushing it to disk while input scanning takes place at the same time. Both implementations also use
open-addressing with linear probing. The key di�erence lies in the fact that we sort in context order,
whereas KenLM adopts su�x order. Another crucial di�erence is that our solution compresses the
blocks to reduce the merging time in the next step, which KenLM does not do.
During the Adjusting step, our approach computes the modi�ed counts in context order as

described in Subsection 4.3.2 on every output block formed during the merging process. KenLM
does the same but over su�x-sorted blocks, thus it has to write back to disk each n-gram, for

1 < n ≤ N , along with its own modi�ed count, in context order. Since our approach re-computes
the modi�ed counts during the process of normalization itself, we only need to handle the N -grams
and merge their blocks. Instead, KenLM has to �nally merge the blocks or all n-grams written to
disk. Although it exploits multiple threads (one for each order), the additional writes to disk and
sorting operations cause KenLM be on average 5.3× slower during this step than our approach.

During the last step, normalization, interpolation and indexing are performed (Subsection 4.3.3).
Again, we can observe an average speed-up of 10.6×. Since our algorithm builds a compressed
reverse trie index during the same step, we also sum to the time of KenLM the time it takes to build
the same data structure, because the current implementation does not build the index during the
same pass (although the possibility is advocated in the paper [26]). To ensure fairness, the indexing
time for KenLM is measured by excluding the time to write and parse the intermediate (ARPA) �le
on disk: it is anyway a signi�cant amount of the total running time of KenLM, equal to 7, 31 and
61 minutes for, respectively, 1BillionWord, Wikipedia17 and ClueWeb09. Apart from indexing, the
rest of the time is spent in sorting again from context to su�x order, as needed for interpolation.
Both normalization and interpolation phases of KenLM exploits multi-threading, by using separate
threads for each value of n. In particular, two threads are used to compute the denominators and
numerators of the quantities in formulas (3) and (4). Again, recall that we only need to tackle
N -grams because we consider the other n-gram strings implicitly, thus our implementation uses
multiple threads for in-memory processing and a thread to asynchronously feed the CPU with
input.

Output volume. Another way of visualizing the comparison between our solution and KenLM is
to measure the number of bytes read/written per second from/to the disk by the two algorithms.
Figure 11 shows the number of GB written per second on disk for the Wikipedia17 dataset. The
shapes for the other datasets are similar, as well as the shape for the input volumes. We collect

Handling Massive N -Gram Datasets E�iciently 37

0 8 15 23 31 38 46 53 61 69 76

minutes

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

G
B
/s
e
c

KenLM Our

Fig. 11. Gigabytes per second wri�en on disk by KenLM and our algorithm when processing the Wikipedia17

dataset.

the statistic using the Linux utility pidstat with time interval of 1 second and matching the
name of the executed task. The volume for our construction also includes the one spent when
�ushing the compressed index to disk, whereas the volume for KenLM does not because the current
implementation builds the index with a separate program.
The plots strictly matches the results shown in Figure 10, where an average improvement of

4.5× in running time is exhibited. Not surprisingly the improvement in running time is directly
proportional to the quantity of data written to disk. In fact, the area below the curve of our algorithm
is≈5× less onWikipedia17 (63.6GB vs. 310.7GB) than the one of KenLM. We obtained similar results
on the other datasets: ≈6× less (20.4GB vs. 124.5GB) on 1BillionWord and ≈5× less on ClueWeb09

(88.1GB vs. 433.7GB).

5 CONCLUSIONS

In this paper we studied in depth the two correlated problems lying at the core of language models
applications, i.e., indexing n-grams and estimating language models by computing probability and
backo� values for each n-gram extracted form large textual collections. We focused on solving
these two problems e�ciently.

Concerning the problem of indexing, we presented highly compact and fast indexes for n-grams
datasets that achieve substantial performance improvements over state-of-the-art approaches. Our
trie data structure represents each level of the trie with Elias-Fano, preserving the query processing
speed of the fastest implementation in the literature. We have also described how to reduce its
memory footprint by introducing a context-based remapping for vocabulary tokens. This technique
o�ers, on average, an additional 28% of space reduction with a context of length 1 and 35% with a
context of length 2, with only a slight penalty at query processing speed.
Concerning the problem of estimation, we have presented a novel algorithm that estimates

unpruned, modi�ed, Kneser-Ney language models in external memory. Our approach sorts the
extracted N -gram strings once, in context order, and outputs a compressed trie data structure,
indexing the strings in su�x order. Our construction is, on average, 4.5× faster than the fastest
state-of-the-art algorithm. The improved performance of the algorithm derives from the exploitation
of the properties on the extracted N -gram strings that are neglected by competitive approaches.
Thanks to such properties, it is possible to operate over the context-sorted strings and, yet: (1)
compute the Kneser-Ney modi�ed counts in linear time and only taking space proportional to the
vocabulary; (2) e�ciently lay out the popular reverse trie data structure.

38 Giulio Ermanno Pibiri and Rossano Venturini

REFERENCES

[1] 2006. Yahoo! N-Grams, version 2.0, http://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
[2] Ziv Bar-Yossef and Naama Kraus. 2011. Context-sensitive query auto-completion. In International World Wide Web

Conference (WWW). 107–116.
[3] Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano Vigna. 2014. Cache-oblivious

peeling of random hypergraphs. In International Data Compression Conference (DCC). 352–361.
[4] Burton H. Bloom. 1970. Space/time trade-o�s in hash coding with allowable errors. In Communications of the ACM

(CACM). 422–426.
[5] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Je�rey Dean. 2007. Large language models in machine

translation. In International Conference Empirical Methods on Natural Language Processing (EMNLP). 858–867.
[6] Thorsten Brantz and Alex Franz. 2006. The Google Web 1T 5-Gram Corpus, http://storage.googleapis.com/books/

ngrams/books/datasetsv2.html. In Linguistic Data Consortium, Philadelphia, PA, Technical Report LDC2006T13.
[7] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robinson. 2014.

One billion word benchmark for measuring progress in statistical language modeling. In INTERSPEECH. 2635–2639.
[8] Ciprian Chelba and Johan Schalkwyk. 2013. Empirical Exploration of Language Modeling for the google.com Query

Stream as Applied to Mobile Voice Search. In Mobile Speech and Advanced Natural Language Solutions (MSANLS).
197–229.

[9] Stanley Chen and Joshua Goodman. 1999. An empirical study of smoothing techniques for language modeling. In
Computer Speech and Language (CSL), Vol. 13. 359–394.

[10] Stanley F. Chen and Joshua Goodman. 1996. An empirical study of smoothing techniques for language modeling. In
Association for Computational Linguistics (ACL). 310–318.

[11] Wenlin Chen, David Grangier, and Michael Auli. 2015. Strategies for Training Large Vocabulary Neural Language
Models. In Preprint arXiv:1512.04906.

[12] David Clark. 1996. Compact Pat Trees. Ph.D. Dissertation. University of Waterloo.
[13] David R. Clark and J. Ian Munro. 1996. E�cient su�x trees on secondary storage. In Symposium on Discrete Algorithms

(SODA). 383–391.
[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. 2009. Introduction to Algorithms (3-rd

Edition). MIT Press.
[15] Bruce Croft, Donald Metzler, and Trevor Strohman. 2009. Search Engines: Information Retrieval in Practice (1st ed.).

Addison-Wesley Publishing Company.
[16] Erik D. Demaine, Thouis Jones, and Mihai Pătraşcu. 2004. Interpolation search for non-independent data. In Symposium

on Discrete Algorithms (SODA). 529–530.
[17] Roman Dementiev, Lutz Kettner, and Peter Sanders. 2008. STXXL: standard template library for XXL data sets. In

Software, Practice and Experience (SPE), Vol. 38. 589–637.
[18] Peter Elias. 1974. E�cient Storage and Retrieval by Content and Address of Static Files. In Journal of the ACM (JACM).

246–260.
[19] Robert Mario Fano. 1971. On the number of bits required to implement an associative memory. In Memorandum 61,

Computer Structures Group, MIT.
[20] Marcello Federico and Nicola Bertoldi. 2006. How many bits are needed to store probabilities for phrase-based

translation?. InWorkshop on Statistical Machine Translation (WMT). 94–101.
[21] Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. 2008. IRSTLM: an open source toolkit for handling large scale

language models. In INTERSPEECH. 1618–1621.
[22] Agner Fog. 2014. Optimizing software in C++: an optimization guide from Windows, Linux and Mac platforms. Technical

University of Denmark.
[23] Edward Fredkin. 1960. Trie memory. In Communications of the ACM (CACM). 490–499.
[24] Kimmo Fredriksson and Fedor Nikitin. 2007. Simple compression code supporting random access and fast string

matching. In Workshop on Experimental Algorithms (WEA). 203–216.
[25] Kenneth Hea�eld. 2011. KenLM: Faster and smaller language model queries. In Workshop on Statistical Machine

Translation (WMT). 187–197.
[26] Kenneth Hea�eld, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn. 2013. Scalable Modi�ed Kneser-Ney

Language Model Estimation. In Association for Computational Linguistics (ACL). 690–696.
[27] Ste�en Heinz, Justin Zobel, and Hugh E. Williams. 2002. Burst tries: a fast, e�cient data structure for string keys. In

Transactions on Information Systems (TOIS). 192–223.
[28] Samuel Huston, Alistair Mo�at, and W. Bruce Croft. 2011. E�cient indexing of repeated n-grams. In International

Conference on Web Search and Data Mining (WSDM). 127–136.
[29] Guy Jacobson. 1989. Space-e�cient Static Trees and Graphs. In Foundations of Computer Science (FOCS). 549–554.
[30] Dan Jurafsky and James H. Martin. 2014. Speech and language processing. Pearson.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Handling Massive N -Gram Datasets E�iciently 39

[31] Reinhard Kneser and Hermann Ney. 1995. Improved backing-o� for m-gram language modeling. In International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1. 181–184.
[32] Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine translation, http://www.statmt.org/europarl.

In MT summit. 79–86.
[33] Grzegorz Kondrak. 2005. N-gram similarity and distance. In International symposium on string processing and information

retrieval (SPIRE). Springer, 115–126.
[34] Karen Kukich. 1992. Techniques for automatically correcting words in text. In ACM Computing Surveys (CSUR).

377–439.
[35] Ted G. Lewis and Curtis R. Cook. 1988. Hashing for dynamic and static internal tables. In Computer. 45–56.
[36] Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brockman, and Slav Petrov. 2012. Syntactic

annotations for the google books ngram corpus. In Association for Computational Linguistics (ACL). 169–174.
[37] Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare pre�xes. In International Conference on

Information and Knowledge Management (CIKM). 1755–1758.
[38] Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. 2014. On user interactions with query auto-

completion. In International Conference on Research and Development in Information Retrieval (SIGIR). 1055–1058.
[39] Alistair Mo�at and Lang Stuiver. 2000. Binary Interpolative Coding for E�ective Index Compression. In Information

Retrieval Journal (IRJ). 25–47.
[40] Donald R. Morrison. 1968. PATRICIA: practical algorithm to retrieve information coded in alphanumeric. In Journal of

the ACM (JACM). 514–534.
[41] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma Tarhio. 2001. Indexing methods for approximate

string matching. In Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. 19–27.
[42] Patrick Nguyen, Jianfeng Gao, and Milind Mahajan. 2007. MSRLM: a scalable language modeling toolkit. In Microsoft

Research MSR-TR-2007-144.2007.
[43] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes. In International Conference on

Research and Development in Information Retrieval (SIGIR). 273–282.
[44] Adam Pauls and Dan Klein. 2011. Faster and Smaller N-gram Language Models. In Association for Computational

Linguistics (ACL). 258–267.
[45] Giulio Ermanno Pibiri and Rossano Venturini. 2017. E�cient Data Structures for Massive N -Gram Datasets. In

International Conference on Research and Development in Information Retrieval (SIGIR). 615–624.
[46] Bhiksha Raj and Ed Whittaker. 2003. Lossless Compression of Language Model Structure and Word Identi�ers. In

International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 388–391.
[47] David Salomon. 2007. Variable-length Codes for Data Compression. Springer.
[48] Jangwon Seo and W. Bruce Croft. 2008. Local text reuse detection. In International Conference on Research and

Development in Information Retrieval (SIGIR). 571–578.
[49] Ehsan Shareghi, Matthias Petri, Gholamreza Ha�ari, and Trevor Cohn. 2015. Compact, e�cient and unlimited capacity:

Language modeling with compressed su�x trees. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing (EMNLP). 2409–2418.
[50] Ehsan Shareghi, Matthias Petri, Gholamreza Ha�ari, and Trevor Cohn. 2016. Fast, Small and Exact: In�nite-order

Language Modelling with Compressed Su�x Trees. Transactions of the Association of Computational Linguistics (TACL)

4, 1 (2016), 477–490.
[51] Andreas Stolcke. 2002. SRILM - an extensible language modeling toolkit. In International Conference on Spoken Language

Processing (ICSLP). 901–904.
[52] David Talbot and Miles Osborne. 2007. Randomised language modelling for statistical machine translation. In

Association for Computational Linguistics (ACL). 512–519.
[53] Larry H Thiel and HS Heaps. 1972. Program design for retrospective searches on large data bases. Information Storage

and Retrieval (ISR) 8, 1 (1972), 1–20.
[54] Sebastiano Vigna. 2008. Broadword implementation of rank/select queries. In Workshop on Experimental Algorithms

(WEA). 154–168.
[55] Sebastiano Vigna. 2013. Quasi-succinct indices. In International Conference on Web Search and Data Mining (WSDM).

83–92.
[56] Je�rey Scott Vitter. 1998. External memory algorithms. In European Symposium on Algorithms (ESA). 1–25.
[57] Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. 2009. A succinct n-gram language model. In International Joint

Conference on Natural Language Processing (IJCNLP). 341–344.
[58] Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. 1999. Managing gigabytes: compressing and indexing documents

and images. Morgan Kaufmann.
[59] Susumu Yata. 2011. Pre�x/Patricia trie dictionary compression by nesting Pre�x/Patricia tries. In Inernational Conference

on Natural Language Processing (NLP).

http://www.statmt.org/europarl

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Paper organization

	2 Background and Notation
	3 Compressed Indexes
	3.1 Related Work
	3.2 Elias-Fano Tries
	3.3 Hashing
	3.4 Experiments

	4 Fast Estimation
	4.1 Preliminaries and Related Work
	4.2 The 3-Sort algorithm
	4.3 Improved construction: the 1-Sort algorithm
	4.4 Experiments

	5 Conclusions
	References

