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Abstract. The objective of our research was to find the best approach
to handle missing attribute values in data sets describing preterm birth
provided by the Duke University. Five strategies were used for filling in
missing attribute values, based on most common values and closest fit
for symbolic attributes, averages for numerical attributes, and a special
approach to induce only certain rules from specified information using
the MLEM2 approach. The final conclusion is that the best strategy was
to use the global most common method for symbolic attributes and the
global average method for numerical attributes.

1 Introduction

Predicting preterm birth risk among pregnant women is a difficult problem.
Diagnosis of preterm birth is attributed with a positive predictive value (the
ratio of all true positives to the sum of all true positives and false positives) only
between 17 and 38% [7].

The main objective of our research was to find the best approach to handling
missing attribute values in data sets describing preterm birth. These data, col-
lected at the Duke University, were affected by vast quantity of missing attribute
values. Additionally, in spite of the fact that many attributes were numerical,
these data sets were inconsistent, another complication for data mining.

Additionally, the best approach to missing attribute values must be selected
taking into account that the main criterion of quality is not the smallest error
rate but the sum of sensitivity (conditional probability of diagnosis of preterm
birth) and sensitivity (conditional probability of diagnosis of fullterm birth). In
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order to increase sensitivity, an additional technique of changing rule strength
was applied [6]. Another important criterion of rule quality is the area under the
curve for the ROC graph.

2 Missing Attribute Values

In this paper we will discuss only methods dealing with incomplete data sets
(with missing attribute values) based on conversion of incomplete data sets into
complete data sets, without missing attribute values. Such a conversion is con-
ducted before the main process of rule induction, therefore it is a kind of pre-
processing.

2.1 Global Most Common Attribute Value for Symbolic
Attributes, and Global Average Value for Numerical
Attributes (GMC-GA)

This method is one of the simplest methods among the methods to deal with
missing attribute values. For symbolic attributes, every missing attribute value
should be replaced by the most common attribute value; for numerical attributes,
every missing value should be replaced by the average of all values of the corre-
sponding attribute.

2.2 Concept Most Common Attribute Value for Symbolic
Attributes, and Concept Average Value for Numerical
Attributes (CMC-CA)

This method may be considered as the method from Subsection 2.1 restricted
to concepts. A concept is a subset of the set of all cases with the same outcome.
In preterm birth data sets there were two concepts, describing preterm and
fullterm birth. In this method, for symbolic attributes, every missing attribute
value should be replaced by the most common attribute value that occurs for the
same concept; for numerical attributes, every missing values should be replaced
by the average of all values of the attributed, restricted to the same concept.

2.3 Concept Closest Fit (CCF)

The closest fit algorithm [4] for missing attribute values is based on replacing a
missing attribute value with an existing value of the same attribute from another
case that resembles as much as possible the case with missing attribute values.
When searching for the closest fit case, we need to compare two vectors of attribute
values of the given case with missing attribute values and of a searched case.

During the search, for each case a proximity measure is computed, the case
for which the proximity measure is the smallest is the closest fitting case that is
used to determine the missing attribute values. The proximity measure between
two cases x and y is the Manhattan distance between x and y, i.e.,

distance(x, y) =
n∑

i=1

distance(xi, yi),
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where

distance(xi, yi) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xi = yi ,
1 if x and y are symbolic and xi �= yi,

or xi =? or yi =?,
|xi−yi|

r if xi and yi are numbers and xi �= yi ,

where r is the difference between the maximum and minimum of the known
values of the numerical attribute with a missing value. If there is a tie for two
cases with the same distance, a kind of heuristics is necessary, for example, select
the first case. In general, using the global closest fit method may result in data
sets in which some missing attribute values are not replaced by known values.
Additional iterations of using this method may reduce the number of missing
attribute values, but may not end up with all missing attribute values being
replaced by known attribute values.

3 Duke Data Sets

The preterm birth data were collected at the Duke University Medical Center.
This data set includes a sample of 19,970 ethnically diverse women and includes
1,229 variables. The data set was partitioned into two parts: training (with 14,977
cases) and testing (with 4,993 cases). Three mutually disjoint subsets of the set of
all 1,229 attributes were selected, the first set contains 52 attributes, the second
54 attributes and the third subset contains seven attributes; the new data sets
were named Duke-1, Duke-2, and Duke-3, respectively. The Duke-1 set contains
laboratory test results. The Duke-2 test represents the most essential remaining
attributes that, according to experts, should be used in diagnosis of preterm
birth. Duke-3 represents demographic information about pregnant women. All
the three data sets are large, have many missing attribute values, are unbalanced,
many attributes are numerical, and the data sets are inconsistent. Tables 1 and 2
outline the basic characteristics of these three data sets.

Table 1. Duke training data sets

Duke-1 Duke-2 Duke-3

Number of cases 14,997 14,997 14,997
Number of attributes 52 54 7
Number of concepts 2 2 2
Consistency level 42.18% 47.61% 95.95%
Number of cases in the basic class 3,116 3,116 3,069
Number of cases in the complementary class 11,861 11,861 11,908
Number of missing atribute values 503,743 291,338 4,703
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Table 2. Duke testing data sets

Duke-1 Duke-2 Duke-3

Number of cases 4,993 4,993 4,993
Number of attributes 52 54 7
Number of concepts 2 2 2
Consistency level 42.34% 52.29% 98.52%
Number of cases in the basic class 1,010 1,010 1,057
Number of cases in the complementary class 3,983 3,983 3,936
Number of missing attribute values 168,957 97,455 1,618

4 Data Mining Tools

In our experiments, for rule induction the algorithm LEM2 (Learning from Ex-
amples Module, version 2) was used [2]. LEM2 is a component of the LERS
(Learning from Examples based on Rough Sets) data mining system. Addition-
ally, a modified version of LEM2, called MLEM2, was also used for some ex-
periments [3]. The classification system of LERS is a modification of the bucket
brigade algorithm. The decision to which concept a case belongs is made on the
basis of three factors: strength, specificity, and support. They are defined as fol-
lows: Strength is the total number of cases correctly classified by the rule during
training. Specificity is the total number of attribute-value pairs on the left-hand
side of the rule The third factor, support, is defined as the sum of scores of all
matching rules from the concept, where the score of the rule is the product of
its strength and specificity. The concept for which the support is the largest is
the winner and the case is classified as being a member of that concept.

5 Criteria Used to Measure the Rule Set Quality

Several criteria were used to measure the rule set quality in our experiments:
error rate, sensitivity and specificity, and the area under curve (AUC) of the
receiver operating Characteristic (ROC) [8]. For unbalanced data sets, error rate
is not a good indicator for rule set quality. Sensitivity + Specificity −1 is a better
indicator as well as the Area Under Curve of Receiver Operating Characteristic.

5.1 Error Rate

In medical diagnosis, the objective is not to achieve a small error rate. Diagnos-
ticians are interested mostly in correctly diagnosing the cases that are affected
by disease. Moreover, frequently medical data sets are unbalanced: one class is
represented by the majority of cases while the other class is represented by the
minority. Unfortunately, in medical data the smaller class—as a rule—is more
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important. We will call this class basic, and the other class complementary. Con-
sequently, the error rate in the original rule sets is not a good indicator of rule
set quality [6].

5.2 Sensitivity and Specificity

The set of all correctly classified (preterm) cases from the basic concept are
called true-positives, incorrectly classified basic cases (i.e., classified as fullterm)
are called false-negatives, correctly classified complementary (fullterm) cases are
called true-negatives, and incorrectly classified complementary (fullterm) cases
are called false-positives.

Sensitivity is the conditional probability of true-positives given basic con-
cept, i.e., the ratio of the number of true-positives to the sum of the number of
true-positives and false-negatives. It will be denoted by P (TP ). Specificity is the
conditional probability of true-negatives given complementary concept, i.e., the
ratio of the number of true-negatives to the sum of the number of true-negatives
and false-positives. It will be denoted by P (TN). Similarly, the conditional prob-
ability of false-negatives, given actual preterm, and equal to 1 − P (TP ), will be
denoted by P (FN) and the conditional probability of false-positives, given actual
fullterm, and equal to 1 − P (TN), will be denoted by P (FP ).

In Duke’s prenatal training data, only 20.7% of the cases represent the basic
concept, preterm birth. During rule induction, the average of all rule strengths
for the bigger concept is also greater than the average of all rule strengths for
the more important but smaller basic concept. During classification of unseen
cases, rules matching a case and voting for the basic concept are outvoted by
rules voting for the bigger, complementary concept. Thus the sensitivity is poor
and the resulting classification system would be rejected by diagnosticians.

Therefore it is necessary to increase sensitivity by increasing the average rule
strength for the basic concept. In our research we selected the optimal rule set
by multiplying the rule strength for all rules describing the basic concept by

Table 3. Duke-1, only certain rules

GMC-GA CMC-CA CCF-CMC-CA CCF-CMC CCF-MLEM2

Initial error rate 21.29% 20.25% 64.65% 20.89% 20.39%
Critical error rate 40.48% N/A N/A 61.39% 56.68%
MAX
P (TP ) − P (FP ) 0.156 0 -0.469 0.0782 0.1062
MIN
P (TP ) − P (FP ) -0.009 -0.122 -0.4845 -0.0895 -0.0588
Critical rule
strength multiplier 7.7 N/A N/A 13.38 6.5
AUC 0.5618 0.4563 0.2602 0.4878 0.5197
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Table 4. Duke-2, only certain rules

GMC-GA CMC-CA CCF-CMC-CA CCF-CMC CCF-MLEM2

Initial error rate 21.37% 20.23% 21.91% 20.83% 21.41%
Critical error rate 51.79% N/A N/A 41.1% 50.47%
MAX
P (TP ) − P (FP ) 0.1224 0.0026 -0.0025 0.057 0.1419
MIN
P (TP ) − P (FP ) 0.0007 -0.0028 -0.0166 -0.0813 -0.0109
Critical rule
strength multiplier 6.6 N/A N/A 12.07 5
AUC 0.5505 0.5013 0.4952 0.496 0.5624

the same real number called a strength multiplier. In general, the sensitivity
increases with the increase of the strength multiplier. At the same time, speci-
ficity decreases. An obvious criterion for the choice of the optimal value of the
strength multiplier is the maximum of the difference between the relative fre-
quency of true positives, represented by Sensitivity, and the relative frequency
of false positives, represented by Specificity − 1 . Thus we wish to maximize

Sensitivity + Specificity − 1 = P (TP ) − P (FP )

This criterion is based on an analysis presented by Bairagi and Suchindran
[1]. For each rule set, there exists some value of the strength multiplier, called
critical (or optimal), for which the values of P (TP )− P (FP ) is maximum. The
total error rate, corresponding to the rule strength multiplier equal to one, is
called initial ; while the total arror rate, corresponding to the critical strength
multiplier, is called critical.

5.3 The Area Under Curve (AUC) of Receiver Operating
Characteristic (ROC) Graph

The ROC graph is a plot of sensitivity versus one minus specificity. The major
diagonal, a line that goes through (0, 0) and (1, 1), represents a situation in
which the hit and false-alarm are equal. It corresponds to making a random
diagnosis. Thus the ROC curve should be located above the main diagonal, the
further from the diagonal the better [8]. The bigger the AUC value, the better
the quality of the rule set. Apparently, AUC = 0.5 corresponds to random
diagnosis. So, AUC > 0.5 means the result is better than the random diagnosis,
and AUC < 0.5 means the result is worse than the random diagnosis.

6 Experiments

First, for the three Duke data sets, missing attribute values were replaced using
the five methods. The first two methods were GMC-GA and CMC-CA. Since
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Table 5. Duke-3, only certain rules

GMC-GA CMC-CA CCF-CMC-CA CCF-CMC

Initial error rate 22.33% 22.37% 22.55% 22.63%
Critical error rate 48.65% 47.03% 47.45% 50.09%
MAX
P (TP ) − P (FP ) 0.1524 0.1578 0.1608 0.1473
MIN
P (TP ) − P (FP ) 0.0102 0.0124 0.0122 0.0108
Critical rule
strength multiplier 12 11 10 10
AUC 0.5787 0.5888 0.5854 0.5821

Table 6. Only possible rules

Duke-1 Duke-2 Duke-3
GMC-GA CCF-CMC GMC-GA CCF-CMC GMC-GA CCF-CMC

Initial error rate 21.95% 20.81% 21.53% 20.85% 23.79% 23.91%
Critical error rate 56.19% 43.98% 53.74% 59.80% 34.15% 31.32
MAX
P (TP ) − P (FP ) 0.0894 0.1427 0.0818 0.0522 0.1412 0.1383
MIN
P (TP ) − P (FP ) -0.0437 -0.2114 0.0046 -0.091 0.0193 0.0157
Critical rule
strength multiplier 4 6.8 2.1 12.28 10 8
AUC 0.5173 0.5528 0.5383 0.49 0.5707 0.5714

the missing attribute value rates were so high, applying the concept closest fit
algorithm (CCF) could not fill in all the missing attribute values in these three
data sets. So, the concept most common method for symbolic attributes and the
concept average value method for numerical attributes (CMC-CA), and concept
most common for both symbolic and numerical attributes method (CMC) were
used respectively followed by the method of concept closest fit. For the same rea-
son, the MLEM2 algorithm for Duke-1 and Duke-2 was tested after the concept
closest fit algorithm (CCF) was applied.

To reduce the error rate during classification a very special discretization
method for Duke-1 and Duke-2 was used. First, in the training data set, for
any numerical attribute, values were sorted. Every value v was replaced by the
interval [v, w), where w was the next larger value than v in the sorted list. This
discretization method was selected because the original data sets, with numerical
attributes, were inconsistent.
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Table 7. First certain rules, then possible rules

Duke-1 Duke-2 Duke-3
GMC-GA CCF-CMC GMC-GA CCF-CMC GMC-GA CCF-CMC

Initial error rate 21.89% 21.03% 21.65% 20.91% 23.91% 24.03%
Critical error rate 41.0% 59.74% 51.67% 41.04% 34.97% 38.33%
MAX
P (TP ) − P (FP ) 0.155 0.0841 0.1135 0.0533 0.1329 0.1823
MIN
P (TP ) − P (FP ) -0.0099 -0.0837 0.002 -0.085 0.0157 0.0142
Critical rule
strength multiplier 7.7 13.37 6.6 12.07 13 16
AUC 0.562 0.4929 0.5454 0.4929 0.5623 0.5029

In the experiments, four combinations of using rule sets were applied: using
only certain rules, using only possible rules, using certain rules first then possible
rules if necessary, and using both certain and possible rules. The option complete
matching, then partial matching if necessary is better than the option using both
complete matching and partial matching [5], so only that first option was used.

For training data sets Duke-1 and Duke-2, the consistency levels were 100%
after replacing missing attribute values by methods CMC-CA and by CCF-
CMC-CA, so no possible rules were induced. We used MLEM2 only to induce
certain rules. Thus in Tables 6–8, only two methods are listed: GMC-GA and
CCF-CMC.

From Tables 4 and 5 it is clear that by using methods CMC-CA and CCF-
CMC-CA for Duke-1 and Duke-2 the worst results were obtained. Comparing
CCF-MLEM2 and CCF-CMC (Tables 3 and 4) based on the P (TP ) − P (FP ),
we can see that the CCF-MLEM2 method provided slightly better results.

Comparison of the four strategies to deal with certain and possible rules was
conducted for two methods: GMC-GA and CCF-CMC. The GMC-GA method
was the simplest method of the five methods tested and this method produced
better results than CCF-CMC (based on the value of P (TP ) − P (FP ) and
AUC). This can be verified by the Wilcoxon matched-pairs signed rank test (5%
significance level).

For Duke-3, the four methods GMC-GA, CMC-CA, CCF-CMC-CA, CCF-
CMC produced roughly the same results in each classification strategy, see Tables
5–8. The explanation of this result may be that the attributes with missing values
were not critical attributes so that any filling in missing values used before rule
induction may not affect the quality of rule set greatly.

In order to make the best use of certain and possible rule sets induced by
LEM2 from inconsistent data, four different strategies of classification were tested
in the experiments. From experiments on Duke-3, see Tables 5–8, it could be seen
that using only certain rules provided the biggest value of P (TP )−P (FP ) among
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Table 8. Union of certain and possible rules

Duke-1 Duke-2 Duke-3
GMC-GA CCF-CMC GMC-GA CCF-CMC GMC-GA CCF-CMC

Initial error rate 21.79% 20.95% 21.65% 20.83% 23.47% 23.89%
Critical error rate 53.23% 49.35% 43.44% 41.78% 31.18% 30.64%
MAX
P (TP ) − P (FP ) 0.0999 0.1175 0.1532 0.0525 0.1456 0.1366
MIN
P (TP ) − P (FP ) -0.0263 -0.0467 0.0073 -0.0906 0.0227 0.0139
Critical rule
strength multiplier 4.3 8.21 2.3 12.17 8 8
AUC 0.5305 0.5304 0.5681 0.4903 0.5707 0.5704

the four strategies based on each of the four filling in missing attribute value
methods: GMC-GA, CMC-CA, CCF-CMC-CA, and CCF-CMC. This shows that
for low consistency level data sets, certain rules are more important than possible
rules.

7 Conclusions

Among the five different filling in missing values methods tested, our results show
that for DukeŠs data, GMC-GA provided the best results. This is a result of the
poor quality DukeŠs data sets, where the missing rate is very high for many
numerical attribute values. For the same reason, applying CMC-CA directly or
followed by CCF for DukeŠs data sets, provides worse results.

MLEM2 usually induces fewer rules than other rule induction methods. But
it did not produce good results for data sets that have low consistency levels.
However, for data sets with high consistency levels, MLEM2 induced high quality
rule sets.

By comparing the four strategies of classification methods, the only conclu-
sion is that for low consistency level data sets, certain rules are better than
possible rules. On the other hand, for high consistency level data sets, there is
no one single best strategy.
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