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Abstract—We consider two crucial problems in continuous sign language recognition from unaided video sequences. At the sentence

level, we consider the movement epenthesis (me) problem and at the feature level, we consider the problem of hand segmentation and

grouping. We construct a framework that can handle both of these problems based on an enhanced, nested version of the dynamic

programming approach. To address movement epenthesis, a dynamic programming (DP) process employs a virtual me option that

does not need explicit models. We call this the enhanced level building (eLB) algorithm. This formulation also allows the incorporation

of grammar models. Nested within this eLB is another DP that handles the problem of selecting among multiple hand candidates. We

demonstrate our ideas on four American Sign Language data sets with simple background, with the signer wearing short sleeves, with

complex background, and across signers. We compared the performance with Conditional Random Fields (CRF) and Latent Dynamic-

CRF-based approaches. The experiments show more than 40 percent improvement over CRF or LDCRF approaches in terms of the

frame labeling rate. We show the flexibility of our approach when handling a changing context. We also find a 70 percent improvement

in sign recognition rate over the unenhanced DP matching algorithm that does not accommodate the me effect.

Index Terms—Sign language, movement epenthesis, continuous gesture, segmentation, level building.

Ç

1 INTRODUCTION

MOST approaches [1], [2] to continuous sign language
recognition or continuous gesture recognition use

hidden Markov models (HMM) [3] or dynamic time
warping (DTW) [4], [5]. These matching processes were
popularized by their effectiveness in speech recognition.
HMM-based approaches are also popular for other types of
sequences, such as text sequences [6]. Although a speech or
text sequence can be considered to be similar to a sign
language or gesture sequence in the sense that both of them
can also be represented as a sequence of feature vectors, a
video-based continuous sign language sequence does have
vital differences. These differences make it hard to simply
apply the successful approaches in speech recognition to
sign language recognition.

One such differentiating aspect is the importance of
movement epenthesis (me). During the phonological pro-
cesses in sign language, sometimes a movement segment
needs to be added between two consecutive signs to move
the hands from the end of one sign to the beginning of the
next [7]. This is called movement epenthesis (me) [1]. Fig. 1

shows an example of me frames. These frames do not
correspond to any sign and can involve changes in hand
shape, movement, and can be over many frames, sometimes
equal in length of actual signs. Consequently, automated
sign recognition systems need a way to ignore or identify
and remove the me frames prior to translation of the true
signs. The earliest work of which we are aware that
explicitly modeled movement epenthesis in a continuous
sign language recognition system with dedicated HMMs is
by Vogler and Metaxas [8]. In another work [9], they also
used context-dependent signs to model movement epenth-
esis and signs together. In a similar application of this
approach, Yuan et al. [10] and Gao et al. [11] explicitly
modeled movement epenthesis and matched with both sign
and movement epenthesis models. The difference was that
they used an automatic approach to precluster the move-
ment epenthesis in the training data. More recently, Yang
and Sarkar [12] used conditional random fields (CRF) to
segment a sentence by removing me segments. However,
this approach does not result in sign recognition, but just
the segmentation of the sentence.

Although experimental results have shown that ap-
proaches that explicitly model movement epenthesis yield
results superior to those ignoring movement epenthesis
effects and context-dependent modeling [8], the question of
scalability still remains. To obtain enough training data to
model movement epenthesis is a real issue. With N signs,
one may expect the number of movement epenthesis models
to beN2, i.e., quadratic in the number of signs. Also, to build
movement epenthesis models, one has to label the associated
frames in the training data, most likely manually and, hence,
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the model can be easily biased to this set of sentences. So, it is
important during experimentation to separate the train and
test data with respect to sentences as well, and not just with
respect to instances of the same sentences.

Unlike previous approaches, we take a dynamic pro-
gramming approach to address the problem of movement
epenthesis, building upon the idea in [13]. Dynamic
programming-based matching does not place demands on
the training data as much as probabilistic models such as
HMMs do. We illustrate the difference between our
approach with the one that ignores movement epenthesis
or the one that explicitly models movement epenthesis in
Fig. 2. Fig. 2a represents a matching procedure that ignores
me and matches all model signs in a model base to a test
sentence. Note that the movement epenthesis between two
signs can be falsely recognized as one of the signs. Fig. 2b,
on the other hand, illustrates the process of explicitly
modeling all the possible me frames, where the me frames in
the test sequence are expected to be matched to the
modeled me frames, not a sign. Fig. 2c sketches our
approach. We have a model base that consists of all actual
model signs, but not movement epenthesis. During the
search for the optimal sign sequence in a sentence, we
dynamically decide whether a match is a reliable match or
not. If not, we label the test frame as a me. Determining the
cost of this labeling is a crucial one and we have an
effective, automated method for it. The entire process is
embedded in a dynamic programming-based level building
(eLB) algorithm coupled with a grammar model. The search
process is conducted in a deterministic manner, where we
use DTW, constrained by a grammar model. The advantage
of the proposed matching process is that implicit segmenta-
tion of the sentence into signs happens without the need for
modeling movement epenthesis. To create the model base,
i.e., for training, we only need the sign frames in continuous
sentences without the associated movement epenthesis.

Another crucial difference between speech and sign
language recognition is that, while speech is sequential, sign
language has both sequential and spatial aspects. Due to the
sequential nature of speech and knowledge about ear
physiology, it is somewhat easier to define features for
speech, such as using frequency-based features [14], than
for sign language. For video-based sign language sequence,
a frequency domain representation of the frame cannot
provide enough information for describing the local aspects
such as hand shape, hand position, orientation, and motion.
It is hard to detect spatially relevant parts in an image and
to construct appropriate features. For instance, segmenta-
tion or tracking of the hands is hard even with a simple
background due to the mutual occlusion of the hands, the
changes in hand shape with motion, and the difficulty of
localizing hands when in front of the face. Due to these
complex low-level segmentation issues, previous contin-
uous American Sign Language (ASL) recognition has
mostly relied on assistive tools to obtain clean feature
vectors. For example, Volger et al. [9], [15], [16] used a 3D
tracking system and Cyber gloves, Wang et al. [17] used
cyber gloves and 3D tracker, Starner et al. [18], [19] used
color gloves, accelerometers, and head/shoulder mounted
cameras, and Kadous [20] used power gloves. Although
using assistive tools can yield better results, they also place
added burden on the signer and can feel unnatural enough
to even change the appearance of a normal sign. Some other
approaches use only a single camera without assistive tools
but with imaging constraints; for example, Bauer and Kraiss
[21], [22] used a single color camera but with a uniform
background and controlled clothing. Cui and Weng [23]
used a segmentation scheme under a relatively complex
background but their approach worked with image
sequences with isolated signs. Other than this, Ding and
Martinez [24] proposed methods to recover all of the
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Fig. 1. The first frame is the end of sign: “GATE,” the last frame is the start frame of “WHERE”; in between there are several transition frames that
have no meaning and are known to be the me segment.

Fig. 2. Different approaches to handling movement epenthesis (me) in sentences: (a) If the effect of me is ignored while modeling, this will result in
some me frames falsely classified as signs. (b) If me is explicitly modeled, building such models will be difficult when the vocabulary grows large.
(c) The adopted approach in this paper does not explicitly model mes; instead, we allow for the possibility for me to exist when no good matching can
be found.
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manual signals from a single unaided image sequence.
Their approach is also based on simple background videos.
In this work, we develop a theory to work with single
camera video data without any assistive tools.

There are additional aspects that make the vision task
harder. 1) We consider continuous sign language sentences
as opposed to isolated signs; 2) we consider the issues that
make hand segmentation hard, such as short sleeved shirts;
and 3) we also consider complex background scenes. Our
approach is able to cope with ambiguities in segmentation
and the movement epenthesis problem in continuous
sentences. The approach, depicted in Fig. 3, involves nested
dynamic programming processes. Nested within the en-
hanced level building (eLB) dynamic programming method
is another dynamic programming process that is concerned
with matching single signs to segments of the observation
sentence. We generate multiple hand candidates based on
skin color and motion. Skeleton-based shape representation
allows us to generate hand hypotheses for signers wearing
both short sleeved and long sleeved shirts and also for the
“hand across hand or face” cases. The hand candidates are
paired to generate possible candidates for both of the hands.
Then we link these pairs of hand candidates across the
frames and match the sequence of candidates to the models
using an enhanced version of the level building dynamic

programming framework. At the sentence level of the
enhanced level building process we match signs with
sentences. During this matching, we allow for possible
movement epenthesis labels based on matching scores. The
combinatorics is constrained using a grammar model. The
entire process simultaneously generates the final matching
result and locates the hands.

From our literature survey, we noticed that there are
previous approaches that have also used multiple hand
candidate representations. For example, the combination of
the top-down and bottom-up approach in gesture sequence
recognition can be found in [25] and [26]. They both used
skin and motion cues to generate multiple candidates. Yang
and Sarkar [27], [28] used a grouping strategy to generate
multiple candidates, including occlusion candidates, and
fed them into an HMM framework for recognition of single
signs. However, these previous works are all designed for
isolated gesture recognition. Our multiple hand candidate
approach is integrated into a level building framework to
facilitate continuous sign language recognition. The elegant
aspect of the approach is that we can handle me, hand
localization and sentence level matching in the same
formalism with one global optimization.

We experimented with four different kinds of single view
video data sets. Some sample frames are shown in Fig. 4. The
first data set has a simple background with a signer wearing
a long sleeved shirt. We compare our methods with a
traditional level building (LB) approach as well as the CRF
and Latent Dynamic-CRF labeling approaches. The second
data set is with a complex and changing background, and the
third data set has simple backgroundbutwith a short sleeved
shirt, where we show improvement resulting from the use of
the multiple candidate approach versus using the global
feature approach. The last data set is part of the Purdue data
set from [29], on which we test for across signer recognition.

In the following parts of the paper, we discuss the
problem of me and the high-level DP process in Section 2.
Section 3 describes the low-level DP process to handle the
ambiguity problem. Section 4 presents the low-level
processing and the generation of hand candidates. We then
present the experiment results in Section 5 and our
conclusions in Section 6.

2 PROBLEM FORMULATION AND HIGH-LEVEL

MATCHING

We structure our notations as follows:

1. Si: ith sign in a model base of size N , with V real
signs and Nmax virtual signs representing me labels
of varying lengths from 1 to Nmax. As indexed, the
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Fig. 3. Schematic of the approach. At the core are nested dynamic
programming methods to simultaneously optimize over sign and
movement epenthesis labels and multiple hand labels generated by
low-level processing.

Fig. 4. Example frames of the data sets; we denote them as D1, D2, D3, and D4 (Purdue data set).
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first V models are for real signs, followed by the
virtual me labels.

2. T : A test or query sentence of M frames, containing
multiple signs.

3. jl ¼ fð0Þ; ð1Þ; ð2Þ; . . . ; ðlÞg: An ordered sequence of
l integers. We will use this to represent the segmenta-
tion boundaries of a sentence, with the integers
representing the ending frames of the segments.

4. Sl ¼ fSð1Þ; Sð2Þ; . . . ; SðlÞg: A sequence of l sign labels.
This allows us to distinguish between index of a
sign in the model base and that in a particular
label sequence.

5. Lmax: Maximum number of signs in a sentence.
6. T ði : jÞ: Subsequence of T from frame i to frame j.

Example usage include T ððiÞ : ðjÞÞ, where ðiÞ and ðjÞ
refer to entries in the ordered sequence or SðkÞði : jÞ,
referring to frames i through j in the kth sign, as
listed in a label sequence.

A solution to the matching problem would consist of a
segmentation of the sentence T into signs and movement
epenthesis. Our objective is to find a sequence of sign and
movement epenthesis (me) labels, S�, among all possible
sign sequences such that the distance between Sl and T is
minimized. That is,

R� ¼ argmin
l;jl;Sl

AðSl; T Þ

¼ argmin
l;jl

min
Sl

X

l

i¼1

DðSðiÞ; T ðði� 1Þ : ðiÞÞÞ;
ð1Þ

where Dð:Þ is the function to compute the single sign
matching cost with a segment of the test sequence. The
nature of this cost function can differ based on the situation
at hand. For instance, if we have good segmentation of hands
and faces, then one could construct reliable feature vectors
for each frame. In such situations, the distance would be
constructed by dynamic time warping of the segments. If, on
the other hand, we do not have reliable extraction of hands,
then we suggest a more complex solution that involves
optimizing over possible hand candidates. We will look into
these distance computations methods, but, before that, let us
consider how we perform the optimization in (1), given an
appropriate distance measure.

2.1 The Enhanced Level Building Algorithm

The solution of (1) is over all of the possible sign sequence
candidates, with all possible lengths for each sign. To
control the combinatorics, we structure the search for the
optimal solution using dynamic programming, specifically,
the level building approach [14], and enhance it to allow for
movement epenthesis me labels.

The overall minimization can be expressed recursively as
optimization of one label and the minimum cost for the
remaining sentence. If we structure this optimization
separating the last label, we have

min
jl;Sl

AðSl; T Þ ¼ min
ðlÞ;SðlÞ

�

DðSðlÞ; T ððl� 1Þ : ðlÞÞÞ

þ min
jl�1;Sl�1

AðSðl�1Þ; T ðð0Þ : ðl� 1ÞÞÞ
�

:
ð2Þ

Based on this decomposition of the problem, each level of
the level building approach corresponds to the labels, in

order, in the test sentence. Thus, the first level is concerned
with the first possible label in the sentence. The first label
could cover different possible lengths. The second level is
concerned with the second possible label for the portion of
the sentence that begins after the first label ends, and so on.
Each level is associated with a set of possible start and end
locations within the sequence. And, at each level, we store
the best possible match for each combination of end point
from the previous level. The optimal sequence of signs and
me labels is constructed by backtracking.

For each level l, we store the optimal cost for matching
between sign Si and with the ending frame as m using a
three-dimensional cost array A of size Lmax �N �M. The
quantity Aðl; i;mÞ gives us the minimum cumulative score
for matching l labels to the test sequence up to the
mth frame, with the ith model sign, Si, as the last label.

Aðl; i;mÞ ¼

DðSi; T ð1 : mÞÞ: if l ¼ 1;
min
k;j

Aðl� 1; k; jÞ

þ DðSi; T ðjþ 1 : mÞÞ; otherwise:

8

>

<

>

:

ð3Þ

The optimal matching score D� is D� ¼ minl;iAðl; i;MÞ.
To enable us to reconstruct the optimal sign sequence

by backtracking, we use a predecessor array  , whose
indices correspond to A:  ðl; i;mÞ, 1 � l � Lmax,1 � i � N ,
1 � m �M, where

 ðl; i;mÞ ¼

�1; if l ¼ 1;
argmin

k
Aðl� 1; k; jÞ

þ DðSi; T ðjþ 1 : mÞ; otherwise:

8

<

:

ð4Þ

Fig. 5 illustrates the possible matching sequences searched
during the recursive search process. At the end of each level,
we obtain the best matched sequences, for a portion of the
test sequence. For example, level 1 is concerned with
labeling the portion starting from the first frame. For each
possible ending frame at a level, we obtained a best
matching sign, for instance, S1; S5; S2; Svþ4; S2; S9, shown in
the figure. Then, at level 2, we again have a range of possible
ending frames, with the starting frame after the ending
frames from the first level. For each ending frame, we find
the best cumulative matching score among all the signs and
possible starting frame. We continue this process for all of
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Fig. 5. The enhanced level building matching process. There are three
complete sign label sequences, ending at levels 2, 3, and 4,
respectively. The best one among these three will be returned as the
matching result for these levels.
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the levels. Matching that ends at the last frame results in a
possible matching sequence. Three such complete sequences
are shown in the figure: fS9; S1g; fS2; S8; S9g; fS1; me; S2; meg.
Note all of the label SVþk is the me label over k frames.

The use of the me label is the essential difference
between the classical level building formulation for
recognizing connected words in speech and our formula-
tion for recognition of connected signs in sign languages.
We enhance the classical formulation by allowing for such
a label, hence the name eLB. However, allowing for such a
label is not equivalent to the addition of an additional sign
label. It is not obvious how to choose the cost of me label
as there are no real samples of it. One property could be
that the cost be proportional to the length of me:

DðSVþk; T ðjþ 1;mÞÞ ¼ ðm� jÞ�: ð5Þ

This pushes the problem to choosing the proportionality
constant, �, which is a penalty cost of assigning a me label to
a frame. This penalty should be larger than a good match
score we can find, since each time we find a good match to a
portion of the unknown sequence from our database, we
want to keep it. At the same time, the penalty should be
smaller than a nonmatch score because, each time we cannot
find any good match, we need to make sure the mematch is
selected. A nonmatch score is obtained when matching two
different signs and a match score is obtained when
matching different instances of the same sign. To estimate
these scores we consider the distribution of match and
nonmatch scores between signs in the training set, com-
puted using dynamic time warping (discussed later). The
overall distances are normalized by the length of the
warping path. The distribution of these scores, typically
has overlap. We search for a threshold value that one can
use to classify these scores into match and nonmatch ones.
We choose the optimal � to be the optimal Bayesian
decision boundary to accomplish this. However, instead of
parametrically modeling each distribution (match and
nonmatch) and then choosing the threshold, we use a
histogram-based representation to search for it.

2.2 Grammar Constraint

The explorations at each level canbe constrained bygrammar
information such as those captured by n-gram statistics. We
illustrate this using a bigram model. We use a sample-based
model of the bigram, instead of an histogram one and
represent it using a relationship matrix Rði; jÞ, 1 � i � N ,
1 � j � N , where we have

Rði; jÞ ¼
1; if Si can be the predecessor of Sj;
0; if Si cannot be the predecessor of Sj:

�

ð6Þ

We set R based on observed instances in training text
corpus. Entries are set to 1 or 0 if an example is either found
or not found in the corpus. Note that this is different from
histogram of counts used in traditional n-grams. Due to the
limited nature of the samples, we do not use counts.
Essentially, if we have some evidence, we set the probability
of that occurrence as being one. This is a very liberal choice
of grammar constraint. To allow for me labels before and
after each sign we use Rði; jÞ ¼ 1, if i > V or j > V .

After obtaining R, the eLB algorithm can be constrained
with the predecessor relationship based on the relationship

matrix. Note that since we allow me label to exist between
any two signs, a local backtracking may be needed while
enforcing grammar checking. For example, assume at the
current level we are deciding about the sign Si. If the
predecessor we found along the optimal path is a me label,
we need to backtrack until we find a real sign Sp along the
optimal path. Grammar checking is performed between Si
and Sp. Using the predecessor sign, Sp, found using local
backtracking, we incorporate the grammar constraint into
our system by modifying (3) and (4) as

Aðl; i;mÞ ¼

DðSi; T ð1 : mÞÞ; if l ¼ 1;
1; 8i s:t: Rðp; iÞ ¼ 0;
min
k;j

Aðl� 1; k; jÞ

þ DðSi; T ðjþ 1 : mÞÞ; otherwise;

8

>

>

<

>

>

:

ð7Þ

and

 ðl; i;mÞ ¼

�1; if l ¼ 1;
�1; 8i s:t: Rðp; iÞ ¼ 0;
argmin

k
Aðl� 1; k; jÞ

þ DðSi; T ðjþ 1 : mÞ; otherwise:

8

>

>

<

>

>

:

ð8Þ

Generalizations to n-gram statistics will involve an
R function over n� 1 predecessors and considerations of
these predecessors in the above equation. When this
number, n, is equal to the length of the sentences, we have
sentence-based grammar, which is stronger than bigrams or
trigrams. In the sentence-based grammar, any recognized
sentence must be one sentence from a text corpus.

3 SINGLE SIGN MATCHING COST

To compute the final optimal sequence using the eLB
framework, we need to be able to compute the cost between
a model sign with a subsequence of the test data, as
DðSðiÞ; T ðði� 1Þ : ðiÞÞÞ (1). There are two scenarios that we
consider for thismatching cost. First iswhenwe have a single
feature vector describing each image frame and any sign is a
sequence of these feature vectors. This would be possible
whenonehas fairly good segmentation, typically obtainedby
controlling the background and clothing. To compute the
single sign matching cost under such situations, we can
simply compute theDTWcost between the twosequences.As
to the cost for matching one frame from a model to one
observation frame, there are various choices possible,
depending on the sophistication of the feature vector. We
will discuss our particular choice in a later section.

The second scenario, which is the most common one,
arises when we do not have good segmentation. This arises
in uncontrolled imaging situations with complex back-
ground and lack of control over clothing. For each frame,
we can have many possible hand candidate regions. Here
the use of global features is obviously not reasonable. One
has to allow for many possible hand candidates.

3.1 Paired Hand Candidates

Let the set of Nj hand blobs detected in frame j be:
fp1ðjÞ; p2ðjÞ . . . ; pNj

ðjÞg. We consider all possible pairings
of these primitives as candidates for the left and right
hands, respectively.

466 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 3, MARCH 2010

Authorized licensed use limited to: University of South Florida. Downloaded on February 18,2010 at 12:43:18 EST from IEEE Xplore.  Restrictions apply. 



GðjÞ ¼ fg1ðjÞ ¼ fp1ðjÞ; p2ðjÞg; . . . ;

gkðjÞ ¼ fpk1ðjÞ; pk2ðjÞg; . . .g:
ð9Þ

Note that we have ðNjÞ
2 �Nj possible pairings. Each

pairing is a possible observation of the hands. To match a
model sign sequence to a test sequence, we have to not only
match the frames, but also have to choose between the
possible pairs in each frame.

3.2 Matching Hand Candidates

The goal of the matching of a model sign to a query
subsequence is to find one candidate hand sequence that
can be best mapped to the model sequence. In the model
sign sequence Sm, we assume that we have hand labels. To
represent each match, we denote dðSmðiÞ; gkðjÞÞ as the cost
of matching the ith frame in Sm, with the kth hand-pair
candidate from the jth frame in the test sequence, gkðjÞ. For
the experiments, we choose this matching cost to be the
Mahalanobis distance between the feature descriptors, with
a diagonal covariance matrix, calculated based on the
model data sets. However, other choices are possible. The
total distance will be the sum of these individual distances
along possible matching curves, w. The solution will be the
minimum value of this distance over all warping curves, w.
An illustration of the 3D dynamic programming problem is
shown in Fig. 6.

DðSm; T ð:ÞÞ ¼ min
w

X

fi;j;kg2w;gkðjÞ2T ðjÞ

dðSmðiÞ; gkðjÞÞÞ

0

@

1

A: ð10Þ

3.3 Dynamic Programming Solution

We can minimize using dynamic programming. However,
to contain the combinatorics, we limit the possible
predecessors of a location (or node) on the warping curve.
This is illustrated in Fig. 7 with some examples of allowed
predecessors for a cell connected by arrows. Each cell in the
lattice is indexed by the triple fi; j; kg, with the first two
indices representing time along the model sign and test

sign, respectively, and the third index is for the possible
hand pair in the jth test frame. For constraints along the
time coordinates, we use the general, first order, local
constraints [30]. For the hand candidate domain, we
constrain the movement of possible hands by using a fairly
liberal threshold, T0, i.e., mðgkðjÞ; grðj� 1ÞÞ � T0. In the
illustration in Fig. 7, we have a cell with five possible
predecessors: one predecessor (in green) has the previous
model frame, but the same test frame and hand candidates,
two predecessors (red) have hand candidates from previous
test frame but the same model frame, and two predecessors
(black) have hand candidates from previous test frame and
also the previous model frame.

The final dynamic programming update equations,
incorporating the constraints, are as follows: Let
Costði; j; kÞ represent the minimum cumulative cost of
matching the model sequence, up to the ith frame, and up
to kth hand candidates in the jth frame of the test sequence.
We have the following recursive formula for dynamic
programming:

Costði; j; kÞ ¼ d
�

Sim; gkðjÞ
�

þ

min

min
r;mðgkðjÞ;grðj�1ÞÞ�T0

Costði; j� 1; rÞ;

min
r;mðgkðjÞ;grðj�1ÞÞ�T0

Costði� 1; j� 1; rÞ;

Costði� 1; j; kÞ:

8

>

>

>

<

>

>

>

:

ð11Þ

The final solution is DðSm; T ð:ÞÞ ¼ minjCostðNi; j; NkÞ.

4 LOW-LEVEL REPRESENTATION

In this section, we describe our low-level processes that feed
into the matching process. Many of the modules used are
fairly standard ones, except for the background modeling
scheme; therefore, we have placed this section after
describing our core contributions, which is the matching
process. To segment the hands automatically, we used skin
color and motion. After segmenting the hands, we con-
sidered two kinds of feature vectors: a global feature vector
and a part-based feature vector. We experimented with both
these feature types in our experiments in head-to-head
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Fig. 6. Illustrating the 3D dynamic programming problem involved in
matching a model sign sequence with a test subsequence. There are
multiple candidates for each frame. The candidates for each frame
selected by the illustrated warping path are represented by thick
bordered circles. Note multiple model frames can match to a single test
frame and vice versa.

Fig. 7. Link constraints used to contain the combinatorics of dynamic
programming. We allow for predecessors from up to one frame along the
time axes and links from hand candidates constrained by the amount of
frame-to-frame displacement.
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comparisons and also to demonstrate that the matching

method outlined in this paper can be used in conjunction

with different feature types.

4.1 Detection of Hands

Our assumption is that hands move faster than other objects

in the scene (including the face) and that the hand area can

be somewhat localized by skin color detection. We used the

mixed Gaussian model of Jones and Rehg [31], with a safe

threshold allowing for some amount of nonskin pixels to be

falsely classified as skin pixels.
The specifics of the approach are outlined below and

illustrated in Fig. 8. For each sentence T with N frames:

1. Assign first keyframe k1 ¼ 1, and initialize keyframe
counter m ¼ 1. For frame i ¼ 2; . . . ; N :

a. Compute difference image between T ðiÞ and
T ðkmÞ. Find the largest connected component in
the difference image in terms of its number of
valid pixels Np.

b. If Np > T1ðthresholdÞ, set m ¼ mþ 1, set km ¼ i.
c. Set i ¼ iþ 1. If i > N go to the next step, else

repeat the above steps.
2. For frames i ¼ 1; . . . ; N , repeat:

a. Compute a difference image SD, where SD ¼
ð�m

j¼1jSðiÞ � SðkjÞjÞ=ðm� 1Þ.
b. MaskSDwith the skin likelihood image. Do edge

detection on SD and obtain the edge image E.
c. Apply a dilation filter to E.

d. For each valid pixel in E, set the corresponding
pixel of SD to be 0.

e. Remove the small connected components in SD.
This step generates the motion-skin confidence
map.

f. Extract the Boundary Image B. Add a reference
pixel (use the center of the frame or the center of
the face) to B.

4.2 Global Features

We first generate the feature vectors using the boundary
motion-skin confidence map obtained above (in step 2f).
Given 2f, we capture the global spatial structure by
considering the distribution (histogram) of the horizontal
and vertical distances of each edge pixel and a reference
point in the image. The reference point could be the image
center or the centroid of the face region, detected by a face
detector. We then represent these relational histograms,
normalized to sum to one, as points in a space of
probability functions (SoPF), like that used in [32]. The
SoPF is constructed by performing a principal component
analysis of these relational histograms from the model
images. The coordinates in the SoPF is the feature vector
used in the matching process. We use the Mahalanobis
distance as the distance measure.

4.3 Multiple Hand Candidates

For cases with controlled background and clothing, as is the
case with most sign language databases, the hand detection
method outlined performs reasonably well. However, under
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Fig. 8. Intermediate results from the hand segmentation process. (a) One frame in a sequence. (b) Consecutive-frame difference image. (c) Skin

pixels found. (d) Frame difference image with keyframes. (e) Edges found in (d). (f) After dilating (e). (g) After AND-ing the mask in (f) with (d).

(h) After removing small components in (g). (i) Boundary of the component in (h). This is the final hand candidate.
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uncontrolled cases where we can have nuisance motion-skin
blobs in the background or if the signer is wearing a short
sleeve shirt or even in the case where the signer’s head (face)
moves a lot, most hand detection algorithms, including ours,
generate false alarms. To handle such cases, we generate
multiple hand candidates and then select among them
during the matching process as outlined earlier.

To construct the multiple candidates, we first represent
the motion-skin confidence map as a collection of connected
components. All connected components that are compact
and small are selected to be hand candidates. The
compactness is measured by dividing the number of pixels
by the number of boundary pixels with a threshold T2. The
size is measured by the number of pixels with threshold T3.
The remaining components are too large to be the hand, but
can arise from the merging of the arm with the hands. The
hands in these cases would most likely be at one end of
these merging shapes (for example, the hands or the fingers
are most likely located at one end of the skin blobs, which
can be represented by a leaf pixel of the media axis). To find
these, we compute their medial axis by iteratively removing
each boundary pixel that will not disconnect the connect
component. Then we concentrate on all of the leaf pixels on
the medial axis. These leaf pixels are then clustered using a
nearest location neighbor clustering method with respect to
a threshold T4 until we get regions that are small enough to
be hands. Fig. 9 shows some results for some sample frames
in our three different data sets.

In our experiments, each hand primitive is described by
its x coordinate, y coordinate, and averagemotion along the x

and ydirections on the image. This,we realize, handicaps our
recognition process. Hand shape is an important component
of sign recognition. There are signs with similar motion and
location, but with different hand shapes. However, char-
acterizing hand shape requires the precise segmentation of
the hand boundary. This is especially hard for the case when
hands and arm occlude each other or the face. Our approach
to hand segmentation is not sufficient. We are also not aware
of any algorithm that can precisely extract the shape of both
hands, without the use of colored gloves, customized skin
color modeling, or a manual initialization process. As hand
segmentation research matures, hand shape features can be
incorporated easily into our framework.

5 RESULTS

We have conducted extensive experimentation with recog-
nizing continuous ASL sentences from image sequences
using our approach. We present not only visual results of
labeling continuous ASL sentences, but also quantitative
performance. We compared the performance with that
obtained by classical level building, which does not account
for movement epenthesis, and with frame labeling results
obtained by two state-of-the-art methods: CRF [33] and
Latent-Dynamic Conditional Random Field (LDCRF) [34].

We were not able to compare with other explicit model-
based approaches to handle movement epenthesis and
some generative methods, such as HMM, since they require
large amount of training data, which we did not have. For
the vocabulary size used in this paper, we would need
about 1,000 labeled ASL sentences.

YANG ET AL.: HANDLING MOVEMENT EPENTHESIS AND HAND SEGMENTATION AMBIGUITIES IN CONTINUOUS SIGN LANGUAGE... 469

Fig. 9. Confidence map and the generated hand candidates, along with the medial axes for elongated components. There is movement in the

background (c) and the signer is wearing short sleeved clothes (b).
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We also present empirical evidence of the optimality of
the choice of the � parameter that is used to decide on the
me mapping cost and present the impact of the grammar
model on recognition.

5.1 Data Sets, Measures, and Experiments

Data sets. We have used four data sets, summarized in
Table 1. Example frames from these four data sets are
shown in Fig. 4. As we can see, the data sets vary in terms of
the background. The background in data set D1 is uniform,
static with no texture. This is typical of sign language data
sets. The background in D3 is static but textured. The
lighting in this data set is not directly on the subject. This
data set is harder in terms of illumination and background
conditions than D1. This data set is not typical of sign
language data sets, especially in the use of short sleeves.
The data set D2 is with complex background and moving
people in the background. There are several patches in the
background with skin color. For each frames in data sets D2

and D3 we have multiple hand candidates. Only for D1 can
we use global features. The fourth data set,D4, is a subset of
the Purdue Data Set [35], [29], where we have three signers
signing 10 sentences. This was used for cross signer studies.

Train and test. The train and test for these data sets are
structured as follows: In D1, we have five samples per
sentence. We performed fivefold cross-validation experi-
ments, with four samples of each sentence for training and
one for test. For D2 and D3, we have different sentences in
the training and testing set. This is challenging for methods
that explicitly or implicitly rely on me models. For

experiments with data set D4, we used two of the three
signers as training and the third one for testing. This
experiment was hard not only because it involved compar-
ing across signers, but some of the semantically equivalent
sentences differ in the sign ordering, i.e., the sequence of the
signs are not the same.

Performance measures. To enable us to quantify the
performance, we manually labeled the frames correspond-
ing to the signs in the sentences. We also used the tool in
[36] to manually select the true hand candidate in each
model sign. To quantitatively evaluate the results, we used
error measure, as advocated in [37]. We computed these
errors automatically by computing the Levenshtein distance
using a dynamic programming approach [38] between the
found results and manually labeled ground truth. We refer
to this error as “word-level rate.” We also evaluated the
framewise labeling result as the ratio of the total number of
correctly labeled frames to the total number of frames. We
call this the “frame-level rate.”

Some words are in order to put the reported perfor-
mances in context. While high recognition rates (on the
order of > 90%) of isolated ASL signs and isolated finger
spelled signs have been reported, reported performances
for recognition in continuous sentences vary quite a bit
(58-90 percent [2]), depending on vocabulary sizes, length
of sentences, and possibly other factors that have yet to be
explored, such as the degree to which humans can
recognize each sign under various conditions like complex
background, etc.
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TABLE 1
Summary of the Three ASL Data Sets Used in This Paper

All data sets are in color and 30 frames per second.

TABLE 2
Outline of the Four Experimental Studies
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Studies. We conducted three studies. The details of the
setup of the experiments are listed in Table 2. In the first
study, we focused on the analysis of the eLB algorithm and
the estimation of parameter �. We tested using both bigram
and trigram grammar built using a text corpus of
150 sentences. The performance was measured using the
word-level rate. In the second study, we compared our
labeling approach with CRF/LDCRF approaches. For both
study 1 and study 2, we used global feature vector, we also
added reference pixels in the middle of the frame when we
compute the relational distribution. Since CRF/LDCRF only
produce a frame-level rate result, we used this as perfor-
mance measure for this study. In the third study, we used
D2 and D3 to test both global and part-based features under
a changing context. In this study, we used a sentence-based
grammar, which is stronger than just bigrams and trigrams.
In the sentence-based grammar, any recognized sentence
must be one sentence from the text corpus. For study 3, we
used the face detection method from [39] to locate the face
center and all positions were relative to this center.

Parameters. We used the same set of thresholds for
all the experiments. We set these thresholds liberally
based on the image size and the distance between the
signer and the camera. Specifically, we used T0 ¼ 100
pixels, T1 ¼ 300 pixels, T2 ¼ 2, T3 ¼ 4;000 pixels, and
T4 ¼ imageheight=8. For eLB setup, we assigned the para-
meters values as Lmax ¼ 20 and Nmax ¼ 145, which means
we allow one sentence to have a maximum of 20 signs, and
the maximum duration of movement epenthesis me to be
145 frames. We used the first seven coefficients of the SoPF
space representation as the global feature vector [32]. In our
experiments, we have found these choices to be quite stable.
Varying them did not change the performance significantly.

5.2 Study 1: eLB versus LB with Grammar and
Parameter Variation

The primary focus of the experiments in this study is to test
the effectiveness of the eLB algorithm to overcome the me

problem. We also study the choice of the me labeling cost �,
the most crucial parameter. We conducted studies using
data setD1, where background related issues are least likely
to confound the movement epenthesis recognition problem.

We show typical labeling results for three sentences in
Fig. 10. Each horizontal bar represents a sentence that is
partitioned into signs or me blocks. The size of each block is
proportional to the number of frames corresponding to that
label. For each sentence, we present the ground truth as
determined by an ASL expert and the results from the
algorithm. It is obvious that the signer is signing at different
speeds for each sign. For instance, the sign I is spread over a
large number of frames. The framework can handle such
cases. Apart from a 1-2 frame mismatch at the beginning
and the end, the labeling matches well.

Fig. 11 shows the sign-level error rates with the optimal

� (more on this later) for each test set in the fivefold

validation experimentation. This was using a trigram

grammar model. The sign-level error rate for each test set

ranges between 9 percent and 28 percent. On average, the

error rate is 17 percent, with a corresponding correct

recognition rate of 83 percent.
In Fig. 12, we present results of a head-to-head

comparison of the error rates obtained using the enhanced

level building algorithm presented here and classical level

building that does not account for movement epenthesis.
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Fig. 10. Diagrammatic representation of the labeling result for three
sentences. Each horizontal bar represents a sentence, partitioned into
signs and me labels. The length of the horizontal bar is proportional to
the number of frames in the sentence. For each sentence, we present
ground truth partitioning and the algorithm output.

Fig. 11. Sign-level error rates using eLB on data set D1 using global
feature representation, broken into insertion, deletion, and substitution,
and for each test set in the fivefold cross validation.

Fig. 12. The error rates for enhanced level building, which accounts for
movement epenthesis, and classical level building, which does not

account for movement epenthesis on data set D1.
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We find that insertion errors have decreased significantly
by using the proposed method.

Next, we studied the effect of the grammar model. Fig. 13
shows the error rates we obtained by using a trigram model
and a bigram model. We constructed the grammar models
based on a text corpus of 150 sentences. These sentences did
not all have corresponding video data. By using the trigram
model, the average error rate dropped from 32 percent to
17 percent. The constraint imposed by a bigram model is
more relaxed than that imposed by a trigram model. It may

be reiterated that we are using a 0-1 representation of the
n-grams, i.e., for any instance of a relationship in the corpus
the corresponding count is set to 1 otherwise it is 0.

By far, the most important parameter is the me labeling
cost �. As described earlier, we select the value of � to be
the optimal Bayesian decision boundary between match
and nonmatch scores. Fig. 14a shows the match and
nonmatch scores on the training set in data set D1 for one
of the fivefold experiments. As we can see, a matched score
usually average around 0.4, while a nonmatching score is
centered around 1.4. The optimal value for this training
data set is 0.89.

How good are the trained me labeling costs, �? To study
this, we computed the best � that minimized the overall
error rate on the test set. Fig. 14b shows the variation of the
errors with different � for one of the test sets. We see that
the automatically chosen � value of 0.89 is near the
minimum of the error plots. In Table 3, we list the errors
with the automatically chosen �s for each of the fivefold
experiments and compare them with the actual possible
minimums. The errors are within 4 percent. This shows that
our method for choosing the optimal � is fairly robust.

5.3 Study 2: Comparison with Other Approaches

We compare the performance of our approach with two
state-of-the-art methods: CRF [33] and LDCRF [34]. We use
the code from [34] to generate our results. These particular
models have been developed in gesture recognition context,
where the labels correspond to gestures. The posterior
probability is maximized or estimated directly during
training and testing. For both methods, we used a chaining
structure, with three hidden states for each label in the
LDCRF. In Table 4, we quantify performance using the
frame-level error rate, i.e., what percentage of the frames
are wrongly classified in the test set. As we can see, CRF
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Fig. 13. Error rates with trigram and bigram constraints, which were

constructed based on an ASL text corpus of 150 sentences.

Fig. 14. Experiments with the movement epenthesis (me) labeling cost,
�. (a) The match and nonmatch distance scores in the training set used
to choose the optimal � for one of the fivefold experiments. The optimal
value is 0.89. (b) The variation of the errors with different choices of �.

TABLE 3
Error Rates with eLB on Data Set D1,

with Automatically (Auto) Chosen � and the One (Opt.)
that Minimizes the Error on Each Test Set

TABLE 4
Framewise Labeling Performance of eLB, LB, CRF, and LDCRF
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and LDCRF perform quite poorly. Although CRF [33] and
LDCRF [34] have shown improved results for limited
number of labels, in our experiments we had to use them
for 40þ labels. As the number of possible labels increases,
the number of parameters that need to be estimated
increases significantly for these models. This makes the
training starved for data. Also, both CRF and LDCRF
implicitly model me as one single class, which is not a
realistic model.

5.4 Study 3: Global Features versus Multiple Local
Candidates

The eLB framework can handle both global features that are
computed based on the whole image frame and local
features, computed for hand candidates. In this study, we
show two advantages of the nested framework with these
feature types. One of the advantages of the framework is
that the training is solely based on the sign model. We do
not have to retrain the models or insert new me training
data when the conversation context changes as long as the
sign vocabulary is the same. One example where this
flexibility will be useful is for short question-answer format
communication between the computer and a Deaf person.
Each time the computer asks a question, it can use the
context of the conversation to anticipate the possible
answers (sentences) from the Deaf person. Thus, the context
is dynamic. For each question, the possible answer set is
different, but small. However, we do not have to retrain for
each context. We only need to dynamically change the text
corpus used to model the grammar context, which is easy to
accomplish. The other advantage of the framework is that
we handle not only the movement epenthesis, but also
segmentation issues related to complex backgrounds, short
sleeves, and hands occlusions. We do not have to make
definitive decisions about the hand positions during low-
level segmentation.

In the first set of experiments in this study, we show the
ability of the eLB framework to accommodate a dynamically
changing conversation context. We used a portion of D2 as
the training data, the other portion ofD2, along withD3, was
the testing data, comprised of 45 sentences. We randomly
picked 5 or 20 sentences from these 45 sentences and
performed recognition. We repeated the process 10 times.
Each time the contextwas changed,we only switched the text
corpus from which the grammar constraints were derived.

Fig. 15 shows the result of the tests. Each bar of Fig. 15
shows one recognition result based on one set of randomly
picked test sentences and its corresponding text corpus.
From the results, we can observe that context is important
in recognizing the sentences. With five sentences in the
text corpus, we can achieve very good recognition result.
We can see that 7 of the 10 randomly conducted tests has
a error rate of 0 percent. However, when we increase the
number of sentences in the context, the error rate increases
to above 30 percent.

The results depend on the data set and features used. In
the previous study, with simple background data, we had
obtained a recognition rate of 83 percent. Here, with a
relatively uncontrolled background, performance falls as
the number of sentences to recognize increases. Features are
also important. From the figure, we can see that the global
feature is not a reasonable choice for this data set because of
the complex and moving background or short sleeve clothes

used. For local features, our choice of just location and
motion of hands also limits the discriminative abilities.
Future possibilities exist for increasing performance by
using richer features incorporating hand shapes and facial
expressions in this framework.

Figs. 16 and 17 show examples of the hand candidates
selected by the eLB algorithm, for two continuous sen-
tences, one with moving background and one with short
sleeve clothes, respectively. On the left of each image block,
we have the detected hands shown as red circles overlaid
on the original image, and all of the candidate hands for the
corresponding frame are shown on the right. Note that
there are no selected hand candidates (on the left side) for
frames labeled as me. It is also interesting to see that, for the
sentence in Fig. 16, although the sentence recognition is
correct (which is what we want), the framewise labeling is
not completely right. This is due to the fact that we only use
very coarse features, such as position and moving direc-
tions, to conduct the match, the signs in between can be
easily mixed up with each other. However, the eLB
framework can still make the final recognition for the
sentence correct based on context of the text corpus.

5.5 Study 4: Across Signer Recognition

In this study, we focused on testing across signer recognition
using the proposed framework. For multiple signer data, in
addition to the expected variations related to speed, motion
amplitude, etc., there also exists a larger source of variation.
Signers might sign a sentence in different sign orders. For
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Fig. 15. Total error rate with changing test contexts, with part and global
features, with a context of (a) 5 test sequences and (b) 20 test
sequences. For each scenario, we present results from 10 sets of
randomly picked test sequences from a database of 45 sentences. Note
that for (a) the error rates were zero in some cases for the part-based
features.
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example, signer A may sign “READ NEWSPAPER I. . . ,”

while signer B may sign “NEWSPAPER READ I . . . ” This

will make the explicit training of me harder. However, our

proposed framework does not rely on explicitly training of

me. Hence, we expect it to work for these cases.
We conducted this experiment using a subset of the

Purdue data set [35], [29], spanning three signers. Each of the

signers signs 10 sentences once. For each sentence, the three

signers are free to communicate using different sign orders

or even choose from multiple possibilities for some signs.

We conducted three tests, one for each of the three signers,

using the other two as training.We had two different context

setups for each test, using 5 and all 10 sentences. In Fig. 18,

we show the overall error rates. The recognition rate tops at
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Fig. 16. The labeling results for the sequence “FINISH BUY TICKET NOW FINISH.” On the left of each image block we have the detected hands
shown as red circles overlaid on the original image, and all of the candidate hands for the corresponding frame are shown on the right. The frames
are arranged in row-scan order, left to right and then down. The video corrresponding to this figure is available as supplemental material which can
be found in the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.26.
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80 percent. We do see a drop in performance over

intersigner recognition. Given the hard conditions, even

for across signer tests, this is not surprising. As expected for

smaller sentence context, performance is better than for

larger contexts.

6 CONCLUSIONS

We designed and explored the enhanced level building

algorithm, built around dynamic programming, to address

the problem of movement epenthesis in continuous sign

sentences. Our approach does not explicitly model move-

ment epenthesis, hence the demand on annotated training
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Fig. 17. The labeling results for the sequence “MY TICKET HERE.” On the left of each image block we have the detected hands shown as red circles

overlaid on the original image, and all of the candidate hands for the corresponding frame are shown on the right. The frames are arranged in row-

scan order, left to right and then down. The video corrresponding to this figure is available as supplemental material which can be found in the

Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.26.
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video data is low. We compared the performance of
enhanced level building with classical level building
algorithm, which has been proposed for connected word
recognition in speech. We found significant improvements.
To overcome the low-level hand segmentation errors, we
incorporated another dynamic programming process,
nested within the first one, to optimize over possible
choices from multiple hand candidates. Our results showed
that the part-based candidate approach works better under
moving background and short sleeve situations. Our
extensive experimentation also demonstrates the robustness
of the matching process with different parameters. In the
context of ASL, this work advances recognition of signs in
sentences, while accounting for movement epenthesis, and
we also contribute toward the ability to handle general
backgrounds and relaxation of clothing restrictions. The
developed enhanced level building algorithm solves the
general problem of recognizing motion patterns from a
stream of compositions of motion patterns with intervening
portions, for which we do not have any model. Such
situations could also arise in general human computer
interaction situations where one has to consider composi-
tions of individual gestures or in long-term monitoring of a
person performing multiple activities.
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