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Abstract

State-of-the-art single image deblurring techniques are
sensitive to image noise. Even a small amount of noise,
which is inevitable in low-light conditions, can degrade the
quality of blur kernel estimation dramatically. The recent
approach of Tai and Lin [17] tries to iteratively denoise and
deblur a blurry and noisy image. However, as we show in
this work, directly applying image denoising methods of-
ten partially damages the blur information that is extracted
from the input image, leading to biased kernel estimation.

We propose a new method for handling noise in blind
image deconvolution based on new theoretical and practi-
cal insights. Our key observation is that applying a direc-
tional low-pass filter to the input image greatly reduces the
noise level, while preserving the blur information in the or-
thogonal direction to the filter. Based on this observation,
our method applies a series of directional filters at different
orientations to the input image, and estimates an accurate
Radon transform of the blur kernel from each filtered image.
Finally, we reconstruct the blur kernel using inverse Radon
transform. Experimental results on synthetic and real data
show that our algorithm achieves higher quality results than
previous approaches on blurry and noisy images. 1

1. Introduction
Taking handheld photos in low-light conditions is chal-

lenging. Since less light is available, longer exposure times

are needed – and without a tripod, camera shake is likely to

happen and produce blurry pictures. Increasing the camera

light sensitivity, i.e., using a higher ISO setting, can reduce

the exposure time, which helps. But it comes at the cost of

higher noise levels. Further, this is often not enough, and

exposure time remains too long for handheld photography,

and many photos end up being blurry and noisy. Although
many techniques have been proposed recently to deal with

camera shake, most of them assume low noise levels. In this

work, we do not make this assumption and aim to restore a

sharp image from a blurry and noisy input.

1This work was performed when the first author interned at Adobe Re-

search.

Many single image blind deconvolution methods have

been recently proposed [4,6,8–10,13,14,16,20]. Although

they generally work well when the input image is noise-free,

their performance degrades rapidly when the noise level in-

creases. Specifically, the blur kernel estimation step in pre-

vious deblurring approaches is often too fragile to reliably

estimate the blur kernel when the image is contaminated

with noise, as shown in Fig. 1. Even assuming that an accu-

rate blur kernel can be estimated, the amplified image noise

and ringing artifacts generated from the non-blind deconvo-

lution also significantly degrade the results [5, 11, 21, 22].

To handle noisy inputs in single image deblurring, Tai

and Lin [17] first apply an existing denoising package [1]

as preprocessing, and then estimate the blur kernel and the

latent image from the denoised result. This process iterates

a few times to produce the final result. However, applying

existing denoising methods is likely to damage, at least par-

tially, the detailed blur information that one can extract from

the input image, thereby leading to a biased kernel estima-

tion. In Sec. 2, we illustrate that standard denoising meth-

ods, from bilateral filtering to more advanced approaches

such as Non-Local Means [3] and BM3D [7], have negative

impacts on the accuracy of kernel estimation.

In this paper, we propose a new approach for estimating

an accurate blur kernel from a noisy blurry image. Our ap-

proach still involves denoising and deblurring steps. How-

ever, we carefully design the denoising filters and deblur-

ring procedures in such a way that the estimated kernel is

not affected by the denoising filters. That is, we shall see

that, unlike existing approaches, we can theoretically guar-

antee that our approach does not introduce any bias in the

estimated kernel.

Our approach is derived from the key observation that

if a directional low-pass linear filter is applied to the input

image, it can reduce the noise level greatly, while the fre-

quency content, including essential blur information, along

the orthogonal direction is not affected. We use this prop-

erty to estimate 1D projections of the desired blur kernel to

the orthogonal directions of these filters. These projections,

also known as the Radon transform, will not be affected
by applying directional low-pass filters to the input image,

except for the noise reduction. Based on this observation,
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(a) Input (b) Cho and Lee [4] (c) Levin et al. [15] (d) Our method

Figure 1. Previous deblurring methods are sensitive to image noise. (a) Synthetic input image with 5% noise and the ground truth kernel

(overlayed). It is cropped to better show blur and noise. (b) Estimated kernel and latent image by Cho and Lee [4]. (c) Results by Levin et
al. [15]. (d) Results of our method.

we apply a series of directional low-pass filters at different

orientations, and estimate a slice of kernel projection from

each image. This yields an accurate estimate of the Radon

transform. Finally, we reconstruct the blur kernel using the

inverse Radon transform. Once a good kernel is obtained,
we incorporate denoising filtering into the final deconvo-

lution process to suppress noise and obtain a high-quality

latent image. Results on synthetic and real noisy data show

that our method is more robust and achieves better results

than previous approaches.

2. Side effects of denoising as preprocessing
Before introducing our approach, we first analyze the

negative impact of employing denoising as preprocessing

on kernel estimation. In single image deblurring, a blurry

and noisy input image b is usually modeled as:

b = � ∗ k + n, (1)

where �, k and n represent the latent sharp image, blur ker-
nel, and additive noise, respectively, ∗ is the convolution
operator. Solving � and k from input b is a severely ill-
posed problem, and the additional noise n makes this prob-
lem even more challenging.

Assuming that � is known, a common approach to solve
for k is:

k = argmink
{‖b− k ∗ �‖2 + ρ(k)

}
, (2)

where ρ(k) is the additional regularization term that im-

poses smoothness and/or sparsity prior on k. Without

considering the regularization term, this becomes a least-

squares problem and the optimal k can be found by solving
the following linear system:

LTLk = LTb = LT (b′ + n), (3)

where k and b are the corresponding vector forms of k and
b, respectively, and L is the matrix form of �. We also intro-
duce the noise-free blurry image b′ = b − n. We estimate

the relative error of k with respect to the noise in b using

the condition number of the linear system, that is:

e(k)

e(b)
=

‖(LTL)−1LTn‖/‖(LTL)−1LTb′‖
‖LTn‖/‖LTb′‖

≤ ‖(LTL)‖ · ‖(LTL)−1‖ = κ(LTL), (4)

where e(k) and e(b) are relative errors in k and b, respec-
tively. Thus, the noise n in the input image will be amplified
at most by the condition number κ(LTL) for kernel esti-
mation, where LTL is often called the deconvolution ma-

trix and has a block-circulant-with-circulant-block (BCCB)

structure [12]. Eq. 4 shows that the upper bound on the er-

ror in the estimated kernel is proportional to the amplitude

of the noise in input image. Building on this result, one can

attempt to apply sophisticated denoising filter to the blurry

image to reduce the noise amplitude, hoping that this will

improve the kernel estimate. However, denoising filters also

alter the profile of edges, e.g., [2]. This information is crit-

ical to accurate kernel estimation, and as we shall see, the

benefits of the noise reduction are often outweighed by the

artifacts caused by the profile alteration.

To illustrate it, we first look at a simple noise reduction

method, Gaussian smoothing. Convolving with a Gaussian

Gg decreases the noise level. However, the kernel estima-

tion then becomes:

kg = argminkg ‖b ∗Gg − � ∗ kg‖2
= argminkg ‖(� ∗ k + n) ∗Gg − � ∗ kg‖2
≈ argminkg ‖� ∗ (k ∗Gg − kg)‖2 = k ∗Gg, (5)

where k is the blur kernel for the original input image and
kg is the optimal solution after Gaussian denoising. Eq. 5
shows that the estimated kernel kg is a blurred version of
the actual kernel k. Further, since Gg is a low-pass filter,

the high frequencies of k are lost and recovering them from

kg would be very difficult, if possible at all. This result

comes from the initial noise reduction and is independent

of the kernel estimation method.

611611613



(a) Input (b) True kernel (c) No denoising (d) Gaussian filter (e) Bilateral filter (f) Non-local means (g) BM3D (h) Our method

Figure 2. The side effects of employing different denoising methods as preprocessing step in single image deblurring. (a) the synthetic

input image with 5% noise. (b) the ground truth kernel. (c) the blur kernel estimated without applying any denoising method to the input

image (a). (e)-(g) the estimated blur kernels after applying different denoising filters. (h) the kernel estimated by our method.

Although more sophisticated denoising methods are bet-

ter at preserving high frequencies, denoising remains an

open problem for which no perfect solution exists. Since no

information about the blur kernel can be observed in uni-

form regions of the blurry image, edges are the main source

of information that drives deblurring algorithms either im-

plicitly or explicitly, e.g., [4, 6, 10, 20]. Even small degra-

dations introduced by state-of-the-art denoising techniques

can have a strong impact on deblurring results as shown in

Fig. 2. In this experiment, we apply bilateral filtering [19],

non-local means [3] and BM3D [7] to a test image with 5%

noise, i.e., noise of standard deviation 0.05 when the inten-
sity range is [0, 1], and then use Cho and Lee’s method [4]
to estimate the blur kernel. The estimated kernels are not

accurate due to the side effects of denoising.

The recent approach of Tai and Lin [17] first applies

an existing commercial denoising package (NeatImage [1])

to the input image, then iteratively applies a motion-aware

non-local mean filtering and deblurring to refine the results.

Although special treatment has been added into the process,

both the commercial denoising package and the non-local

means filter have the same negative impacts on kernel esti-

mation as we will show in Sec. 4.

3. Our approach

In the previous section, we have shown that there is a

tension between noise reduction and edge preservation. The

former helps to estimate a more accurate kernel, but the lat-

ter hinders it. Our experiments showed that even state-of-

the-art denoising filters do have negative impacts on kernel

estimation. In this section, we resolve this problem by us-

ing directional blur and the Radon transform to estimate the

kernel. Our approach reduces the noise without degrading

blur information, thereby producing better kernels.

3.1. Applying directional filters

We now show that directional low-pass filters can be ap-

plied to an image without affecting its Radon transform,

while decreasing its noise level. We consider the directional

low-pass filter fθ:

I(p) ∗ fθ =
1

c

∫ ∞

−∞
w(t)I(p+ tuθ)dt, (6)

where I is an image, p is a pixel location, t is the spatial
distance from one pixel to p, c is the normalization factor
defined as c =

∫∞
−∞ w(t)dt, and uθ = (cos θ, sin θ)T is

a unit vector of direction θ. The profile of the filter is de-
termined by w(t), for which we use a Gaussian function:
w(t) = exp(−t2/2σ2

f ), where σf controls the strength of
the filter.

Filtering the image affects the estimated kernel. With

the same argument as for Eq. 5, the kernel that we estimate

from the filtered image bθ = b ∗ fθ is:

kθ = k ∗ fθ. (7)

Similarly to filtering with a 2D Gaussian Gg , applying fθ
averages pixels and reduces the noise level. Since fθ filters
only along the direction θ, it has nearly no influence on the
blur information in the orthogonal direction. We exploit this

property to estimate the projection of the original kernel k
along the direction θ. The projection can be formulated as
Radon transform [6,18], which is the collection of integrals

of a signal (i.e., k) along projection lines. The particular
value on Radon transform corresponding to one projection

line ρ = x sin(θ) + y cos(θ) is:

Rθ′(ρ) =

∫ ∫
k(x, y)δ(ρ− x sin(θ)− y cos(θ))dxdy,

(8)

where k(x, y) indicates the value at the coordinate (x, y) on
kernel k. θ and ρ are the angle and offset of the projection
line, respectively. Thus, the projection of kernel kθ along
the projection direction θ is:

Rθ′(kθ) = Rθ′(k∗fθ) = Rθ′(k)∗Rθ′(fθ) = Rθ′(k), (9)

where Rθ′(·) is the Radon transform operator to the direc-

tion θ′, and θ′ = θ + π/2. It is a linear operator, and one
can verify that Rθ′(fθ) is a 1D delta function, given the

definition of fθ (Eq. 6). Eq. 9 shows fθ has no impact on
the Radon transform of the blur kernel to the orthogonal di-

rection of the filter. This is the foundation of the proposed

approach. An example is shown in Fig. 3.

3.2. The algorithm

We now explain how we recover the sharp image, with

the kernel estimation first, and then the deconvolution step.

612612614
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Figure 3. Directional denoising mechanism in single image de-

blurring. (a)(b)(c) are the synthetic image before adding noise, af-

ter adding noise, and after applying a directional filter(θ = 3π/4),
respectively. (d)(e)(f) are the corresponding estimated blur ker-

nels and their Radon transforms in the same direction. Note that

the estimated kernel in (f) is largely damaged by the directional

filter, but its Radon transform is the same as the one in (d).

3.2.1 Noise-aware kernel estimation

Based on the above analysis, we apply a directional blur fθ,
estimate the combined blur kernel kθ, and then project it
along the same direction of the filter to get the correspond-

ing Radon transform. We repeat this process to get a set of

projections. Finally, we compute the 2D kernel using the

inverse Radon transform [18]. The advantage of this strat-

egy is that it greatly reduces noise when applying fθ, while
keeping the computed Radon transform intact. However, so

far, we have assumed that the latent image � is known when
estimating the blur kernels. This is not the case in practice,

and even with state-of-the-art kernel estimation techniques,

recovering kθ from bθ, which is a blurry image convolved
with an additional directional blur, has proven to be chal-

lenging. The additional filter tends to make nearby edges

“collide” with each other, which in turn introduces errors in

the estimated kernel.

For a more reliable kernel estimation, we adopt the mul-

tiscale blind deconvolution framework commonly used in

previous approaches [4, 20]. We create an image pyramid

of the input image b as {b0, b1, ..., bn}, where b0 is the orig-
inal resolution, and estimate the blur kernel in a bottom-up

fashion from bn to b0. Since noise is largely removed by
image downsizing, we apply an existing approach by Cho

and Lee [4] to estimate the blur kernels ki and latent images
�i from layer bn to b1. Only for the full resolution layer

b0, we apply the directional filter fθ and then estimate the

Algorithm 1 Multiscale noise-aware blind deconvolution

Input: The pyramid {b0, b1, ..., bn} by down-sampling the
input blurry and noisy image b, where b0 = b.

Output: blur kernel k0 and latent image �0.

1: Apply an existing nonblind approach ( [4] in our imple-

mentation) to estimate ki and �i for bi,i = n, ..., 1.

2: Upsample �1 to generate initial �0.

3: repeat
4: Apply Nf directional filters to the input image b0,

each filter has a direction of i · π/Nf , i = 1, ..., Nf ,

where Nf is the number of directional filters.

5: For each filtered image bθ, use �0 as the latent image
to estimate kθ.

6: For each optimal kernel kθ, compute its Radon trans-
form Rθ′(kθ) as in Eq. 9, along the direction θ′ =
θ + π/2.

7: Reconstruct k0 from the series of Rθ′(kθ) using in-
verse Radon transform.

8: Update �0 based on the new k0 using a noise-aware
nonblind deconvolution approach.

9: until k0 converges.
10: With the final estimated kernel k0, use the final decon-

volution method described in Sec. 3.2.2 to generate the

final output �0.

kernel using the robust deconvolution technique described

later in this section. The process is described in Algorithm

1. Steps 4 to 7 are also illustrated in Fig. 4. Specifically, in

Step 5, although each filtered image bθ is severely blurred
with the additional filtering, the latent image �0, initialized
from the multiscale process, is relatively sharp and clean,

which allows us to estimate kθ as:

kθ = argminkθ
{‖∇bθ − kθ ∗ ∇�0‖2 + ρ(kθ)

}
, (10)

where ∇ is the gradient operator. This process is robust to

noise because ∇bθ is a low-pass filtered image. In Step 8,
nonblind deconvolution is employed to update �0 based on
the new k0. However, existing methods do not work well in
this case since we need to estimate a clean �0 from a noisy

image b0, and the results of previous methods are prone to
inaccuracy. To generate a noise-free �0, we minimize the
following energy function that aims for limiting the impact

of noise on the result:

‖∇�0 ∗ k0 −∇b0‖2 + w1‖∇�0 − u(∇�1)‖2 + w2‖∇�0‖2,
(11)

where u(·) is the upsampling function, and w1 and w2 are

pre-defined weights. The second term encourages the gra-

dient of �0 to be similar to the upsampled gradient field of
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Figure 4. Illustration of applying directional filters for blur kernel

estimation from a noisy input image. We apply directional filters

in different orientations to the input image. From each filtered im-

age a corresponding kernel is computed first, then projected along

the same direction to generate the correct radon transform of the

true kernel. The final blur kernel k0 is reconstructed using inverse
Radon transform [6].

�1, which is from the previous level in the pyramid. Since

�1 contains much less noise due to image downsizing, in-
corporating this term can effectively reduce the noise level

in �0. This non-blind deconvolution step is an intermediate
step in blur kernel estimation that produces sufficiently ac-

curate images at a limited computational cost. In the next

section, we describe a more sophisticated non-blind decon-

volution algorithm for generating high-quality final latent

image given the estimated kernel.

It is worth mentioning that for simplicity, in the above

discussion we assume b1 is almost noise-free after down-
sizing the image by half. However, this will not be true,

if severe noise presents in b0. To deal with severe noise,
we will only use previous methods to estimate blur kernels

from bn to b2 in Step 1 of the algorithm, and then apply
noise-aware kernel estimation from Step 2 to 9 to the last

two layers b1 and b0. We applied this modified version of
the algorithm to examples with 10% noise (Gaussian noise

with standard deviation of 0.1) in Sec. 4.

Discussion Cho et al. [6] also use the Radon transform to

recover the blur kernel. However, their approach to com-

pute the kernel projection is different from ours. They rely

on heuristics to identify straight edges in the images, and

extract the projections from these edges. Because this pro-

cess relies on a few arbitrary thresholds to locate and ana-

lyze the edges, it is sensitive to noise. We also show that it

performs poorly on noisy inputs in the experimental section.

In comparison, our approach does not rely on such arbitrary

thresholds and performs well on noisy images.

3.2.2 Final noise-aware nonblind deconvolution

Once an accurate k0 is estimated, we use it to estimate
a good latent image �0 from the noisy input b0. This is not
a trivial task when b0 contains severe noise [21]. However,
since k0 is fixed at this stage, it is safe to apply existing

(a) Input image (b) Estimated kernel

(c) Zoran&Weiss [23] (d) Cho et al. [5] (e) Our method

Figure 5. Comparison results of our final noise-aware nonblind

deconvolution with other recent nonblind deconvolution methods.

The results are obtained using the same input image and the esti-

mated kernel. (c),(d),(e) show the zoom-in results.

denoising methods in the process. This is in sharp contrast

to Tai and Lin’s method [17] where denoising and kernel

estimation interfere with each other.

In our approach, we minimize the following energy func-

tion to estimate the final �0:

‖�0 ∗ k0 − b0‖2 + w3‖�0 − NLM(�0)‖2, (12)

where NLM(·) is the non-local means denoising opera-

tion [3], and w3 is a balancing weight. Minimizing this en-

ergy function will ensure that the deblurred result is noise-

free, and can best fit with k0 and b0 as well.
Directly minimizing this energy is hard because

NLM(�0) is highly nonlinear. We found that iterating the
following two steps yields a good result in practice:

�′0 = NLM(�0), (13a)

�0 = argmin�0
{‖�0 ∗ k0 − b0‖2 + w3‖�0 − �′0‖2

}
.
(13b)

For initialization, we set �′0 to be zero (a black image). Solv-
ing Eq. 13b yields a noisy �0 that also contains useful high-
frequency image structures. In the alternating minimiza-

tion process, the noise in �0 is gradually reduced, while the
high-frequency image details are preserved. To show the

effectiveness of our method, we compare it with other two

recent non-blind deconvolution methods, i.e., Zoran and

Weiss [23] and Cho et al. [5] in Fig. 5.

4. Experimental results
We implemented our method in Matlab on an Intel Core

i5 CPU with 8GB of RAM. We apply directional filters

along 36 regularly sampled orientations, that is, one sam-

ple every 5◦. The computation time is a few minutes for a

one-megapixel image. For all the experiments, we set the

614614616



(a) Abbey(input, 5% noise) (b) Chalet(input, 5% noise) (c) Aque(input,10% noise) (d) Kernel 1 (e) Kernel 2

Tai�and�Lin Ours

(f) Abbey (result, 5% noise)

Tai�and�Lin Ours

(g) Chalet (result, 5% noise)

i d iTai�and�Lin Ours

(h) Aque (result, 5% noise)

Tai�and�Lin Ours

(i) Abbey (result, 10% noise)

Tai�and�Lin Ours

(j) Chalet (result, 10% noise)

i d iTai�and�Lin Ours

(k) Aque (result, 10% noise)

Figure 6. Comparing Tai and Lin’s method [17] and our method on synthetic data. Three input blurry image examples with different levels

of noise are shown in (a),(b),(c). (d) and (e) are the ground truth blur kernels from Levin et. al. [14]. (d) is used for the examples “Abbey”

and “Chalet”, and (e) is used for the example “Aque”. (f-k) show the estimated kernels and the latent images of Tai and Lin’s method and

our method with 5% noise and 10% noise. Due to the space limit only the areas highlighted by the bounding boxes in (a-c) are shown. Full

size images for comparison are in the supplementary material.

extent σf of the directional filter to 30 pixels. We also set
w1 = 0.05 and w2 = 1 (Eq. 11), and w3 = 0.05 (Eq. 12).

4.1. Synthetic data

We first conducted experiments on images that we con-

volved with a known blur kernel and to which we added

noise in a controlled fashion. This allows us to report quan-

titative measures in addition to visual results.

Comparisons with Tai and Lin’s method Tai and Lin’s

method [17] is the most related work to ours since it also

seeks to handle noisy images. This section focuses on com-

paring this method with our approach. We first ran compar-

isons on synthetic images (Fig. 6), where the latent sharp

images were blurred using two blur kernels provided by

Levin et al. [14]. We then added Gaussian noise with zero

mean and standard deviations of 0.05 and 0.1 for a [0,1]

intensity range. Tai and Lin kindly provided the results

for their method. The comparison shows that visually our

estimated blur kernels are closer to the ground truth, and

our estimated latent images contain more details and less

ringing artifacts. We also evaluate the results quantitatively

by computing the Peak Signal-to-Noise Ratio (PSNR) and

Structural SIMilarity (SSIM) (Table 1).

Comparisons with other methods We also conducted

experiments to explore how noise affects the performance

of other state-of-the-art single-image blind deconvolution

methods. Using the “Aque” image and the blur kernel

shown in Fig. 6(e), we generated 10 input images with noise

from 1% to 10%. We then applied different blind deconvo-

lution methods to these test images, and measure the PSNR

615615617



PSNR SSIM

Noise 5% 10% 5% 10%

Abbey
Tai 22.43 21.05 .8122 .7242

Ours 22.73 21.61 .8150 .7270

Chalet
Tai 19.79 18.95 .8244 .7162

Ours 22.80 19.35 .8273 .7200

Aque
Tai 26.58 24.53 .8206 .7415

Ours 28.46 25.58 .8512 .7469

Table 1. The comparison experiments of our method and Tai and

Lin [17] on synthetic blurry images with different amount of

noises. The performances are evaluated by PSNR and SSIM, com-

paring the generated latent images with the ground truth.

1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

Noise level (%)

P
S

N
R

Goldstein and Fattal
Cho and Lee
Cho et al.
Levin et al.
Tai and Lin
Ours

Figure 7. The PSNR curves of various blind deconvolution algo-

rithms, including Goldstein and Fattal [9], Cho and Lee [4], Cho et
al. [6], Levin et al. [15] and our method, on the 10 synthetic test
images with noise level from 1% to 10%, generated by the “Aque”

image and the kernel shown in Fig. 6(e). The two data points of

Tai and Lin’s method [17] are shown as black diamonds, which

are provided by the authors. While the PSNR values are closer

to ours, the visual difference is still significant; our approach pro-

duces cleaner images (Fig. 8). All images are included in the sup-

plementary material.

curve of each method (Fig. 7). The accuracies of previ-

ous methods degrade rapidly when the noise level increases.

On the contrary, our method is more robust, i.e., it works

more reliably in the presence of noise, and achieves satis-

factory results even when the input noise level is high. This

figure also includes two data points of the Tai and Lin’s

method [17] provided by the authors themselves.

4.2. Results on real examples

We first compared our method and Tai and Lin’s method

on real-world images shown in their original paper [17], and

the results are shown in Fig. 8. The results of other state-of-

the-art methods can be found in [17]. Our estimated kernels

are sharper than Tai and Lin’s. The close-ups show that

our method recovers more high-frequency details. For the

boundaries of objects, our results have less noticeable ring-

ing artifacts. Overall, our approach produces visually more

satisfying results.

We further show our results on real-world photographs

that were captured under common low-light conditions with

a Nikon D90 DLSR camera and a 18 − 105mm lens.

We compare our results with those of other state-of-the-

art methods, including Goldstein and Fattal [9], Cho and

Lee [4], Cho et al. [6], Levin et al. [15]. The results (Fig. 9)
show that our recovered latent images exhibit less artifacts,

such as noise and ringing, and contain more high-frequency

details at the same time. These observations are consistent

across all test images. We provide additional examples in

supplemental material.

5. Conclusion
We have shown that most state-of-the-art image deblur-

ring techniques are sensitive to image noise. In this paper,

we propose a new single image blind deconvolution method

that is more robust to noise than previous approaches. Our

method uses directional filters to reduce the noise while

keeping the blur information in their orthogonal direction

intact. By applying a series of such directional filters, we

showed how to recover correct 1D projections of the kernel

in all directions, which we use to estimate an accurate blur

kernel using the inverse Radon transform. We also intro-

duced a noise-tolerant non-blind deconvolution technique

that generates high-quality final results. The effectiveness

of the proposed approach is demonstrated on several com-

parisons on synthetic and real data.
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