
Handling of Complex Nmnbers in the CH

Progrannning Language

HARRY H. CHENG

Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616

ABSTRACT

The handling of complex numbers in the (H programming language will be described in

this paper. Complex is a built-in data type in (H. The 1/0, arithmetic and relational

operations, and built-in mathematical functions are defined for both regular complex

numbers and complex metanumbers of ComplexZero, Complexlnf, and ComplexNaN.

Due to polymorphism, the syntax of complex arithmetic and relational operations and

built-in mathematical functions are the same as those for real numbers. Besides poly

morphism, the built-in mathematical functions are implemented with a variable number

of arguments that greatly simplify computations of different branches of multiple-valued

complex functions. The valid lvalues related to complex numbers are defined. Ration

ales for the design of complex features in (H are discussed from language design,

implementation, and application points of views. Sample (H programs show that a

computer language that does not distinguish the sign of zeros in complex numbers can

also handle the branch cuts of multiple-valued complex functions effectively so long as it

is appropriately designed and implemented. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Cheng [1] presented the extension of C to CH, a

general-purpose block-structured interpretive

programming language for the numerical compu

tation of real numbers. The extension of scientific

programming from the one-dimensional real line

to the two-dimensional extended complex plane

will be described in this article. Complex number,

an extension of real number, has wide applica

tions in science and engineering. Due to its impor

tance in scientific programming, numerically ori

ented programming languages and software

Received October 1992
Revised May 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 77-106 (1993)

CCC 1058-9244/94/030077-30

packages usually provide complex number sup

port in one way or another. For example, Fortran

[2], a language mainly for scientific computing,

has provided complex data type since its earliest

days. Ada has introduced complex data in its new

proposed standard recently [3-6, 38]. C, a mod

ern language originally invented for the Unix sys

tem programming [7, 8], does not have complex

as a basic data type because the numerically ori

ented scientific computing was not its original de

sign goal. Computations involving complex num

bers can be introduced as a data structure in C.

However, programming with this structure is

somewhat clumsy because, for each operation, a

corresponding function has to be invoked. Using

c++ [9], a class for complex numbers can be cre

ated. By using operator and funtion overloadings,

built-in operators and functions can be extended

so as to also apply to the complex data type.

Therefore, the complex data type can be

77

78 CHENG

achieved. However, it may be too involved for

novice users to create such a class. Besides, many

features described in this article cannot be con

veniently implemented at the user's level.

CH retains most features of C for scientific com

puting and extends C's capabilities in many as

pects. Providing complex as a basic data type is

one of its extensions. The reason for providing

complex as a basic data type is not only for pro

gramming convenience, but also for design con

siderations. Design considerations such as auto

matic data conversion, handling of metanumbers,

and optional arguments in a function are difficult

to implement at a user's program level even for a

language like c++ with operator and function

overloading capabilities. They should best be

handled as language primitives. As described by

Cheng [1], CH provides real metanumbers of 0.0,

-0.0, lnf,- lnf, and 1'\aN, which makes the power

of the IEEE 754 standard for binary floating

point arithmetic [10] easily available to the pro

grammer. This paper extends the idea of meta

numbers to complex numbers not only for arith

metic, but also for commonly used mathematical

functions in the spirit of the IEEE 754 standard

and ANSI C [11]. Mathematically, complex num

bers can be represented in the extended complex

plane shown in Figure 1 [12, 13]. In Figure 1,

there is a one-to-one correspondence between the

points on the Riemann sphere r and the points on

the extended complex plane C. The point p on the

surface of the sphere is determined by the inter

section of the line through the point z and the

north pole N of the sphere. There is only one com

plex infinity in the extended complex plane. The

north pole N corresponds to the point at infinity.

Due to the finite representation of floating-point

numbers, the extended finite complex plane

z

N

FIGURE 1 The Riemann sphere r and extended

complex plane.

z

N

c
FLT_MAX Zz

Complexlnf Complexlnf

FIGURE 2 The unit sphere A and extended finite

complex plane.

shown in Figure 2 is introduced in this paper. Any

complex values inside the ranges of lxl < FL T_

MAX and IYI < FL T _MAX are representable in

finite floating-point numbers. Variable x is used

to represent the real part of a complex number

and y the imaginary part; FL T _MAX, a prede

fined system constant, is the maximum represent

able finite floating-point number in the float data

type. Outside this rectangular area, a complex

number is treated as a complex-infinity repre

sented as Complexlnf or complex(lnf, Inf) in CH.

The one-to-one correspondence between points

on the Riemann sphere rand the extended com

plex plane is no longer valid for the unit sphere A

and the extended finite complex plane. All points

on the surface of the upper part A1 of the unit

sphere correspond to the complex infinity. Points

on the lower part A2 of the sphere and points in

the extended finite complex plane are in one-to

one correspondence. The boundary between sur

faces A1 and A2 corresponds to the threshold of

overflow. For example, points p1 and P2 on the

unit sphere A correspond to points z1 = complex

(FLT_MAX, 0.0) and z2 = complex(FLT_MAX,

FLT_MAX), respectively, in the extended finite

complex plane shown in Figure 2. The origin of

the extended finite complex plane is complex(O.O,

0.0) or ComplexZero, which stands for Complex

Zero. In CH, an undefined or mathematically in

determinate complex number is denoted as com

plex(NaN, NaN) or ComplexNaN, which stands

for Complex-Not-a-Number. The special com

plex numbers of ComplexZero, Complexlnf, and

ComplexNaN are referred to as complex me

tanumbers. Because of the mathematical infinities

of ±oo, it becomes necessary to distinguish a posi

tive zero 0.0 from a negative zero -0.0 for real

CO.VIPLEX "JL.V1BERS L'\ C11 PROGRA.VIYII."JG LA."JGLAGE 79

numbers. Cnlike the real line, along which real

numbers can approach the origin through the

positive or negative numbers, the origin of the

complex plane can be reached in any directions in

terms of the limit value of lim,.._.0 re;0 where r is the

modulus and (J is the phase of a complex number.

Therefore, complex operations and complex

functions in CH do not distinguish 0.0 from -0.0

for real and imaginary parts of complex numbers.

Due to these differences, some operations and

functions need to be handled differently for real

and complex numbers, especially for real and

complex metanumbers. For example, following

the IEEE 754 standard, the addition of two real

positive infinities is a value of infinity in CH [1].

The addition of two complex infinities is indeter

minate according to complex analysis, although

the value of Complexlnf is represented intemally

as two positive infinities of Inf. As another exam

ple, following the ANSI C standard [11], the

mathematical function atan2(y, x) inCH retums a

value in the range of [-7r, 1T]. The value of the

expression atan2 (- 0. 0, -1) is -7r. Using this

result as the phase angle for complex number

-1.0- iO.O, the square root of -1.0- iO.O, ex

pressed inCH as sqrt(complex(-1.0, -0.0)), be

comes complex(O.O, -1.0), which is obtained

by cos(-7T/2) + i sin(-'TT/2) = 0.0 - i. In our

definition, this is the second branch of the square

root function for the complex number of

complex(-1.0, -0.0) obtained by the expression

sqrt(complex(-1.0, -0.0), 1) where the second

argument of the function sqrt() indicates the

branch number with the default value of 0. As

illustrated in this example, the mathematical

functions in CH are polymorphic with variable

number of arguments so that the function sqrt()

cannot only be used to compute the square root of

a real number, but also to calculate the different

branches of the square root of a complex number.

Due to polymorphism and variable number of ar

guments for mathematical functions, scientific

computing with complex numbers in CH is much

simpler in comparison to Fortran and other lan

guages. In Fortran, there are only a few standard

mathematical functions and they can only calcu

late the principal branches of multiple-valued

functions.

Manipulation of complex numbers in CH, as it is

currently implemented, will be described in this

paper. The rest of the paper is organized as fol

lows. Section 2 discusses how complex numbers

and variables are created inCH. The data conver

sions between real numbers and complex num-

hers are explained. The 1/0 for complex numbers

is also illustrated in this section. Sections 3 and 4

present complex operations and complex func

tions, respectively. Section 5 defines valid objects

on the left hand side of an assignment statement

related to complex numbers. Section 6 demon

strates how user's complex functions inCH can be

conveniently created through the example for

computation of the logarithm of the complex

gamma function. Section 7 provides rationales for

the handling of complex numbers in CH, in com

parison with existing systems and current research

efforts in the design of languages with a complex

data type.

2 COMPLEX NUMBERS

2.1 Complex Constants and
Complex Variables

Complex numbers z E C = {(x, y) I x, y E R} can

be defined as ordered pairs

z = (x,y) (1)

with specific addition and multiplication rules

[12, 13]. The real numbers x andy are called the

real and imaginary parts of z. If we identify the

pair of (x, 0.0) as the real numbers, the real num

ber R is a subset of C, i.e., R = {(x, y) I x E R, y =
0.0} and R C C. If a real number is considered

either as x or (x, 0.0) and let i denote the pure

imaginary number (0, 1), complex numbers can

be mathematically represented as

Z =X+ iy (2)

Both Equations (1) and (2) can be implemented

for complex numbers in a computer language.

General-purpose computer programming lan

guages such as Fortran, Ada, and Common Lisp

[14] tend to use Equation (1) whereas software

packages such as Mathematica [15] and

MATLAB [16] incline to Equation (2). Following

the lead of Fortran in scientific programming, a

complex number can be created inCH by the com

plex constructor complex(x, y) with x, y E R. For

example, a complex number with its real part of

3.0 and imaginary part of 4.0 can be constructed

by complex(3.0, 4.0). lntemally, a complex

number consists of two floats at the current imple

mentation. Therefore, if arguments of a complex

constructor are not floats, they will be cast to

80 CHENG

floats internally. As described by Cheng [1], all

floating-point constants in CH are floats by de

fault. The double constants can be obtained by

suffixing a floating-point constant with D or d.

When double complex data type is implemented

in the future, the complex constructor shall return

complex or double complex polymorphically, de

pending on the data types of the input arguments.

For example, complex(3, 4.0d), complex(3.0f,

4.0d), complex(3.0D, 4.0F), and com

plex(3.0D, 4.0D) shall return a double complex

number of complex(3.0D, 4.0D). By default,

complex, Complexzero, Complexinf, and

ComplexNaN are keywords inCH. However, as de

scribed by Cheng [1 J, these keywords can be

changed at user's discretion. For example, one

can add CMPLX to the keyword list and remove

complex from the list by addkey ("CMPLX",

be checked for compatibility. If data types do not

match, the system will signal an error and print

out some informative messages for the conven

ience of program debugging. However, unlike lan

guages such as Pascal [17], which prohibits auto

matic type conversion, some data type conversion

rules have been built into CH so that they can be

invoked whenever necessary. This will save many

explicit type conversion commands for a program.

The order of the data type in CH is arranged as

data type order

complex ri@ double

float

int

char low

complex zl; /* declare zl as complex variable */

complex *zptrl; /* declare zptrl as pointer to complex variable */

complex z2[2], z3[2,3] ;I* declare z2 and z3 as arrays of complex*/

complex *zptr2[2] [4]; /*declare zptr2 as an array of pointer to complex*/

zptlr = &zl; /* zptrl point to the address of zl

zptrl = complex(1,2); / zl becomes l+i2 */

"complex") andremkey("complex"), respec

tively. With this keyword change from complex to

CMPLX, CMPLX will act the same as complex in a

CH program in both syntax and semantics. Hence,

porting code related to complex numbers from

Fortran to CHis relatively easy. Many C programs

have defined complex as the definition of a struc

ture for complex numbers. With the keyword

changeability, reserved word conflict can be

avoided when porting C programs to CH.

One can declare not only a simple complex

variable, but also pointer to complex, array of

complex, and array of pointer to complex, etc.

Declarations of these complex variables are simi

lar to the declarations of any other data types in C.

The array and pointer of complex in CH are ma

nipulated in the same manner as the floating

point float and double. The above code segment

illustrates how complex is declared and manipu

lated inCH.

2.2 Data Conversion Rules

CH is a loosely typed language. All arguments of

calling functions will be checked for compatibility

with the data types of the called functions. The

data types of operands for an operation will also

with char being the lowest data type and complex

the highest data type. The default conversion

rules will be brieflv discussed in this section as

follows:

1. Char, int, float, and double can be con

verted according to ANSI C data conversion

rules. The ASCII value of a character will be

used in conversion for a char data type. De

motion of data may lose the information.

2. Char, int, float, and double can be con

verted to complex with its imaginary part

being zero. When casting a real number into

a complex number, the values of Inf and

- Inf become Complexlnf: and the value of

NaN becomes ComplexNal\. Conversion

from double to complex may lose the infor

mation. A real number can be cast into a

complex explicitly by the complex construc

tion function complex(x, y), which will be

discussed in detail in Section 4.

3. When a complex is converted to char, int,

float, and double, only its real part is used

and the imaginary part will be discarded if

the imaginary part of the complex is identi

cally zero. If the imaginary part of the com

plex is not identically zero, the converted

COMPLEX NUMBERS 1:"1 C" PROGRAMMING LANGUAGE 81

real number becomes NaN. The real and

imaginary components of a complex num

ber can be obtained explicitly by the func

tions real(z) and imaginary(z), which will

be discussed in detail in Section 4. When a

complex number is converted to a real num

ber either implicitly by assignment state

ment such as f = z or explicitly by real(z),

imaginary(z), float(z), double(z), (float)z,

and (double)z, the sign of a zero wil not be

carried over. Converting a complex number

to an integral value such as char and int is

equivalent to conversion of real(z) to an

integral value if the imaginary part of the

complex is identically zero. For example,

i = Complexlnf will make i equal to

INT_MAX. However, if real() or imagi

nary() is used as an lvalue, the sign of zeros

from rvalue will be preserved, which will al

low experimentation with signed zeros in

computations of complex numbers. An

!value is any object that occurs on the left

hand side of an assignment statement. The

lvalue refers to a memorv such as a variable

or pointer, not a function or constant. On

the other hand, the rvalue refers to the value

of the expression on the right hand side of

an assignment statement. Details about the

lvalue will be discussed in Section 5.

4. In binary operations such as addition, sub

traction, multiplication, and division, with

mixed data types, the result of the operation

will carry the higher data type of two oper

ands. For example, the result of addition of

an int and a double will result in a double.

When one of the two binary operands is

complex and the data type of other operand

is a real number, the real number will be

cast into a complex before the operation is

carried out. This conversion rule is also

valid for an assignment statement when

data types of the lvalue and rvalue are dif

ferent.

u. In a pointer assignment statement, the

pointer types of lvalue and rvalue can be

different. They will be reconciled internally.

To comply with the Al\"SI C standard, the

data type of the rvalue can also be explicitly

cast into that of the lvalue in an assignment

in CH. For example, the statement fp =

(float*)intptr will cast the integer pointer

intptr to float pointer before its address is

assigned to float pointer fp. However, the

contents pointed to by intptr will not be

changed by this data type casting operation.

For example, if *intptr is 90, the value of *fp

will not be equal to 90 because of the differ

ence in their internal representations for int

and float. The memory of a complex vari

able can be accessed by pointers. If the real

or imaginary part of a complex variable is

obtained by a float pointer, the sign of a

zero will be carried over, which will be dis

cussed in Section 5.

The following code segment will illustrate how

different data types are automatically converted in

Cll.

char c;

int i;

float f;

double d;

complex z, *zptr;

c - 'a'; I* c is 'a' *I
i c; I* i is 97, ASCII number of 'a' *I
f i; I* f is 97.0 *I
d i· , I* d is 97.0 *I
z - complex (ch+1, f); I* z is 98.0 + i 97.0 *I
z - complex (Inf, Inf); I* z is Complexlnf *I
z Inf; I* z is Complexlnf *I
z - -Inf; I* z is Complexlnf *I
f z; I* f is NaN, since real(Complexlnf) is NaN *I
d z; I* d is NaN, since real(Complexlnf) is NaN *I
i Inf; I* i is 2147483647 = Int_Max, *I
i z· , I* i is 2147483647, int of NaN is 2147483647

plus warning message *I
z - complex(d+1, 3); I* z is 98.0 + i 3.0 *I

82 CHE;';J"G

I* c is delete character, ASCII number 127 *I c = z·
'

i z·
'

I* i is 2147483647, int of NAN *I
f z·

'
I* f is NAN *I

d z·
'

I* d is NAN *I
z NaN; I* z is ComplexNaN *I
zptr = &z;

zptr++;
I* zptr points to address of z *I
I* zptr points to memory at address of z

plus 8 bytes

2.31/0 for Complex Numbers

Because complex is a basic data type in CH, II 0

for this data type should also be handled in the

same manner as real numbers. Similar to Fortran,

the real and imaginary parts of a complex number

can be treated as two individual floats by the func

tions real(z) and imaginary(z) as will be dis

cussed in Sections 3 and 4. Then, all standard

110 functions such as printf() and scanf() for real

numbers presented by Cheng [1] can be readily

used. In this section, how a complex number is

treated as a single object by the standard 1/0

function will be discussed. Due to the space limit,

only the enhancement related to the function

printf() will be explained in the following discus-

complex z1, z2, *zptr;

*I

version specification for a float will be used for

both real and imaginary parts of a complex num

ber. The default format for complex is %.3f,

which will be applied to both real and imaginary

parts of a complex number. The metanumbers

ComplexZero, Complexlnf, and ComplexNaN are

treated as regular complex numbers in 1/0 func

tions. For the debugging purpose, the default out

put for Complexlnf and ComplexNaN are com

plex(lnf, lnf) and complex(NaN, l'\aN),

respectively. The default output for ComplexZero

is complex(O.OOO, 0.000). The format for real and

imaginary parts can be controlled by a format spe

cifier. The following CH program will illustrate how

complex numbers are handled by the 1/0 func

tions printf() and scanf().

zptr = &z2; I* zptr points to z2's memory location *I
printf("Please type in real and imaginary of two complex numbers \n");

scanf(&z1, zptr);

printf ("The first complex is ", z1, "\n") ;

printf ("The second complex is %f \n", z2) ;

sions. However, the underlining principle can be

applied to other II 0 functions as well. The format

of function printf() in CH is as follows

int printf(char *format, argl, arg2, ...)

The function printf() prints output to the stan

dard output device under the control of the string

pointed to by format and returns the number of

characters printed. If the format string contains

two types of objects-ordinary characters and

conversion specifications beginning with a char

acter of % and ending with a conversion charac

ter-the ANSI C rules for printf() will be used. If
the format string in printf() contains only ordinary

characters, the subsequent numerical constants

or variables will be printed according to preset de

fault formats. For function printf(), a single con-

The result of the interactive execution of the above

program is shown as follows

Please type in real and imaginary of

two complex numbers

1 2.0 3. 0 4

The first complex is complex(1.000,

2. 000)

The second complex is complex

(3.000000, 4.000000)

where the second line in italic is the input and the

rest are the output of the program. Function

printf() in CH is in full compliance with ANSI C.

Function scanf() in CHat its current implementa

tion has a minor difference from ANSI C. In the

future implementation, scanf() will comply with

CO~IPLEX :'\u~IBERS I'\ C11 PROGRA:\1""1Il"G LA:\GLAGE 83

ANSI C; besides. it will accept the input constants

such as Complexlnf, Conmplexl\"al\", complex(2,

3.8F), etc.

3 COMPLEX OPERATIONS

The arithmetic and relational operations for com

plex numbers are treated in the same manner as

those for real numbers in CH. This section will

discuss how these operations are defined and

handled by CH.

3.1 Complex Operations With Regular
Complex Numbers

The negation of a complex number, and arith

metic and comparison operations for two complex

numbers are defined in Table 1, where the com

plex numbers z, z 1 , and z2 are defined as x + iy,

x1 + iy1, and x2 + iy2, respectively.

The negation of a complex number will change

the sign of both real and imaginary parts of the

complex number. The addition of two complex

numbers will add real and imaginary components

of two complex numbers, separately. The sub

traction of two complex numbers will subtract real

and imaginary parts of the second complex num

ber from real and imaginary of the first complex

number, respectively. Treating the imaginary

number i as a complex number of complex(O, 1),

the multiplication and division for two complex

numbers are defined in Table 1. For binary oper

ations with real and complex operands, the regu

lar real operand will be cast into a complex before

the operation. Complex numbers are not ordered,

one cannot compare whether one complex num

ber is larger or smaller than the other. But two

complex numbers can be tested whether they are

equal or not. Two complex numbers are equal to

each other if both real and imaginary parts of two

complex numbers are equal to each other, sepa

rately. If real or imaginary parts of two complex

numbers are not equal to each other, two complex

numbers are not equal.

3.2 Complex Operations With
Complex Metanumbers

In the above definitions of complex operations, we

assume that all operands are regular complex

numbers. The real and imaginary parts of a com

plex number are then treated as two regular float

ing-point floats. If the values of operands involve

complex metanumbers, the definitions defined in

Table 1 may not be valid. For example, Complex

In£ is represented internally as complex(lnL lnf).

According to the complex addition definition de

fined in Table 1 and the addition rule for real

numbers discussed by Cheng [1], the result of ad

clition of two Complexlnfs would be complex(lnf,

lnf). But, addition of two complex infinities is

mathematically indeterminate. Therefore, the

results for arithmetic and relational operations

with both regular complex numbers and complex

metanumbers are defined in Tables 2 to 7.

From a programmer's point of view, values of

complex(±O.O, ±0.0) are the same as com

plex(O.O, 0.0) or ComplexZero when they are

used as operands or arguments in CH. In the fol

lowing discussions, the positive zero 0.0 and the

negative zero -0.0 for real and imaginary compo

nents of a complex number are considered the

same. Therefore, although the negation of com

plex(O.O, 0.0) returns complex(-0.0, -0.0), the

result listed in Table 2 is complex(O.O, 0.0). Nega

tion of a complex infinity is still a complex infinity.

Of course, negation of a complex not-a-number is

ComplexNaN.

For binary operations in Tables 3 to 5, if any

one of the operands is Comple:xl\'aN, the result is

ComplexNaN. If one of two operands is Complex-

Table 1. The Complex Operations

Definition CH Syntax CH Semantics

Negation -z -x- iy

Addition zl + z2 (x1 + xz) + i(Yt + Yz)

Subtraction zl + z2 (x1 - xz) + i(y1 + Yz)

Multiplication zl * z2 (x1 * x2 - Y1 * Y2) + i(y1 * x2 + Xt * Y2)

Division zl I z2
Xt * X2 + Yt * Y2 . Yt * X2 - Xt * Y2

2 _rl +1 2 _rl X2 + 2 X2 + 2

Equal zl == z2 Xt == x2 andy1 == Yz

Not equal zl != z2 x1!= or Yt != Y2

84 CHE~G

Table 2. Negation Results

Negation-

Operand

Result

complex(O.O, 0.0)

complex(O.O, 0.0)

z

-z

Complexlnf

Complexlnf

ComplexNa~

Complex~ aN

Table 3. Addition and Subtraction Results

Addition and Subtraction ±

Right Operand

Left Operand complex(O.O, 0.0) z2 Complexlnf Complex~ a]\'

complex(O.O, 0.0) complex(O.O, 0.0) ±z2 Complexlnf Complex:\ a:\

zl z1 z1 ± z2 Complexlnf Complex:t\'a'\1

Complexlnf Complexlnf Complexlnf Complex:\ a:\ Complex]\' a'\/

ComplexNa~ Complex;\' al\' Complex~ aN Complex:\ a-"' Complex:\ a:'\

Table 4. Multiplication Results

Multiplication *

Right Operand

Left Operand complex(O.O, 0.0) z2 Complexlnf Complex:'\ a]\

complex(O.O, 0.0)

zl
Complexlnf

ComplexNal\'

Table 5. Division Results

complex(O.O. 0.0)

complex(O.O, 0.0)

Complex'\ial\'

Complex~ a]\

complex(O.O. 0.0)

z1*z2
Complexlnf

Complex.'\: a]\

Division +

Complex:\ a:\

Complexlnf

Complexlnf

Complex:\ a:\

Complex~ a]\'

Complex:\ a:\

Complex!'\ a~

Complexl\'a:\

Right Operand

Left Operand

complex(O.O, 0.0)

zl
Complexlnf

Complex!\. a'\/

complex(O.O, 0.0)

complexl'\a'>J

Complexlnf

Complexlnf

Complex:\ a:\

z2

complexiO.O. 0.0;

z1/z2
Complexlnf

Complex:\ a.:\

Table 6. Equal Comparison Results

Equal Comparison = =

Complexlnf

complex(O.O. 0.0)

complex(O.O. 0.0)

Complex~'\ a:\

CmnpiPx.:\a:\

Right Operand

Left Operand complex(O.O. 0.0) z2 Cornplexlnf Complex:\ a:\

complex(O.O, 0.0) 1 () 0 0

zl 0 z1 == z2 () ()

Complexlnf 0 0 1 0

Complex]\ a:\ 0 0 ()

Complex]\ a:\

Complex!\: a:\

Complex~ a:\

Complex~ a:\

ComplE'x."\a.:\

COMPLEX ~C\1BERS I~ C11 PROGRAMMl~G L\:\GCAGE 85

Table 7. Not Equal Comparison Results

:'1/ot Equal Comparison ~ =

Left Operand complex(O.O, 0.0)

complex(O.O, 0.0) 0

z1 1

Complexlnf 1

ComplexNal\i 1

lnf and other is a finite complex number, the

result of addition and subtraction is Complexlnf.

Unlike real numbers, addition and subtraction of

two Complexlnfs are ComplexNaNs. :\1ultiplica

tion of Complexlnf with complex(O.O, 0.0) is

ComplexNaN; multiplication of Complexlnf with

a finite nonzero number is Complexlnf; and mul

tiplication of two Complexlnfs becomes Complex

In£. Like real numbers, divisions of complex(O.O,

0.0) by complex(O.O, 0.0) and Complexlnf by

Complexlnf are ComplexNaNs. A finite number or

infinity divided by complex(O.O, 0.0) becomes

Complexlnf. The division of Complexlnf by a fi

nite number gives Complexlnf. Theoretically, two

complex infinities cannot be compared with each

other because they may or may not be equal to

each other. InCH, however, two Complexlnfs are

considered the same from the programming point

of view as shown in Table 6. Likewise, the com

parison of two Complexl\"al\s will get a logic

TRUE. This design consideration is also reflected

in the not equal relational operation shown in

Table 7.

4 COMPLEX FUNCTIONS

Besides the polymorphism. the mathematical

functions implemented in CH can have a variable

number of arguments. which is very convenient

for calculations of complex mathematical func

tions with multiple branches. If a mathematical

function. as a real function. has onlv one real ar

gument. the additional second argument will ren

der the function to a complex function unless ex

plained otherwise. The integral value of the

second argument will indicate the branch of the

complex function. When this second argument

presents, the first argument will be cast into a

complex number according to the previously dis

cussed data type conversion rules when the order

of its data type is lower than complex. For a math-

Right Operand

z2 Complexlnf Complex~ a:\

1 1 1

z1 != z2 1 1

1 0 1

1 1 0

ematical function with two arguments as a real

function, if either one of two input arguments is a

complex. the mathematical function becomes a

complex function. If an additional third argument

as a branch indicator is provided. the function

becomes a complex function if data types of the

first two arguments are lower than or equal to

complex. If their data types are lower than com

plex. they will be cast into complex numbers.

4.1 Results of Complex Functions With
Regular Complex Numbers

The built-in functions related to the complex

numbers are listed in Table 8 along with their defi

nitions. The input arguments of these functions

can be complex numbers. variables, or expres

sions. For the presentation purpose. the complex

numbers z, z 1 , and z~ are defined as x + (v. x· 1 +
iy1. and x 2 + iy2. respectively. The integer values

of k, k 1 , and k2 are the branch numbers of com

plex functions. If arguments for these branch

numbers of the calling function are not integers.

they will be cast into integers internally. Form& th

ematical expressions in the second column in 'fa

ble 8. if the arguments of mathematical functions

are regular real numbers. the mathematical func

tions are real mathematical function:,; that have

been described by Cheng [1!. The results of com

plex functions involving complex metanumbers

will be discussed in the next section. ln Table 8.

the principal value 0 of the argument of a com

plex number is in the range of -rr < 0 :S rr. The

definition of the principal value 0 for various

complex numbers is given in Table 9. Note that

the trigonometric function atan2(y, x) is in the

range of -rr :S atan2(J·. x) :S rr. ~ormally. through

complex arithmetic and complex functions. one

shall not get a complex number with its real or

imaginary part being the value of -lnf. Inf. or

]\;al\ whereas the other part is a regular real num

ber. This kind of result can be obtained onlv ex-

Table 8. The Syntax and Semantics of Built-in Complex Functions

C11 Syntax

sizeof(z)

abs(z)

real(z)

imaginary(z)

complex(x, y)

conjugate (z)

polar(z)

polar(r, theta)

sqrt(z)

sqrt(z, k)

exp(z)

log(z)

log(z, k)

log10(z)

log10(z, k)

pow(z1, z2)

pow(zJ, z2, k)

ceil(z)

floor(z)

fmod(z1, z2)

modf(z1, &z2)

frexp(zL &z2)

ldexp(z1, z2)

sin(z)

cos(z)

tan(z)

asin(z)

asin(z, k)

asin(z, k1, k2)

acos(z)

acos(z, k)

acos(z, k1, k2)

atan(z)

atan(z, k)

atan2(z1, z2)

atan2(z1, z2, k)

sinh(z)

cosh(z)

tanh(z)

asinh(z)

asinh(z, k)

asinh(z, k1, k2)

acosh(z)

acosh(z, k)

acosh(z, k1, k2)

atanh(z)

atanh(z, k)

Cl1 Semantics

y

X+ iy

X- iy

sqrt(x2 + rl + i0: 0 = atan2(y, x)
r cos(theta) + ir sin(theta)

' (2 2Jl(0 . . 0) 0 2' sqrt\sqrt x + .Y cos2 + t sm 2 : • = atan 1,y,

' (2 .2Jl(0 + 2k1r 0 + 2k1r) 0 sqrt1,sqrt x + .Y cos
2

+ i sin
2

: •

ex(cosy + i sin y)

log(Vx2 + rl + i0: 0 = atan2 x)

log(V x 2 + r) + i(0 + 2k1r); 0 = atan2Cr. x)

~
log(10)

log(z, k)

log (10)

ZJz2 = ez2lnzt = exp[z2 * log(zJ)]

z1z2 = ez2lnz, = exp[z2 * log(zJ, k)]

ceil(x) + i ceil(y)

floor(x) + i floor(y)

z: ZJ = k + ~. k ;, ()
Z2 Z2'

modf(x 1 , &x2) + i modf(y2, &y2)

frexp(x!, &x2) + i frexp(y1, &y2)

ldexp(x!, x2) + i ldexp(y!, Y2)

sin xcosh y + i cos x sinh y

cos x cosh y - i sin x sinh y

Sill Z

cos z

-i log[iz + sqrt(1 - z2)]

-i log[iz + sqrt(1 - z2, k)]
-i log[iz + sqrt(1 - z2

, kJ), k2]

-i log[z + isqrt(1 - z2)]

-i log[z + isqrt(1 - z2, k)]

-i log[z + isqrt(1 - z2, kJ), k2]

1 (1 + iz)
2i log 1 - iz

1 (1 + iz)
2i log 1 - iz' k

1 I (1 + iz1/z2
2i og 1 - iz1/z2

1 (1 + iz1/z2)
-2 · log 1 · 1 I · k

l - lZ Z2'

sinh x cos y + i cosh x sin y

cosh x cos y + i sinh x sin y

sinh x cos y + i cosh x sin y

cosh x cos y + i sinh x sin y

log[z + sqrt(z2 + 1)]

log[z + sqrt(z2 + 1, k)]

log[z + sqrt(z2 + 1, kJ), k2]

log[z + sqrt(z + 1)sqrt(z - 1)]

log[z + sqrt(z + 1, k)sqrt(z- L k):

log[z + sqrt(z + 1, kJ)sqrt(z - 1, kJ), k2]

1. log (1 + z)
2 1 - z

1 (1 + z)
2log 1 - z' k

atan2 (y. x)

CO\fPLE\. :\C\113ERS 1.\ <: 11 PROGRA\1\fl:\G L:\\GL\GE 87

Table 9. The Principal Value f) (-1T < f):::; 1r) of the Ar!!:ument

for Complex(x. y)

y Value

v2

0.0

-0.0

-v1
Tnf

\a\

atan2(.n.

atan2(-yJ.

-x1 -0.0

- XJJ pi/2

pi 0.0

pi 0.0
-x 1 \~ -pi/2

plicitly by functions real(z) and imaginary(z).

and float pointer variables throu~d1 !values. which

will be discussed in Section 5.

The first four functions in Table 8 return real

numbers. The sizeof() function returns. in bytes,

an integer of the Yariable. type specifier. or ex

pression that it precedes. Because C11 does not

have unsigned data types at its current implemen

tation. the returned data type is a signed integer,

which slightly differs from A:'\SI C. lf the argument

is a complex. it will return the value of 8. which is

the number of bytes required for storing two floats

of real and imaginary parts of a complex. The

abs(z) function computes the modulus of a com

plex number. The returned data type is float. The

functions real(z) and imaginary(z) return the real

and imaginary parts of a complex number. re

spectively. The results of real(z) and im

aginary(z) are always floats. If the data type of the

argument for real() is lower or equal to double,

the input data will be cast into a float. If the data

type of the argument for imaginary() is lower than

or equal to double, the value of zero will be re

turned. The sign of a zero will be ignored in real(z)

and imaginary(z) functions. For example.

real(complex(-0.0. 0.0)) will return 0.0.

A complex number can be created from two

real numbers by the complex construction func

tion complex(x, y). If the input arguments are not

floats, they will be cast into floats according to the

internal data conversion rules. The sign of a zero

for x or y will be carried over to the complex num

ber.

The conjugate(z) function returns the complex

conjugate z of z. The complex number z repre

sented by the point (x, -y) is the reflection in the

real axis of the point (x, y) representing z.

The function polar() is implemented mainly for

the convenience of transformation between Carte

sian and polar representations of a complex num-

0

x \'alu(;

0.0 x2 lnf \a\

pi/2 atan2 (.1·2· .1'2 /

0.0 0.0

0.0 0.0

-pi/2 atan2~-.r 1 • -.r:.z

lnf

her. If there is only one input argument. a complex

number with its real and imaginary parts being the

modulus and argument. respectively. of the input

complex number will be returned. If there are two

input arguments. the complex number z in the

polar form will be returned. The first and second

input arguments are the modulus and argument of

z. respectively. According to the definition re 10 for

the polar function. negative values for rare valid.

For the square root function sqrt(), whenever

there are two arguments. the first argument is

treated as a complex number. In case it is not a

complex number and cannot be cast into a com

plex number. a syntax error message will be re

ported by the system. If the second argument is

not an integer. it will be cast into an integral value

according to internal data conversion rules. For

the complex square root. there are only two dis

tinct branches because of the periodic natures of

the sine and cosine functions. In general. for tak

ing the nth root. there are n distinct branches. If

the function sqrt() is invoked with a single com

plex argument. the default branch value of 0 will

be used.

The exp (z) function will calculate the exponen

tial function of the complex number z.

Like the square root function. the natural loga

rithmic function log() has multiple branches. The

branch number is provided by the second argu

ment of the function. For convenience. the func

tion log1 0() will calculate the base-ten logarith

mic function of a complex value.

The exponential function with a complex base

can be calculated by the function pow(). which is

accomplished by the exponential function and

logarithmic function as is shown in Table 8. The

branch of the logarithmic function determines the

branch of the function pow(). Cnlike its corre

sponding real function. the complex function

pow() is always well defined. If any one of two

88 CHENG

arguments of pow(z1, z2) is complex, the result is

complex, which is obtained by the principal

branch of the expression exp(z2*log(z1)). The

result of the expression yx equals the real part of

the expression pow(complex(y, 0.0), complex(x,

0.0)) with its imaginary part being zero. For the

function pow(z1, z2, k), z1 and z2 can be any

data type lower than or equal to complex, and k is

an integer. Whenever there are three arguments

for the function pow(), the first and second argu

ments are treated as complex numbers. If z2 is an

integer, all branches will have the same result;

thus, the solution is unique.

For functions ceil(z), ftoor(z), and ldexp(zl.

z2), the real and imaginary parts are treated as if

they were two separate real functions. The func

tions modf(z1, &z2) and frexp(z1, &z2) are han

dled in the same manner. For these two functions.

when the data type of the first arguments is com

plex, the data type of the second argument must

be a pointer to complex. The fmod(z1, z2) func

tion computes the complex remainder of z1/z2.

The complex trigonometric functions sin(z).

cos(z), and tan(z) and complex hyperbolic func

tions sinh(z), cosh(z), and tanh(z) have unique

values. However, the complex inverse trigonomet

ric functions asin(z), acos(z) and atan(z) and

complex inverse hyperbolic functions asinh(z).

acosh(z), and atanh(z) have multiple branches

for a given input complex value. The second argu

ment of these inverse functions indicates the

branch number. For functions asin(), acos(),

asinh(), and acosh(), the second and third argu

ments specify the branches of the related square

root and logarithmic functions. respectively. The

function atan2() is implemented similar to the

function atan().

4.2 Results of Complex Functions With
Complex Metanumbers

Like complex arithmetic operations. the definition

for regular complex functions may not be valid

when the input arguments are complex metanum

bers. The results of the built-in complex functions

with complex metanumbers as their input argu

ments are given in Table 10. In Table 10. com

plex(±O.O, ±0.0) inCH is treated as complex(O.O,

0.0). \\rhen the input argument of a function is

Complex[\al'\, the returned result is always Com

plexl'\a~ except for the function sizeof(). As

shown in Figure 2, a complex infinity is different

from the real infinites of ±x. \\'hen either the real

or imaginary part of a complex value is outside the

range of the representable floating-point number,

it becomes Complexlnf. Therefore, the absolute

value of Complexlnf is a real number of Inf. The

real and imaginary parts of Complexlnf are NaN.

However, the conjugate of Complexlnf is still a

complex infinity. The result polar(complex(O.O,

0.0)) is defined'as complex(O.O, 0.0) because the

principal value E> for complex(O.O, 0.0) equals 0.0

as defined in Table 9. The result of polar(Com

plexlnf) is defined as complex(Inf, Inf). Therefore,

if z equals complex(O.O, 0.0) or Complexlnf, the

equality of z = polar(real(polar(z)), imaginary(po

lar(z))) will still be satisfied. Like a real function,

the square root of Complexlnf is Complexlnf.

As a real function, exp(Inf) = Inf whereas

exp(-lnf) = 0.0. However, both values of ±Inf

become Complexlnf if they are cast into complex

numbers. Therefore, the complex exponential

function exp(z) is Complexl'\ai\ when the input

argument is Complexlnf. The complex logarith

mic function log(z) with the input argument of

complex(O.O, 0.0) or Complexlnfwill return Com

plexlnf. \Vith complex metanumbers as their in

put arguments, the real and imaginary parts of

functions ceil(z), ftoor(z). and ldexp(zl. z2) are

handled equivalent to two individual real func

tions. Like real functions. the complex trigono

metric functions sin(z), cos(z), and tan(z) are un

defined when the input arguments are

Complexlnfs. The irrational number 1T is not rep

resentable in a computer program. If we had the

value of 1T. the expression of tan(k7T + 7T/2) would

return Complexlnf. Cnlike real functions, the

complex inverse trigonometric functions asin(z)

and acos(z) return Complexlnfs when the input

arguments are Complexlnfs. As an inverse func

tion oftan(z), the function atan(z, k) has different

branches when the first input value is Complexlnf.

According to the definition, atan(±i) equals Com

plexlnf. The results of the complex hyperbolic

functions sinh(z), cosh(z). and tanh(z). and

complex inverse hyperbolic function" asinh (z).

acosh(z). and atanh(z) are implemented :-iimilar

to those of complex trigonometric functions and

complex inverse trigonometric functions.

The results of the complex construction func

tion complex(x, y) are given in Table 11. For con

structing a complex number. if either its real or

imaginary part is 1'\a:\" .. the result is a complex

i\ot-a-1'\umber. Likewise. if either one is a value

of ±x, the result is Complexlnf. For the function

polar(r, theta) shown in Table 12, when the mod

ulus is infinitely large, the resultant complex num

ber is Complexlnf even if the provided argument

CO.\IPLEX :\L.\IBERS 1:\ C11 PROGRA.\1.\11:\G LA:\GL\GE 89

Table 10. Results of Complex Functions for Complex(O.O, 0.0), Complexlnf,

and ComplexNaN

Function

sizeof(z)

abs(z)

real(z)

irnal!inary(z)

conjugate(z)

polar(z)

sqrt(z j

exp(z)

log(z)

log10(z)

ccil(z)

floor(z)

rnodf(z. &z2)

z2

frezp(z. &z2)

z2

ldexp(z. z2)

sin(z)

cos(z)

tan(z)

asin(z)

acos(z)

atan(z)

sinh(z)

cosh(z:

tanh(z)

asinh(z)

acosh(z)

atanh(z)

complex(O.O. O.Oj

8

0.0

0.0

0.0

z \. alue and Results

Complexlnf

8

lnf

:\a:\

:\a:\

Complex:\ a:\

8

:\a:\

.'\a:\

:\a:\

cornplex(O.O. 0.0: Complexlnf Complex:\a:\

complex(O.O. 0.0) Complexlnf Complex:\a:\·

complex(O.O. O.Oj Complexlnf Complex:\a:\

complex(1.0. O.Oj Complex:\a:\ Complex:\a:\

Cornplexlnf Complexlnf Complt>x:\a:\

Complexlnf Complexlnf Complex:\a:\

cmnplex(O.O. 0.0; Complexlnf Complex:\a:\

complex(O.O. 0.0) Complexlnf C:ornplex:\a:\

complex(O.O. 0.0) complex'O.O. 0.0' Complex:\a:\

complex(O.O. 0.0) Cornplexlnf Complt>x:\a:\

complex',(). 0. 0. 0) Complexlnf Complex:\ a:\

complex(O.O. 0.0) complex~O.O. 0.0: Complex:\a:\

complex(O. 0. 0. 0) C:omplexlnf Cmnplex.'\a:\

complex(O.O. 0.0) Cornplex:\a:\ Complex:\a:\

complex(1.0. 0.0) Complex:\a:\ Complex:\a:\

complex(O. 0. 0. 0'! Complex:\ a:\ Complex:\ a:\·

:\ote: tan(cornplt>x(7T/2 + k * 1r. O.or = Complexlnf

complex(O.O. O.(J:I Complexlnf Cornplex:\a:\

complex~pi/2. 0.0) Complexlnf Complex:\a:\

complex1:0.0. 0.0) complex:pi/2. 0.()1 Complex:\a:\

:\ott>: atanlcomplex(O.O. ±1.0il = Cornplexlnf:

atan(Complexlnf. k) = complex(pi/2 + bpi. 0.0:

complex(O.O. (J.O) Cornplex:\a:\ C:omplex:\a:\

complexi1.0. 0.0; Complex:\a:\ Cornplex:\a:\

complex(O.O. 0.()! Complex:\a:\ Complex:\a:\

:\ote: tanh(complex(O.O. 7T/2 + k * 77)) =Complexlnf

cmnplex(O.O. 0.0) Complexlnf Complex:\a:\

cornplex\0.0. pi/2' Complexlnf Comph·x:\a'>i

complex(O.O, O.Oj Complex(O.O. pi/2) Complex:\a:\

"'otc: atanh(complex(±1.0. 0.0)) = Complcxlnf:

atanh(C:omplcxlnf. k) = complex(O.O. pi/2 + k*pi)

Table 11. Results of the Function complex(x, y) for 0.0. ±oc, and "iaN

x Yalue

Inf

x:2

0.0

-x1
-lnf

'\a'\

-lnf

Compkxlnf

Cornplexlnf

Complexlnf

ComplPxinf

Complexlnf

Complex:'\ a'\

-yj

CornpiPxlnf

''omp1Px'x:2. -d ·'
complcx(O.O. -v1

complex. -xl. -v1'!

Complexlnf

Complex:\a'i

\ \'ah"·

0.0

C:mnplexlnf

complex·'x:2. 0.0;

compil'x10.0. 0.0

eompiPx -x1. 0.0.

Compkxlnf

Complex'\ a:\

CompiPxlnf

complcx.'x:2. v:2,

complex10.0. Y:2:

complex·- x 1. ,.:2'·

Cornplexlnf

CompiPx'\a'\

lnf

Cornplexlnf

Cornplexlnf

<:ompiPxlnf

Complexlnf

Complt·xlnf

Cmnplex'\a'\

Cornplcx'\a:\

CompiPx'\a:\'

Complex'\ a:\

ComplPx'\a'\

Complex'\a:\

Complex'\a'\

90 CHE:'\iG

Table 12. Results of the Function polar(r, theta) for 0.0, ±00. and !\'aN

polarlr. tlwta \

Theta Value

r Value ~Jnf ~theta 1 0.0 theta:2

lnf Complcxlnf Cornplexlnf Cornplexlnf Cmnplexlnf

r2 Complex:\ a'-/ polm··:r2. ~theta1; comp1Px(r2. 0.()', polarlr:2. tbeta:z:,

0.0 Complex:\ a!\ cmnpltex!O.O. 0.0) complex(O.O. 0.0' complex'O.O. 0.0'
~rl Complex"! a!\ polan'~rl. ~thetal) complexi~r1. 0.0' polar(~r1. theta:!.,

~Inf Complexlnf Complexlnf Complexlnf Curnplexlnf

"iaN Complcxl\'ai\ Complex!\ a:\ Compltex"'a:\ Complex:\a'-1

lnf

Cmnplexlnf

Compkxl\'a:\

Complt>x:\a:\

Complex:\a:\

CnntplPxlnf

(:omplex:\a:\

Complex:\a:\

(:omplex:\a:\

Complex:\ a:\

Complex:\a:\

Complex:\a:\

Complex:\ a:\'

of a complex number is infinity, which is compati

ble with the result of polar(Complexlnf) = com

plex(lnf, Inf). This also follows the rule that ..

through complex arithmetic and complex func

tions, one shall not get a complex number with its

real or imaginary part being the value of -lnL InL

or .Ka.K while the other part is a regular real num

ber. Like the exponential function exp(z), the

function pow(z1, z2) is undefined when the sec

ond argument is Complexlnf as shown in Table

13. When the imaginary part y2 of z2 is a finite

value, the results of the function depend on the

value of its real part x2 when the value of z1 is

complex(O.O. 0.0) or Complexlnf. Like the real

function, the following expressions pow(com

plex(O.O, 0.0), complex(O.O, 0.0)). pow(com-

plex(O.O. 0.0). complex(O.O. y2)). pow(Complex

lnf, complex(O.O. 0.0)). and pow(ComplexlnL

complex(O.O, y2)) are Complex.Ka.i\'. Because

pow(O.O .. lnf) = 0.0 and pow(O.O, -lnf) = lnf,

and both lnf and - lnf are considered as Com

plexlnf. pow(complex(O.O. 0.0). Complexlnfl is

defined as Complex_I\Ja.i\'. The results of function

fmod(zL z2) for complex metanumbers are given

in Table 14.

5 LVALUE RELATED TO COMPLEX
NUMBERS

As defined before, an lvalue is any object that oc

curs on the left hand side of an assi§!nment state-

Table 13. Results of the Function pow(z1, z2) for complex(O.O, 0.0), Complexlnf, and ComplexNaN

z1 Value

complex(O.O, 0.0)

z1

Cornplexlnf

ComplexNaN

complex(O.O, 0.0)

ComplexNal\

complex(1.0, 0.0)

Complexl\'aN

Complex!'iaN

pow(zl. z2)

z2 Value

~oo < x2 < 0.0

Complexlnf

z~2

complex(O.O. 0.0)

CompleL:\a!\

x2 = 0.0

Complex:\a"J

z~:?

ComplexNaN

Complex.c'lal\

0 < x2 <co

complex(O.O. 0.0)

"' z,·

Cumplexlnf

Complex:\aJ'Ii

Complex Inf

Complex:\! aN

ComplexNal\'

ComplexNa"'

ComplexNal\'

Complex:'~/ aN

ComplexNa)'l;

ComplexNal\'

Complex:\ a:\

ComplexNaN

Table 14. Results of the Function fmod(z1, z2) for complex(O.O, 0.0), Complexlnf, and ComplexNan

z1 value

complex(O.O, 0.0)

z1

Complexlnf

Complex!\' a:'\

complex(O.O, 0.0)

Com plex:'li' a!\'

Complex!\' aN

Complex!\ a~

Complex."\ aN

fmod(zL z2)

z2 value

z2

complex(O.O. 0.0)

fmod(zLz2)

Complex!\' a:\

Complex~ a'\

Complexlnf

cornplex(O.O. 0.0)

z1

Complex!\' a~

Complex:\' a:\'

Complex!\' a:\'

Complex:\' a:\'

Complex~ a~

Complex~ a!\'

ComplexNa:\'

CO.\IPLEX :\l.\IHERS 1:\ Ci 1 PROCR\.\1.\li:\G L\:\GL\GE 91

Table 15. The Valid lvalues Related to Complex Numbers

Case

1

2

.3

4

.\1eaning of lvalue

Simple variable

An element of a complex array

Complex pointer variable

Address pointed to by a complex variable

An element of a complex pointer array

6 Address pointed to by an element of a complex

7

8

9

pointer array

Real part of a complex variable

Real part of a complex variable

Real part of a complex variable

Imaginary part of a complex variable

Imaginary part of a complex variable

Imaginary part of a complex variable

Imaginary part of a complex variable

Float pointer variable

Pointer to real part of a complex variable

Pointer to imaginary part of a complex variable

ment. The valid !values related to complex num

bers are listed in Table 15. The assignment

operations+=.-= .. *=,!=. as well as increment

operation + + and decrement operation -- de

scribed by Cheng [1: can be applied to all these

!values. Besides the simple variable in case 1. an

element of a complex array can be an !value which

is case 2 in Table 1.3. In case 3. pointer to com

plex is used as an !value to get the memory or to

point to a memory of a complex object. In case 4.

the memory pointed to by the pointer zptr is as

signed the value of the expression on the right

hand side of an assignment statement. In addition

to a single pointer variable. one can have an array

of complex pointers. Cases 5 and 6 show how an

element of a complex pointer array is used to ac

cess the memory. The function real () cannot only

be used as an rvalue or an operand. it can also be

used as an !value to access the memory of its argu

ment. In case 7, the argument of real() must be a

complex variable. or an address pointed to by a

complex pointer or pointer expression. A constant

complex number or expression can be used as an

input argument of the function real () only when it

is an rvalue or an operand. In case 8. the imagi

nary part of a complex is accessed by the function

imaginary() in the same manner as the function

real(). Because a complex number occupies two

floats internally, this memory storage can be ac-

Example

z =complex (1. 0, 2);

zarray[i] = complex(l. 0, 2)+ Complexinf;

zptr = malloc (sizeof (complex) * 3;

zptr = &z;

*zptr =complex (1. 0, 2) + z;

zarrayptr [i] = malloc (sizeof (complex) * 3;

zarrayptr [i] = &z;

*zarrayptr[i] =complex(l.O, 2);

real (z) = 3. 4;

real (*zptr) = 3. 4;

real(*(zptr+l)) =3.4;

imaginary (zl =complex (1. 0, 2);

imaginary (*zptr) = 3. 4;

imaginary(*(zptr+l)) = 3. 4;

imaginary (*zarrayptr [i]) = 3. 4;

fptr = &z;

fptr = zptr;

*fptr = 1. 0;

*(fptr+l) =2.0;

cessed not only by the functions real() and imag

inary(). but also by a pointer to float as is shown

in case 9 where the variable fptr is a pointer to

float. For cases 7-9 .. a real number. including

±0.0. ±lnf. and ::\al\'. on the right hand side will

be assigned to an !value formally without filtering.

Therefore, abnormal complex numbers such as

complex(lnf.. l\'a~). complex(lnf. 0.0). etc. may

be created. For example. two CH commands

real(z) = :\'al\' and imaginary(z) = lnf make z

equal to complex(l\an, lnf): and rcal(z) = -0.0

and imaginary(z) = l\'Zero gives z the value of

complex(-0.0. -0.0).

6 CREATION OF USER'S COMPLEX
FUNCTIONS

Cser's complex functions inCH can be created in

the spirit of A~Sl C. which will be demonstrated

by the computation of the gamma function f(z).

f(z) can be defined by the integral as follows:

(3)

One of the approximation formulas for the func

tion f(z) derived by Lanczos [18] is as follows:

92 CHE~G

r() (4 5) () - 1 +4-' ~ ;o- (O 76.18009173
z = z + . z- ,oe- z '"1 V 27T 1. + z +

1

86.50532033

z + 2

24.01409822
+ -----=--

z+3

1.231739516
------+

z+4

0.120858003e- 2

z+5

0.536382e-> + e)
z+6

(4)

with the error smaller than lei < 2 * 10-10
. The

above formula is valid for the complex gamma

function in the half complex plane of real(z) > 0.

To avoid the overflow, log[f(z)] rather than f(z) is

usually computed. For example, the logarithm of

the above approximation formula for the gamma

function with a float argument has been pro

grammed by Press et al. [19] in C. The complex

version of the logarithm of the gamma function

can be easily programmed inCH as follows.

complex gammalog(complex z)

{

complex zz, sum;

1. Follow conventional mathematics; define

values for all operations and functions over

the entire domain.

2. Preserve ANSI C and Fortran styles. The in

terpretation will follow C whenever there is a

syntax conflict.

3. Make language easy to use,

4. Make language easy to implement.

These principles are reflected in many features of

the CH programming language. Some features like

sum= 1.0 + 76.18009173/(z+1) - 86.50532033/(z+2) + 24.01409822/(z+3)

-1.231739516/(z+4) + 0.120858003e-2/(z+5) -0.536382e-5/(z+6);

zz = (z-0. 5) *log (z+4. 5) - (z+4. 5) + log (sqrt (2*PI) *sum);

return zz;

}

Csing the above-programmed external gamma function, the commands of

printf("gammalog(-2) = %f \n", gammalog(-2));

printf("gammalog(complex(1,2)) = %f \n", gammalog(complex(1,2));

printf("gammalog(2) = %f \n", gammalog(2));

will produce the following output.

gammalog(-2) = complex(Inf,Inf)

gammalog(complex(1,2)) = complex(-2.164028,0. 663057)

gammalog(2) = complex(-0.536407,0. 000000)

Note that the gamma function gets Complexlnf at

the singular point -2. For a real argument as in

gammalog(2), the complex gamma function re

turns a complex number with an identically imagi

nary zero.

7 RATIONALE BEHIND CH

This section provides rationales for some of the

scientific programming features of CH. The follow

ing philosophies guided me through the design

and implementation of language features pre

sented in this paper and the companion paper [1].

polymorphism of built-in functions and optional

arguments for multiple-valued complex functions

are obvious. Others. which are less obvious and

even contentious. are brit>fly explained in the fol

lowing discussions.

7.1 No Unanticipated Complex Values

Cnlike conventional languages. there arP no re

served words in CH. The keyword clwngeubi!it.•· in

Cl 1 makes the language very flexible. C 11 is a pro

gramming environment and can be configured at

the programmer's discretion. 'Whenever appropri

ate, the decision in C' 1 will be made by the pro-

CO,\lPLEX :\l~,\lBERS I:\ C11 PROGRA,\1\tl:\C LA:\GLAGE 93

grammer, not the language implementor. This

policy is also reflected in features related to com

plex numbers.

In some programming languages like Common

Lisp and software packages such as }1athematica

and }IA TLAB .. values are typed, but variables are

typeless. As a result. a function could return dif

ferent data types even with the same data types for

input arguments. For example. a square root

function may return a real value at one point as in

complex root [2] , a1; •
float a,b,c;

a1=1; a 1; b = 2; c = 2;
root[O] = (-b+sqrt(b*b-4*a1*c))/(2*a);
root[1] = (-b+sqrt(b*b-4*a*c, 1))/(2*a);

their valid domains is the programmer· s responsi

bility. The decision whether an expression delivers

a real or complex value is made by the application

programmer. not by the CH language implemen

tor. which can be illustrated bv numericallv solv

ing the quadratic equation x 1 + 2x + 2 = 0.

Cheng [1: has shown that if the results are re

stin~ted to real numbers. the solutions to this

equation are !'\al'\s. ~~ith a little modification. the

following CH program

printf ("Solutions are %f and %. 1f \n", root [OJ, root [1]);

will produce the output

Solutions are complex(-1. 000000,1. 000000) and complex(-1. 0, -1. 0)

sqrt(9.0) = 3.0 and may return a complex value

at another point as in sqrt(-9.0) = -n. InCH. if

x is a negative real number. function sqrt(x! will

return l'\aN as described by Cheng [1_. At first

sight. their policy seems more generous than CHs

because functions like sqrt() can deliver some

meaningful results. However.. numerical compu

tation experiences indicate that typele,;,; variable

is not a good language design for scientific pro

gramming as demonstrated by Kahan [personal

communication. 1992]. For example. the unan

ticipated creation of complex results due to

roundoff errors in solving a nonlinear equation

may not allow a numerical algorithm to find solu

tions in real numbers. Another serious problem

for typeless languages such as ::\lATLAB is that all

computations are performed in double precision.

which is apparently not applicable for many ap

plications as discussed by Cheng [1:.
Following the lead ofF ortran and C in scientific

programming. CH is also designed as a loosely

typed language. Different data types can be mixed

in arithmetic operations according to built-in data

cmn·ersion rules as described in Section :2.:2. L n

like C. its standard mathematical functions can

onlv return double value. functions in C 11 can de

liver different data types. However. the output

data type of a function i,; still deliberated by the

application programmer through the data types

and numbers of the input arguments polymorphi

cally. Extending definition of functions beyond

Compared with the program in Cheng [1:. one can

see that the integral value of 1 as:-;igned to the

complex variable a 1 is first cast to complex(1.0.

0.0) internally. The complex variable a1 then pro

mote,; the argument of sqrt() to a complex value.

which finally results in a complex ,;quare root

function in the calculation of root[O'. The com

plex result in root r 1] i,; achieved by switchill[.(the

mode of function sqrt() through it:-i auxiliary sec

ond argument dirt>ctly.

7.2 Deliver Correct Numerical Values or
NaN/ComplexNaN

In rnany computer systerns .. if operations such as

1/0.0 and sqrt(-9.0) are encountered. a com

puter program will be halted and the system will

invoke exception routine,; to report invalid in

structions such as diuision by zero or domain er

ror. InCH. to ensure the correct flow of a program.

all instructions will be executed. However. if a

computer program at one point can deliver a cor

rect numerical result while at anothPr point it may

deliver an erroneous result. u:oer,; will lose their

confidence in the computer program immediately.

To guarantee the delivery of correct numerical

results. mathematically indeterminate Pxpressions

are defined as 1\'a:\ in real operations and Com

plexl\'al\' in complex operations inC"- For exam

ple. 0° is defined as :\'al\' in CH. 1f 0° is otherwise

defined as 1 a,; suggested by Kahan l20] and

94 CHE:\"G

Thomas [21]. the expression of pow(x. 1/log(x)j

with x 0 would deliver 1. 0: whereas

lim"'->0x 111 "~'-r would be e according to mathe

matical analysis. The result of Complt>xNal'\ for

exp(Complexinf) is another example. ln generaL

all built-in operations and functions in Cli will ei

ther deliver correct numerical results or :\"al'\ in

real numbers and ComplexNal'\ in complex num

bers if thev are mathematicallv indeterminate. . .

7.3 Programming Complex Numbers
Over the Extended Finite Complex Plane

.\1ost textbooks avoid issues related to complex

infinity [12, 1.3]. Likewise. all currently existing

general-purpose computer programming lan

guages do not have provisions for consistent

handling of complex infinity. For example, there

cent proposed standard for Ada only spells out the

behaviors when the absolute values for both real

and imaginary parts of a complex number are less

than or equal to FLT_MAX. In an effort to extend

the IEEE 754 standard to complex arithmetic.

Kahan [20] and Tydeman [22j explored the

handling of complex numbers with components of

±0.0, ±x, and 1'\al\;. In their proposed complex

system, complex numbers are manipulated in the

Cartesian plane, somewhat similar to the imple

mentation of mathematical software package

.\1ATLAB. Pairs of real numbers such as (±Inf. y)

and (x. ±Inf) with -Inf ::s: x ::s: Inf and -Inf ::s: :v ::s:

Inf are considered to be valid complex numbers. It

is true that these values can be represented by two

floating-point data in a computer program. How

ever, they are in conflict with the convention of

mathematics in many situations. For example, ac

cording to complex analysis. there is only one

complex infinity in an extended complex plane

that corresponds to the north pole of the Riemann

sphere as shown in Figure 1. Addition of two com

plex infinities is indeterminate and division of

complex infinity by zero is complex infinity. C11 is

in full compliance with mathematical conventions

regarding complex numbers. Therefore, (Inf. Inf)

+ (Inf, lnf) is defined as (1\"al\", 1\"al\') and (InL

Inf)/(0.0, 0.0) as (Inf, Inf) inCH. However, if real

and imaginary parts of a complex number are

treated as two completely separate objects, ac

cording to the arithmetic operation rules given in

Table 1, (lnf, lnf) + (lnf, Inf) will become (Inf, Inf)

and (Inf, Inf)/(0.0, 0.0) will become (Nal\", 1\"al'\)

[16, 22]. Similarly, according to complex analy

sis, complex numbers such as (l'\aN, !\"aN), (Nal\",

y) .. (x, ~aN). (Inf. l'\al'\). (Nal'\. Inf). (Inf. y). and

(x. Inf). (-Inf. 1'\a:\'). (~a:~\'. -lnf). (-lnf. y and

(x. -lnf) are not valid complex numbers. There

fore, complex operations and complex functions

in C 11 shall not produce these abnormal complex

numbers. \\'e try to make C 11 simple. InCH. there

is no negative l'\al\" because not-a-nurnber i,.; not a

number as discussed by Cheng [1!. For the same

reason. there is no need to have so manv different

formats of complex-not-a-number although these

formats can be stored in complex data. There are

serious problems for allowing the existence of

these abnormal complex data in a computer pro

gram. For example. let z = 0 + ix. if one attempts

to get z * z = -x + iO. the result may end up with

complex(O.O. Inf)*complex(O.O. Inf) com

plex(-lnL :1\'al\} not complex(O.O. Infhcom

plex(O.O, lnf) = complex(-Inf.. 0.0) [Kahan and

Thomas. personal communication. 19911. After

getting numerous such surprising re,.;ults durinf!

the testing of the implemented CH complex fea

tures. we decided to use Complexinf and Com

plex:\"a:\' in C 11
. These two complex metanumbers

make the implementation of a whole complex sys

tem much simpler. In CH. there is only one com

plex-infinity in the extended finite complex plane

and one complex-not-a-number, which follows

mathematical conventions with respect to the

complex number and Riemann sphere. This will

avoid the delivery of a complex number with its

real or imaginary part being lnf. -lnL or ~a~

whereas the other part has a different value in

complex operations and complex functions. The

rules for coercion of two real numbers into Com

plexinf and Complex:\"al\ are given in Table 11.

The only way to get abnormal complex numbers

such as complex(Inf. 1\"al'\) is to assign real

metanumbers to the address of a float-pointer

variable that points to the memory of a com

plex variable, or to use functions real(z) and

imaginary(z) as !values. as shown in Section 5.

The memory accessibility. which is inherited from

C, makes many impossible tasks in other lan

guages possible in CH.

7.4 Distinguish -0.0 From 0.0 in Real
Numbers, not in Complex Numbers

In the domain of real numbers, there are ±Inf and

±0.0, which are useful for scientific programming

as shown by Cheng [1]. Shall the sign of zeros also

be honored in complex numbers as in real num

bers? The immediate answer seems to be ''yes.''

CO\IPLE.\ .'\l "\IBERS L\ (11 PROCRA.\L\11:\C LA:\Cl ACE 95

As illustrated by Kahan :20 .. the sitrn of zeros can

be u:,;eful in complex numbPrs. especially for

handling of branch cuts of multiple-valued com

plex functions. lndeed. we tried to implement

complex operations and complex functions that

would treat 0.0 and -0.0 as two different objects.

It turns out that if 0.0 and -0.0 wPre treated as

two different objects as in real numbers ; 1·. not

only would the implementation of the language

become a very difficult task. but also program

ming of the language would be very tedious. The

programmer would have to struggle with the sign

of zeros. It would be almost impossible to write a

program without constantly consulting a manual

because everything would be so complicated. The

programmer may lose the sight of the forest for

trees. For example. the square root of the complex

zero is only defined as sqrt(complex(O.O. 0.0)) =

complex(O.O. o.o;\ inCH. irrespectiw of the sign of

zeros. The same function in a language with the

sign of zeros being respected may be defined as

sqrt(complex(O.O. ().0)) = complex(O.O. 0.0).

sqrt(complex(-0.0. ().0)) = complex(O.O. 0.0).

sqrt(complex(O.O. -0.0)) = complex(O.O. -0.0).

sqrt(complex(-0.0, -0.0)) = complex(O.O. -

0.0) as is listed in Squire [.3:. depending on the

implementation. One can see that for a function

with multiple input arguments. the definition will

be even more complicated. Although the proposed

standard for Ada provides some guidelines for

handling the sign of zeros in complex numbers.

many critical issues related to the implementation

of such a svstem have not been addressed in the

documentations.

Implementing complex data with a respected

sign of zeros is not as easy as in real numbers.

There are some tradeoffs and some compromises.

In the spirit of Al\'Sl C .. real and complex numbers

can be mixed in arithmetic operations and ele

mentary functions in C 11
• For example. r + com

plex(x .. y) becomes complex(r + x, y + 0.0) inCH

at its current implementation. For the conven

ience of implementation. a real number is first co

erced into a complex number with a zero imagi

nary part prior to the addition operation. If y is

-0.0. its sign will be coerced such that r + com

plex(x. -0.0) becomes complex(r + x. 0.0). The

minus sign of y will be lost in the addition opera

tion, and other arithmetic operations and func

tions. The sign of a zero has a serious affect on

results. For example, sqrt(complex(-4.0. -0.0))

complex(O.O, -2.0) whereas sqrt(com

plex(-4.0, 0.0)) = complex(O.O, 2.0) in a com-

plex system with signed zeros. lt is not difficult to

implement the addition of a real and a complex

number in r + complex(x. y) as complex(r + x. y)

without data coercion so that the sign of the imagi

nary part of the complex number will be pre

served. But. how do we handle arithmetic opera

tions for a pair of imaginary and complex

numbers? "'lost computer languages such as For

trarL Ada. and Common Lisp treat a complex

number as a pair of real numbers. An imaginary

number z = ("v is conventionally represented as a

complex number complex(O.O .. y) or (0.0. y) in a

computer program. that is. an imaginary number

is treated as a complex number with zero real part

both internally and externally. Such handling of

imaginary numbers cannot prevent data coer

cions. For a language to effectively handle the sign

of zeros in a complex system, a new imaginary

data type is needed [39]. which will result in a

completely new syntax and semantics of the lan

guage. The new language will have a style different

from Al\SI C and Fortran. For example. a com

plex number will be created by x + i * y where i is

an imaginary data: multiplication of an imaginary

number and a real number delivers an imaginary

number. and addition of (real) + (imaginary) will

be promoted to a complex number rather than

actually adding the two operands. This kind of

language is not difficult to implement: experi

enced C programmers will have to adapt to a new

language paradigm. To preserve the Al\Sl C and

Fortran styles and ease implementation and pro

gramming, we chose not to distinguish 0.0 from

-0, 0 for complex numbers inCH. This is why 0.0

and -0.0 in relational operations inCH are con

sidered the same in CH [1]. Otherwise, they would

be regarded as two different objects in comparison

operations because, in real operations and real

functions, the sign of zeros does make a differ

ence.

It should be pointed out in passing that. in For

tran, a complex number is represented as a pair of

real numbers. For example. (3.0. 4.0) in Fortran

stands for 3.0 + i4.0. This representation of a

complex number is intentionally avoided in the

design of CH because complex and dual numbers

are basic data types in CH. A dual number also

consists of a pair of real numbers. A dual number

is defined as x + c:y with c: 2 = 0. For consistent

handling of aggregate data types, complex and

dual numbers are created by complex constructor

complex() and dual constructor dual(), respec

tivelv. These data constructors are also referred to

96 CHE~G

as• explicit type conversion functions. Details

about the handling of dual number and its appli

cations in mechanical systems analysis and design

are discussed by Cheng r23].

In CH, the rules for the determination of the sign

of a zero resultant when it is produced and the

rules for the use of the sign of a zero operand or

argument have been spelled out for real numbers

[1 J. Although the sign of zero is not honored in

complex numbers in C11 , the sign of zeros will be

carried over when signed zeros of real numbers

are converted to complex numbers either implic

itly or explicitly. For the convenience of imple

mentation, many complex operations and func

tions are implemented through real operations

and real functions that treat - 0. 0 and 0. 0 as two

different objects. For example, the CH expression

complex(-0.0, -0.0) + complex(O.O, -0.0) ac

tually delivers complex(O.O, -0.0). In many ap

plications, real and imaginary parts of a complex

zero are used as real numbers for real operations.

It seems that it is necessary to keep track of the

sign of complex zeros when it is generated.

However, to make programmers' life easier, when

-0.0 of real or imaginary part of a complex value

is coerced into a real number either implicitly or

explicitly, the sign of a zero will be discarded as

described in Section 2.2. which simplifies mixed

mode application significantly. The programmer

will not have to worry about the sign of each com

plex zero delivered by complex operations and

functions. However, if one must carry the sign of a

zero in a complex value over to a real nUinber,

pointing a pointer-to-float to the memory location

of the complex variable can achieve this goal.

Real numbers have two infinities +x and -x,

and the origin in a real line can be approached

through both positive and negative directions rep

resented by 0.0 and -0.0. respectively. Cnlike

real numbers, there is only one complex infinity

and the origin of the complex plane can be

reached in anv direction in terms of the limit value

of lim,......orei8 where r is the modulus and e is the

phase of a complex number in the range of -7r < 8

:S 1r. Therefore, it seems that distinction of the

sign of zeros only along the real and imaginary

axes does not make much sense. If the origin is

approached from directions other than the Carte

sian coordinate axes., points in the complex plane

will be obtained by functions like polar(r, theta)

instead of complex(x, y): then, roundoff errors in

troduced in the computations of polar(r, theta)

and other operations and functions will overpower

the sign of zeros. If the one-to-one correspon

dence between the origin and infinity of the com-

plex plane is concerned, there is certainly no need

for recognition of the sign of zeros.

7.5 The Principal Value e Lies in the
Range of - TT < e :s: TT

Unlike complex operations, complex functions are

much more complicated than real functions. It is

branch cuts that make complex functions so com

plicated. The sign of zeros can play a role in the

computation of complex functions along branch

cuts. There is a general consensus about where

the slits should be placed for commonly used

complex mathematical functions [5, 6, 14. 20,

24]. The slits for functions sqrt(). log(). and

pow() are along the negative real axis. The slits for

asin(), acos(), and atanh() are the real axis ex

cluding the segment between -1 and 1. Similarly,

the slits for functions atan() and asinh() lie on the

imaginary axis not between -i and i. The slit for

function acosh () is along the real axis where z :S

1. Because all slits of elementary functions lie on

either the real or imaginary axis. Kahan [20] pro

posed that every point z along a slit be represented

in two ways: once with a +0.0 and once with -0.0

for whichever the real and imaginary parts of z

vanishes. This can be easilv achieved bv the com-. .
plex constructor such as complex(x. ±0.0) or

complex(±O.O, y) inCH. Accordingly. the princi

pal value e of the argument of a complex number

should be in the range of -1r :s: 0 :s: 1r. Although

defining the principal value e in this range is not

conventional, it does provide a nice treatment for

branch cuts, especially, many identities for real

numbers can be preserved for complex numbers

along slits as well. If a slit does not lie on the Car

tesian coordinate axis. such as in the conformal

map dz/dw = (w + cr.)l(w2
- {3) or z = wf:l/(1- {3)

with cr.> 0 and 0 < f3 < 1 [25:. the roundoff errors

will be inevitably introduced during computations

so that the sign of zeros intended for handling the

slits can be easilv lost. ln a situation like this .. there

is no payoff for the distinction of 0. 0 and -0.0.

The handling of branch cuts in CH is similar to

what was proposed for APL by Penfield [2-t'. On

the branch cut. the function is ·'clockwise contin

uous'" in the sense that the discontinuity associ

ated with the branch cut occurs just below or left

of the cut so that the function is continuous with

values above or right of the slit. Lnder thi,.; treat

ment of branch cuts. the principal value of the

argument of a complex number will be in the

range of -7T < e :S 7T. which follows the conven

tion of mathematics r12. 1:3:. ln CH. there is no

distinction of 0.0 and -0.0 for components of a

CO.\IPLEX .'\L\IBERS 1.'\ C11 PHOGHA\1.\H.'\G LA.'\GL\GE 97

complex number, every point z on a slit is repre

sented with 0.0 or -0.0 for whichever of the real

and imaginary parts of z vanishes. The discontin

uity of a slit along the real axis can be represented

by setting the imaginary component of a complex

number to - FL T -~111\1\<IG~I and - FL T _\<Ill\.

which are the maximum denormalized and nor

malized negative numbers [1:. respectively. de

pending on if the computer system is in confor

mance with the IEEE 754 standard or not. If it is

an IEEE machine. - FLT_~IIl\T\ILYI can be

used: otherwise. FLT_~lll\ should be used.

Similarly.. the discontinuity of a slit along the

imaginary axis can be treated by setting the real

part of a complex number to - FLT_Mil\I~IL\1 or

- FL T_~ll::\'. For example. the principal value of

Log(z) = log(Y x 2 + y 2
) + i8 can be obtained by

log(z) or log(z. 0) in C 11 as shown in Table 8. This

logarithm function is a single-valued function de

fined over the extended finite complex plane. This

single-valued function is not analytic in its domain

r > 0, -1r < 8 :s 1r. When z lies on the nega

tive real axis with z = complex(-x, ±0.0). e
is 7T: whereas just below the real axis of

FLT_~fll\IMCM, that is. z complex(-x,

- FL T_~lll\L\113~1), 8 is near -7T. For example,

log(complex(-1.0, - FL T_y1ll\HICM)) becomes

complex(O.O, -pi). Due to the finite representa

tion, the system constant pi will be used in CH.

When -7r < 8 :s 1r, each branch of a multiple

valued function will have unique value. For exam

ple. in CH, log(complex(-1.0. 0.0)) = com

plex(O.O. 1r) and log(complex(-1.0, 0.0), 1) =

complex(O.O, 3 * 1r). If the sign of zeros was re

spected and -7T ::5 e ::5 7T, the above expression

would be evaluated as log(complex(-1.0. 0.0) =

complex(O.O, 1r). log(complex(-1.0, -0.0)) =

complex(O.O. -7T), log(complex(-1.0. 0.0), 1) =

complex(O.O, 37T), and log(complex(-1.0. -0.0).

1) complex(O.O, 1r). Different branches

log(complex(-1.0. 0.0)) and log(complex(-1.0.

-0.0). 1) would have the same result of com

plex(O.O. 1r).
ln C 11

• all familiar identities will he satisfied in

the domain where the concerned functions in an

identity are analvtic. Some identities will not hold

if the values of functions lie on the slit. For exam

ple. log(1 I z) = -log(z) will not he valid if z i,.; on

the negative real axis becau,.;e log(11(-x)) =

log(11x) + i7T = -log(x) + i7T. whereas- log(-x;

= -log(x:: - i7T. As another example. entire func

tions like z 2 + 1 and sin(z; satisfv the reflection

identity of w(z) = w(z) over the ~xtended finite

complex plane .. hut not functions like z 2 + i and

iz. The principle of reflection require,; that the

function w (z) be analytic in its domain in order to

hold the identitv of w(z) = w(z) [12]. Indeed.

identities like si~ (z) = sin(z) and ? + 1 = z2 + 1

are valid in CH over the extended finite complex

plane. including z = Complexlnf and z = Com

plexl\al\. But. the identity of Vz = VZ may not

hold if z < 0 because the square root function has

a slit along the negative real axis. For comparison.

if a complex system distinguishes 0.0 from -0.0

with -7T ::5 e ::5 7T. these two identities can be

preserved along the slits [20]. However. if identi

ties along slits really matter. CH has mechanisms

for these equivalent identities. Lsing the above ex

amples. if z < 0. the following two Cl 1 identities

along the slits are valid: conjugatei,sqrt(com

plex(-x. 0.0). k) = sqrt(conjugate(complex(-x.

0.0)). k - 1). log(1/complex(-x. 0.0). k) =

-log(complex(-x. 0.0). -k- 1)) where k is an

integral value as a branch indicator. However.

programmers are cautioned that the CH expression

conjugatc(sqrt(complex(-.r. 0.0). k) == sqrt

(conjugate(complex(-x. o.o;). k- 1) will always

evaluate to TRLE whereas log(1 I complex(-x.

0.0). k) == -log(complex(-x. 0.0). -k - 1))

mav not return TRLE because of roundoff errors

as in any other computer languaf!e. As demon

strated in these examples. values of different

branches of a multiple-valued function can be

easilv obtained in CH.

To distinguish -0.0 from 0.0 in complex num

bers and place e in the range of -7T ::5 e ::5 7T. this

objective can be achieYed through C 11
' s real oper

ations and functions in which the sign of zeros i,;

respected and real function atan2(I will readily

proYide the value for e. Although the programmer

cannot directly access the function overloading

features in C 11 at its current implementation. one

can replace built-in mathematical functions by

external functions through functions addkey () .

chkey () . and remkey () [1]. For this experi

mentation purpose. when real() and imaginary()

are used as !values. the sign of zeros of rvalues will

be honored as described in Sections 2.2 and 5.

Program examples usinf! real (I and imaginary()

as !values with signed zeros will be f!iven in Section
77

7.6 F(x + iO) = F(x) + iO, if xis Within the
Valid Domain of F(x)

Taking roundoff errors into consideration. the

sign of zeros in complex numbers appear:-; to be an

accuracy issue. In many cases. the fiddling of

±0.0 in the proposed complex system [20' and

fiddling of ±FL T_~ll:\'IYW~I or ±FLT_Yll"i in

98 CHE~G

CH have essentially the same perturbation effect.

Most important for a complex system is to pre

serve the correct sign for the results of complex

operations and functions so that an intended

branch of a multiple-valued function can be in

voked. If a language is not carefully implemented.

the sign of zeros and FL T _.\11!\T\IC.VI both can be

lost. From a language implementation point of

view, preserving the sign of a result is less de

manding than preserving both sign and zero in

complex operations and complex functions. It is

even more true from an application programmer's

point of view. In modern languages such as For

tran, Common Lisp. and proposed complex sys

tems [20, 22j, some commonly used complex

functions are defined or implemented in terms of

other complex operations and functions. This is

not only computationally inefficient, but also may

introduce some potential errors. For example,

atan(x + iO.O), ideally. should deliver a result

whose imaginary part is identically zero. If it is

implemented in terms of complex operations and

functions, due to roundoff errors of the complex

implementation, its imaginary part may not be

identically zero. Propagation of this nonzero

imaginary part may lead to severe problems near

branch cuts. Complex operations and functions in

CH are defined in the conventional mathematical

forms. l'\o function is defined in terms of complex

trigonometric and hyperbolic functions. Although

formulas given in Tables 1 and 8 may not be the

direct implementation, they do indicate that all

operations and functions in CH are achieved

through real operations and real functions. Quite

a few algorithms for complex operations and com

plex functions are available [6, 20, 26-37]. But,

due to the unique design of the CH programming

language, some of these algorithms have to be

slightly modified. The detailed description of the

implementation of algorithms used in CH is be

yond the scope of this article. The point should be

made that a complex number in CHis stored inter

nally in a Cartesian format rather than in a polar

form, which involves trigonometric functions.

When the imaginary part of a complex operand or

a complex argument is identically zero, CH will

deliver a complex result with an identically zero

imaginary part, if mathematically possible, as

demonstrated in Section 6. As another example,

the computation of sqrt(complex(O.O, 0.6) -

6*complex(6, 0.1)) will surely deliver com

plex(O.O, 6.0) with identically zero real part, not

complex(O.O, -6.0). CHis designed to be determi

nistic. There is no fuzzy around branch cuts. Es-

sential to the built-in complex functions are the

principal phase angle 0. \\-hen a point z = :r + (v

lies slightly below the negative real axis. 0 is -pi

so long as y in the CH expression y < -FLT_

MINIMUM evaluates to TRCE. which is critical for

many multiple-valued functions with branch cuts.

7.7 Application Examples Involving
Branch Cuts

So long as built-in complex operation:,; and func

tions are appropriately implemented. complicated

problems can be solved using these language

primitives. This section will be concluded by solv

ing two complex conformal map problems. Kahan

[20] showed that these two problems are difficult

to handle by a computer language that does not

respect the sign of zeros in complex numbers.

Through these two interesting examples. we will

illustrate how C 11
, which does not respect the sign

of zeros in complex numbers. can conveniently

solve complex problems that involve branch cuts.

·we will also demonstrate how to handle signed

zeros in complex numbers in a CH program.

Example J

The first example is the conformal map w(z) = z

iviz+l ~. which maps the complex z

plane of z = :r + iy onto thew-plane of w = u + iv.

Note that function w (z) has a slit along the imagi-

-3 -2 _, 0 2 3

u(x,y)

FIGURE 3 The flow around a unit disk without x =

- FLT_MINIMUM.

CO\IPLEX .'\l \IBEHS l.'\ 0 1 PHOGH.\\1\11.'\G L\.\GL\GE 99

nary axis from-ito i. which will he mapped onto

the unit circle lu·l = 1. Yerticallines in the z-plane

are mapped to the streamlines of a vertical flo"·

around the unit circle in the w-plane. A CH pro

gram that can calculate streamlines in the ID

plane is given below:

line x = -FLT_MINIMUM. The images in the w

plane for vertical lines x = 0.0 and x = -FLT

_MINIMUM with IYI > 1 in the z-plane are over

lapped in Figure "1:. l'\ote that .r = - FLT_MINIMUM

in the program can be replaced by any "mall nega

tive numbers such as -FLT_MIN or -0.0001:

FILE *stream; complex i, z, w; float x, y;

stream= fopen("diskflow.out", "w");

i = complex(O, 1); x = -0.5;

while(x <= 0.5)

{

y=-1.5;

while (y <= 1. 5)

{

z = complex(x, y);

w = z- i* sqrt(i*z+1)*sqrt(i*z-1);

fprintf (stream, "%f %f \n", real (w) , imaginary (w)) ;

y += 0. 01;

}

X += 0. 1;

}

fclose (stream) ;

The program runs vertical lines in the z-plane with

y from -1.3 to 1.5 and x from -0 .. 5 to O .. S. both

at the interval of 0.1. The streamlines in the w

plane through the output file diskfiow. out pro

duced by execution of the above CH program is

shown in Figure 3. ::\'ote that the slit -1 < z 2 < 0 is

mapped to the right-hand arc of the circle by w =

iy - iV-y + 1 V -y - 1 = - iy + V-y 2 + 1 = u

+ iu. In order to get the left-hand arc of the circle.

the following C11 code fragment should be added

to the above program before the last statement

fclose (stream).

X = -FLT_MINIMUM;

y=-1.5;

while (y <= 1. 5)

{

z = complex(x, y);

w = z- i* sqrt(i*z+1)*sqrt(i*z-1);

graphically. the re,.,ult will be the same as Figure 4.

It appears that the singularity of the ,.,lit along the

imaginary axis between 1 < z 2 < 0 is the source of

the problem because .. as shown in Figure "1:. the

images for the segments IYI > 1 along the imagi

nary axis in the z-plane are well behaved.

In the following program, if x is set to -0.0

in complex(x. y). which is equivalent to com

plex(O.O. y) in a CH program. the left-hand arc of

the unit circle cannot be obtained. The picture will

be the same as Figure~). As pointed out in Section

7 .. 5. one can experiment with ,.,igned zeros in com-

fprint (stream, "%f %f \n", real (w), imaginary (w)) ;

y += 0. 01;

}

X -FLT_MINIMUM;

With this additional vertical line x

-FLT_MINIMUM in the z-plane, the correspond

ing image in the w-plane is shown in Figure 4.

where the dashed line corresponds to the vertical

plex numbers in a CH program that honors the

sign of zeros of reach numbers. The following pro

gram will illustrate the handling of signed zeros in

complex numbers.

100 CHENG

-3 -2 2 _, 0

u(x,y)
3 -3 -2 _, 0

u(x,y)

FIGURE 4 The flow around a unit disk with x

-FLT_MINIMUM.

FIGURE 5 The flow a unit disk for x

coercion of the sign of zeros.

FILE *stream;
complex i,z,w;
float x,y;
int sign(float f);
stream = fopen ("disflow2. out", "w") ;
complex SQRT(complex c)
{

float *fp;
complex camp;
if (c == Complexlnf)
return Complexlnf;

fp = (float *)&c; !# fp points the real part of c
real(comp) = sqrt((abs(c)+real(c))*0.5);
imaginary(c) = sign(*++fp)*sqrt((abs(c)-real(c))*0.5);
return camp;

}

int sign(float f)

{

}

if (f<O.O isnegzero (f))
return -1;

else
return 1;

i complex(O.O, 1.0);
X -0. 0;

y -1. 5;
while (y <= 1. 5)
{

!#sign() works for char, int,
!# double or complex inputs also

2 3

-0.0 with

C0.\1PLEX .'\T.'.\IBERS I:\" C11 PROGRA.\1.\li:\"G LA:\GLAGE 101

z = complex(x, y);

w.= z-i*SQRT(i*z+1)*SQRT(i*z-1);

fprintf (stream, "%f %f \n", real (w) , imaginary (w)) ;

y += 0.01;

}

fclose (stream) ;

When real() and imaginary() are used as !values.

the sign of zeros of rvalues will be preserved. In the

above program. the sign of zeros in the complex

square root function SQRT() is implemented [S.

6, 20, 22, 8]. The square root function is essen

tially defined as \./7(cos E>/2 + i sin E>/2) with -7r

:::; E> :::; 1r. The results of complex zeros are defined

as SQRT(complex(±O.O. 0.0)) = complex(O.O.

0.0) and SQRT(complex(±O.O, -0.0)) = com

plex(O.O, -0.0). In addition, SQRT(Complexlnf)

is Complexlnf and SQRT(Complex~a~) equals

Complex]\;a~. The output of the above C11 pro

gram is the file di skfiow2. out. The vertical flow

in the complex w-plane mapped from the vertical

line x = -0.0 in the complex z-plane is shown in

Figure 5 with data from file di skfiow2. out. 1'\ote

that the horizontal straight line is introduced

purely due to graphical interpolation. This

straight connection line is not mapped from points

in the z-plane. Although the square root function

is implemented with a proper design for the sign of

zeros. the result is still not correct. The reason is

that the multiplication i * z of an imaginary num

ber with a complex number in function SQRT()

has coerced the sign of zeros in z as discussed in

Section 7. 4. If we replace the statement w = z -

i*SQRT(i*z+1) *SQRT(i*z-1) by w = z

i*SQRT (complex (1- y, -0. 0)) *SQRT (com

plex (-1 -y, -0. 0)) , the correct vertical flow

can be obtained. The corresponding conformal

map is shown in Figure 6. According to the defini

tions for real operations and functions with signed

zeros given by Cheng[1]. the difference between

these two statements can be shown by two sample

points. For point z = complex(-0.0. 0.36). the CH

expression z- i*SQRT (i*z + 1) *SQRT (i*z-

1) is computed as follows

w = (-0.0. 0.36)- (0.0. 1.0) Y(O.O. 1.()': * (-0.0. ().;36) +1 V(O.O. 1.0) * (-0.0. 0.36) -1

(-o.o. 0.36) - (o.o. 1.0) V (-0.~36. o.o) + 1 Y(-o.:36. o.o; - 1

(-o.o, 0.36)- (O.o. 1.0) Y(0.64. 0.01 V(-1.:36. tLO)

= (-0.0. 0 .. 36)- (0.0. 1.0) * (0.8. 0.0) * (0.0. 1.166)

= (0.933. 0.:36)

whereas the CH expression z- i*SQRT (complex (1- y, - 0. 0)) *SQRT (complex (-1 -y, -0. 0))

is computed by

w = (-o.o. 0.36)- (O.o. 1.0) Y(0.6-L -0.0) V(-1.:36. -0.0)

= (-0.0. 0 .. 36)- (0.0. 1.0) * (0.8. -0.0) * (0.0. -1.166)

= (-0.9:3:3. 0.36)

For point z = complex(-0.0. -0.36). the first expres,ion i:-; computed as follow,;

w = (-0.0. -0.:36)- (0.0. 1.0) Y(O.O. 1.0) * (-0.0. -0.:36) + 1 Y(O.O. 1.0) * (-0.0. -0.:36)- 1

(-o.o, -0.36) - (o.o. 1.0) V(o.:36. -o.o: + 1 V(0.36. -o.o) - 1

(-o.o, -0.36)- (0.0. 1.0) Y(1.36. o.o) Y(-0.64. -o.o;
(-0.0. -0.36)- (0.0. 1.0) * (1.166. 0.0) * (0.0. -0.8)

(-0.9:)3. -0.36)

whereas the second expression is computed by

w = (-o.o. -0.36)- (O.o. 1.0) Y(1.36, -o.o) V(-0.64. -o.o)

= (-0.0. -0.36)- (0.0. 1.0) * (1.166. -0.0) * (0.0, -0.8)

= (-0.933, -0.36)

102 CHE'\iG

-3 -2 _, 0 2 3

u(x,y)

FIGURE 6 The flow around a unit disk for :x: = -0.0.

In this simple example, we are able to avoid the

coercion of sign of zeros by simplifying the multi

plication of i * z manually. This kind of reformu

lation will be quite difficult when a problem is

complicated. l\"ote that the coercion of sign of ze

ros by the imaginary number i outside the square

root function will not make a difference in confor

mal mapping because no branch cuts are in

volved. With an appropriate design for the sign of

zeros in complex operations and complex func

tions, the left-hand arc of the unit circle can also

be obtained using x = -0.0 in a program. There

fore one may also attribute much of the misbehav

ior in Figure 3 to the lack of recognition of the sign

-2
_,

I

/
/

I ' I

I / /

:l<~·
';.··

\\'"':. ... - -
·.\><~"

\ '

\

\

/

/
/

/

\ ',

0

X

\

\
\

\

2

FIGURE 7 The radial straight line~ in the z-plane.

of zeros m a computer programming language

[20].

Example2

The second example also deals with conformal

map. If a liquid is forced by high pressure to jet

into a slot. streamlines will be formed around the

opening of slot. The conformal map w(z) = 1 + z 2

+ zV z2 + 1 + log(z2 + zY z 2 + 1) will map radial

straight lines. including the imaginary axis, in the

right half-plane onto these streamlines. The fol

lowing CH program can compute these streamlines

with data saved in filed slotfiow. out.

FILE *stream; complex z, w; float r;

stream = fopen (11 slotflow. out 11
,

11
W

11
) ;

k = -5;

int k;

while (k <= 5)

{

}

r = 0.01;

while(r <= 1. 8)

{

z = polar (r, (pi/10) *k);

w = 1 + z*z +z*sqrt(z*z +1) +log(z*z +z *sqrt(z*z +1))

fprintf (stream, "%f %f \n", real (w), imaginary (w));

r += 0. 01;

}

k++;

fclose (stream) ;

CmJPU:X :\"C\IBEHS 1:\" <:1 1 PHOGH\.\L\IL\G L\:\"CL\CE 103

'

~-;::;;}:~< //

~~<~:--<,,-
I.
I

i
I

i
l

0 -+------------,------------,----------~
I

-5 0 5 10

u(x,y)

FIGURE 8 The flow forced into a slot in the u•-plane

with z = polarlr. (})or z = complex!FLT_\11:\"IMl .\I. Y).

The radial straight lines in the z-plane and corre

sponding images in the w-plane are shown in Fig

ures : and 8. respectively. Points along radial

straight lines in the z-plane are generated by the

function polar(r.theta). where r runs from 0.01 to

1.8 with a step size of 0.01 and theta from -1r12

to 1rl2 with a step size of 1r110. If r in the above

program is 0. w will be Complexlnf: correspond

ingly. real(w) and imaginary(w) become :\"a~s. It

appears in Figure 8 that complex infinities in the

w-plane are located in (u. u) = -x + (y with -7r 12

:::; y 1rl2 for different streamlines: but. there is

actually only one complex infinity. The origin of

the z-complex plane is mapped to Complexlnf in

the extended finite complex plane in a one-to-one

manner with w(complex(O.O, 0.0)) = Complexlnf.

In CH, all points on the w-plane with their real

parts less than -FLT_MAX are treated as Com

plexlnf as shown in Figure 2. The picture of w(zJ is

symmetrical about the real axis because w(z) =

w(z). The conformal map can be viewed as fol

lows. Along the imaginary axis with x = 0. as ,Y

running from -x through -1 toward 0. and then

from 0 through 1 toward x, the image in the

w-plane runs from left to right along the lower wall

and back along the lower free boundary of the jet

toward infinity, then from the infinity to the upper

free boundary, finally, from left to right along the

upper free boundary and back along the upper

wall. Interestingly, lower and upper free bound

aries and other streamlines can be considered to

merge at the infinity of Complexlnf in the w

plane. which corresponds to the origin of com

plex(O.O. 0.0) in the z-plane.

Note that there are slits in the imaginary axis

with z 2 < -1 beyond ± i. Points generated by z =

polar (r, pi I 2) may not be exactly on the

imaginary axis due to roundoff errors. lf we are

cautious. we mav want to exarnine the behavior of

this conformal map without the effect of roundoff

errors introduced by the polar() function. To sup

press the contribution of the perturbation effect of

roundoff errors. points along the imaginary axis in

the z-plane can be generated by z = com

plex (0. 0, y). \\hen the two radial lines along

the imaginary axis are calculated by z = com

plex(O.O, y) withy running from 0.01 to 1.8 and

from -0.01 to -1.8. the corresponding images in

the w- plane are plotted in Figure 9. Like the pre

vious example. the lower walL part of the image.

disappears. which can be explained as follows.

The walls u = i1r and u = -i1T' in the w-plane are

the images of points in the imaginary axis z = (Y

with .Y > 1 andy < -1, respectively. The curve

forward from u = i1r then back to w = -lnf + i1r I 2

is the image of the segment of z = Zr with 0 < y <
1. ·when z = - iJ· withy> \,; w(z) becomes 1 - y 2

+ .YY.y2
- 1 + log(y2

- y .Y
2

- 1) + i1r. which

will map the slit on the lower part of the imaginary

axis onto the tiny segment of the upper wall as is

shown in Figure 10. This result holds even if the

..............
I

i
i
i

0 -+------------,------------,----------~
I

-5 0 5 10

u(x,y)

FIGURE 9 The flow forced into a slot in the w-plane

·with z = cornplex(O.O. y) for the imai!inary axis in the z

plane.

104 CHE:'\G

0 -+------------~----------~----------~ I

-5 0 5 10

u(x,y)

FIGURE 10 The true image in the w-plane for the

negative imaginary axis in the z-plane.

sign of zeros is respected with -7r ::::: 0 ::::: 7T as

proposed [20]. This phenomenon is due to the

singularity along the slit. 1\ote that like the hori

zontal line in Figure S, the vertical straight line.

which connects the tiny segment in u = i7T and the

streamline in the lower part of Figure 10 .. is pro

duced by graphical interpolation. This straight

connection line is not mapped from points in the

z-plane. 1\evertheless, a small perturbation of x,

when y runs from -oo to -1, can bring back the

missing lower wall. How tiny should x be is a non

trivial question in most computer languages as

pointed out by Kahan [20]. In C11
, however, there

is a definitive answer to this question. If x for

the imaginary axis in the program is set to any

small positive number that is larger than or

equal to FLT_MINIMUM, that is, z = complex

(FLT_MINIMUM, y), the missing lower wall in Fig

ure 9 can be recovered. It is interesting to point

out that if the conformal mapp~function is

chosen as w(z) = 1 + z 2 + zVz + i ~ +
log(z2 + zv;-+i ~), the tiny segment of

the wall that appears in Figure 10 will become a

full wall, but other behaviors like locations of slits

remain the same.

The above two examples demonstrate that con

formal maps may misbehave along slits. However,

a small perturbation normally will bring back the

missing information. Decreasing the step size in a

loop of a program may also recover the critical

information, which resembles the handling of nu-

merical solutions for stiff differential equations in

some aspects.

8 CONCLUSIONS

Complex numbers are generalization of real num

bers. Complex numbers are manipulated in the

same manner as real nurnbers in CH. Because

complex is implemented as a basic data type in

the C 11 programming language, the numerical

computation can be handled in a much integrated

fashion. CH treats floating-point real numbers

with signed zeros and complex numbers with un

signed zeros as well as 1\ot-a-l\umber and infini

ties in an integrated consistent manner.

For scientific computing with complex num

bers, the extended finite complex plane along ·with

complex metanumbers of ComplexZero. Com

plexlnf. and Complexl\al\ are introduced in this

article. The l/0 for complex numbers and data

conversion rules between real numbers and com

plex numbers are defined. The results of complex

arithmetic and relational operations. and poly

morphic mathematical functions with complex

metanumbers as input arguments are also de

fined. These may be different from the results ob

tained directly according to their definitions for

regular complex numbers. Besides the polymor

phic nature in which the algorithms and resultant

data types of arithmetic operations depend on the

data types of operands .. the algorithms and resul

tant data types of mathematical functions are re

lated to the input arguments: mathematical func

tion in CH can have a variable number of

arguments. In case a function becomes a complex

function, additional integral arguments in com

paring with its real counterpart indicate which

branch of a multiple-valued complex function

shall be invoked. It is the first time, I believe. that

such simplicity is introduced in a general-purpose

computer programming language for scientific

computing with complex numbers. Example pro

grams show that the external complex functions in

CH can be programmed in the same syntax of the

ANSI C and treated as if thev were the internallv . .
built-in functions.

The rationales for the decision of the designed

features, related to complex numbers in CH. have

been provided from language design, implemen

tation, and application points of views. We have

demonstrated in CH programs the effective han

dling of branch cuts of multiple-valued complex

functions that are difficult to handle for most

other computer programming languages.

CO~IPLEX '\l ~IBEHS 1'\ C 11 PHOCHA~l~ll'\G L\'\CL\GE 105

ACKNOWLEDGMENTS

The author would like to thank the referees for

their thoughtful comments that improved the

quality of this article.

REFERENCES

[1] H. I I. Chenf!. ··Scientific Computing in the C11

Programming Languaf!e. Department of .\lechan

ical. Aeronautical and .\laterials Engineering.··

Cniversity of California. Davis. Technical Report

TH-.\lA~lE-9:3-101. Fehruarv 18. 199:3.

[2] A'\SI. .cLYS/ Standard .\3. 9-197'1. Programming

Language Fortran •.revision of A:\Sl X2.9-1966j.

:\ew York: A'\SI. 19"78.

'31 C. S. Hodgson. ··Proposed Standard for Packaf!eS

of Heal and Complex Type Declarations and Ba

sic Operations for Ada (including \ector and ~la

trix Types;.·· ACll Ada Lett .. vol. XI. 1991. pp.

91-130.

[4] G. S. Hodf!son. ··Rationale for Proposed Stan

dard for Packages of Real and Complex Type

Declarations and Basic Operations for Ada (in

cluding \ector and .\latrix Typesj ... ACJJ Ada

Lett .. vol. XI. 1991. pp. V31-1:39.

[.S] J. S. Squire. '·Proposed Standard for a Generic

Package of Complex Elementar-v Functions.··

ACJJ Ada Lett .. vol. XI. 1991. pp. 140-16;-).

l6 J. S. Squire. ··Rationale for the Proposed Stan

dard for a Generic Package of Complex Elemen

tar-y Functions.·· ACJJ Ada Lett .. vol. XI. 1991.

pp. 166-1:9.

[":'] D . .\1. Ritchie. and K. L. Thompson. ··The unix

time-sharing system.·· Commun. ACU. vol. 1:.

pp. 365-:3:5. 19 7 '±.

!8] B. \\. Kernighan and D . .\l. Ritchie. The C Pro

gramming Language. Englewood Cliffs. '\J:

Prentice-Hall. Inc .. 1st edition (K be RC). 19 7 8:

2nd edition (A'\Sl C). 1988.

:9J B. Stroustrup. The c++ Programming Language.

Reading . .\lA: Addison-,,.eslev. 198"7.

[10] IEEE. ot\SI/!EEE Standard 75-1-1985. f£1:"E

Standard for BinaT)· Floating-Point Arithmetic,

Piscataway. '\J: IEEE. 1985.

[11] A'\SL A.\SI Standard X3.1.59-1959. Program

ming Language C. :\ew York. A'\SI. 1989.

[12] R. \.Churchill. and J. \\.Brown. Complex Vari

ables and Applications 4th edition). '\ew York:

.\1cGraw-Ilill. 1984.

[13] J. E . .\1arsden. Basic Complex Ana(l·sis. San

Francisco. CA: \\. H. Freeman. 19"73.

[14] G. L., Steele. Jr., Common Lisp: the Language

(2nd edition). Bedford . .\lA: Digital Press. 1990.

[15] S. Wolfram, Mathematica: A System for Doing

Mathematics by Computer. Redwood City, CA:

Addison-Wesley, 1988.

16, .\lath \\ orks. Pro-JJA TLAB Cser 's Guide. South

'\tHick . .\lA: The .\lath Works. Inc .. 1990.

:1:1 A'\SI. ASSl/!EL'L' Stcmdard 770 X.J.97-19'1.'3.

[18]

r19 l .

[201

/L'EJ-: Standard Pasral Programming Language.

Piscataway. '\.I: IEEE. 19~t3.

C. Lanczos. ·'A precision approximation of the

gamma function ... J. SJA:'vl .Yumerical Arza(n;is.

Ser. B. vol. L pp. 86-96. 1964.

\\·. II.. Press. B. P. Flannery. S. A. Teukolsky.

and \\·. T. \·etterling . . \umerical Recipes in C:

The Art of Scientific Computing. Cambridge . .\fA:

Cambridge Lniversity Press. 1990.

\\·. Kahan. ""Branch cuts for complex Plementan·

functions or much ado about nothing· s sign bit.··

The State of the Art in .\umerical Ano(1·sis. Ox

ford: Oxford Lniversity Press. pp. Eio-211.

198"7.

·21· J. Thomas. Floating-point C extensions . . \'CEG

X.'JJ11.1/98-00 . .Tan. 20.199:3.

[22] F. Tydeman. ··.\Ierging complex and IEEE-"745 ...

Document X:3J11.1 ('\CEC: 92-061.

[23] H. H. Cheng. "Computations of dual numbers in

the extended finite dual plane ... Proceedings of

the 1998 AS.UE Design Automation Conference.

Albuquerque and :\ew York: AS.\IE. 199:3. pp.

:.3-80.

[24] P. Penfield. Jr.. ··Principal values and branch

cuts in complex APL · · APL Quote Quad. vol. 12.

pp. 248-256. 1981.

[25] H. Koher. Dictionary of Conformal Representa

tions. ~ew York: Dover Publications. Inc ..

19;S":'.
[26] H. Baker. ··Less complex elementary functions.··

AC.H SJGPLA.\ .\'otices. mi. 2"7 .. pp. 15-16.

1992.

[2"7] D. S. Collens .. ··Algorithm 243: logarithm of a

complex number.·· Collected Algorithms From

C40/ (vol. II). 1980.

~281 P. Friedland. "Algorithm 312: absolute value

and square root of a complex number.·· Collected

Algorithms From C.ICJ1. (vol. II). 1980.

[29] J. R. Herndon. ""Algorithm '±6: exponential of a

complex number.·· Collected Algorithms From

CACH (vol. I) 1980.

[30] J. R. Herndon. ""Algorithm '±8: logarithm of a

complex numher. · · Collected Algorithms From

CAC.l.J (vol. l). 1980.

[31 j J. R. Herndon ... Algorithm 53: nth roots of a com

plex number. .. Collected Algorithms From CAC.H

(vol. l). 1980.

[32] .\1. L. Johnson and\\. Sangren. ··Algorithm 106:

complex number to a real power. .. Collected Al

gorithms From CAC.U (mi. 1). 1980.

[33] H. Kuki, ·'Algorithm 421: complex gamma func

tion with error control.·' Collected Algorithms

From CACM (vol. 1), 1980.

[3'±] C. \\. Lucas Jr. and C. \\". Terrill. ""Algorithm

404: complex gamma function ... Collected Algo

rithms From CACA! (vol. 1). 1980.

106 CHENG

[35] A. P. Relph, "Algorithm 190: complex power."

Collected Algorithms From CAC:l1 (vol. I), 1980.

[36] R. L. Smith, "Algorithm 116: complex dh;sion. ''

Collected Algorithms From CACM (vol. I), 1980.

[37] R. P. Van de Riet, "Algorithm 186: complex

arithmetic." Collected Algorithms From CACM

(vol. I), 1980.

[38] Dritz, K. W., "Proposed Standard for a Generic

Package of Elementary Functions for Ada.'· Ada

Numerics Standardization and Testing, ACM

Ada Letters, vol. XI, No.7, Fall, 1991, pp. 9-46.

[39] W. Kahan and J. W. Thomas, "Augmenting a

programming language with complex arith

metic," Document X3J11.1 (NCEG), pp. 91-

039.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

