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Abstract

Computer network data stream used in intrusion detec-
tion usually involve many data types. A common data type is
that of symbolic or nominal features. Whether being coded
into numerical values or not, nominal features need to be
treated differently from numeric features. This paper stud-
ies the effectiveness of two approaches in handling nominal
features: a simple coding scheme via the use of indicator
variables and a scaling method based on multiple corre-
spondence analysis (MCA). In particular, we apply the tech-
niques with two anomaly detection methods: the principal
component classifier (PCC) and the Canberra metric. The
experiments with KDD 1999 data demonstrate that MCA
works better than the indicator variable approach for both
detection methods with the PCC coming much ahead of the
Canberra metric.

Keywords: Anomaly detection, intrusion detection, indi-
cator variables, multiple correspondence analysis, nominal
features, principal component classifier.

1. Introduction

Data streams are ordered sequences of vast continuous
data that can be read/accessed only once or a small number
of times. Sources of data streams are ubiquitous in daily
life. Network intrusion detection systems handle computer
network data streams as one of its applications. Currently
used intrusion detection systems are classified into two ma-
jor categories: signature based and anomaly based. A sig-
nature recognition system, such as Bro [18] or SNORT [21],
operates in much the same way as a virus scanner by search-

ing for a known identity or signature for each specific intru-
sion event. In contrast, an anomaly detection system such as
SPADE [26], NIDES [1], ADAM [2], or PHAD [14] builds
a model of normal traffic and detects deviations from the
normal model. A large departure of any traffic from the nor-
mal model is likely to be anomalous. An extensive review
of various approaches to novelty detection can be found in
[15, 16].

An ingredient to the success of any intrusion detection
system is a set of meaningful features that are extracted
from a data stream of network traffic. The features can be
quantitative or qualitative. That is, the data can have any
scales of measurement, nominal or ordinal scales for quali-
tative features, and interval scales for quantitative features.
As an example, network traffic data may consist of features
such as the protocol type in nominal scales, user autho-
rization level in ordinal scales, and package size in inter-
val scales. A feature measured in nominal or ordinal scales
can take on numerical or non-numerical values. For nomi-
nal scales, the numbers only indicate the category and serve
as the names or labels to distinguish one category from an-
other with no orders involved. Which number is assigned to
which category is completely arbitrary. On the other hand,
in ordinal scales, a feature has the values that indicate not
only the category but also the magnitude. The categories
have a fixed a priori order that can be ranked. However, if
numerical values are used, the distance between scale points
need not be equal. In contrast, a quantitative feature in inter-
val scales has numerical values on a well-defined scale, ei-
ther discrete or continuous, which tells the magnitude with
the property of an equal distance. The difference between
the scale points is interpreted as the distance between cases
on that feature [27].



Some intrusion detection methods process qualitative
data naturally, e.g., k-nearest neighbor and decision tree al-
gorithm; while some methods only work with quantitative
data, e.g., the methods based on some distance measures
and the principal component classifier (PCC) [24, 25]. For
those methods in the latter group, qualitative data need to be
transformed to numerical values prior to the analysis. Many
approaches to quantify qualitative variables have been pro-
posed in the literature. It can be as simple as mapping each
category to sequential integer values [10] or converting
the name of a category to a decimal number by adding the
ASCII values of all its characters [12]. Some researchers go
one step further, after getting the integer values for all cate-
gories, by implementing scaling. For instance, the nominal
values are mapped into integer values ranging from 0 to C-
1, where C is the number of categories the nominal feature
has. Then each feature is linearly scaled to the range [0.0,
1.0] [22].

Despite the simplicity, there are some criticisms to the
aforementioned approaches. Since the categories of a nom-
inal feature are merely labels with no fixed order, the differ-
ent ordering of the categories will lead to different numer-
ical values for each category. Besides, even with features
measured in ordinal scales, assuming an equal distance or
a linear scale usually is not sensible. A more preferable
method in statistical analysis to quantify the categories of
a qualitative variable is to employ the indicator or dummy
variables. Indicator variables convert qualitative informa-
tion into quantitative information by means of a binary cod-
ing scheme [17].

The scaling of qualitative variables inevitably affects the
validity of the results from an intrusion detection method.
It is our interest in this paper to explore the use of a scal-
ing method from multiple correspondence analysis (MCA)
in the intrusion detection problem. Simple correspondence
analysis (CA) is typically used as a graphical technique to
study the association of two qualitative variables in a two-
way contingency table [6]. The extension of simple CA
to more than two qualitative variables case is called MCA.
We will examine the effectiveness of MCA as compared to
the indicator variable approach in dealing with non-numeric
data for some intrusion detection methods. Specifically, we
will enhance the ability of the PCC method to handle all
types of data. As the method constructs a classifier from
principal components, it requires data to be numeric. The
experiments with PCC conducted in [24] demonstrated its
good performance with numeric features. The method has
high detection rates and low false alarms, and does not
need to make any distributional assumption on data. It is
expected that the additional information on traffic behav-
iors contained in other non-numeric features, when properly
used, will increase the accuracy of the detection further.

The organization of the paper is as follows. Section 2

discusses the application of the indicator variables and the
algebraic development of correspondence analysis. The use
of MCA as a scaling technique for nominal features is il-
lustrated through a set of experiments with the PCC scheme
and another anomaly detection method based on the Can-
berra metric. Section 3 describes the experimental setting
in details and provides an overview of these two detection
methods. The results of the experiments are summarized
and discussed in Section 4. Section 5 concludes our study.

2. Handling Nominal Features

Nominal features are common in network traffic data
stream. However, many intrusion detection methods, par-
ticularly statistical based, are designed for numerical data.
In order for these methods to utilize information from nom-
inal features in detection, some coding schemes or trans-
formations are exploited. We consider two approaches in
this study, namely indicator variables and the multiple cor-
respondence analysis.

2.1. Indicator (Dummy) Variables

There are many different but equivalent ways to quantita-
tively identify the categories of a nominal feature. The most
familiar coding scheme is the binary coding which simply
uses a 1 to indicate the occurrence of a category of interest
and a O to indicate its nonoccurrence [17]. Accordingly,
for a nominal feature with C distinct categories, a set of C
indicator variables can be generated.

- { 1 if the category is 1
! 0 otherwise

T — { 1 if the category is 2
2 0 otherwise

Lo — { 1 if the category is C
¢ 0 otherwise

Since the C indicator variables are linearly dependent, any
C-1 out of the C variables sufficiently identify a category.

It is not unusual to find some nominal features in net-
work traffic having a large number of different categories.
The conversion of these features to indicator variables will
increase the dimensionality of data greatly. Thus, it is help-
ful to reduce the number of categories by grouping similar
values into a few numbers of essential categories before cre-
ating indicator variables. Some clustering techniques may
be used to achieve this purpose.



2.2. Correspondence Analysis

Categorical data come from the population that has a
discrete distribution and require a different type of analy-
sis from continuous data. In the analysis of the categorical
data, typically, the first step is to crosstabulate the data and
to present the frequencies or counts in a two-way or multi-
way contingency table. An exploratory technique called
correspondence analysis (CA) is designed to analyze the
correspondence between the rows and columns of a con-
tingency table with the objective to represent the associa-
tions in the table in a low-dimensional space. The singular
value decomposition (SVD) is utilized to analyze the data
matrix in CA. The outcome of such an analysis is usually a
pair of bivariate plots superimposed on one another showing
the spatial relationships among the categories of categori-
cal variables. In essence, it is a weighted form of principal
component analysis that is appropriate for frequency or cat-
egorical data [23].

Using the case of two qualitative variables as described
in [8],let N be an I x J two-way contingency table whose
(7, 7) entry is n;;, and then the rows and columns of N cor-
respond to different categories of two variables. Let I > J
and assume that N is of full column rank J. The correspon-
dence matrix P is defined as P = %N, where n is the total
of the frequencies in N.

Furthermore, let 1’ = (1,1,...,1), r = P 1
Ix1 IxJ Jx1
and ¢ = P’ 1 be the vectors of row and column

Jx1 JxI Ix1
sums of P, and D,. and D, be the diagonal matrices whose

diagonal entries are the elements of r and ¢ respectively.
Then P — rc’ can be viewed as the matrix of the residuals
when fitting the independence model to P, and the scaled
matrix P* can be constructed as shown in Equation 1, where
rank(P*) = rank(P —rc’) < J — 1.

P* = DI '2(P-rd)D;!/? (1)
IxJ IxI IxJ IxJ
CA is based on the generalized SVD of P — rc’, which
is equivalent to SVD of P* [9]. Let U and V be two or-
thogonal matrices, and A be a diagonal matrix that con-
tains the singular values ordered from largest to smallest
(A > X2 > ... > Aj_1 > 0). Hence, P* can be repre-
sented as given in Equation 2.

P = U A v’ 2)
IxJ Ix(J—=1) (J=1)x(J—=1) (J=1)xJ

If we define U = Di/QU and V. = Di/QV, we have the
following:

ﬁ/ D71
(J=1)XT [yg Ix(J—1)

I
(J=1)x(J—1)

V. D' Vv =

. I
(J-D)xJ jxj Ix(J-1) (J—1)x(J—1)

From Equations 1 and 2, the SVD of P — rc’ can be ex-
pressed as shown in Equation 3, where the columns of U
define the principal axes for the points representing the col-
umn profiles of P, and the columns of V define the prin-
cipal axes for the points representing the row profiles of P.
These lead to the end-products of CA. That is, the coordi-
nates of the row and column profiles are given in Equations
4 and 5, respectively.

P-rd = UAV (3)
v N A @)
Ix(J—1) Ix1 Ix(J=1) (J=1)x(J-1)
z S R A (5)
Tx(J—1) JxJ Ix(J=1) (J-1)x(J-1)

The coordinate pairs of the row (or column) points in the
best two-dimensional representation of the data are in the
first two columns of Y (or Z), and produce one bivariate
plot in which each row (or column) category is plotted. The
two pairs of dimensions (one for the row profiles and one
for the column profiles) are merely a scaling of the row and
column categories. Therefore, CA can be regarded as a scal-
ing method that determines the scales when the amount of
variation explained among profile deviations is maximized.

However, SVD can only be used in simple CA with two-
way tables, but in a general case when the table is of a higher
dimension than two, SVD will not directly work on N. In-
stead, it will be applied to the indicator matrix B of size
[nx (I+J)]as defined in [6]. In B, its rows correspond to
the observations; while its first / (or last J) columns are the
indicator variables corresponding to the categories of the
row (or column) variable of N. For each observation, the
value / is assigned to the indicator column for each quali-
tative variable; whereas the remaining indicator columns in
that row are zeroes. Greenacre noted the close connection
between the CA of N and B [6]. For example, when there
are n observations from Q categorical variables, B will have
nrows and J columns, where J = J1+Jo+...+Jq, J, de-
notes the number of different categories of the qth variable,
and ¢ = 1,2,...,Q. It was also shown that the standard
coordinates of the columns in the analysis of B are identi-
cal to the standard coordinates of the rows or columns in the
analysis of the inner product of the indicator matrix (B'B),
which is called Burt matrix.

In fact, MCA offers insightful information into the re-
lationships among the categorical variables via visual dis-
plays of the first two principal axes from MCA. Hence, the
knowledge of the relationships provided by the principal
axes should be valuable in detection. In our proposed ap-
proach, all the nominal features that have more than two cat-
egories will first be scaled using MCA, and then the first two
principal axes will be used to represent each of these nom-
inal features. For the nominal features that have only two
categories, a binary variable with values 0 and 1 is used.



3. Experiments

To study the potency of MCA and indicator variables in
coping with the nominal features found in intrusion detec-
tion problems, several experiments on two anomaly detec-
tion methods using the KDD 1999 data are conducted. The
two methods are the PCC scheme and the detection method
based on Canberra metric.

3.1 The KDD CUP 1999 Data

Due to the fact that it is forbidden to generate real intru-
sions in the real network environment, in this paper, we use
the Knowledge Discovery and Data Mining (KDD) 1999
data set in our experiments since KDD CUP 1999 data has
been widely used for testing an intrusion detection system
[5, 19, 22]. Though we may collect real traffic data from the
real network environment, for the purpose of evaluating the
intrusion detection methods, we first need to identify the at-
tacks either via expert judgment or via some well-known in-
trusion detection tools such as BRO and SNORT. However,
this does not guarantee the identification will be error-free,
and the evaluation will be obscured by such errors. Further-
more, real traffic data usually do not contain a wide variety
of attack types and it takes a long time to gather enough at-
tack data to provide an adequate testing. On the other hand,
the KDD data set contains a rich set of different attack types,
and it is well-accepted and publicly available.

As the KDD test data are from different probability dis-
tribution than its training data, only the KDD training data
is used in our study. It has 494,021 connection records in
the training data set. Here, a connection is a sequence of
TCP packets containing values of 41 features and labeled
as either normal or an attack. There are 24 attack types, but
we treat all of them as one attack group due to our interest
in detecting any connections that are not normal. The fea-
tures include 34 numeric features and 7 symbolic features.
For nomial features, some have many different values, and
some values have only very few observations. The number
of categories for all nominal features is given in Table 1.
A complete listing of features and details can be found in
[11, 13].

For example, the Service and Flag features have many
categories but few observations in some categories. It is bet-
ter to reduce the number of categories by combining some
of them when taking the indicator variables approach. For
this purpose, we adopt a clustering technique that uses do-
main knowledge as the basic concept [3]. For the Service
feature, there are 64 discrete values denoting the network
service on the destination, and each service is assigned to
one of the ports used in TCP [20] to name the ends of the
logical connections which carry long term conversations.
To provide services to unknown callers, a service contact

Table 1. Nominal features used in experi-
ments

Features Description # Categories

Protocol Type of the protocol 3
(TCP, UDPICMP)

Service Network service on the 64
destination, e.g. http, tel-
net, ftp, etc.

Flag Normal or error status of 11
the connection

Land 1 if connection is from/to 2
the same host port; 0 oth-
erwise

logged-in 1 if successfully logged 2
in; O otherwise

is_host_login 1 if the login is a "host” 2
login; O otherwise

is_guest_login | 1 if the login is a ’guest” 2
login; O otherwise

port (a well-known port) assigned by the Internet Assigned
Numbers Authority [7] is defined. The well-known ports
range from O to 1023. Besides the well-known ports, there
are two other categories of ports named Registered Ports
and Dynamic and/or Private Ports. The Registered Ports
are those from 1024 to 49151 and the Dynamic and/or Pri-
vate Ports are spanned from 49152 through 65535. By an-
alyzing the applications of the ports that are used by the
services residing in the training set in details, each port is
then grouped into eight clusters depending on their usage.
The basic clusters are given as follows.

1. Services used to get the remote access of another ma-
chine (e.g., telnet, ssh).

2. Services used in file and document transfer (e.g., ftp,
tftp).

3. Services used in mail transfer (e.g., smtp, imap4).
4. Services used in web applications (e.g., http).

5. Services used to get system parameters and statistics
(e.g., systat, netstat).

6. Services used in name servers (e.g., hostname, do-
main).

7. Services used in ICMP protocol.

8. Others.



The Flag feature of a connection consists of 13 values
and we cluster them by the nature of the connections into 6
groups as shown in Table 2. Note that the Flag feature in
the KDD 1999 data only has 11 values.

Table 2. Clusters of flag features

‘ Cluster ‘ Name Description

Connection attempt was seen, no

SO 1
Cluster reply
1 REJ Connection attempt was rejected
Connection was established but not
S1 .
terminated
Cluster | g Normal establishment and termina-
2 tion
No SYN was seen, just midstream
OTH

traffic

Connection was established and
S2 close attempt by originator was
seen (but no reply from responder)

Cluster - —
3 Connection was established, origi-

RSTO nator aborted (sent a RST)

Connection was established and
S3 close attempt by responder was

Cluster
4 seen (but no reply from originator)

RSTR Established, responder aborted

Originator sent a SYN followed by
a RST, SYN ACK was not seen
from the responder

RSTOSO0

Cluster
5 Originator sent a SYN followed by

SH a FIN, SYN ACK was not seen
from the responder

Responder sent a SYN ACK fol-
lowed by a RST, SYN was not seen
from the originator

RSTRH

Cluster
6 Responder sent a SYN ACK fol-

SHR lowed by a FIN, SYN was not seen
from the originator

3.2 Anomaly Detection by Canberra Metric

Many anomaly detection methods base their detection
criterion on some distance measure. Here we use the Can-
berra metric that was studied by Emran and Ye [4].

The Canberra metric is defined for nonnegative variables

! !/
only. Let x = (21,22,...,2p) andy = (y1,¥2,-..,Yp)
be two p-dimensional observations. The distance between

observations x and y as measured by the Canberra metric is

P
ay) = X e (©)
= (x5 +v5)

The procedure commonly used to detect multivariate out-
liers in a data set is to measure the distance of each obser-
vation from the center of the data. A large distance value

would indicate the observation might be an outlier.
Let X1, X5, ..., X,, be a random sample from a mul-
tivariate distribution with the mean vector u, where X; =

(Xi1, Xio, ..., Xip)', @ = 1,2,...,n. The sample mean
vector is X = % > X, and the Canberra distance of an

i=1
observation X from the mean vector is d(X, X). Any obser-
vation X that has the distance larger than a threshold value is
considered an outlier. Since the distribution of this distance
is hard to derive even under the normality assumption, the
threshold is figured from the empirical distribution of the
distance.

3.3 Principal Component Classifier (PCC)

PCC differentiates attacks from normal instances using
an outlier detection rule which is constructed from prin-
cipal components of normal training sample [25]. Let
Y1,Y2, - - -, Yp be principal component scores of X, and A; >
A2 > ... > A, > 0 be eigenvalues of the sample correla-

tion matrix. The classifier consists of two functions, the
2

q -

major components part Z K—J and the minor components

]:1 J

P2 . .

Y. . Shyuetal. [25] suggested using ¢ major com-
j=p—r+1""
ponents that can explain about 50 percents of the total vari-
ation in the standardized features and using r minor com-
ponents whose variances or eigenvalues are less than 0.20.
The decision criterion is of the form:

Classify an instance x as an attack if

>«|h 3
-3.’ Ii.%
V
Q
(V)

P
or Z

Classify x as a normal instance if

[~

<62

>4|‘Q

p
and Z

lI2
risa

<.

c1 and co are critical values such that the classifier would

produce the desired false alarm rate. They are typically
set based on the empirical distributions of Zq: % and

P y? . .. J_l.
j:p¥T+l 5L in the training data. For more details on the
PCC method, see [24, 25].



Table 3. Number of indicator variables for
nominal features

Table 4. Average detection rates (%) of PCC
and Canberra metric. Standard deviations of
detection rates are shown in the parentheses.

Features # Categories | # Indicator Variables
Protocol 3 2 False PCC pPCC Canberra | Canberra
Services 8 7 Alarm | (Dummy) | (MCA) | (Dummy) | (MCA)
Flag 6 5 1% 69.85 99.20 3.70 17.64
Land 7 1 (+38.01) | (+0.33) (+1.04) (+31.81)
Logged-in 9 1 2% 99.21 99.27 4.86 74.30
- - (+0.26) (+0.31) (+0.91) (+1.88)
is_host_login 2 1
- - 4% 99.46 99.55 5.81 75.77
is_guest.login 2 ! (+0.28) | (+0.37) | (#0.87) | (+2.68)
6% 99.72 99.67 14.05 78.49
3.4 Experimental Framework (#0.18) | (+0.26) | (+4.00) | (+4.24)
8% 99.74 99.69 27.89 91.41
Our experiments involve training and testing the classi- (+0.18) (+0.22) (+0.05) (+11.35)
fi le th from the KDD traini — — — >
ers, and we sample the data from the training dgta 10% 99.79 99.71 30.75 9325
set to use in both stages. Out of the 494,021 connection 018 022 500 1207
records in the training set, 396,742 records are attacks and (+0.18) (+0.22) (+5.92) (+12.27)

97,279 records are normal connections. The experiments
are carried out as follows.

e Each training data set consists of 5,000 normal con-
nections selected by systematic sampling from 97,279
normal connection records in the KDD training data.

e To assess the accuracy of the classifiers, we do five
independent experiments, each with different training
samples. The classifiers are tested with a test set com-
posed of 10% of the attack data. This amounts to
39,674 attack connections randomly selected from the
396,742 records in the KDD training data set.

e As the detection rate depends on the critical values
which are determined by the false alarm rate that we
specify, we vary the false alarm rate from 1% to 10% in
the experiments. We then estimate the false alarm rate
by the observed false alarms that actually take place
using a total of 92,279 normal connections remained
in the KDD training set after 5,000 records are selected
as a training sample described earlier.

e For the indicator variables approach, we cluster and
convert the Service and Flag features to indicator vari-
ables. This gives us a data set with 52 variables, 34
numeric and 18 indicator variables shown in Table 3.

e We apply MCA to the nominal features that have more
than 2 categories. For those with only two categories,
we convert them to binary variables having values O
and 1. Hence, the data set consists of 44 variables,
which include 34 original numeric variables, 4 nomi-
nal features that have binary values, 6 variables from

principal axes resulting from applying MCA to the
Protocol, Service, and Flag features.

4 Experimental Results and Discussion

Presented in Table 4 are the average detection rates from
5 independent experiments. In comparing the performance
of the PCC and the Canberra metric when using indicator
variables and MCA, it is obvious that MCA works much
better than the indicator variables with the Canberra met-
ric. For PCC, MCA and indicator variables do not give any
significantly different results when the false alarm rate is
2% or more. Both yield very high detection rates, all above
99%. At 1% false alarm level, however, indicator variables
cannot compete with MCA. The performance from the in-
dicator variables is not consistent as seen from the standard
deviation of 38.01%. Sometimes it can do well, and some-
times it does poorly. On the other hand, MCA can still help
PCC detect very well with the detection rate higher than
99% again.

We take a closer look at the detection results for each
attack type. In KDD 1999 training data, there are 24 at-
tack types that fall into 4 big categories: DOS - denial-of-
service, Probe - surveillance and other probing, U2R - unau-
thorized access to local superuser (root) privileges, and R2L
- unauthorized access from a remote machine. Figures 1-4
show the receiver operating characteristic (ROC) curves of
these four attack types. It can be easily seen from these
figures that using MCA always helps us detect DOS attack
type better than using the indicator variables approach. For



100

& & 3 *
% 80 | . e
= -
& 601 S DOS  —4— PCC (Dummy)
b —%— PO (MCA)
E 40 4 - - - & - - Carberra (Dummy))
% ---x---Carberra(rvﬂ.ﬂ:)‘___..--t

20 - ! geegh.
:: - 4 i -

- - - F Y
IR i, AT T SR Y S —

o 1 2 3 4 5 B T B 9 10
False Alarm Fate (%)
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Figure 2. ROC curves for Probe attack type

other attack types, with PCC, most of the time, MCA is bet-
ter or about the same as the indicator variables. With the
Canberra metric, MCA may be better or may be worse in
the Prob and R2L groups depending on the level of false
alarm.

Indicator variables approach is easier to use than MCA,
but when a feature has many different categories and some
categories have very few observations, it may be necessary
to combine some categories to reduce the number of cate-
gories to a more manageable level. As in our experiments,
it appears that clustering the categories for the Service and
Flag features can cause some information to be overlooked,
and thus makes the indicator variables approach to be less
effective. Overall speaking, we conclude that MCA is a bet-
ter choice when we have to deal with nominal features.
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Figure 3. ROC curves for R2L attack type
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Figure 4. ROC curves for U2R attack type



5. Conclusion

This paper discusses how to handle the nominal features
found in computer network data stream for intrusion detec-
tion purposes. We incorporate qualitative information from
the symbolic features in the detection via the use of an op-
timal scaling method called MCA, and a coding scheme
called indicator variables. Both approaches convert the cat-
egories of nominal features to numerical values, which then
can be used together with other numeric features in any de-
tection methods. In a comparative study where we experi-
ment with two anomaly detection methods, the PCC and the
Canberra metric, MCA is found to perform better than the
indicator variables.
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