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Abstract

This article offers an applied review of key issues and methods for the analysis of longitudinal 

panel data in the presence of missing values. The authors consider the unique challenges 

associated with attrition (survey dropout), incomplete repeated measures, and unknown 

observations of time. Using simulated data based on 4 waves of the Marital Instability Over the 

Life Course Study (n = 2,034), they applied a fixed effect regression model and an event-history 

analysis with time-varying covariates. They then compared results for analyses with nonimputed 

missing data and with imputed data both in long and in wide structures. Imputation produced 

improved estimates in the event-history analysis but only modest improvements in the estimates 

and standard errors of the fixed effects analysis. Factors responsible for differences in the value of 

imputation are examined, and recommendations for handling missing values in panel data are 

presented.
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The use of longitudinal panel (prospective) survey data is common in the area of family 

research. From 2010 to 2014, approximately 287 quantitative and qualitative research 

articles (excluding theory development, research reviews, comments, rejoinders, and 

methodological innovation articles) were published in the Journal of Marriage and Family 

(JMF). Of these, 176 (61%) analyzed longitudinal data. Data on the same individuals or 

families at multiple points in time provide for stronger inferences about change processes 

and allow for more control of unmeasured differences between individuals that can bias 

study findings (Johnson, 1995, 2005). What tempers these advantages is the large amount of 

missing data found in many longitudinal studies. Nearly all of the JMF articles explicitly 

mentioned the presence of missing values and study dropout—suggestive of the widespread 

concern with missing data in panel studies.

Few guidelines for the analysis of longitudinal panel data in the presence of missing values 

are accessible to family researchers. Moreover, no clear appraisals of the consequences of 
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different ways of handling missing data are readily offered. Existing guidelines tend to be 

directed toward statisticians or focus on types of longitudinal data rarely found in the family 

literature, such as randomized clinical trials (e.g., Daniels & Hogan, 2008; Enders, 2011; 

Hedeker & Gibbons, 2006; National Research Council, 2010) or data sets with few cases but 

many waves, such as cross-national time-series studies (e.g., Honaker & King, 2010). 

Methods for handling missing values have been addressed in the family literature (e.g., 

Acock, 2005; Johnson & Young, 2011; Young & Johnson, 2013), but these resources focus 

primarily on cross-sectional data. Although much of what we know about the approaches to 

handling missing values in cross-sectional situations applies to longitudinal panel data, panel 

data have characteristics that complicate the application of techniques such as multiple 

imputation (MI). Such complications, along with a lack of accessible guides to help address 

these issues, may be contributing to the limited use of modern methods like maximum 

likelihood (ML) or MI among the many studies in the area of family that use longitudinal 

data (Jelicic, Phelps, & Lerner, 2009).

In this article, we review standard approaches to handling missing data in longitudinal panel 

studies, apply several techniques to a simulations study based on an empirical family 

research problem using a multiwave panel data set, and assess how different strategies have 

consequences for the research findings. Our focus is on missing values in panel data sets 

with large numbers of respondents but small numbers of survey waves administered at fixed 

intervals—typical conditions for data sets found in much family research. Missing-data MI 

strategies with fixed effect, pooled time-series models and event-history (Cox proportional 

hazard) models are examined. Our review of the methods used in 176 JMF articles suggests 

that the most common models for analyzing longitudinal data were event history (19%), 

fixed effects(18%, or 19% including change scores), and mixed effect or multilevel (17%, or 

22% including growth curve), followed by linear regression (16%), logistic regression 

(15%), and structural equation models (10%, or 15% including growth curve and latent class 

analysis). Less common methods for analyzing longitudinal data included multinomial 

regression (5%) and qualitative analysis (2%). (Note that percentages sum to more than 

100% because many articles used more than one method.)

Background

Longitudinal panel studies have several features that complicate the techniques commonly 

applied when handling missing data. Unlike cross-sectional data sets, longitudinal data sets 

have both within-wave and whole-wave missingness. Longitudinal data analysis methods 

require a particular data structure (long vs. wide) that creates issues when handling missing 

data (Lloyd, Obradovic, Carpiano, & Motti-Stefanidi, 2013). Other complications of missing 

values in longitudinal data include repeated measures; time-to-event models; nonrandom 

study dropout; and statistical procedures that routinely handle some, but not all, sources of 

missing data.

Two Sources of Missing Values

Missing values in panel data can occur in variables within a wave and when a full wave of 

data are missing for a respondent. Within-wave missing values result from typical item 

nonresponse that is found in any cross-sectional study. These missing values occur when a 
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valid responses is not recorded for a survey question either because the participant chose not 

to answer the question or an interviewer failed to record the answer. Item nonresponse 

occurs most frequently for sensitive questions (e.g., regarding income or sexual behavior) 

and questions that are difficult to answer (e.g., recalling a date; De Leeuw, Hox, & Huisman, 

2003). Within-wave missing data in panel studies can also occur when questions are 

included in only some study waves.

Whole-wave missingness occurs when respondents do not participate in all data collection 

time points. In a four-wave panel study, for example, a respondent may participate only in 

the first two waves before dropping out of the study. This produces missing data on all 

variables in the two subsequent waves. The result is a substantial amount of missing data for 

the time period covered by the wave, although time-invariant characteristics (e.g., date of 

birth) may be carried over from an earlier wave. When respondents are missing entire waves 

of data, too little information is available in the wave to inform the data analysis, and 

information on time-varying change is lost because of the missing waves.

Attrition in longitudinal panel studies (or study dropout) has received much attention in the 

literature, and several strategies for statistically evaluating and adjusting for the 

consequences of attrition have been developed (Groves, Dillman, Elting, & Little, 2002; 

Little, 1995). The attrition literature focuses heavily on the potential for biased statistical 

estimates that could result from overlooking attrition. In medical clinical trials, for instance, 

the dropouts from the trial may have been persons for whom the treatment was failing or 

who experienced negative side effects (National Research Council, 2010). In studies of 

marriages, individuals who divorce between waves may be more likely to leave the study, 

potentially biasing the effects of variables related to marital instability (VanLaningham, 

Johnson, & Amato, 2001). Much of the attrition from panel studies, however, may be 

unrelated (or weakly related) to model variables and thus are unlikely to introduce much 

bias into model estimates (Fitzgerald, Gottschalk, & Moffitt, 1998).

With panel data, attrition can be modeled using data from prior waves. The primary strategy 

for modeling whole-wave missingness is to use logistic regression to estimate the extent to 

which variables in previous waves predict attrition from subsequent ones. If variables in the 

analysis model are related to attrition, it is unlikely that dropout occurred completely at 

random (resulting in data that are missing completely at random [MCAR]). For instance, this 

could occur if people with low marital happiness in the first wave were more likely to drop 

out of the study than those with initially high levels of marital happiness. In this case, the 

probability of a value being missing in the second wave would be correlated with the true 

but unobserved level of marital happiness at follow-up. Knowing that low marital happiness 

was related to study dropout, a diligent researcher would be concerned about whether the 

data were missing at random (MAR) or not missing at random (NMAR). If variables that 

strongly predict attrition are incorporated into the missing data strategy, the plausibility of a 

MAR assumption would increase.

Data Structure for Longitudinal Models

Longitudinal data sets are often organized with as many records as waves per individual—a 

structure required by many statistical techniques for longitudinal data. Software packages 
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such as SAS, Stata, SPSS, and R refer to this structure as long or stacked (contrasted with a 

wide data structure, in which there is only record per individual). Most statistical packages 

have procedures to move back and forth between long and wide structures. Figure 1 and 

Figure 2 show examples of long and wide data organization. In the long structure, a unique 

case identifier links the records for the waves to the case. The variables are stacked, with 

each column containing responses to the same question asked at each wave. Respondents 

may have records only for the waves to which they responded (e.g., Person 2 in Figure 1), 

although empty records could also be present for missing waves (e.g., Person 3 in Figure 1). 

Within-wave missing data are represented in the usual manner by missing value codes.

Statistical procedures that require the long data structure include pool time-series analysis 

methods (e.g., xtreg in Stata, PROC POOLED in SAS), multilevel mixed models, and time-

to-event models with time-varying variables. The example in Figure 1 is a multilevel 

structure that differs from classical multilevel models because repeated observations 

(panels) are nested within individual observations rather than cases being nested within 

clusters (e.g., students within classrooms).

Data organized in the wide structure, as illustrated in Figure 2, place responses to all waves 

in the same record, with responses to each wave appearing in separate columns. Each 

individual has one record that contains repeated observations. When a wave is incomplete, 

missing data codes are assigned to all the variables for that wave. Within-wave missing 

values and whole-wave missing values are represented in the same way. Structural equations 

software usually accepts this data structure, as do many repeated measures and multivariate 

analysis of variance procedures.

Most MI software was not designed to handle the long data structure. Standard MI treats 

each record as an independently sampled case with no capability of linking separate wave 

records to a single respondent. Failure to link the records leads to two problems. First, 

regression-based techniques assume independent sampling of cases. The assumption is 

necessary for correct standard errors but has little impact on the estimates of the regression 

coefficients (Berry, 1993). The more serious problem for MI estimation is that the 

imputation model cannot be informed by values of variables, including the same variable 

from other waves, which are often the best predictors of the missing value (Allison, 2001). If 

the respondent has missing data in one of the waves, his or her responses to the same item in 

other waves can provide substantial information to estimate the likely missing value, leading 

to more accurate estimates of the covariance matrix (Little, 1995). Standard MI software, 

however, cannot directly inform the estimates for the missing values with this information. 

Consequently, the estimated between-wave item covariance will be attenuated, resulting in 

downward biased estimates, reducing the advantages of MI.

For a classic multilevel structure in which individuals are nested within a cluster (e.g., 

students within classrooms) there are two options for imputing data in the long structure that 

overcome these problems. The first option is to include a set of dichotomous indicator 

variables for each cluster or Level 2 unit in the imputation model (Eddings & Marchenko, 

2011). A second possibility is to use the “cluster” option in software packages with 

advanced MI programs. In Stata and Mplus, for instance, multilevel data can be imputed if 
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the number of Level 2 groups is reasonably small (Eddings & Marchenko, 2011; Muthén & 

Muthén, 2012). Imputing some multilevel data with specialized programs such as PAN 

(Schafer & Yucel, 2001), WinMICE (Jacobusse, 2005), and Amelia II (Honaker, King, & 

Blackwell, 2007) also is possible. None of the latter programs have gained widespread use 

and require significant programming effort or have limited use with large panel data sets.

Unfortunately, the ability to impute classic multilevel data does not readily apply when 

repeated measures are nested within individuals. For example, in a four-wave study of 2,000 

participants, treating individuals as clusters would involve adding 1,999 indicator variables 

to the imputation model, in addition to the main analysis variables. Imputing with the cluster 

option where individual participants are the second level of analysis is a similarly 

problematic model specification with such a large number of clusters. Our experience with 

MI software confirms that estimating models with thousands of clusters produces error 

messages, identifying the problem as an issue of collinearity or one of too many clusters.

When data are stored in the long structure with repeated measures included on a single 

record for each case, MI literature recommends rearranging the data to a wide structure for 

the imputation step (Allison, 2001) and returning it to the long structure for analysis. 

Sometimes, however, researchers have many waves of data and analysis models that include 

a large number of variables. In this case, the wide data structure could require adding a large 

number of variables to the imputation model (though probably still fewer than adding 

indicators for n – 1 participants), which could impose technical limits on the imputation 

model and result in a great increase in the time it takes to impute the data. Imputing in the 

long structure may be statistically flawed, yet it is a practical choice when the wide structure 

is unwieldy and when the estimates obtained for the missing values yield reasonably 

accurate results.

Other Special Considerations

Time—For some models, time adds another layer of practical complication. Time-to-event 

models, for example, explicitly account for amount of time that a person spends at risk of 

experiencing an outcome. With whole-wave missingness, survey dates and times are 

unavailable if the respondent did not participate in a wave. If missing outcome variables or 

missing waves are to be imputed, how missing time information should be handled is a great 

practical concern. Although guidelines exist for incorporating time-to-event data in an MI 

model (White & Royston, 2009), other questions remain unanswered by the statistical 

literature. Should an event be imputed when the outcome has missing values, or should these 

events be censored at the last observed time point? What should be done if whole waves are 

imputed and a survey date or time is required by the modeling strategy?

Software considerations—A practical issue with handling missing values in 

longitudinal panel data is that some of the most widely used statistical software for 

analyzing models of change in longitudinal data treat within and whole-wave missing data 

differently. We focus our discussion on the software packages that appear to be most 

frequently used by family researchers analyzing longitudinal data. Personal communication 
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with all but 10 authors of the 176 JMF articles revealed that Stata was used in 57.4% of 

these studies, followed by SAS (17.6%), SPSS/AMOS (13.1%), and Mplus (11.4%).

Software tools for analyzing pooled time-series data are designed to estimate models in the 

presence of a variable numbers of waves for each case(Hedeker & Gibbons, 2006). These 

procedures (sometimes referred to as mixed regression models) analyze the data in the long 

structure and can be used to estimate a variety of models such as fixed and random effects 

models, hybrid models, and variations of multilevel models for longitudinal data (Allison, 

2009). Examples are the xt procedures in Stata (e.g., xtlogit, xtmixed), similar procedures in 

SAS (e.g., PROC MIXED), and other multilevel (mixed model) software routines in 

packages such as SPSS and R.

Software tools for analyzing event-history data also allow for different amounts of follow-up 

time, or time at risk of experiencing an event, to be recorded for each case. Examples are the 

st procedures in Stata and PROC PHREG in SAS. These procedures may analyze data in the 

long or wide structure depending on the presence of time-varying covariates or spells of 

time at risk. For longitudinal panel data, where outcome data are collected at each wave, 

cases with missing waves are right-censored at the time of dropout. For example, a 

participant who was present for only the first two waves of a four-wave study would 

contribute two waves of person-time to the model (e.g., Person 3 in Figures 1 and 2).

Although the descriptions available for these commonly used procedures all make it clear 

that estimation is possible in the presence of missing values in model variables, the 

documentation is less explicit about pattern of missingness assumptions and whether the 

same procedures and assumptions are true for both within- and whole-wave missingness. 

The xt and st procedures in Stata, for example, accommodate data when cases have a 

variable number of waves, which is viewed by many researchers as “allowing missing data.” 

An important caveat to this interpretation is that this applies only to whole-wave 

missingness.

Panel procedures handle whole-wave missing data in a way similar to an ML solution. All 

nonmissing waves are used in the covariance matrix (as opposed to using no information 

from cases with missing waves) and the missing-values mechanism is assumed to be MAR 

(Hedeker & Gibbons, 2006). Within-wave missing values are treated in a different way. 

Within-wave missing values on variables in the model cause the record from the whole 

wave to be excluded from analysis. For example, Person 4 in Figures 1 and 2 was present for 

all study waves but did not answer the “Happy” question at Wave 1; this item nonresponse 

would cause the entire record to be removed from the analysis.

Thus, panel procedures “allow” missing data in the same way that a linear regression model 

allows missing values; the records with missing values on any variable in the model are 

removed. A major limitation of this approach is that complete case analysis assumes that 

values are MCAR, which is a mechanism of missingness unlikely to occur without 

intentional design (Graham, 2009). In addition, panel records for a case can be dropped 

without a researcher's awareness, because the sample size reported for the number of 
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participants could be correct even if the number of records analyzed was fewer than was 

found in the data set.

Event-history procedures handle whole-wave missing data by censoring cases at the last 

observed follow-up time. This approach differs from panel procedures in one important way: 

Cases with no follow-up time will contribute no information to the model and are assumed 

to be MCAR, whereas cases with incomplete follow-up time are assumed to be MAR and do 

contribute information to the model. A participant who was present for only the first wave of 

a four-wave study, such as Person 2 in Figures 1 and 2, would be excluded from the analysis 

because the case had no follow-up data; this approach is like complete case analysis. A 

participant who was present for three of four waves would contribute data through the third 

wave; this is more similar to an ML solution in which all known information is used and 

study dropout is assumed to be MAR. As in panel procedures, event-history models handle 

within-wave missing values using complete case analysis that removes records with missing 

data on any of the variables in the model.

Structural equation models—Another strategy for the analysis of missing data in panel 

studies is found primarily in structural equation modeling (SEM) software that uses ML 

methods (often referred to as a full information maximum likelihood) to estimate the 

covariance structure in the presence of missing values. These methods assumes that the 

missing data are MAR and yield parameter estimates for similarly structured models that are 

essentially equivalent to those obtained with MI (Graham, 2009; Young & Johnson, 2013). 

SEM requires the wide structure for the data, and within-wave and whole-wave missing data 

are treated in the same way.

Handling Missing Data

The added complications of handling missing data in panel studies raises a number of 

questions for family researchers about the best course of action, in particular when the 

analysis model for the study uses data in the long structure. When the data are analyzed with 

procedures that demand the long data structure, there is ambiguity about how to proceed. 

Although missing values due to missing waves may be unproblematic, complete case 

analysis is automatically used for within-wave missingness. This approach is biased unless 

the data are MCAR and will be inefficient in the sense that known information is discarded 

from the analysis. If the researcher decided to impute the within-wave missing data, the 

temptation would be to impute in the long structure because the data in the missed waves 

would already be removed from the data set. If repeated observations were nested within 

individuals, imputing in the long structure is believed to be erroneous (Lloyd et al., 2013). 

This problem could be solved by converting the data to a wide form to impute the variables 

and then back into the long form for analysis, yielding imputed values for both the within- 

and whole-wave missing values. Of course, many researchers are hesitant to impute entire 

waves for which a participant was not actually present, especially when dates or times are 

required for the missing wave.

Applying MI to panel data raises additional choices for researchers. The data could be 

imputed in the wide structure. Although some of the waves would contain only imputed 
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values, observed values would be used in situations with time-invariant variables (which 

would not add more information to the model). An alternative approach would be to delete 

the missing waves after the imputation step and allow the statistical software to estimate the 

model with a variable number of waves per respondent, retaining only the within-wave 

imputed values. If the imputation model included a number of variables that were not in the 

analysis model (called auxiliary variables), and these variables were related to attrition and 

to model variables, the MAR assumption would be more plausible when analyzing data 

from fully imputed waves than when analyzing data from a variable number of waves.

Method

Two of the three most commonly used methods for analyzing longitudinal data in family 

research, published in the last 4 years of JMF, were fixed effects regression and event-

history analysis. These models often require the long data structure and include 

complications for MI that are not present in cross-sectional analysis. Complete case analysis 

and long and wide MI methods are tested in a simulation based on the first four waves of the 

Marital Instability Over the Life Course (MILC) study (www.icpsr.umich.edu/icpsrweb/

ICPSR/series/00187). Each method is compared to a “true” or known model and assessed 

for bias and general performance.

Several reasons motivated the decision to focus on MI. Many family researchers are already 

comfortable with MI; this technique has been widely adopted in family research. MI 

programs are available in many statistical software packages, including family researchers' 

top three packages of choice (Stata, SAS, and SPSS). Maximum likelihood approaches are 

not widely available for all types of statistical models, with increasing exceptions offered by 

Mplus (Muthén & Muthén, 2012). Mplus, however, was used by less than 12% of family 

researchers when analyzing longitudinal data. Finally, because ML in SEM uses the less 

problematic wide structure to estimate the types of models covered here, we limit our 

discussion to the best approaches for using MI in longitudinal panel data.

All MI models presented here were produced in Stata 13, using sequential chained 

regression with models tailored to each variable's level of measurement for the event-history 

model and using linear regression for the fixed effects analysis. We used 20 imputed data 

sets. We also evaluated imputing with 50 data sets, and the fraction of missing information 

(not reported) and stability of the estimates confirmed that 20 data sets were sufficient for 

the simulations.

Data

To create a realistic simulation, we began with observed data from the first four waves of the 

MILC study, a panel survey of a national sample of married persons followed over 20 years 

(Booth, Johnson, Amato, & Rogers, 1999). Respondents were interviewed by telephone in 

1980, 1983, 1988, and 1992. During the first wave of the study, random digit dialing was 

used to select a sample of married individuals age 55 and under. Among eligible households, 

the interview completion rate for the initial wave of the study was 65%, yielding a sample 

size of 2,034. The percentage of people remaining in the study was 78% in Wave 2, 66% in 

Wave 3, and 58% in Wave 4. The study was designed so that once a respondent missed a 
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wave he or she was excluded from the sample for the subsequent waves, resulting in a 

monotonic dropout pattern.

Attrition from the MILC study was higher than is found in some of the large panel studies 

used by family researchers (e.g., the National Longitudinal Study of Adolescent Health, the 

National Longitudinal Survey of Youth), primarily because respondents were recruited and 

followed up by telephone rather than the personal interview design used in the other large 

surveys. This mode posed difficulty in locating respondents who changed their telephone 

number or moved. When considering how our results apply to other studies, we caution 

researchers that our advice may not apply to studies with higher levels of attrition, or to 

studies in which dropout is less correlated with data from the first wave than was observed 

in the MILC study.

To create a simulation that mimicked the observed data, we began with one singly imputed 

data set (n = 2,034) from the MILC study, and treated this as the “true” model, or the gold 

standard. The fully imputed data set was informed by the analysis model variables and 

auxiliary variables. Minor changes were made in the data by rounding and recoding all 

imputed values to within the range and categories of the observed values. Although 

rounding and ranging should not be done when MI is used in practice (Horton, Lipsitz, & 

Parzen, 2003), the purpose of the single imputation here was only to generate a realistic 

starting point to treat as the true model.

To introduce whole-wave missing data, we used observed data to fit a logistic regression 

model predicting attrition at each wave. The predicted probability of attrition for each 

person was used in conjunction with a random number to select cases for attrition. For 

example, if a respondent's probability of attrition was .30, he or she would be selected for 

attrition if the random number was also .30 or smaller. Once a respondent left the panel by 

attrition he or she was set to miss all subsequent waves, mirroring the pattern in the observed 

data set.

To introduce within-wave missing data, we generated two types of probabilities of a missing 

value. The first logistic regression model for item nonresponse predicted presence of a 

missing demographic variable (e.g., age, race/ethnicity, education), which occurred 

infrequently in the observed data. Missing values were assigned to demographic items using 

this probability and a random variable. The proportion of missingness assigned to these 

variables ranged from 3% to 5%for each simulation. The second logistic regression model 

for item nonresponse predicted the presence of a missing value for questions requiring an 

attitude or opinion about the participant's marriage. Missing values were more common for 

marriage-related questions in the observed data and may have been more likely to be related 

to our outcome variables of marital happiness and divorce. Again, the probability of 

missingness was used along with a random variable to assign missing values to similar types 

of items in the simulation. The proportion of missingness assigned to these variables was 

between 5% and 8%. The variables used to predict the probability of nonresponse had 

correlations with the missing data ranging from .01 to .18.
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One limitation of the observed data was that few of the variables in our analysis models 

were significant predictors of attrition, and detecting differences between approaches under 

this condition would be unlikely. To more adequately test the different approaches but still 

produce a reasonably realistic model, we modified some of the selection probabilities to 

increase the odds of attrition predicted by our analysis and auxiliary variables. These 

changes introduced a clear NMAR pattern to the data. For the fixed effects regression 

simulation we changed the coefficients so that person's with decreased marital interaction 

(an auxiliary variable) and marital happiness (an outcome variable) from one wave to the 

next had his or her observed odds of attrition tripled. We also doubled the odds of attrition 

for persons whose health (an analysis variable) declined from one wave to the next. To do 

this, we converted the probability of attrition for the case into an odds, altered the observed 

odds with the above multipliers, and then converted the odds back into probabilities for the 

random selection. For the event-history simulation, people who had thoughts of divorce (an 

analysis variable) at Wave 1 and ultimately divorced (an outcome variable) were assigned a 

probability of dropout three times higher than their original predicted probability of dropout.

Adding purposeful NMAR data to the simulations created a troublesome scenario in which 

both an important predictor of the outcome and the outcome itself were strongly related to 

attrition. Our NMAR condition was a dramatic, albeit somewhat unlikely, scenario for the 

types of data used in most family research. Outside of clinical trial, experimental, or 

treatment data, study participation seldom has a clear relationship with most outcomes. 

Testing the NMAR condition, however, offered a rigorous test of how MI performed even 

when the MAR assumption was known to be violated.

Using the procedures described above, we created 200 simulated data sets that had within- 

and whole-wave missingness that mirrored the complex patterns observed in the real data 

yet had enough missing data to be of consequence. The choice of 200 simulated data sets 

was arbitrary, but comparison to 500 simulations showed little difference, suggesting that 

200 simulations was a large enough number for our sampling distributions to have excellent 

coverage. Most of the variables used in the logistic regression models predicting attrition 

and item nonresponse were not included in the subsequent MI models or in the analysis 

models. This step ensured that, as in the real world, the exact predictors of missingness were 

unknown to the researcher.

Fixed Effects Simulation

The first simulation estimated a fixed effects regression model with an 11-item scale of 

marital happiness as the outcome and a set of nine time-varying variables as the predictors. 

The fixed effects model with longitudinal, pooled time series data provides estimates of the 

effect of change in the predictors on change in the outcome. Variables that were observed to 

remain constant over time, such as gender, race, and year of birth, were excluded because 

these cannot be estimated in a fixed effects model that focuses only on within-individual 

change. Using stepwise logistic regression, we selected six variables for use as auxiliary 

variables in the imputation models. These variables had significant correlations with 

analysis variables and were correlated with attrition from the MILC study (Booth et al., 

2000). Descriptive information on the analysis and auxiliary variables for each wave is 
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presented in Table 1. Note that by Wave 4, 41.5% of the waves were missing and that wave 

attrition was the source of most of the missing values.

Seven fixed effects models were estimated using the xtreg procedure in Stata, each with a 

different approach to the missing data. The first approach fit the regression model to the 

observed data with no imputation of missing values. This procedure includes all available 

waves in the estimation, including respondents with within-wave missing values. This 

approach accounts for whole-wave missing data but deletes waves that contain any within-

wave missing values on the variables in the regression model. Subsequent approaches used 

MI in the long and the wide structure to estimate models with and without auxiliary 

variables included, models that retained all waves (including those with all variables 

imputed), and models that retained the within-wave imputed values but dropped the waves 

that were not observed. From among these models we report six of them here: three using 

values imputed wide and three using values imputed long. These include a model with all 

four waves included for each respondent and a model in which only observed waves were 

retained. A third model added auxiliary variables to the analysis. Additional models are 

available on request. These models allow us to compare long and wide, fully imputing the 

missing wave or only using available waves, and including or excluding auxiliary variables.

Event-History Simulation

The second simulation estimated a proportional hazards Cox regression model that used 

three time-invariant and three time-varying variables to predict divorce. The outcome 

variable measured divorce (0 = no divorce or censoring, 1 = divorced). In the observed data, 

246 respondents reported that they had divorced, 441 had no follow-up information, and 845 

were censored before completing the study. Three time-invariant variables were used as 

predictors of divorce: (a) age in years at Wave 1, (b) respondent gender (0 = male, 1 = 

female), and (c) whether the marriage in 1980 was a first marriage or second or higher (0 = 

first marriage, 1 = second marriage or higher). Three time-varying predictors were also used. 

Thoughts of divorce came from a question asking each participant whether he or she had 

seriously considered divorce in the last year (0 = no, 1 = yes). The scale of marital happiness 

used in the fixed effects model and a scale of marital problems were also included. 

Descriptive information for these variables is shown in Table 1.

Three strategies for handling missing values were tested in the event-history simulation. The 

first strategy applied complete case analysis. Respondents who had within-wave missing 

values were removed from the analysis, and respondents with whole-wave missing values 

were censored at the time of study dropout. Respondents who were present at Wave 1 only 

were excluded from the analysis because no follow-up data were obtained for the outcome 

variable (i.e., divorce). Next, MI was applied to data in the long structure. Values were 

imputed for all questions in all waves, including waves in which the respondents did not 

participate. Third, MI was used to impute the missing values in the wide structure. Again, 

missing values were imputed for all questions in all waves regardless of whether the 

respondent actually participated in the wave, and outcomes were imputed.

The main difficulty with applying MI to survival data is appropriately performing the 

imputations. Beyond the general MI recommendations (see Acock, 2005; Johnson & Young, 
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2011), additional guidelines must be followed because of time-to-event censoring, and time 

or date variables. In addition to including all variables from the analysis in the imputation 

model, including the dependent variable, early researchers suggested also including a 

variable for time-to-event or censoring and the log of this variable (van Buuren, Boshuizen, 

& Knook, 1999). White and Royston (2009) showed, however, that this approach will bias 

covariate–outcome associations toward the null. Instead, the most appropriate imputation 

model for a proportional hazards Cox model should include the dependent variable and the 

Nelson–Aalen (NA) estimate of the cumulative hazard to the survival time as a covariate 

(White & Royston, 2009). In Stata, the NA estimate can be obtained with sts generate and 

specifying NA; in SAS it can be found using PROC LIFETEST statement with the 

NELSON option.

Results

Results from the simulation models are compared using six measures, shown in Tables 2, 3, 

4, and 5. The true model shows the correct or gold standard, by which each of the 200 

simulated data sets was compared. For each missing-data technique, the first column shows 

the bias of the b coefficient, calculated as the average of the difference between each of 200 

simulated estimates from the true value. The same method was used to calculate the standard 

errors' bias. The third column contains the root-mean-squared error (RMSE), which is a 

combined measure of the bias in the b coefficient and its standard error. A smaller RMSE 

indicates less bias and more consistency of a method. The bias in the hazard ratio, standard 

error, and RMSE show, on average across the 200 simulations, how different each number 

was from the true model, so numbers closer to zero are desirable. The final number in the 

third column shows the percentage of the time that each coefficient was statistically 

significant at the p< .05 level. Estimates that were significant in all 200 simulated data sets 

would have 100% significance; if the coefficient was significant in only half the samples, 

the % p value would be 50%. Although .05 is an arbitrary cutoff, this practical measure of 

performance sheds some light on the Type I and Type II error rates that might be expected 

from a method under these conditions.

Fixed Effects Simulation

The estimates for the true model of the b coefficients and their standard errors are found in 

the first column of Table 2. Five of the predictors have a statistically significant (p < .05) 

effect on marital happiness. The next model in the table is a fixed effects one with no 

imputed data but with missing waves excluded from the data set and, as required by the 

method, input in the long structure. The missing data are accounted for using the ability of 

the xtreg procedure to analyze data with variable number of waves, treating the whole-wave 

missing data as MAR but excluding waves that have any within-wave missing values on the 

variables in the model, assuming MCAR. The substantive findings are similar to the true 

model with the magnitude, statistical significance, and direction of the effects yielding the 

same substantive conclusions. There are consistent differences from the true model. The 

most notable difference is that all the effects that are statistically significant in the true 

model are underestimated in the simulation model. For example, the effect of wave was 

substantially smaller in the simulated data.
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The results of the analysis models that used MI in the wide structure are presented in Table 

3. Overall, all three models are less biased and have smaller standard errors than those 

obtained in the complete case analysis model in Table 2. On the basis of the average RMSE, 

the models were very similar, with the smallest value for the wide model with auxiliary 

variables. The bias in the b coefficients was also similar, with the least bias occurring in the 

model with auxiliary variables. Although the auxiliary-variable model seems to be preferred, 

it had the largest average standard errors of the three models. This likely reflects the 

inability of imputing in the long form to condition the imputed values on the same variables 

in other waves with which they are usually highly correlated, leading to greater random error 

in the imputed values. Analyzing only the observed waves performed slightly better than 

imputing the missing waves, but the difference was not meaningful. Including auxiliary 

variables in the imputation model produced small reductions in bias, as we expected from 

the NMAR nature of the missing data. The reduction in bias was not large enough to affect 

the substantive conclusions drawn from the analysis.

The results of the analysis models that used MI in the long structure are presented in Table 

4. Surprisingly, imputing data in the long structure, under certain conditions, appeared to be 

a viable alternative with little, if any, increase in biased estimation. The most poorly 

performing model was when the values of the variables in the missing waves were also 

imputed. This model has substantially poorer fit based on all of the bias indicators. When 

only the observed waves were included in the analysis, however, data imputed in the long 

structure produced estimates that were comparable to those imputed in the wide structure. 

The observed-wave models with and without auxiliary variables had the lowest RMSEs of 

all models tested, and the auxiliary variable model had the least average bias of any model, 

although the differences were not large. We do not report the auxiliary-variable model with 

all waves imputed because of the poor performance of this approach. The higher standard 

errors observed for the long versus the wide models tempered our enthusiasm for this 

approach. When we looked more closely at the individual effects we noted that the wide 

approach more accurately estimated the effect of wave than did the long. No other consistent 

differences between long and wide models in the individual effects were observed.

Event-History Simulation

Three missing-data approaches were applied to a proportional hazards Cox regression model 

predicting divorce, shown in Table 5. Complete case analysis excluded people who were 

missing values for any of the Wave 1 variables being analyzed, excluded people who missed 

Wave 2 and therefore had no follow-up data (or person-years) to contribute to the time-to-

event model, and excluded entire waves if any of the model variables contained item 

nonresponse within that wave. Right-censoring is the standard approach for Cox models, 

although whether the assumptions of missingness are met is an important issue that is rarely 

considered in practice. The alternative to right-censoring is to treat missing waves, including 

the outcome, as missing data. MI on the long structure data treated each record as an 

independent observation and did not account for clustering. In the second and third missing-

data strategies missing waves were imputed for all covariates and the outcome was treated 

as missing (rather than censored) for whole-wave missingness.
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As shown in Table 5, complete case analysis, using the standard Cox model approach to 

censoring at the last observed wave, was both a biased and inefficient procedure. No 

imputation led to misestimated effect sizes and standard errors that were larger than was 

observed in the true model. The RMSEs, a combined measure of bias and efficiency, were 

largest for the model with no imputation. The proportion of simulations where complete 

case analysis correctly identified significance at the p< .05 level showed expected error rates 

for all variables except thoughts of divorce, which was detected as a significant (p < .05) 

effect only about 10% of the time in the model with no imputation.

The second simulation model was MI on data in the long structure where accounting for 

individual-level clusters was not possible. For three of the six variables—age, marital 

problems, and thoughts of divorce—the average effect size bias was smaller or the same in 

the MI long model compared to no imputation. For three variables—female, second 

marriage, and marital happiness—the MI long model was more biased than the model with 

no imputation. The standard errors in the MI long model were smaller (more efficient) 

compared to no imputation. The RMSE appeared to be slightly better in the MI long model 

relative to no imputation, but the differences were quite small. Even if small RMSE gains 

were achieved by MI using the long structure, this appeared to come at the cost of less 

accurate significance testing. Two variables that were not significant (p< .05) in the true 

model, female and marital problems, were detected as significant in the MI long models 

18% to 19% of the time. Thoughts of divorce, which was significant in the true model, was 

detected as significant 23% of the time.

MI on data in the wide structure showed less bias in the hazard ratios and standard errors, in 

addition to having a lower RMSE and greater proportion of correct significance tests, 

compared to no imputation or MI in the long structure. For five of the six variables, MI on 

the wide data structure correctly identified significance of the predictor at the p < .05 level 

100% of the time. Thoughts of divorce was detected as significant 65% of the time, and 

effect size was underestimated by a meaningful amount.

Discussion

We focused on how missing data might be handled in two regression models, fixed effects 

and event history, because they are typically analyzed using a long data structure whereby 

repeated observations are nested within individual records. This structure poses additional 

challenges for applying MI to deal with missing values. In particular, researchers have the 

option to impute within-wave missingness only or to impute both within-wave and whole-

wave missingness. Because many types of panel models have standard or automatic 

techniques for treating whole-wave missingness (e.g., right-censoring in event history, 

variable number of waves in fixed effects), whether whole-wave imputation is necessary is 

sometimes unclear. Researchers were also left with insufficient guidance about whether to 

apply MI to a long or wide data structure and whether present options for multilevel MI 

applied to the circumstance where individuals were the Level 2 group (or cluster).

In the analyses of the fixed effect regression models, imputation in either the wide or the 

long structure had less bias compared to the fixed effects analyses that did not impute either 
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the within-or whole-wave missing values. Most of this improvement reflected the 

imputation of the within-wave missing data as models that did not include the missing 

waves generally performed better.

In most cases, imputation in cross-sectional designs increases the amount of information 

available for analysis, increasing efficiency and reducing standard errors. With few 

exceptions, fixed effects models imputing data in the missing waves led to the same or even 

increased standard errors. This likely reflects two factors. First, because in essence all the 

data in the missed waves were imputed, no additional information was added to the model. 

In contrast, imputing within-wave data on variables in the analysis model allowed that wave 

to be included in the estimation, adding information from the variables in that wave that 

were not missing. Because imputing variables in the missing waves neither added 

information nor allowed the greater use of known information, no improvement in efficiency 

was possible.

A second, related explanation is that imputing whole waves also involves imputing the 

dependent variable, which has been found to do little to improve the efficiency of the 

analysis (Allison, 2001; Young & Johnson, 2013) and, with a relatively small number of 

imputed data sets, may even increase the standard error by introducing unnecessary random 

error into the estimates (von Hippel, 2007).

Because the pooled time-series methods use data in all available waves, and makes the same 

MAR assumption as MI, imputing whole-wave missing values is probably an unnecessary 

effort in most cases. An exception to this advice would occur, however, if there were a clear 

NMAR pattern in the data that could be transformed to MAR by including auxiliary 

variables in the imputation model. Our auxiliary-variable models showed a small 

improvement in fit when compared to those using only analysis model variables to inform 

the imputation. The improvements, however, were quite small. In our simulation, the 

NMAR we introduced may not have had a strong enough relationship to our auxiliary 

variables to have much of an effect on the estimates, but this may not always be the case. If 

an NMAR situation is suspected and there are a sufficient number of variables that are 

strongly related to both attrition and the variables in the analysis model, then including these 

to inform the imputation and retaining all waves should be attempted. Comparing results 

with and without the imputed waves to see whether a difference in the substantive 

conclusions occurs is a prudent step.

When fitting a fixed effects model we recommend that researchers impute the within-wave 

missing values because doing so will increase the amount of known information used in the 

analysis model. According to recommendations in the literature, this should be done in the 

wide structure, with the researcher converting the data back to long and then dropping the 

waves that were fully imputed. The wide structure allows the imputation to be informed by 

observed values in other waves of a missing value, reducing error in the imputed value. 

When we imputed in the long structure including only the observed waves in the analysis, 

however, the estimates we obtained would lead to substantive findings similar to those 

obtained when imputing wide. Our analysis provides some evidence that in conditions 

similar to those found in many family panel data sets imputing the data in the long structure 
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can yield satisfactory estimates in fixed effects models. Additional research is needed, 

however, to identify the factors that account for the similarities and differences between the 

long and wide imputation approaches.

Unlike fixed effects approaches, imputing whole-wave missingness for event-history models 

allows more of the known information to be incorporated in the analysis model. Event-

history analysis assumes that cases with no follow-up data are MCAR, whereas cases with 

only some whole waves missing are MAR. Right-censoring is an inefficient use of all 

known information because participants who drop out after the baseline survey contribute no 

information to the model, given that they are immediately censored and effectively excluded 

from analysis. In addition, right-censoring requires the strict assumption that the participants 

who remained in the study had event rates, and relationships between the covariates and the 

event, similar to those who dropped out. The results of our simulation, in concurrence with 

literature on this topic, suggest that right-censoring is not robust to violations of this 

assumption.

Our results confirm the advantages of using MI in the wide structure for event-history 

models, whereas MI on data in the long structure were nearly as biased and inefficient as no 

imputation. It is important to note that MI on the long structure appeared to increase both the 

Type I and Type II error rates when testing whether variables were significant at the p < .05 

level. The simulation confirmed with an example what has been argued theoretically: that 

failing to account for the correlation between within-person measures repeated over time is 

an incorrect specification of the imputation model. In our event-history example a researcher 

would have been as well off to ignore the missing values altogether as to apply MI to data in 

the long structure. The fixed effects model simulation, however, showed that MI in the long 

structure could be acceptable in circumstances where imputing entire waves is unnecessary.

The event-history model simulations showed that MI on the wide structure performed better 

than complete case analysis or MI using the long structure, but it was not a perfect method. 

Recall that the simulation was designed with an extreme NMAR element whereby people 

who had thought of divorce at Wave 1 and went on to divorce were three times as likely to 

have dropped out at each of the three remaining waves. Our simulations were a rigorous test 

of MI under NMAR conditions because not only were within- and whole-wave missing 

values known to be NMAR, but also the MI model was informed only by the seven variables 

in the analysis and no auxiliary information. MI nonetheless allowed the use of all known 

information and appeared to be a fairly robust procedure in the presence of clearly NMAR 

data.

When fitting an event-history model, we recommend that researchers use MI in 

circumstances where doing so allows the use of observed information that would be 

discarded by complete case analysis. In particular when first-wave participants have no 

follow-up data, right-censoring prevents these cases from contributing information to the 

estimates. Present statistical research recommends including the NA estimate of the 

cumulative hazard to the survival time as a covariate in the MI model (White & Royston, 

2009). Researchers should omit the actual event date, the time to event, or the natural log 

transformation of time to event from the imputation model.
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Although the MILC data had a monotone dropout pattern, other family data sets, such as the 

National Longitudinal Study of Adolescent Health, allow continued participation in the 

study even if one wave or more waves are skipped. We expect that MI would offer 

additional advantages in this context because the proportion of known information relative 

to missing information would exceed the levels seen in our simulation here. We do not 

expect that our results would be applicable to all types of family research data, and our 

findings should not be generalized to unrelated situations. Clinical trials, randomized 

experiments, and treatment studies may have study-dropout mechanisms with stronger 

relationship to the outcome of interest than would be found in national personal or 

household interview surveys.

There are a number of situations not examined here in which imputing data in the wide 

structure would not be possible. With a large number of waves or time points, and repeated 

measures that are highly correlated, a wide imputation model could fail because of 

collinearity or model overfitting. Our models also did not explore conditional time-varying 

transitions. For example, a person could not transition from being divorced to being never 

married. A promising MI approach to these situations is the twofold fully conditional 

specification algorithm described byWelch, Petersen, et al. (2014) and Welch, Bartlett, and 

Peterson (2014). This approach uses the waves preceding and following a particular time 

point to be imputed, essentially allowing a wide imputation without putting too many waves 

in the model. In addition, this approach can accommodate conditional time-varying 

transitions. Future research should explore this approach in the context of family research 

data and where the data are MAR or NMAR. It is also unclear whether nonlinear and 

interaction terms might be compatible with the fully conditional specification method.

Our results show that whole-wave imputation may be advantageous when doing so allows 

the researcher to analyze all known information. In the event-history model, for instance, 

using standard right-censoring techniques may exclude participants who had no follow-up 

data. Not only does this technique discard known baseline information, but it also requires 

the assumption that attrition from the second wave was MCAR and that the event rates were 

similar among individuals who did and did not participate in the second wave. MI, on the 

other hand, allows researchers to analyze the known baseline values and to assume that 

attrition was MAR. Even under somewhat extreme NMAR conditions our simulations 

showed that MI performed well. Although MI was not perfect, it appeared to be a more 

robust method to NMAR data than right-censoring at the time of dropout. Imputing 

variables in missing waves may be unnecessary effort, as with our fixed effects regression 

models, if whole-wave imputation adds no information to the analysis model. Imputing 

within-wave missing values in these models, however, increases the information available 

being used, yielding less biased and more stable estimates.
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Figure 1. 
Example of Data in the Long Structure.

Note: This is an illustration of longitudinal panel data stored in a long structure. Considered 

as a multilevel structure, four repeated observations of happiness (Level 1) are nested within 

individual clusters (Level 2). In a standard Cox model using right censoring, Person 2, for 

example, may be censored at the time of the first wave and would therefore be excluded 

from the analysis (contributing 0 person-time).
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Figure 2. 
Example of Data in the Wide Structure.
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