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Abstract

Understanding the data and reaching accurate conclusions are of paramount importance 
in the present era of big data. Machine learning and probability theory methods have been 
widely used for this purpose in various fields. One critically important yet less explored 
aspect is capturing and analyzing uncertainties in the data and model. Proper quantifica-
tion of uncertainty helps to provide valuable information to obtain accurate diagnosis. 
This paper reviewed related studies conducted in the last 30  years (from 1991 to 2020) 
in handling uncertainties in medical data using probability theory and machine learning 
techniques. Medical data is more prone to uncertainty due to the presence of noise in the 
data. So, it is very important to have clean medical data without any noise to get accurate 
diagnosis. The sources of noise in the medical data need to be known to address this issue. 
Based on the medical data obtained by the physician, diagnosis of disease, and treatment 
plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited 
knowledge to address these problems. Our findings indicate that there are few challenges to 
be addressed in handling the uncertainty in medical raw data and new models. In this work, 
we have summarized various methods employed to overcome this problem. Nowadays, 
various novel deep learning techniques have been proposed to deal with such uncertainties 
and improve the performance in decision making.

Keywords Uncertainty · Bayesian inference · Fuzzy systems · Monte Carlo simulation · 
Classification · Machine learning

 * Roohallah Alizadehsani 
 ralizadehsani@deakin.edu.au

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3069-7932
http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04006-2&domain=pdf


 Annals of Operations Research

1 3

1 Introduction

Machine learning is widely used in academia and industry to analyse big and com-
plex datasets to uncover the hidden patterns and reach conclusive insights. It is well 
known that the performance of machine learning models has a close relationship not 
only with the selected algorithms but also depends on the nature of data (Schmidt et al., 
2019). For example, having significant amount of missing values and noise in the data 
can affect the results. Indeed, such uncertain data are present in various fields such as 
energy systems (Gallagher et al., 2018; Soroudi & Amraee, 2013), web (Nguyen et al., 
2019), image (Shadman Roodposhti et al., 2019), disease and healthcare (Alizadehsani, 
2019a, b, c; Alizadehsani et al., 2020; Arabasadi et al., 2017; Reamaroon et al., 2019), 
and the Internet of Things (Dilli et  al. 2018). Hence, having such uncertainty in the 
medical data will makes the decision-making process difficult (Fig. 1).

Machine learning algorithms that can model uncertainty to reveal beneficial infor-
mation for a better decision-making process will be of great use. Generally, uncer-
tainty may be due to two reasons: data (noise) uncertainty and model uncertainty (also 
called epistemic uncertainty) (Gal, 2016). It is likely to have noise among labels due to 
measurement imprecision which may lead to aleatoric uncertainty. Meanwhile, model 
uncertainty can be divided into two main types: structure uncertainty and uncertainty in 
model parameters (Gal, 2016). In structural uncertainty, we find out the type of model 
structure to be used and to specify our proposed model for either extrapolating and/or 
interpolating. In the second type, i.e. uncertainty in model parameters, optimal model 
parameters are selected for more accurate predictions.

For the first time, Renée Fox conducted few studies which showed the uncertainties 
faced by physicians during their training (Fox, 1957, 1980). After that, other research-
ers too acknowledged the central problematic nature of this problem. Although in health 
care, the importance of uncertainty has been growing, we have limited knowledge about 
the solutions to these problems. The aim of this paper is to review the related studies 
in the domain of uncertainty quantification in the field of medical science. The results 
obtained showed that uncertainty is a common challenge among different raw data and 
various models. Moreover, most of the applied algorithms are Bayesian inference, fuzzy 
systems, Monte Carlo simulation, rough classification, Dempster–Shafer theory, and 
imprecise probability.

Fig. 1  Having uncertainty makes 
the decision-making process 
difficult
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The organization of the other sections is described as follows. The search criteria 
used for finding papers is explained in Sect.  2. Section 3 provides more details about 
machine learning and probability theory methods used for handling uncertainty. Discus-
sion and conclusion sections are presented in Sects. 4 and 5, respectively.

2  Search criteria

To perform this review, we performed Google scholar search for the papers published 
between 1 January 1991 and 31 May 2020. We have obtained most of the published 
papers by IEEE, Elsevier and Springer. The search keywords used for this study is 
Bayesian inference OR fuzzy systems OR Monte Carlo simulation OR rough classifica-
tion OR Dempster–Shafer theory OR Imprecise probability AND Medical Science.

Then, about 324 papers in English language are selected and those which do not make 
significant impacts were removed from the list. Hence 91 high quality papers indexed 
in Scopus or PubMed or having a large number of citations are considered. Then, we 
reviewed the references of all the selected papers to find more relevant papers. Finally, 
74 papers are selected in this step to be added to 91 previously selected papers. Overall, 
165 papers are investigated in this review. This procedure is illustrated in Fig. 2. The 
scientific quality of the research overviews was assessed by the criteria listed in Table 1.

In Fig. 3, the research trend in the past 30 years is shown. It is clear from the dia-
gram that handling uncertainty in the medical data has received more attention in recent 
years.

Search Google Scholar by the search query

Select candidate papers

IEEE (21)Elsevier (24) Springer (15)Other publishers (31)

Scan the references of selected 

papers and their citations. 

IEEE (44)Elsevier (56) Springer (26)Other publishers (39)

Fig. 2  Paper selection mechanism
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3  Uncertainty handling algorithms in medical science

According to the extracted papers, the most common algorithms in this field are Bayesian 
inference, fuzzy systems, Monte Carlo simulation, rough classification, Dempster–Shafer 
theory, and imprecise probability shown in Fig. 4. The most of the published papers in this 
field have used these algorithms to handle the uncertainties.

Table 1  The scientific quality of 
papers was assessed according to 
the following items

(1) If the search methodology was reported

(2) If the search methodology was comprehensive

(3) If the inclusion criteria were reported

(4) If the validity of criteria was reported

(5) If the validity was assessed properly

(6) If the findings were combined properly

(7) If the conclusions supported the reported data
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Fig. 3  Number of papers published in handling uncentainity in medical data between 1991 and 2020

Fig. 4  Most common algorithms 
used to handle uncertainties
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3.1  Bayesian inference (BI)

BI is the famous statistical inference techniques which utilizes Bayes’ theorem in its 
inference mechanism (Akkoyun et  al., 2020; Corani et  al., 2013; Howle et  al., 2017; 
Kourou et al., 2020; Seixas et al., 2014; Wang et al., 2019; Watabe et al., 2014). If there 
is more information or evidence, the probability of a hypothesis can be updated by uti-
lizing Bayes’ theorem (Ocampo et al., 2011).

Different probabilities are described by modelling experience or knowledge base 
using BI which is a sort of expert system. A fundamental model is indicated by these 
probabilities. Based on the fundamental model, a conclusion is acquired by repeating 
the Bayes’ theorem using the inference engine. The following equation denotes the 
Bayes’ theorem, using the events N and Y.

where Y is particular combinations of signs and symptoms of a patient and N represents 
the fact “a patient suffers from a particular disease”. By going through symptoms of Y, the 
probability of a person suffering from an ailment is equal to the probability of Y multiplied 
by the probability of the occurrence of the symptoms Y, whether the ailment prevails or not 
and it is shown as:

and

Therefore,

From which we get:

Bayes’ theorem repeatedly is applied to find a likely diagnosis of the ailment and 
details are described structurally as above.

A priori probability of hypothesis, given it is false or true can be utilized to calculate 
the probability of specific hypothesis in this specific case. Hence in the case of element 
of evidence, Bayes’ theorem can be represented based on indicative data and ailments 
as follows:

P(G) depicts the likelihood of occurring an ailment and it starts with P(G) = PJ for each 
ailment. P(G/F) is computed by acquiring the data from the user. The prior rule is applied 
when a symptomatic datum prevails. Otherwise, PT and PM are substituted by (1-PT) and 

(1)P(N∕Y) =
P(Y∕N) ∗ P(N)

P(Y∕N) ∗ P(N) + P(Y∕noN) ∗ P(noN)

(2)P(N∕Y) =
P(N ∩ Y)

P(Y)

(3)P(Y∕N) =
P(N ∩ N)

P(N)

(4)P(Y ∩ N) = P(Y∕N) ∗ P(N) = P

(

N

Y

)

∗ P(Y)

(5)P(N∕Y) =
P(Y∕N) ∗ P(N)

P(Y)

(6)P(G∕F) =
PT ∗ PJ

PT ∗ PJ + PM ∗ (1 − PJ)
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(1-PM) by applying the same rule. A priori probability P(G) is substituted by P(G/F) as the 
outcome of each datum.

3.1.1  Related work based on bayesian inference

The accuracy of screening tests that are applied to identify antibodies to the human immu-
nodeficiency virus with the help of Bayesian methods devised by Johnson et al. (Johnson & 
Gastwirth, 1991). They tried to assess the incidence of the disease from the collected sam-
ples. Approximate predictive distributions for the number of future individuals that would 
test true positive was estimated by utilizing a novel sample or population of interest.

Robertson et  al. (2010) proposed an accessible and agile adoption of Bayesian infer-
ence to design an expert system for medical diagnosis. It can be used by mid-level and low 
health workers in rural and remote locations. They suggested that the success of the expert 
system depended on the clinical interface for use in specific regions, rapid adaptation of the 
database, and by varying user skills.

Mazur (2012) assessed the Bayesian inference in the context of medical decision mak-
ing that had three key developments: (1) need for data recognition, (2) progress of inverse 
probability, and (3) development of probability. The author examined Bayesian inference 
development from the beginning with the effusive evidence of the clinician’s sign to the 
work of Laplace, Jakob Bernoulli, and others.

In (Ashby, 2006), Ashby examined the usage and applicability of Bayesian thinking 
in medical research. He reviewed the Bayesian statistics in medicine launched in 1982 to 
technologies associated with medical decision making such as molecular genetics, survival 
modeling, longitudinal modeling, spatial modeling, and evidence synthesis.

Suchard et  al. (2006) proposed Bayesian posterior sampler called BAli-Phy that 
exploited Markov chain Monte Carlo to study phylogeny and the joint space of alignment 
given molecular sequence data. Their model automatically used information in shared dele-
tions/insertions to help deduce phylogenies by utilizing more sophisticated substitution 
models in the alignment process.

The authors of (Mendoza-Blanco et al., 1996) utilized the theories of simulation-based 
techniques and missing-data analysis to develop a framework of Bayesian analysis to esti-
mate the prevalence of immunodeficiency virus (HIV). Different practical considerations 
that arose from HIV screening was taken into account by their flexible techniques.

In (Huang et al., 2011), Huang et al. presented a Bayesian approach that mutually mod-
els three components. There were covariate, response, and time-to-event procedures linked 
thorough the random effects that demonstrated the vital individual-specific longitudinal 
procedures. The occurrence of CD4 covariate procedure having calculated errors in the 
HIV dynamic response was discussed and scrutinized disease progression by decreasing 
CD4/CD8 ratio to evaluate antiretroviral treatment.

The distributed and big data in the medical informatics platform framework of the 
Human Brain Project was analyzed by Melie-Garcia et al. (2018). They applied multiple 
linear regression (MLR) techniques. The Bayesian formalism offered the armamentarium 
necessary to execute MLR techniques for distributed big data. Their technique combined 
multimodal heterogeneous data coming from various hospitals and subjects around the 
world and recommended urbane ways that can be extendable to other statistical models.

The authors of (Johnston, 2015) devised novel generalizable theoretical and physically 
motivated model mitochondrial DNA (mtDNA) populations by assigning the first statisti-
cal comparison of proposed bottleneck mechanisms.
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In (Huang et al., 2010), a hierarchical Bayesian modeling technique has been presented 
to devise a method induced by an AIDS clinical study. Long-term virologic responses are 
characterized by integrating fully time-dependent drug efficacy, baseline covariates, phar-
macokinetics, and drug resistance into the model. The experimental results showed that 
modeling virologic responses and HIV dynamics with consideration of baseline character-
istics as well as time-varying clinical factors might be critical for HIV studies.

Henriquez et  al. (2016) examined the Bayesian inference dilemma in medical analyt-
ics and asserted the need for probabilistic reasoning tools which is user-friendly in nature. 
These papers are briefly described in Table 2.

3.1.2  Related works based on Bayesian Deep Learning

Bayesian neural networks (BNNs) are used to add uncertainty handling in models. As it is 
shown in Fig. 5, BNNs learn the parameters of a random variable instead of deterministic 
weights. Then, backpropagation is used to learn the parameters of the random variables.

In some works, Bayesian neural network has been used to handle uncertainty (Zhang 
et al., 2009). We have presented few such works below.

Kendall et al. (2016) designed a visual relocalization system which has six degrees of 
freedom. It is a robust and real-time monocular system which is able to work indoors and 
outdoors scenes. It used the Bayesian convolution neural network (CNN) to obtain an accu-
rate localization system on an outdoor dataset. Meanwhile, it has been able to detect the 
presence of the scene in the input images. Kendall et al. (2015) proposed a learning algo-
rithm based on deep learning for probabilistic semantic segmentation. The main goal of 
the algorithm is to understand the visual scene. It also can take care of uncertainty during 
decision making. It has been done by Monte Carlo sampling with dropout in the test phase 
to generate the posterior probability of the pixel labels. By modelling uncertainty, the seg-
mentation performance improved by about 3%. Especially in the small dataset, the perfor-
mance improved significantly because modelling uncertainty is more effective.

Although perception tasks such as object detection need human intelligence, a sub-
sequent task that needs inference and reasoning needs more human intelligence. Nowa-
days, new algorithms like deep learning could extremely improve perception tasks (Ali-
zadehsani et al., 2021; Asgharnezhad et al., 2020; Ghassemi et al., 2019, 2020; Khodatars 
et al., 2020; Mohammadpoor et al., 2016; Sharifrazi et al., 2020; Shoeibi et al., 2020a, b; 
Shoeibi, 2021; Shoushtarian et al., 2020). However, for higher-level inference, probabilistic 
graphical models are more powerful than other algorithms. Probabilistic graphical models 
are based on Bayesian reasoning. So, it seems that integrating deep learning and Bayes-
ian models could handle both perception and inference problems which is called Bayes-
ian deep learning. These two sections of the unified framework could boost each other. 
The object detection using deep learning improved the performance of a higher-level infer-
ence system. Then, the inference process feedback can enhance the object detection task. 
In (Wang & Yeung, 2016), a general framework was proposed for Bayesian deep learning. 
Then, it was used in recommender or control systems.

In (Gal et  al., 2017), an active learning framework is combined with Bayesian deep 
learning. Using the advantage of Bayesian convolutional neural network, they have 
achieved significant improvement in the existing active learning approaches, especially on 
high dimensional data. They tested their proposed algorithm on the MNIST dataset and 
also for skin cancer diagnosis. Two main branches of uncertainty modelling are aleatoric 
and epistemic. The former handles uncertainty in data and the later handles it in the model. 
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Kendall et  al. (2017) focused on epistemic uncertainty in computer vision using Bayes-
ian deep learning models. They combined aleatoric uncertainty with epistemic uncertainty. 
The framework has been modelled with semantic segmentation and depth regression tasks. 
In addition, the formulated uncertainty resulted in a new loss function. This new loss func-
tion was robust to data uncertainty. In (Chen et al., 2013), a model has been created by a 
hierarchical convolutional factor-analysis. The parameters of layer-dependent model have 
been obtained by variational Bayesian analysis and Gibbs sampler. An online edition of 
variational Bayesian was used to handle large-scale and streaming data. Using beta-Ber-
noulli distribution, they estimated number of basic functions at each layer which is used for 
image processing applications.

Instead of Gaussian process (GP) to model distributions over functions, Snoek et  al. 
(2015) used neural networks and showed that the performance of their method could over-
take state-of-the-art GP-based approaches. However, unlike GP which scales cubically, 
this method scales linearly with the number of data. Using this modification, they have 
achieved intractable degree of parallelism, rapidly finding other models using convolu-
tional networks, and some other applications such as image caption generation. Nowadays, 
one of the states-of-the-art fields is object detection using a deep convolutional neural 
network (CNN). Using this method, Zhang et al. (2015) extracted discriminative features 
for categorization. They used for localization using a Bayesian optimization to detect the 
object bounding box. In (Gal & Ghahramani, 2015), as labelled data is hard to prepare, the 
authors have applied CNN on small data and hence faced the overfitting problem. To over-
come this problem, Bayesian CNN is proposed which offered better robustness for small 
data. This has been obtained by pacing the probability distribution on CNN kernels. Ber-
noulli variational distributions are used to approximate the created model. Hence, they did 
not need additional model parameters. Theoretically, they cast dropout network training 
as approximate inference in the neural network. So, they used existing tools in deep learn-
ing without increasing the time complexity. Hence, achieved considerable improvement in 
accuracy as compared to other prevailing techniques.

Bayesian parameter estimation for the deep neural networks is suboptimal for issues 
with small datasets. This problem also exists where accurate posterior predictive den-
sities are needed. Monte Carlo method can be utilized as one of the solutions for this 
problem. However, this method need to keep many copies for various parameters. It 
also need to make a prediction in many versions of the model. These two problems 

Fig. 5  Classical backpropagation sets fixed values as weights (left) while in Bayesian neural network a dis-
tribution is assigned to each weight (right)
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uses memory and time respectively. In the proposed method in (Korattikara et  al. 
2015), a more compact form of Monte Carlo approximation to the posterior predictive 
density is suggested. Then it is compared with two prevailing approaches: an approach 
depended on expectation propagation and variational Bayes. Authors claimed that, 
their method performed better than other two approaches.

Authors in (Dahl et  al., 2013), used their proposed method with ReLUs and 
enhanced their overall system’s performance by 4.2% with respect to deep neural net-
works (DNN) model trained with sigmoid units and 14.4% with respect to the well-
built Gaussian mixture / hidden Markov technique. Also, this method needs minimum 
hyper-parameter tuning using a regular Bayesian optimization code.

In (Louizos et  al., 2017), Bayesian method has been used to handle this problem. 
Two novelties of the proposed method are: (i) pruned nodes instead of individual 
weights and (ii) used posterior uncertainty to resolve the best possible fixed-point pre-
cision to decide the weights. These two factors improved the performance of the sys-
tem. One of the flexible probabilistic models is Bayesian neural network with latent 
variables. These models can be used to estimate the network weights. Using these 
models, Depeweget al. (2018) showed the performance of decomposition of uncer-
tainty for decision-making purposes. These methods can identify informative points of 
functions when these points had heteroscedastic and bimodal noise. By decomposition, 
they also define a risk-sensitive criterion for reinforcement learning. Using this learn-
ing method, a policy that balanced the expected cost, model-bias, and noise aversion 
can be found.

3.2  Fuzzy logic

Mathematicians define a fuzzy set as a class of objects whose elements have a degree 
of membership which is determined by a membership function. Fuzzy logic (Zadeh, 
1988) is a method that its concepts are defined based on fuzzy set. In fuzzy logic, 
descriptive expressions are used for facts and rules expressions. The fuzzification oper-
ator is used to convert crisp values into fuzzy membership functions (Zadeh, 1988). 
Defuzzifying operations are used to map fuzzy membership functions into standard 
numbers which are used for decision and control purpose. To convert a standard sys-
tem to fuzzy system, the following three steps are done (Zadeh, 1988).

(1) Convert the inputs into fuzzy membership functions (Fuzzification).
(2) Apply fuzzy rules to fuzzy input values to estimate the fuzzy outputs.
(3) Convert the fuzzy outputs to standard outputs (Defuzzification).
 

Fuzzy logic maybe used to model uncertainty (Dervishi, 2017; Khodabakhshi 
& Moradi, 2017; Majeed Alneamy et  al., 2019; Ornelas-Vences et  al., 2017; Rundo, 
2020; Sengur, 2008; Toğaçar et al. 2020). However, there is a more powerful extension 
of it dubbed adaptive neuro-fuzzy inference system (ANFIS) that integrated the learn-
ing capability of fuzzy logic with neural networks to model uncertainty in expressive-
ness. Fuzzy logic is utilized to model uncertain scenarios and that model is learned by 
neural network. In the next section, it will be explained in detail.
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3.2.1  ANFIS

The building block of ANFIS is Takagi–Sugeno fuzzy inference system (Karaboga & 
Kaya, 2019). It is capable of capturing the benefit of fuzzy logic and artificial neural 
network both as it integrates two of them into a single framework. The IF–THEN fuzzy 
rules are utilized to learn approximate nonlinear functions in this inference system. The 
best parameters extracted from the genetic algorithm may be used to apply ANFIS in an 
optimal and efficient way. It is termed as a universal estimator and applies a situational 
aware intelligent energy management system. This architecture is comprised of five lay-
ers. The fuzzification and rule layers are the first and second layers respectively. The 
fourth layer takes the input from the third layer that normalized the values. The defuzz-
ificated values are passed to the last layer that returns the final output.

The rule base comprises of a fuzzy if–then rules of Takagi and Sugeno’s type as 
depicted below:

If x is A and y is B then z is f(x,y).

where z = f(x,y) is a crisp function in the consequent, and A and B are the fuzzy sets in 
the antecedents. A first order Sugeno fuzzy model is formed if f(x,y) is considered as first 
order polynomial. To form a first order two rule Sugeno fuzzy inference system, two rules 
may termed as below:

Rule 1: If x is  A1 and y is  B1 then f1 =  p1x +  q1y +  r1.
Rule 2: If x is  A2 and y is  B2 then  f2 =  p2x +  q2y +  r2.

The type-3 fuzzy inference system as proposed by Takagi and Sugeno is used here. 
Its structure is shown in Fig. 6 (Liu, 2019).

In this inference system, the input variables added by a constant term linearly form 
the output of each rule.

The individual layers of ANFIS structure are described below:
Layer 1: All the node i in layer 1 are adaptive with a node function

where, x is the input to node i,  �
A

i
 is the membership function of  Ai and  Ai is the lin-

guistic variable related with this node function. The membership function is selected as 
below:

(7)O
1

i
= �

A
i
(x)

Fig. 6  Type-3 ANFIS structure
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or

where {ai,  bi,ci} is the principle parameter set and x is the input.
Layer 2: The firing strength �

i
 of a rule is measured by a fixed node that belongs to this 

layer. The product of each incoming signals to it is the output of this node and is depicted 
as below:

Layer 3: Layer 3 is represented as below:

Layer 4: Every node in this layer is adaptive layer with node function described as 
below:

where �
i
 is the output of the layer 3 and {pi,  qi,ri} is the consequent parameter set.

Layer 5: It is consists of only one fixed node that measures the overall output as the 
summation of all incoming signals. It is described as below:

As shown in Fig.  6, the first and fourth layers are adaptive layers. Three adjustable 
parameters {ai,  bi,  ci} exist and associated with the input membership functions in the first 
layer. These parameters are dubbed as premise parameters. Three adjustable parameters 
{pi,  qi,  ri} exist in the fourth layer. These are termed as consequent parameters.

3.2.2  Related works based on ANFIS

The authors of (Turabieh et  al., 2019) proposed a Dynamic ANFIS (D-ANFIS) to han-
dle the missing values in the application used for the internet of medical things. This way 
they can overcome the potential problems that may occur. In (Ziasabounchi & Askerzade, 
2014), authors devised an ANFIS-based classifier to detect the degree of heart disease 
based on characteristic data of patients. The prediction model utilized seven variables as 
input. Their empirical results yielded an accuracy of 92.3% with k-fold cross-validation 
strategy.

Early diagnosis of chronic kidney disease (CKD) can prevent or reduce the progression 
of renal failure. Yadollahpour et al. (2018) proposed an ANFIS-based expert medical deci-
sion support system (MDSS) to predict the timeframe of renal damage. They considered the 

(8)
�

A
i
(x) =

1

1 +

[

(

x−c
i

a
i

)2
]b

i

(9)�
A

i
(x) = exp

{

−

(

x − c
i

a
i

)2
}

(10)O2

i
= �i = �Ai

(x) × �Bi
(y), i = 1, 2

(11)O
3

i
= �

i
=

�
i

�1 + �2

, i = 1, 2

(12)O4

i
= �ifi = �i

(

pix + qiy + ri

)

, i = 1, 2

(13)O5

i
=

�

i

�ifi =

∑

i �ifi
∑

i �i
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glomerular filtration rate (GFR) as the biological marker of renal failure. The ANFIS model 
utilized current GFR and diabetes mellitus as underlying disease, diastolic blood pressure, and 
weight as the effective factors in renal failure prediction. Their model predicted accurately the 
GFR variations using long future timeframes.

The authors of (Salah et al., 2013) designed a helping device for elderly people. The device 
is called E-JUST assistive device (EJAD). Inertial sensors and a motion capture system recog-
nized human posture. The EJAD comprises of an active walker and a robot arm. Fuzzy system 
applying ANFIS is trained by the modified IMUs to the right posture of the patient.

One of the autoimmune ailments is rheumatoid arthritis (RA) that directs to significant 
mortality and morbidity. Özkan et al. (2010) extracted the key features from the left and right 
hand Ulnar artery Doppler (UAD) signals for the detection of rheumatoid arthritis disease by 
using multiple signal classification (MUSIC) techniques. ANFIS used the features derived 
from left and right hand UAD signals for the classification of RA. The hybrid model com-
prised of ANFIS and MUSIC techniques demonstrated accuracies of 91.25% using left hand 
UAD signals and 95% using the right hand UAD in the early recognition of rheumatoid arthri-
tis disease.

In (Yang et al., 2014), the authors devised a risk assessment prediction model for coronary 
heart disease by optimizing linear discriminant analysis (LDA) and ANFIS methods. They 
applied a Korean Survey dataset. Their technique yielded a lofty prediction rate of 80.2% in 
preventing coronary heart disease.

The authors of (Polat & Güneş, 2006) tried to use k-nearest neighbor (k-NN) and principal 
component analysis (PCA) based weighted for pre-processing of data, and ANFIS to diagnose 
thyroid disease. As the first step, they tried to reduce the dimension of thyroid disease data 
from five features to only two features using PCA. Then based on k-NN, a pre-processing 
phase was applied on data and finally, ANFIS was used for diagnosing thyroid disease.

In (Kumar et  al., 2003), a recursive method has been used for the fuzzy system online 
learning employing Tikhonov regularization. This system was based on the recursive solution 
of a nonlinear least-squares problem. In (Ghazavi & Liao, 2008), a collection of fuzzy systems 
was used. A fuzzy k-NN algorithm, fuzzy clustering, and ANFIS were applied on medical 
datasets. The results showed that feature selection is an important phase for time reduction and 
accuracy increasing of the proposed algorithm.

Papageorgiou (Papageorgiou, 2011) proposed the Fuzzy inference map to handle the prob-
lem of risk analysis and assessment of pulmonary infections in the hospital. Their proposed 
method is a soft computing algorithm which could deal with situations such as uncertain 
descriptions. In (Nguyen et al., 2015), a new method which is a combination of wavelet trans-
formation (WT) and interval type-2 fuzzy logic system (IT2FLS) is used for medical noisy 
and high-dimensional data classification. IT2FLS could handle uncertainty and noise in com-
plex medical data. Their method could serve as a decision support system a technique that is 
applied to compute the uncertainty in variety of fields such as financial problems and project 
management. Overall, this technique is used for predicting models and estimate the probability 
of a system outcome. It is used when we faced in clinical settings. A brief description of these 
works are summarized in Table 3.

3.3  Monte Carlo simulation

It is with a system having random variables. Monte Carlo (MC) simulation helps to 
predict all potential results of a system. This way, the users can take better decisions 
according to the risk and uncertainty of the system. This is why this method is referred 
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to as a probability simulation by some researchers (Arnaud Doucet et  al., 2001). The 
main idea is that one can solve the problem using randomness. This method is com-
monly used in physical and mathematical problems when other methods are hard to 
be used. They are usually used for optimization and numerical integration (Grzymala-
Busse, 1988).

3.3.1  Monte Carlo method

MC techniques are a subset of computational algorithms that utilize the procedure of 
repeated random sampling to obtain numerical estimations of unknown parameters. They 
assess the impact of risk and allow the modelling of critical situations where many ran-
dom variables are engaged (Ghobadi et  al., 2020; Hecquet et  al., 2007; Jeeva & Singh, 
2015; Precharattana et al., 2011). The uses of the method are exceptionally widespread and 
have led numerous innovative discoveries in the fields of finance, game theory, and physics 
(Liesenfeld & Richard, 2001). A broad range of Monte Carlo methods shares the generality 
that they depend on random number generation to crack deterministic problems (Koistinen, 
2010).

4  Basic principle Monte Carlo Integration

Let us say f is a density that we simulate from and are interested in the expectation (Liesen-
feld & Richard, 2001)

Suppose from set  Yi = h(Xi) and density f, we simulate  X1,  X2, …and then the sequence 
 Y1,  Y2,… is i.i.d. and  EYi = Eh(Xi) = ∫ h(x)f (x)dx = I . We compute the N values h(X1),…, 
h(XN) to acquire the estimate

By the SLLN, as N increases, Î
N

 converges to I with the condition E|h(x)| < ∞ . We are 
free to select N as large as available computer time in Monte Carlo simulations. It is easy 
to select the standard deviation and variance of the estimator. If the variance of the average 
is denoted as below then the variance of the single term h(X) is finite (Liesenfeld & Rich-
ard, 2001).

This is termed as Monte Carlo variance, simulation variance, or sampling variance of 
the estimator Î

N
 . The accuracy of the Î

N
 can be measured more meaningfully by apply-

ing the square root of the variance. The square root of the variance of an estimator is also 
dubbed as standard error. The standard error of a Monte Carlo estimate is termed as Monte 
Carlo the standard error, simulation standard error, or sampling standard error. The Monte 
Carlo standard error is of the order 1∕

√

N , since

(14)I = ∫ h(x)f (x)dx = Eh(X)

(15)Î
N
=

1

N

N
∑

i=1

h
(

X
i

)

(16)var Î
N
=

1

N
varh(X)
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The population variance or theoretical variance var h(X) that is required in both Eqs. 16 
and 17 is generally unknown. It can be however measured by the sample variance of h(Xi) 
values,

We achieve an approximate 100(1-α) % confidence interval for I namely

4.1  Related works based on Monte Carlo Simulation (MCS)

In (Papadimitroulas et al. 2012), extensive validation of MCS toolkit named as GATE is 
used to estimate dose point kernels (DPKs). It is widely used for many medical physics 
applications such as patient dosimetry and Computed Tomography (CT) image simulation. 
The results are compared with reference data to produce a total DPKs complete dataset for 
radionuclides in nuclear medicine.

In (Downes et al., 2009), the X-ray volume imager is modelled utilizing a novel Monte 
Carlo (MC) code. In this work, a novel constituent module was devised to precisely mould 
the unit’s bowtie filter. The results showed good agreement between measurement and MC.

In (Chen et  al., 2009), a new method is proposed to investigate scatter in CT breast 
imaging. It is done by comparing the distribution of measured scatter to those simulated 
using the Monte Carlo simulation toolkit (named as Gate). The results of scatter measure-
ments are compared to previous ones. It was observed that from a non-breast source, a 
significant scatter can arise. The validated Monte Carlo simulation toolkit was also used to 
describe the scatter in different X-ray settings as well as for various breast sizes.

Authors in (Bush et al., 2008) generated an automated system named VIMC-Arc based 
on MC. Their designed system requires minimal user input like patient ID, requested dose 
uncertainty, and required voxel size. This system can be a great platform for the analysis of 
dosimetric problems with varying degrees of tissue inhomogeneity.

Jia et al. (Jia et al., 2011) developed a MC dose calculation package that used graphics 
processing unit)GPU( capabilities. They named their package as gDPM v2.0. They could 
achieve high computational power using GPU architecture without decreasing the accu-
racy. They tested their system on both phantoms and realistic patients using central pro-
cessing unit (CPU) and GPU simulations. There is no significant difference between the 
accuracy of these simulations. However, GPU simulations are much faster than CPUs.

A good review on the capability of GATE Monte Carlo simulation was done in (Sarrut, 
2014) for dosimetry applications and radiation therapy. The GATE MC simulation plat-
form works based on the GEANT4 toolkit. Many applications that used GATE for radi-
otherapy simulations were reviewed in this research. An important feature of the GATE 
which makes it easy to model both treatment and image acquisitions within the same sys-
tem was also emphasized.

(17)

�

var Î
N
=

1
√

N

√

var h(X)

(18)s
2 = �var h(X) =

1

N − 1

N
∑

i=1

(h
(

X
i

)

− Î
N
)2

(19)ÎN ± z
1−

�

2

s
√

N



Annals of Operations Research 

1 3

In (Lee et  al., 2012)introduced a database established by a complete organ-effective 
dose i.e. (33 organs and tissues) based on CT scanner MC simulation. The test cases ranged 
from new born to 15-year-old male and female. The achieved results are compared with 
three existing researches. This comparison showed that phantoms using realistic anatomy 
is essential for better accuracy in CT organ dosimetry.

A simple approach proposed in Wang and Leszczynski (2007) evaluated the size and 
shape of a linac’s focal spot by comparing the profiles with the MC calculated ones from 
the profile of measured dose data. A brief description of these papers are summarized in 
Table 4.

4.2  Rough set theory (RST)

After fuzzy, probability and evidence theories, a novel mathematical tool called RST [63] 
to deal with uncertain and inconsistent knowledge has been proposed. The applications 
based on RST have increased in recent years as more researchers are attracted to this area 
(Chen, 2013; Stokić et al. 2010; Wang et al. 2010; Zhang et al. 2010). In the artificial intel-
ligence domain, it is one of the hot topics which is originated from information model. The 
basic concept comprised of two stages. The first stage forms rules and concepts via classi-
fication of relational databases. The second stage is to mine knowledge through classifica-
tion for approximation of the target and classification of the equivalence relation.

4.2.1  Formal definition

Related data reasoning or analysis of algorithms and approximation of sets are critical 
research problems in the rough sets domain. Some basic concepts are described in this sec-
tion. Let us consider an information system I represented as the 4-tuple (Zhang et al. 2016)

where subsets D and C are called decision attribute set and condition attribute set, X is 
a finite nonempty set of attributes, U is a finite non empty set of attributes. V = U

a∈X
V

a
 , 

where V
a
 is the value of attribute a, f: X > V is a description function and card ( V

a
) > 1.

Definition 1 (Indiscernible relation). An indiscernible relation ind(B) on the universe U 
given a subset of attribute set B ⊆ X is defined as.

The pair (U,[x]
ind(B) ) is termed as approximation space, equivalence class of an object x 

is defined by [x]
ind(B) or [x] if no confusion arises (Zhang et al. 2016).

Definition 2 (Upper and lower approximation sets). Let I = ⟨U, X, V , f ⟩ be an information 
set for a subset Z ⊆ U , its upper and lower approximation sets are termed respectively by 
(Zhang et al. 2016).

(20)I = ⟨U, X, V , f ⟩, X = C ∪ D,

(21)ind(B) = {(x, y)|(x, y) ∈ U2
, ∀b∈B (b(x) = b(y))}

(22)apr(Z) = {x ∈ U|[x] ∩ Z ≠ �}

(23)apr(Z) = {x ∈ U|[x] ∈ Z}
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where [x] defines the equivalence class of x.

Definition 3 (Definable sets) Let I = ⟨U, X, V , f ⟩ be an information set for a target subset 
Z ⊆ U , and attribute subset B ⊆ X , if and only if apr (Z) = apr(Z), Z is termed as definable 
set with respect to B.

Definition 4 (Rough Sets) Let I = ⟨U, X, V , f ⟩ be an information set for a target subset 
Z ⊆ U , and attribute subset B ⊆ X , if and only if apr (Z)≠ apr (Z), Z is termed as rough set 
with respect to B.

Definition 5 (Roughness of rough sets) Let I = ⟨U, X, V , f ⟩ be an information set for a tar-
get subset Z ⊆ U , and attribute subset B ⊆ X , the roughness of set Z is denoted as below 
with respect to B,

where |.| defines the cardinality of a finite set and Z ≠ ∅.
Three disjoint regions of a rough set are illustrated in Fig. 7 (Zhang et al. 2016). The 

boundary region leads to uncertainty in a rough set. The larger the boundary region will 
lead to the higher degree of uncertainty.

4.3  Related works based on RST

In (Kai-Quan, 2002), Shi discussed S-rough set and their application in diagnosis of dis-
eases. The author also presented the characteristics and structures of S-rough set.

Jiang et al. (Jiang et al. 2017) proposed a new model for sub-health diagnosis with refer-
ence to traditional Chinese medicine (TCM). Fuzzy weighted matrixes are generated and 
sub-health classification is done after extracting key features by utilizing fuzzy mathemat-
ics and rough sets. The novel method proved its efficacy when compared to other models in 
this domain.

(24)PB(Z) = 1 −
|
|
|
apr(Z)|∕|apr(Z)

|
|
|

Fig. 7  Three disjoint regions of 
a rough set



 Annals of Operations Research

1 3

In (Ningler et al. 2009), a novel approach by slightly modifying the variable precision 
rough set model is presented. In this research, Ningler et al. tested both the models using 
the dataset containing electroencephalogram of anesthetized and awake patients. Their 
technique produced smaller rule sets and achieved better cutback of features for inconsist-
ent or noisy records despite of higher computational effort.

Wang et al. (Wang et al. 2010) devised a novel tumor classification technique based on 
neighborhood rough set and an ensemble of probabilistic neural network model based gene 
reduction. Gene ranking is applied to select informative genes and minimum gene subsets 
are chosen by reducing gene. Their method recorded competitive performance and is not 
sensitive to initially selected genes.

In (Tsumoto, 1998a), authors proposed a rule induction technique which extracted clas-
sification rules as well as medical knowledge for the diagnosis of disease. The model is 
tested on three clinical datasets, whose results induced diagnostic rules correctly and esti-
mated statistical measures as well.

Chou et al. (Chou et al. 2007) utilized rough set theory (RST) and self-organizing map 
(SOM) methods to evaluate laboratory test and drug utilization to extract knowledge from 
the raw data of cardiovascular disease patients. The model achieved an accuracy of 98% 
and detected the trend of patient’s condition individually.

In (Tsumoto, 1998b), the characteristics of expert rules were examined and a new 
method to derive plausible rules by utilizing three procedures was proposed. The proposed 
technique was evaluated on medical datasets and experts’ decision processes were repre-
sented by induced rules. A brief description of these papers are summarized in Table 5.

4.4  Dempster–Shafer theory (DST)

P. Dempster and his student Glenn Shafer introduced Dempster Shafer Theory (Denźux, 
2016). The theory tried to overcome the limitations of Bayesian methods. Bayesian proba-
bility cannot describe ignorance and Bayesian theory concerns about single evidences. It is 
an evidence theory and it integrates all possible outcomes of the problem. The uncertainty 
in this model is as follows:

1. All possible outcomes are considered.
2. Belief will direct to believe in some likelihood by carrying out some evidences.
3. Plausibility will make evidence compatibility with possible outcomes.

4.4.1  Formal definition

All possible states of a system taken into account by the set termed as Z, the universe.
The set of all subsets of Z including empty set ∅ is represented by the power set 2Z.
Suppose, if Z = {a,b}, then.

Propositions are represented by the elements of the power set concerning the actual 
state of the system, by having all and only the state in which the proposition is true. A 
belief mass to each element is assigned by the theory of evidence. Formally, a function m: 
 2Z → [0,1] is termed as basic belief assignment, having two properties. First property is 
“the mass of the empty set is zero” i.e. M(∅) = 0.

Secondly, the masses of the remaining members of the power set added up to total of 1.

(25)2
z = {�, {a}, {b}, Z}
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The upper and lower bounds of a probability interval can be described from the mass 
assignments. The interval comprised of the precise probability of a set and is bounded by 
two non-additive continuous measures called plausibility and belief.

The belief bel (L) for a set L is denoted as the addition of all the masses of subsets of 
the set of interest.

The plausibility pl (L) is the addition of all the masses of the sets N that intersect the set 
of interest L.

The plausibility and belief are related to each other as follows:

Conversely for finite set L, we can denote the masses of m (L) with the following inverse 
function given the belief measure bel (N) for all subsets N of L.

where the difference of the cardinalities of the two sets is represented by |L − N|.

4.4.2  Dempster’s rule of combination

The two sets of masses  m1 and  m2 are combined to depict joint mass and represented as 
below:

where

k is an estimate of the amount of conflict between the two mass sets.
The characteristics of DST has ignorance part such that probability of all events cumu-

lative to 1. Ignorance is reduced in this theory by incorporating more and more evidences 
and combination rule. The rule is utilized to integrate various types of possibilities. This 

(26)

∑

L∈2Z

m(L) = 1

(27)bel(L) ≤ P(L) ≤ pl(L)

(28)bel(L) =
∑

N|N⊆L

m(N)

(29)pl(L) =
∑

N|N∩L≠�

m(N)

(30)pl(L) = 1 − bel
(

L
)

(31)m(L) =
∑

N|N⊆L

(−1)
|L−N|

bel(N)

(32)m1,2

(

�
)

= 0

(33)m1,2(L) =
(

m1 ⊕ m2

)

(L) =
1

1 − K

∑

N∩C=A≠�

m1(N)m2(C)

(34)k =
∑

N∩C=�

m
1
(N)m

2
(C)
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theory has much lower level of ignorance. Uncertainty interval can be reduced by adding 
more information. The disadvantage of this theory implies that if the computation is high, 
we have to deal with  2n of sets.

4.4.3  Related works based on DST

Fuzzy soft set-based decision making has improved the uncertainty especially in the medi-
cine field by the authors in [72]. They utilized DST and ambiguity measures for this pur-
pose. Their proposed approach proved to be efficient and feasible as it improved perfor-
mance by reducing the uncertainty caused due to subjectivity.

Authors in (Porebski et al., 2018) proposed a diagnosis support method and a rule selec-
tion both by applying fuzzy set and Dempster–Shafer theories. They used their model to 
diagnose liver fibrosis. They extracted information from a real dataset containing hepatitis 
C patients.

Authors (Xiao, 2018) proposed a hybrid framework utilizing DST with belief entropy. 
The feasibility and efficacy of their method are validated by implementing a numerical 
example and a medical application.

Straszecka et  al. (2006) introduced a unified fuzzy-probabilistic approach for medical 
diagnosis modelling processes. The basic concepts of DST, i.e. a basic probability assign-
ment and focal elements correspond to the impact of an individual symptom in the diag-
nosis and disease symptoms, respectively. Focal elements’ interpretation as fuzzy sets, evi-
dence uncertainty, and imprecision of diagnosis are the novel approaches in their method.

Biswas et al. (2020) presented a novel decision-making strategy based on DSTby apply-
ing soft fuzzy sets for elucidation of pneumonia malformation in low-dose x-ray images.

In (Ghasemi et al., 2013), authors combined Dempster–Shafer Theory and fuzzy infer-
ence system for brain MRI segmentation where the spatial information and the pixel inten-
sities were utilized as features. The novelty of their work is that rules are paraphrased as 
evidences. The experimental results demonstrated that the proposed method called fuzzy 
Depster-Shafer inference system (FDSIS) exhibited competitive output using both real and 
simulated MRI databases.

The study in Shi et al. (2018) integrated local classification model (LCM) to predict the 
drug-drug interactions via DST. Their supervised fusion rule combined the results from 
multiple LCMs. Their LCM-DS model exhibited better performance as compared to three 
different prevailing approaches.

Authors in Kang et al. (2018) proposed a prognostic model based on DST and Gaussian 
mixture model for Clostridium difficile contagion. Criteria ratings of risk factors generated 
by the model helped the hospital administrators and risk managers to control and predict of 
Clostridium difficile infection prevalence.

Li et al. (2015) presented a framework based on fuzzy soft set and DST to help the clini-
cians in medical diagnosis. It has proved to be effective and feasible application in medical 
diagnosis.

Researcher in Bloch (1996) exploited crucial features of DST in medical imaging. He 
pointed out the key aspects of the theory. It included the introduction of global or partial 
ignorance, the computation of conflict between images, and modelization of both impreci-
sion and uncertainty in medical image processing. Partial volume effect in MR images can 
be managed properly by this approach.

Wang et al. (2015) extended fuzzy DST to model domain knowledge using fuzzy and 
probabilistic uncertainty for medical diagnosis. A novel evidential structure to mitigate 
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information loss is proposed. They presented novel intuitionistic fuzzy evidential reasoning 
(IFER) methodology that integrated inclusion measure and intuitionistic trapezoidal fuzzy 
numbers to enhance the accuracy of reasoning and representation.

Raza et al. (2006) utilized DST to fuse the results of classification of breast cancer data 
from two sources: Fine-Needle Aspirate Cytology and gene-expression patterns in periph-
eral blood cells data. The support vector machine with polynomial, linear, and Radial Base 
Function kernels are used for classification. The output of the fused classifiers yielded bet-
ter results in detecting the breast cancer automatically.A brief summary of these works are 
summarized in Table 6.

4.5  Imprecise probability

Imprecise probability can be achieved by generalizing traditional probability. A set of prob-
abilities with lower and upper probabilities Prob(Z) = [p1,p2] are applied instead of using 
probabilistic measure Prob(Z) = p related with an event Z for quantification both epistemic 
and aleatory uncertainties [84]. Several representations and theories of imprecise probabil-
ity have been devised such as the coherent lower prevision theory, possibility theory, de 
Finetti’s subjective probability theory, and Dempster-Shafer evidence theory.

4.5.1  Definitions

Consider upper probability P (Z) and lower probability P (Z), with 0 ≤ P (Z) ≤ P (Z) ≤ 1. 
There is precise probability if P (Z) = P (Z) = P(Z) for all events A. There is lack of knowl-
edge completely about Z if  P (Z) = 1 and P (Z) = 0. For disjoint events Z and Y:

Precise probability distributions of closed convex set P:

Subjective interpretation:
P (Z): minimum cost at which selling the gamble is desirable.
P (Z): maximum cost at which buying gamble paying 1 if Z occurs and else 0 is 

desirable.
P (Z) can be deduced as reflecting the evidence in favor of event Z, 1- P (Z) as reflecting 

the evidence against Z, in favor of not-Z.
Imprecision Δ (Z) = P (Z)—P (Z) reflects lack of perfect information about probability 

of Z.

4.5.2  Related works on imprecise probability

Coletti et  al. (2000) presented the role of coherence in handling and eliciting imprecise 
probabilities and its application to medical analytics. They also focused on the distinction 
between syntactic and semantic aspects. Mahmoud et  al. (2016) used different machine 
learning decision tree classification algorithms on noisy medical datasets. They employed 

(35)P(Z ∪ Y) ≥ P(Z) + P(Y)andP(Z ∪ Y) ≤ P(Z) + P(Y)

(36)P(not − Z) = 1 − P(Z)

(37)P(Z) = infp∈Pp(Z)andP(Z) = supp∈Pp(Z)
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three decision tree methods: single tree classifiers, ensemble models, and creedal decision 
trees (CDTs) to tackle the uncertainty measures and imprecise probabilities. CDTs outper-
formed other two methods in noisy environments. Van Wyk et al. (2020) investigated the 
medicinal plants in African region. They studied traditional diversity patterns in selection 
of medicinal plants of Africa. They utilized imprecise Dirichlet model with linear regres-
sion and Bayesian analysis.

Kwiatkowska et  al. (2009) revisited the concept of uncertainty, incompleteness, and 
imperfection of data. They studied the traditional hierarchical approach to knowledge, 
information, and data with reference to medical data, which is characterized by time-
dependency, variable granularity and heterogeneity. They argued that it is contextual to 
interpret the imprecision and medical data could not be decoupled from their intended 
usage. They integrated multidimensional, fuzzy-logic, and semiotic approaches to propose 
a framework for medical data modelling to address contextual interpretation of imprecision 
issues. A brief description of these papers are summarized in Table 7.

5  Discussion

Studying uncertainty involves uncertainty in data and uncertainty in the model. Data uncer-
tainty arises from sources such as measurement noise, transmission noise, and missing 
values. Model uncertainty comprises of not knowing the best architecture and parameters 
which can predict future data. Uncertainty quantification helps to enhance the confidence 
in the results obtained by different methods. Nowadays, the growth of new technologies 
has paved the way to produce huge amounts of raw data in different fields. The use of 
such raw data is never easy as it might include noise. There are few researches like (Oh 
et al. 2018) did not perform noise filtering because of end to end training of deep learn-
ing network using noisy ECG signals. We know that CNN is less sensitive to noise. It can 
extract information even when the data are noisy (Qian et al. 2016). In another research 
(Karimifard & Ahmadian, 2011), Hermitian basis functions are used to extract higher order 
cumulants from the ECG beats. They could reduce the effects of Gaussian noise. However, 
before getting useful information from data, they are cleaned for the presence of any noise 
and unnecessary information. Hence, dealing with uncertainty in both data and model is 
an important subject for researchers to make accurate decisions in various domains. Thus, 
researchers across the world are trying to deal with uncertainty using machine learning 
algorithms and probability theories. We have discussed algorithms namely Bayesian infer-
ence, fuzzy systems, Monte Carlo simulation, rough classification, Dempster–Shafer the-
ory, and imprecise probability to handle the uncertainties. Figure 8 shows the percentage of 
uncertainty handling algorithms used in medical field by researches.

It can be noted from Fig. 8 that, Bayesian inference, fuzzy systems, and Monte Carlo 
simulation respectively have been used by many researchers in the medical field. Among 
these methods, Bayesian inference is more widely used as compared to other methods 
(Dempster, 1968; Ma et al. 2006; Minka, 2001). The involvement of average of parameters 
makes this method self-regularized. Both uncertainty types are tackled by this method. 
Prior knowledge is included while using Bayesian inference. But it suffers from few dis-
advantages such as it is computationally intensive. The intractability of its integrals and 
high dimension are other disadvantages of this method. Fuzzy systems are the second most 
widely used technique. These methods are simple and also can overcome different types 
of uncertainty efficiently (Kosko, 1994). MCS has few advantages such as it can address 
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the intractability analytically and can survey the parameter space of a problem completely. 
Meanwhile, the MCS results are relatively easy to understand, flexible and empirical distri-
butions can be handled. The limitation of MCS is its computational cost and solutions are 
not exact. They depend on the number of repeated runs (Mooney, 1997). Dempster–Shafer 
theory in combination with fuzzy systems also attracted the attention of many researchers 
(Wang et al. 2016). The main disadvantage of the rough set (Dash & Patra, 2013) is that 
it cannot handle real-valued data. Using a real-valued rough set is the best alternative to 
solve this problem. Meanwhile, fuzzy-rough set theory can be used to handle this problem 
(Jensen & Shen, 2004; Zhai, 2011). A brief description of the pros and cons of methods 
used are summarized in Table 8.

Few other methods can also be used to tackle the uncertainty quantification. Some of 
them are Bayesian information criterion (Pho et al. 2019), Laplace approximation (Friston 
et al. 2007), variational approximations (Ormerod & Wand, 2010), exact sampling (Propp 
& Wilson, 1996), and expectation propagation (Minka, 2001). However, these methods are 
not much used by the researches.

There are also few challenges when investigating this topic. Few of them are: 1) han-
dling dimensionality and computational cost of the problems, 2) testing the validity of dif-
ferent methods which can be used to handle uncertainty, 3) testing the validity of achieved 
results, 4) adaptation of model inputs to specific patient setting, and finally 5) determining 
the model complexity level which yielded more accurate outcomes.

In the fourth challenge, the inputs may include the computational domain, boundary 
conditions, and physical parameters. Measurement uncertainty and large biological vari-
ability lead to hampering of all measurements of these inputs. Consequently, it leads to 
uncertainties in the inputs. Meanwhile, some of the model inputs are immeasurable or they 
are measurable but costly.

The model complexity increases if it has to describe the reality more accurately is 
the fifth challenge. Consequently, it lessens the uncertainty in the output of the model. 

Fig. 8  Percentage of uncertainty 
handling algorithms used in 
medical field researches
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However, this enhances the uncertainty in the input of the system simultaneously because 
more inputs of the system ought to be examined patient-specifically. As illustrated in Fig. 9, 
it is necessary to find an optimal transaction between the uncertainty resulting from system 
and data that can initiate nominal total uncertainty (Huberts et al. 2014). To deal with chal-
lenges number four and five, it is essential to measure the output uncertainty of the system. 
The uncertainties in the inputs of the system are responsible for it. The pros and cons of it 
developed to handle the uncertainties are summarized in Table 8.

Higher order statistics/spectra (HOS) (Chua et al. 2010) and deep learning (DL) tech-
niques are found to more robust to noise. The bispectrum and cumulants widely used for 
medical data to capture the subtle changes in the signal (Pham, 2020). It can detect devia-
tions from linearity, stationarity or Gaussianity in the signal. In nature, the biomedical sig-
nals are commonly non-stationary, non-linear and non-Gaussian. So, it is better to analyse 
them with HOS rather than the use of second-order correlations.

We know that data collection without any noise in the data is expensive and time-con-
suming. Nowadays, due to the progress in storage devices and technologies, a huge amount 
of medical data are available. These medical data are noisy and need to be eliminated to 
get an accurate diagnosis. HOS and deep learning techniques are found to be suitable to 
handle this type of noisy data. Deep neural networks can generalize on noisy data in train-
ing, instead of just memorizing them (Rolnick et al., 2017). In addition, it is shown in (Rol-
nick et al., 2017), deep neural networks can learn from data that has been impacted by an 
arbitrary amount of noise. By applying deep neural networks on multiple datasets such as 
MINST, CIFAR-10 and ImageNet, the authors showed that successful learning is possible 
even with an essentially arbitrary amount of noise. Authors have showed that using deep 
learning techniques, it is possible to get excellent performance even with noisy electrocar-
diogram (ECG) signals (Acharya et al., 2017; Gao et al., 2019; Jeong et al., 2019; Oh et al., 
2018, 2019). Hence, in future, DL models may be explored to nullify the presence of noise 
in the medical data.

6  Conclusions and future works

This paper reviewed uncertainty quantification challenges in the medicine/health domain. 
Unlike industrial fields, the medical field has always been determined by several factors 
leading to uncertainty in decisions and outcomes.

Fig. 9  The trade-off between data and model uncertainty
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More useful methods of handling uncertainty in healthcare should start with physicians. 
To achieve this goal, first, doctors need to have a clear and better picture of uncertainty in 
their work and strive for novel approaches to handle this challenge. Decision making in 
this field is intricate. So, it needs intuitive and rational thinking. Although uncertainty is an 
inevitable factor in medical decisions, clinicians commonly downplay its importance.

We know that artificial intelligence methods automate the processes and make them 
available more widely. However, it is not being used to its full potential in the medical 
field. Artificial Intelligence can be applied fully in medical domain once all aspects includ-
ing uncertainty quantification are considered. With the help of artificial intelligence, early 
diagnosis of disease becomes a reality and also saves time and money.

The findings of this review paper demonstrated that different types of classical machine 
learning and probability theory techniques have been significantly used in handling the 
uncertainty in the data. Recently deep learning techniques are becoming very popular 
among researchers due to its high performance. Using deep learning methods high arrhyth-
mia classification is obtained even with noisy data (Acharya et al. 2017; Oh et al. 2018, 
2019). So, in future, such techniques can be employed to handle the uncertainty in the 
medical data and obtain high performance.

Funding The authors have not declared a specific grant for this research from any funding agency.

Data availability The authors declare that all data supporting the findings of this study are available within 
the paper.

Declarations 

Conflicts of interest The authors declare that they have no conflict of interest.

References

Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Application of deep 
convolutional neural network for automated detection of myocardial infarction using ECG signals. 
Information Sciences, 415–416, 190–198.

Akkoyun, E., Kwon, S. T., Acar, A. C., Lee, W., & Baek, S. (2020). Predicting abdominal aortic aneurysm 
growth using patient-oriented growth models with two-step Bayesian inference. Computers in Biol-

ogy and Medicine, 117, 103620. https:// doi. org/ 10. 1016/j. compb iomed. 2020. 103620
Alizadehsani, R., et  al. (2019a). Machine learning-based coronary artery disease diagnosis: A compre-

hensive review. Computers in Biology and Medicine, 111, 103346. https:// doi. org/ 10. 1016/j. compb 
iomed. 2019. 103346

Alizadehsani, R., et al. (2019b). A database for using machine learning and data mining techniques for coro-
nary artery disease diagnosis. Scientific Data, 6, 227. https:// doi. org/ 10. 1038/ s41597- 019- 0206-3

Alizadehsani, R., et al. (2019c). Model uncertainty quantification for diagnosis of each main coronary artery 
stenosis. Soft Computing:1–12

Alizadehsani, R., et al. (2020). Hybrid genetic-discretized algorithm to handle data uncertainty in diagnos-
ing stenosis of coronary arteries expert systems

Alizadehsani, R., et al. (2021). Coronary artery disease detection using artificial intelligence techniques: 
a survey of trends, geographical differences and diagnostic features 1991–2020. Computers in 

Biology and Medicine, 128, 104095. https:// doi. org/ 10. 1016/j. compb iomed. 2020. 104095
Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., & Yarifard, A. A. (2017). Computer 

aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. 
Computer Methods and Programs in Biomedicine, 141, 19–26. https:// doi. org/ 10. 1016/j. cmpb. 
2017. 01. 004

Arnaud, D., de Freitas, N., Neil, G., (2001). An introduction to sequential Monte Carlo Methods. In 
Sequential Monte Carlo Methods in Practice. Springer, pp 3–14

https://doi.org/10.1016/j.compbiomed.2020.103620
https://doi.org/10.1016/j.compbiomed.2019.103346
https://doi.org/10.1016/j.compbiomed.2019.103346
https://doi.org/10.1038/s41597-019-0206-3
https://doi.org/10.1016/j.compbiomed.2020.104095
https://doi.org/10.1016/j.cmpb.2017.01.004
https://doi.org/10.1016/j.cmpb.2017.01.004


Annals of Operations Research 

1 3

Asgharnezhad, H., Shamsi, A., Alizadehsani, R., Khosravi, A., Nahavandi, S., Sani, Z.A., Srinivasan, 
D. (2020), Objective Evaluation of Deep Uncertainty Predictions for COVID-19 Detection arXiv 
preprint arXiv:201211840

Ashby, D. (2006). Bayesian statistics in medicine: a 25 year review. Statistics in Medicine, 25, 3589–
3631. https:// doi. org/ 10. 1002/ sim. 2672

Aubin, A.-S., Young, M., Eva, K., St-Onge, C. (2020), Examinee cohort size and item analysis guide-
lines for health professions education programs: A Monte Carlo simulation study academic medi-
cine 95

Azar, A. T., & Hassanien, A. E. (2015). Dimensionality reduction of medical big data using neural-fuzzy 
classifier. Soft Computing, 19, 1115–1127.

Bania, R. K., & Halder, A. (2020). R-Ensembler: A greedy rough set based ensemble attribute selection 
algorithm with kNN imputation for classification of medical data. Computer Methods and Pro-

grams in Biomedicine, 184, 105122. https:// doi. org/ 10. 1016/j. cmpb. 2019. 105122
Biswas, B., Ghosh, S. K., Bhattacharyya, S., Platos, J., Snasel, V., & Chakrabarti, A. (2020). Chest 

X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster-
Shafer theory of evidence. Applied Soft Computing, 86, 105889.

Bloch, I. (1996). Some aspects of Dempster-Shafer evidence theory for classification of multi-modality 
medical images taking partial volume effect into account. Pattern Recognition Letters, 17, 905–919.

Buono, M. L. C., Pandiangan, N., & Loppies, S. H. D. (2020). The Implementation Of An Expert Sys-
tem In Diagnosing Skin Diseases Using The Dempster-Shafer Method. Journal of Physics: Con-

ference Series, 1569, 022028. https:// doi. org/ 10. 1088/ 1742- 6596/ 1569/2/ 022028
Bush, K., Townson, R., & Zavgorodni, S. (2008). Monte Carlo simulation of RapidArc radiotherapy 

delivery. Physics in Medicine and Biology, 53, N359–N370.
Castellazzi, G., et al. (2020). A machine learning approach for the differential diagnosis of Alzheimer 

and Vascular Dementia Fed by MRI selected features. Frontiers in Neuroinformatics. https:// doi. 
org/ 10. 3389/ fninf. 2020. 00025

Chen, Y.-S. (2013). Modeling hybrid rough set-based classification procedures to identify hemodialy-
sis adequacy for end-stage renal disease patients. Computers in Biology and Medicine, 43, 1590–
1605. https:// doi. org/ 10. 1016/j. compb iomed. 2013. 08. 001

Chen, Y., Liu, B., O’Connor, J. M., Didier, C. S., & Glick, S. J. (2009). Characterization of scatter 
in cone-beam CT breast imaging: Comparison of experimental measurements and Monte Carlo 
simulation. Medical Physics, 36, 857–869. https:// doi. org/ 10. 1118/1. 30771 22

Chen, B., Polatkan, G., Sapiro, G., Blei, D., Dunson, D., & Carin, L. (2013). Deep learning with hier-
archical convolutional factor analysis. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 35, 1887–1901. https:// doi. org/ 10. 1109/ TPAMI. 2013. 19
Chou, H.-C., Cheng, C.-H., & Chang, J.-R. (2007). Extracting drug utilization knowledge using self-

organizing map and rough set theory. Expert Systems with Applications, 33, 499–508.
Chua, K. C., Chandran, V., Acharya, U. R., & Lim, C. M. (2010). Application of higher order statistics/

spectra in biomedical signals—A review. Medical Engineering & Physics, 32, 679–689. https:// 
doi. org/ 10. 1016/j. meden gphy. 2010. 04. 009

Coletti, G., & Scozzafava, R. (2000). The role of coherence in eliciting and handling imprecise prob-
abilities and its application to medical diagnosis. Information Sciences, 130, 41–65. https:// doi. 
org/ 10. 1016/ S0020- 0255(00) 00085-2

Coolen, F.P.A., Troffaes, M.C.M., Augustin, T. (2011). Imprecise Probability. In Lovric M (ed), Interna-
tional Encyclopedia of Statistical Science. Springer, pp 645–648.

Corani, G., Magli, C., Giusti, A., Gianaroli, L., & Gambardella, L. M. (2013). A Bayesian network 
model for predicting pregnancy after in  vitro fertilization. Computers in Biology and Medicine, 
43, 1783–1792. https:// doi. org/ 10. 1016/j. compb iomed. 2013. 07. 035

Dahl, GE., Sainath TN, Hinton GE Improving deep neural networks for LVCSR using rectified linear 
units and dropout. In IEEE International Conference on Acoustics, Speech and Signal Processing, 
2013. pp 8609–8613

Das, H., Naik, B., & Behera, H. S. (2020). Medical disease analysis using Neuro-Fuzzy with Feature Extrac-
tion Model for classification. Informatics in Medicine Unlocked, 18, 100288. https:// doi. org/ 10. 
1016/j. imu. 2019. 100288

Dash, S., & Patra, B. (2013). Redundant gene selection based on genetic and quick-reduct algorithms. Inter-

national Journal on Data Mining and Intelligent Information Technology Application, 3, 1–9.
de Medeiros, I. B., Soares Machado, M. A., Damasceno, W. J., Caldeira, A. M., dos Santos, R. C., & da 

Silva Filho, J. B. (2017). A Fuzzy Inference System to Support Medical Diagnosis in Real Time. Pro-

cedia Computer Science, 122, 167–173.

https://doi.org/10.1002/sim.2672
https://doi.org/10.1016/j.cmpb.2019.105122
https://doi.org/10.1088/1742-6596/1569/2/022028
https://doi.org/10.3389/fninf.2020.00025
https://doi.org/10.3389/fninf.2020.00025
https://doi.org/10.1016/j.compbiomed.2013.08.001
https://doi.org/10.1118/1.3077122
https://doi.org/10.1109/TPAMI.2013.19
https://doi.org/10.1016/j.medengphy.2010.04.009
https://doi.org/10.1016/j.medengphy.2010.04.009
https://doi.org/10.1016/S0020-0255(00)00085-2
https://doi.org/10.1016/S0020-0255(00)00085-2
https://doi.org/10.1016/j.compbiomed.2013.07.035
https://doi.org/10.1016/j.imu.2019.100288
https://doi.org/10.1016/j.imu.2019.100288


 Annals of Operations Research

1 3

Dempster, A. P. (1968). A Generalization of Bayesian Inference. Journal of the Royal Statistical Society: 

Series B (Methodological), 30, 205–232. https:// doi. org/ 10. 1111/j. 2517- 6161. 1968. tb007 22.x
Denźux, T. (2016). 40 years of Dempster-Shafer theory. Int J Approx Reasoning, 79, 1–6. https:// doi. org/ 10. 

1016/j. ijar. 2016. 07. 010
Depeweg, S., Hernandez-Lobato J.-M., Doshi-Velez, F., Udluft, S. (2018). Decomposition of Uncertainty in 

Bayesian Deep Learning for Efficient and Risk-sensitive Learning. Paper presented at the Proceed-

ings of the 35th International Conference on Machine Learning

Dervishi, A. (2017). Fuzzy risk stratification and risk assessment model for clinical monitoring in the ICU. 
Computers in Biology and Medicine, 87, 169–178. https:// doi. org/ 10. 1016/j. compb iomed. 2017. 05. 
034

Dilli, R., Argou, A., Reiser, R., Yamin, A. (2018). IoT Resources Ranking: Decision Making Under Uncer-
tainty Combining Machine Learning and Fuzzy Logic. In Fuzzy Information Processing, 2018. 
Springer, pp 119–131

Downes, P., Jarvis, R., Radu, E., Kawrakow, I., & Spezi, E. (2009). Monte Carlo simulation and patient 
dosimetry for a kilovoltage cone-beam CT unit. Medical Physics, 36, 4156–4167. https:// doi. org/ 10. 
1118/1. 31961 82

Flügge, S., Zimmer, S., Petersohn, U. (2019). Knowledge representation and diagnostic inference using 
Bayesian networks in the medical discourse arXiv preprint arXiv:190908549

Fox, R. C. (1957). Training for uncertainty. The student physician, 3, 207–241.
Fox, R. C. (1980). The Evolution of Medical Uncertainty. The Milbank Memorial Fund Quarterly Health 

and Society, 58, 1–49. https:// doi. org/ 10. 2307/ 33497 05
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and 

the Laplace approximation. NeuroImage, 34, 220–234.
Gal, Y. (2016). Uncertainty in deep learning. Cambridge: University of Cambridge.
Gal, Y., Ghahramani, Z. (2015), Bayesian convolutional neural networks with Bernoulli approximate vari-

ational inference arXiv:1-12
Gal, Y., Islam, R., Ghahramani, Z. (2017). Deep bayesian active learning with image data arXiv:1-10
Galesic, M., Gigerenzer, G., & Straubinger, N. (2009). Natural frequencies help older adults and people with 

low numeracy to evaluate medical screening tests. Medical Decision Making : An International Jour-

nal of the Society For Medical Decision Making, 29, 368–371.
Gallagher, C. V., Bruton, K., Leahy, K., & O’Sullivan, D. T. J. (2018). The suitability of machine learning 

to minimise uncertainty in the measurement and verification of energy savings. Energy and Buildings, 
158, 647–655.

Gandhimathi, T. (2018). An application of intuitionistic fuzzy soft matrix in medical diagnosis.  Journal of 

Computational and Theoretical Nanoscience, 15, 781–784.
Gao, J., Zhang, H., Lu, P., Wang, Z. (2019). An effective LSTM recurrent network to detect arrhythmia on 

imbalanced ECG dataset. Journal of Healthcare Engineering 2019
Gasparini, A., Abrams, K. R., Barrett, J. K., Major, R. W., Sweeting, M. J., Brunskill, N. J., & Crowther, M. 

J. (2020). Mixed-effects models for health care longitudinal data with an informative visiting process: 
A Monte Carlo simulation study. Statistica Neerlandica, 74, 5–23. https:// doi. org/ 10. 1111/ stan. 12188

Ghasemi, J., Ghaderi, R., Karami Mollaei, M. R., & Hojjatoleslami, S. A. (2013). A novel fuzzy Dempster-
Shafer inference system for brain MRI segmentation. Information Sciences, 223, 205–220.

Ghassemi, N. et  al. (2020). Material recognition for automated progress monitoring using deep learning 
methods arXiv preprint, arXiv:200616344

Ghassemi, N., Shoeibi, A., Rouhani, M., Hosseini-Nejad, H. (2019). Epileptic seizures detection in EEG 
signals using TQWT and ensemble learning. In 2019 9th International Conference on Computer and 

Knowledge Engineering (ICCKE), 24–25 Oct. 2019. pp 403–408. doi:https:// doi. org/ 10. 1109/ ICCKE 
48569. 2019. 89648 26

Ghazavi, S. N., & Liao, T. W. (2008). Medical data mining by fuzzy modeling with selected features. Artifi-

cial Intelligence in Medicine, 43, 195–206.
Ghobadi, P., Farhood, B., Ghorbani, M., & Mohseni, M. (2020). Design and characterization of flatten-

ing filter for high dose rate 192Ir and 60Co Leipzig applicators used in skin cancer brachytherapy: 
A Monte Carlo study. Computers in Biology and Medicine, 123, 103878. https:// doi. org/ 10. 1016/j. 
compb iomed. 2020. 103878

Ghoshal. B., Tucker, A. (2020). Estimating uncertainty and interpretability in deep learning for coronavirus 
(COVID-19) detection arXiv preprint arXiv:200310769

Ghoshal. B., Tucker, A., Sanghera, B., Lup Wong. W. (2019). Estimating uncertainty in deep learning for 
reporting confidence to clinicians in medical image segmentation and diseases detection. Computa-

tional Intelligence n/a doi:https://doi.org/https:// doi. org/ 10. 1111/ coin. 12411

https://doi.org/10.1111/j.2517-6161.1968.tb00722.x
https://doi.org/10.1016/j.ijar.2016.07.010
https://doi.org/10.1016/j.ijar.2016.07.010
https://doi.org/10.1016/j.compbiomed.2017.05.034
https://doi.org/10.1016/j.compbiomed.2017.05.034
https://doi.org/10.1118/1.3196182
https://doi.org/10.1118/1.3196182
https://doi.org/10.2307/3349705
https://doi.org/10.1111/stan.12188
https://doi.org/10.1109/ICCKE48569.2019.8964826
https://doi.org/10.1109/ICCKE48569.2019.8964826
https://doi.org/10.1016/j.compbiomed.2020.103878
https://doi.org/10.1016/j.compbiomed.2020.103878
https://doi.org/10.1111/coin.12411


Annals of Operations Research 

1 3

Giustinelli, P. (2020), Precise or Imprecise Probabilities? Evidence from survey response related to late-
onset dementia* Pamela Giustinelli Charles F. Manski Francesca Molinari

Grzymala-Busse, J. (1988). Knowledge acquisition under uncertainty— a rough set approach. Journal of 

Intelligent Robotic Systems, 1, 3–16.
Hamilton, J.G., Genoff, M.C., Han, P.K.J. (2020). Health-Related Uncertainty. In: The Wiley Encyclopedia 

of Health Psychology. pp 305–313. doi: https:// doi. org/ 10. 1002/ 97811 19057 840. ch80
Hecquet, D., Ruskin, H. J., & Crane, M. (2007). Optimisation and parallelisation strategies for Monte Carlo 

simulation of HIV infection. Computers in Biology and Medicine, 37, 691–699. https:// doi. org/ 10. 
1016/j. compb iomed. 2006. 06. 010

Hekmat R, Goharimanesh M, Dadpour B (2020) SAT-013 Comparison Of Artificial Neural Network Model 
and Adaptive Neuro-Fuzzy Inference System(Anfis) Model for Predicting Hemodialysis Initiation in 
Methanol Poisoned Patients title here Kidney International Reports 5:S6-S7 doi:https:// doi. org/ 10. 
1016/j. ekir. 2020. 02. 017

Henriquez, R. R., & Korpi-Steiner, N. (2016). Bayesian inference Dilemma in medical decision-making: A 
need for user-friendly probabilistic reasoning tools. Clinical Chemistry, 62, 1285–1286. https:// doi. 
org/ 10. 1373/ clinc hem. 2016. 260935

Hérault, J., Iborra, N., Serrano, B., & Chauvel, P. (2005). Monte Carlo simulation of a protontherapy plat-
form devoted to ocular melanoma. Medical Physics, 32, 910–919. https:// doi. org/ 10. 1118/1. 18713 92

Howle, L. E., Weber, P. W., & Nichols, J. M. (2017). Bayesian approach to decompression sickness model 
parameter estimation. Computers in Biology and Medicine, 82, 3–11. https:// doi. org/ 10. 1016/j. compb 
iomed. 2017. 01. 006

Huang, Y., Wu, H., & Acosta, E. P. (2010). Hierarchical Bayesian inference for HIV dynamic differential 
equation models incorporating multiple treatment factors. Biometrical Journal, 52, 470–486. https:// 
doi. org/ 10. 1002/ bimj. 20090 0173

Huang, Y., Dagne, G., & Wu, L. (2011). Bayesian inference on joint models of HIV dynamics for time-to-
event and longitudinal data with skewness and covariate measurement errors. Statistics in Medicine, 
30, 2930–2946. https:// doi. org/ 10. 1002/ sim. 4321

Huberts, W., Donders, W. P., Delhaas, T., & van de Vosse, F. N. (2014). Applicability of the polynomial 
chaos expansion method for personalization of a cardiovascular pulse wave propagation model Inter-
national Journal for Numerical Methods in Biomedical. Engineering, 30, 1679–1704. https:// doi. org/ 
10. 1002/ cnm. 2695

Jafar MN, Imran R, Riffat SHA, Shuaib R (2020) Medical diagnosis using neutrosophic soft matrices and 
their compliments. International Journal of Advanced Research in Computer Science 11

Jain, K., Kulkarni, S. (2020). Multi-reduct rough set classifier for computer-aided diagnosis in medical data. 
In Verma OP, Roy S, Pandey SC, Mittal M (eds) Advancement of Machine Intelligence in Interactive 

Medical Image Analysis. Springer, pp 167–183. doi:https:// doi. org/ 10. 1007/ 978- 981- 15- 1100-4_7
Jeeva, J. B., & Singh, M. (2015). Reconstruction of optical scanned images of inhomogeneities in biological 

tissues by Monte Carlo simulation. Computers in Biology and Medicine, 60, 92–99. https:// doi. org/ 
10. 1016/j. compb iomed. 2015. 02. 014

Jensen, R., & Shen, Q. (2004). Fuzzy–rough attribute reduction with application to web categorization. 
Fuzzy sets and systems, 141, 469–485.

Jeong, J.-H., Yu, B.-W., Lee, D.-H., & Lee, S.-W. (2019). Classification of Drowsiness Levels Based on a 
Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography. 
Signals Brain Sci, 9, 348. https:// doi. org/ 10. 3390/ brain sci91 20348

Jia, X., Gu, X., Graves, Y. J., Folkerts, M., & Jiang, S. B. (2011). GPU-based fast Monte Carlo simulation 
for radiotherapy dose calculation. Physics in Medicine and Biology, 56, 7017–7031.

Jiang, Q.-y, Yang, X.-j, & Sun, X.-s. (2017). An aided diagnosis model of sub-health based on rough set and 
fuzzy mathematics: A case of TCM. Journal of Intelligent & Fuzzy Systems, 32, 4135–4143. https:// 
doi. org/ 10. 3233/ JIFS- 15958

Johnson, W. O., & Gastwirth, J. L. (1991). Bayesian Inference for Medical Screening Tests: Approximations 
Useful for the Analysis of Acquired Immune Deficiency Syndrome. Journal of the Royal Statisti-

cal Society: Series B (Methodological), 53, 427–439. https:// doi. org/ 10. 1111/j. 2517- 6161. 1991. tb018 
35.x

Johnston, I. G., et al. (2015). Stochastic modelling Bayesian inference, and new in vivo measurements eluci-
date the debated mtDNA bottleneck mechanism. Elife 4, e07464.

Kai-Quan, S. S-rough sets and its applications in diagnosis-recognition for disease. In: Proceedings. Interna-
tional Conference on Machine Learning and Cybernetics, 2002. pp 50–54

Kang, B., Chhipi-Shrestha, G., Deng, Y., Mori, J., Hewage, K., & Sadiq, R. (2018). Development of a 
predictive model for Clostridium difficile infection incidence in hospitals using Gaussian mixture 

https://doi.org/10.1002/9781119057840.ch80
https://doi.org/10.1016/j.compbiomed.2006.06.010
https://doi.org/10.1016/j.compbiomed.2006.06.010
https://doi.org/10.1016/j.ekir.2020.02.017
https://doi.org/10.1016/j.ekir.2020.02.017
https://doi.org/10.1373/clinchem.2016.260935
https://doi.org/10.1373/clinchem.2016.260935
https://doi.org/10.1118/1.1871392
https://doi.org/10.1016/j.compbiomed.2017.01.006
https://doi.org/10.1016/j.compbiomed.2017.01.006
https://doi.org/10.1002/bimj.200900173
https://doi.org/10.1002/bimj.200900173
https://doi.org/10.1002/sim.4321
https://doi.org/10.1002/cnm.2695
https://doi.org/10.1002/cnm.2695
https://doi.org/10.1007/978-981-15-1100-4_7
https://doi.org/10.1016/j.compbiomed.2015.02.014
https://doi.org/10.1016/j.compbiomed.2015.02.014
https://doi.org/10.3390/brainsci9120348
https://doi.org/10.3233/JIFS-15958
https://doi.org/10.3233/JIFS-15958
https://doi.org/10.1111/j.2517-6161.1991.tb01835.x
https://doi.org/10.1111/j.2517-6161.1991.tb01835.x


 Annals of Operations Research

1 3

model and Dempster-Shafer theory. Stochastic Environmental Research and Risk Assessment, 32, 
1743–1758.

Karaboga, D., & Kaya, E. (2019). Adaptive network based fuzzy inference system (ANFIS) training 
approaches: a comprehensive survey. Artificial Intelligence Review, 52, 2263–2293.

Karimifard, S., & Ahmadian, A. (2011). A robust method for diagnosis of morphological arrhythmias based 
on Hermitian model of higher-order statistics. BioMedical Engineering OnLine, 10, 22. https:// doi. 
org/ 10. 1186/ 1475- 925X- 10- 22

Kendall, A., Cipolla, R. (2016). Modelling uncertainty in deep learning for camera relocalization. In: IEEE 
International Conference on Robotics and Automation (ICRA). pp 4762–4769

Kendall, A., Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? 
Paper presented at the NIPS

Kendall, A., Badrinarayanan, V., Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understanding arXiv 1–11

Khodabakhshi, M. B., & Moradi, M. H. (2017). The attractor recurrent neural network based on fuzzy func-
tions: An effective model for the classification of lung abnormalities. Computers in Biology and Med-

icine, 84, 124–136. https:// doi. org/ 10. 1016/j. compb iomed. 2017. 03. 019
Khodatars, M. et  al. (2020). Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of 

Autism Spectrum Disorder: A Review arXiv preprint arXiv:200701285
Koistinen, P., (2010), Monte Carlo Methods, with an emphasis on Bayesian computation Summer 2010
Korattikara, A., Rathod, V., Murphy, K., Welling, M. (2015). Bayesian dark knowledge. Paper presented 

at the Proceedings of the 28th International Conference on Neural Information Processing Systems, 
Montreal, Canada,

Kosheleva, O., Kreinovich, V. (2019), Beyond p-Boxes and Interval-Valued Moments: Natural Next Approx-
imations to General Imprecise Probabilities

Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, 43, 1329–
1333. https:// doi. org/ 10. 1109/ 12. 324566

Kour, H., Manhas, J., & Sharma, V. (2020). Usage and implementation of neuro-fuzzy systems for clas-
sification and prediction in the diagnosis of different types of medical disorders: a decade review. 
Artificial Intelligence Review. https:// doi. org/ 10. 1007/ s10462- 020- 09804-x

Kourou, K., Rigas, G., Papaloukas, C., Mitsis, M., & Fotiadis, D. I. (2020). Cancer classification from time 
series microarray data through regulatory Dynamic Bayesian Networks. Computers in Biology and 

Medicine, 116, 103577. https:// doi. org/ 10. 1016/j. compb iomed. 2019. 103577
Kumar, M., Stoll, R., & Stoll, N. (2003). Regularized Adaptation of Fuzzy Inference Systems. Modelling the 

Opinion of a Medical Expert about Physical Fitness: An Application Fuzzy Optimization and Deci-

sion Making, 2, 317–336.
Kwiatkowska, M., Riben, P., & Kielan, K. (2009). Interpretation of Imprecision in Medical Data. Advances 

in Data Management (pp. 351–369). Springer.
Laha, M., Hazra, P., Konar, A., Rakshit, P. (2019). EEG-induced Probabilistic Prediction of the Color-

Pathways in the Brain using Dempster-Shafer Theory. In: 2019 International Conference on Wire-
less Communications Signal Processing and Networking (WiSPNET), 21–23, 2019. pp 339–343. 
doi:https:// doi. org/ 10. 1109/ WiSPN ET455 39. 2019. 90328 41

Lee, Y. (2020). Preliminary evaluation of dual-head Compton camera with Si/CZT material for breast can-
cer detection: Monte Carlo simulation study. Optik, 202, 163519. https:// doi. org/ 10. 1016/j. ijleo. 2019. 
163519

Lee, C., Kim, K. P., Long, D. J., & Bolch, W. E. (2012). Organ doses for reference pediatric and adolescent 
patients undergoing computed tomography estimated by Monte Carlo simulation. Medical Physics, 
39, 2129–2146. https:// doi. org/ 10. 1118/1. 36930 52

Levis, B., et al. (2018). Probability of major depression diagnostic classification using semi-structured ver-
sus fully structured diagnostic interviews. The British Journal of Psychiatry, 212, 377–385. https:// 
doi. org/ 10. 1192/ bjp. 2018. 54

Li, Z., Wen, G., & Xie, N. (2015). An approach to fuzzy soft sets in decision making based on grey rela-
tional analysis and Dempster-Shafer theory of evidence: An application in medical diagnosis. Artifi-

cial Intelligence in Medicine, 64, 161–171.
Li, T., et al. (2020). Analysis of medical rescue strategies based on a rough set and genetic algorithm: A dis-

aster classification perspective. International Journal of Disaster Risk Reduction, 42, 101325. https:// 
doi. org/ 10. 1016/j. ijdrr. 2019. 101325

Liesenfeld, R., & Richard, J.-F. (2001). Monte Carlo methods and Bayesian computation: importance sam-
pling. International Encyclopedia of the Social and Behavioral Sciences, 2, 10000–10004.

Lim, T. K. (2020). The facts, fallacies and uncertainties about coronavirus disease 2019 (COVID-19). Ann 

Acad Med Singap, 49, 343–345.

https://doi.org/10.1186/1475-925X-10-22
https://doi.org/10.1186/1475-925X-10-22
https://doi.org/10.1016/j.compbiomed.2017.03.019
https://doi.org/10.1109/12.324566
https://doi.org/10.1007/s10462-020-09804-x
https://doi.org/10.1016/j.compbiomed.2019.103577
https://doi.org/10.1109/WiSPNET45539.2019.9032841
https://doi.org/10.1016/j.ijleo.2019.163519
https://doi.org/10.1016/j.ijleo.2019.163519
https://doi.org/10.1118/1.3693052
https://doi.org/10.1192/bjp.2018.54
https://doi.org/10.1192/bjp.2018.54
https://doi.org/10.1016/j.ijdrr.2019.101325
https://doi.org/10.1016/j.ijdrr.2019.101325


Annals of Operations Research 

1 3

Lima, S.A., Islam, M.R. (2019). A modified method for brain MRI segmentation using Dempster–Shafer 
theory. In 2019 22nd International Conference on Computer and Information Technology (ICCIT), 
18–20, 2019. pp 1–6. doi:https:// doi. org/ 10. 1109/ ICCIT 48885. 2019. 90382 65

Lin, H.-C., Li, H.-Y., Wu, Y.-T., Tsai, Y.-L., Chuang, C.-Y., Lin, C.-H., & Chen, W.-Y. (2020). Bayesian 
inference of nonylphenol exposure for assessing human dietary risk. Science of The Total Environ-

ment, 713, 136710. https:// doi. org/ 10. 1016/j. scito tenv. 2020. 136710
Lipková, J., et  al. (2019). Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical 

Tumor Models. Multimodal Scans, and Bayesian Inference IEEE Transactions on Medical Imaging, 
38, 1875–1884. https:// doi. org/ 10. 1109/ TMI. 2019. 29020 44

Liu, K., et al. (2019). Big medical data decision-making intelligent system exploiting fuzzy inference logic 
for Prostate Cancer in developing Countries.  IEEE Access, 7, 2348–2363. https:// doi. org/ 10. 1109/ 
ACCESS. 2018. 28861 98

Louizos, C., Ullrich, K., Welling, M. (2017). Bayesian compression for deep learning. In Advances in Neu-

ral Information Processing Systems, pp 3288–3298
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population 

codes. Nature Neuroscience, 9, 1432–1438.
Magnusson, B. P., Schmidli, H., Rouyrre, N., & Scharfstein, D. O. (2019). Bayesian inference for a princi-

pal stratum estimand to assess the treatment effect in a subgroup characterized by postrandomization 
event occurrence. Statistics in Medicine, 38, 4761–4771. https:// doi. org/ 10. 1002/ sim. 8333

Mahmoud, A.M. (2016), Suitability of Various Intelligent Tree Based Classifiers for Diagnosing Noisy 
Medical Data. Egyptian Computer Science Journal 40

Majeed Alneamy, J. S., & A. Hameed Alnaish Z, Mohd Hashim SZ, Hamed Alnaish RA, . (2019). Utilizing 
hybrid functional fuzzy wavelet neural networks with a teaching learning-based optimization algo-
rithm for medical disease diagnosis. Computers in Biology and Medicine, 112, 103348. https:// doi. 
org/ 10. 1016/j. compb iomed. 2019. 103348

Mazur, D. J. (2012). A history of evidence in medical decisions: from the diagnostic sign to Bayesian infer-
ence. Medical Decision Making, 32, 227–231.

McKenna, M. T., Weis, J. A., Brock, A., Quaranta, V., & Yankeelov, T. E. (2018). Precision Medicine with 
Imprecise Therapy: Computational Modeling for Chemotherapy in Breast Cancer Translational. 
Oncology, 11, 732–742. https:// doi. org/ 10. 1016/j. tranon. 2018. 03. 009

Meilia, P. D. I., Freeman, M. D., & Herkutanto, Z. M. P. (2020). A review of causal inference in forensic 
medicine Forensic Science. Medicine and Pathology. https:// doi. org/ 10. 1007/ s12024- 020- 00220-9

Melie-Garcia, L., Draganski, B., Ashburner, J., Kherif, F. (2018). multiple linear regression: Bayesian infer-
ence for distributed and big data in the medical informatics platform of the human brain project. 
bioRxiv:242883 doi:https:// doi. org/ 10. 1101/ 242883

Mendoza-Blanco, J. R., Tu, X. M., & Iyengar, S. (1996). Bayesian inference on prevalence using a missing-
data approach with simulation-based techniques: applications to HIV screening. Statistics in Medi-

cine, 15, 2161–2176.
Minka, T.P. (2001). Expectation propagation for approximate Bayesian inference. Paper presented at 

the Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, Seattle, 
Washington,

Mohammadpoor, M., Shoeibi, A., & Shojaee, H. (2016). A hierarchical classification method for breast 
tumor detection Iranian Journal of. Medical Physics, 13, 261–268.

Mooney, C. Z. (1997). Monte carlo simulation (Vol. 116). Cambridge: Sage publications.
Mori, Y., Seki, H., Inuiguchi, M. (2019). Knowledge Acquisition with Deep Fuzzy Inference Model and Its 

Application to a Medical Diagnosis. In: IEEE 10th International Conference on Awareness Science 

and Technology (iCAST), 23–25 Oct. 2019. pp 1–6
Nabwey, H. A. (2020). A Methodology Based on Rough Set Theory and Hypergraph for the Prediction of 

Wart Treatment. International Journal of Engineering Research and Technology, 13, 552–559.
Nazri, M.Z.A., Kurniawan, R., Abdullah, S.N.H.S., Othman, Z.A., Abdullah, S. (2020). Bayesian network 

and dempster-shafer theory for early diagnosis of eye diseases COMPUSOFT: An International Jour-
nal of Advanced Computer Technology 9

Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Medical data classification using interval 
type-2 fuzzy logic system and wavelets. Applied Soft Computing, 30, 812–822.

Nguyen, T. T., Phan, T. C., Nguyen, Q. V. H., Aberer, K., & Stantic, B. (2019). Maximal fusion of facts on 
the web with credibility guarantee. Information Fusion, 48, 55–66.

Ningler, M., Stockmanns, G., Schneider, G., Kochs, H.-D., & Kochs, E. (2009). Adapted variable precision 
rough set approach for EEG analysis. Artificial Intelligence in Medicine, 47, 239–261.

Ocampo, E., Maceiras, M., Herrera, S., Maurente, C., Rodríguez, D., & Sicilia, M. A. (2011). Compar-
ing Bayesian inference and case-based reasoning as support techniques in the diagnosis of Acute 

https://doi.org/10.1109/ICCIT48885.2019.9038265
https://doi.org/10.1016/j.scitotenv.2020.136710
https://doi.org/10.1109/TMI.2019.2902044
https://doi.org/10.1109/ACCESS.2018.2886198
https://doi.org/10.1109/ACCESS.2018.2886198
https://doi.org/10.1002/sim.8333
https://doi.org/10.1016/j.compbiomed.2019.103348
https://doi.org/10.1016/j.compbiomed.2019.103348
https://doi.org/10.1016/j.tranon.2018.03.009
https://doi.org/10.1007/s12024-020-00220-9
https://doi.org/10.1101/242883


 Annals of Operations Research

1 3

Bacterial Meningitis. Expert Systems with Applications, 38, 10343–10354. https:// doi. org/ 10. 1016/j. 
eswa. 2011. 02. 055

Oh, S. L., Ng, E. Y. K., Tan, R. S., & Acharya, U. R. (2018). Automated diagnosis of arrhythmia using com-
bination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and 

Medicine, 102, 278–287.
Oh, S. L., Ng, E. Y. K., Tan, R. S., & Acharya, U. R. (2019). Automated beat-wise arrhythmia diagnosis 

using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia 
types. Computers in Biology and Medicine, 105, 92–101.

Ormerod, J. T., & Wand, M. P. (2010). Explaining Variational Approximations The American Statistician, 
64, 140–153.

Ornelas-Vences, C., Sanchez-Fernandez, L. P., Sanchez-Perez, L. A., Garza-Rodriguez, A., & Villegas-
Bastida, A. (2017). Fuzzy inference model evaluating turn for Parkinson’s disease patients. Comput-

ers in Biology and Medicine, 89, 379–388. https:// doi. org/ 10. 1016/j. compb iomed. 2017. 08. 026
Özkan, A. O., Kara, S., Salli, A., Sakarya, M. E., & Güneş, S. (2010). Medical diagnosis of rheumatoid 

arthritis disease from right and left hand Ulnar artery Doppler signals using adaptive network based 
fuzzy inference system (ANFIS) and MUSIC method. Advances in Engineering Software, 41, 1295–
1301. https:// doi. org/ 10. 1016/j. adven gsoft. 2010. 10. 001

P, K.A., & Acharjya, D. P. (2020). A Hybrid Scheme for Heart Disease Diagnosis Using Rough Set 
and Cuckoo Search Technique. Journal of Medical Systems, 44, 27. https:// doi. org/ 10. 1007/ 
s10916- 019- 1497-9

Pandya, B.H. (2015). Image processing for movement detection and face recognition using fuzzy neural 
network. Kadi Sarva Vishwavidyalaya

Papadimitroulas, P., Loudos, G., Nikiforidis, G. C., & Kagadis, G. C. (2012). A dose point kernel data-
base using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with 
other Monte Carlo codes. Medical Physics, 39, 5238–5247. https:// doi. org/ 10. 1118/1. 47370 96

Papageorgiou, E. I. (2011). A Fuzzy Inference Map approach to cope with uncertainty in modeling medical 
knowledge and making decisions. Intelligent Decision Technologies, 5, 219–235. https:// doi. org/ 10. 
3233/ IDT- 2011- 0108

Parikh, C. R., Pont, M. J., & Barrie Jones, N. (2001). Application of Dempster-Shafer theory in condition 
monitoring applications: a case study. Pattern Recognition Letters, 22, 777–785.

Pham, T.-H., et al. (2020). Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG 
Signals. International Journal of Environmental Research and Public Health, 17, 971.

Pho, K.-H., Ly, S., & Ly, S. (2019). Lukusa TM (2019) Comparison among Akaike Information Criterion. 
Bayesian Information Criterion and Vuong’s test in Model Selection: A Case Study of Violated Speed 

Regulation in Taiwan, 3, 293–303.
Polat, K., & Güneş, S. (2006). A hybrid medical decision making system based on principles component 

analysis, k-NN based weighted pre-processing and adaptive neuro-fuzzy inference system. Digital 

Signal Processing, 16, 913–921.
Porebski, S., Porwik, P., Straszecka, E., & Orczyk, T. (2018). Liver fibrosis diagnosis support using the 

Dempster-Shafer theory extended for fuzzy focal elements. Engineering Applications of Artificial 

Intelligence, 76, 67–79.
Prameswari, E. A., Triayudi, A., & Sholihati, I. D. (2019). Web-based E-diagnostic for Digestive System 

Disorders in Mumans using the Demster Shafer Method. International Journal of Computer Applica-

tions, 975, 8887.
Precharattana, M., Nokkeaw, A., Triampo, W., Triampo, D., & Lenbury, Y. (2011). Stochastic cellular 

automata model and Monte Carlo simulations of CD4+ T cell dynamics with a proposed alternative 
leukapheresis treatment for HIV/AIDS. Computers in Biology and Medicine, 41, 546–558. https:// doi. 
org/ 10. 1016/j. compb iomed. 2011. 05. 005

Priyadarshini, L., Shrinivasan, L., (2020). Design of an ANFIS based Decision Support System for Diabe-
tes Diagnosis. In 2020 International Conference on Communication and Signal Processing (ICCSP), 

2020. IEEE, pp 1486–1489
Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to 

statistical mechanics. Random Structures & Algorithms9,  223–252. https:// doi. org/ 10. 1002/ (sici) 
1098- 2418(199608/ 09)9: 1/2% 3c223:: Aid- rsa14% 3e3.0. Co;2-o

Qian, Y., Bi, M., Tan, T., & Yu, K. (2016). Very Deep Convolutional Neural Networks for Noise Robust 
Speech Recognition IEEE/ACM Transactions on Audio. Speech, and Language Processing, 24, 
2263–2276. https:// doi. org/ 10. 1109/ TASLP. 2016. 26028 84

https://doi.org/10.1016/j.eswa.2011.02.055
https://doi.org/10.1016/j.eswa.2011.02.055
https://doi.org/10.1016/j.compbiomed.2017.08.026
https://doi.org/10.1016/j.advengsoft.2010.10.001
https://doi.org/10.1007/s10916-019-1497-9
https://doi.org/10.1007/s10916-019-1497-9
https://doi.org/10.1118/1.4737096
https://doi.org/10.3233/IDT-2011-0108
https://doi.org/10.3233/IDT-2011-0108
https://doi.org/10.1016/j.compbiomed.2011.05.005
https://doi.org/10.1016/j.compbiomed.2011.05.005
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2%3c223::Aid-rsa14%3e3.0.Co;2-o
https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2%3c223::Aid-rsa14%3e3.0.Co;2-o
https://doi.org/10.1109/TASLP.2016.2602884


Annals of Operations Research 

1 3

Ranjit, K., Kamaldeep, K., Aditya, K., & Divya, A. (2020). An Improved and Adaptive Approach in 
ANFIS to Predict Knee Diseases. International Journal of Healthcare Information Systems and 

Informatics (IJHISI), 15, 22–37. https:// doi. org/ 10. 4018/ IJHISI. 20200 40102
Raza, M., Gondal, I., Green, D., & Coppel, R. L. (2006). Fusion of FNA-cytology and gene-expression 

data using Dempster-Shafer Theory of evidence to predict breast cancer tumors. Bioinformation, 
1, 170–175. https:// doi. org/ 10. 6026/ 97320 63000 1170

Razi, S., Karami Mollaei, M. R., & Ghasemi, J. (2019). A novel method for classification of BCI multi-
class motor imagery task based on Dempster-Shafer theory. Information Sciences, 484, 14–26. 
https:// doi. org/ 10. 1016/j. ins. 2019. 01. 053

Reamaroon, N., Sjoding, M. W., Lin, K., Iwashyna, T. J., & Najarian, K. (2019). Accounting for Label 
Uncertainty in Machine Learning for Detection of Acute Respiratory Distress Syndrome. IEEE 

Journal of Biomedical and Health Informatics, 23, 407–415. https:// doi. org/ 10. 1109/ JBHI. 2018. 
28108 20

Robertson, J., DeHart, D.J. (2010). An agile and accessible adaptation of Bayesian inference to medical 
diagnostics for rural health extension workers. In 2010 AAAI Spring Symposium Series

Rolnick, D., Veit, A., Belongie, S., Shavit, N. (2017), Deep learning is robust to massive label noise 
arXiv preprint arXiv:170510694

Rundo, L., et al. (2020). Tissue-specific and interpretable sub-segmentation of whole tumour burden on 
CT images by unsupervised fuzzy clustering. Computers in Biology and Medicine, 120, 103751. 
https:// doi. org/ 10. 1016/j. compb iomed. 2020. 103751

Salah, O., Ramadan, A. A., Sessa, S., Ismail, A. A., Fujie, M., & Takanishi, A. (2013). Anfis-based sen-
sor fusion system of sit-to-stand for elderly people assistive device protocols. International Jour-

nal of Automation and Computing, 10, 405–413.
Salgado, M. V., Penko, J., Fernandez, A., Konfino, J., Coxson, P. G., Bibbins-Domingo, K., & Mejia, R. 

(2020). Projected impact of a reduction in sugar-sweetened beverage consumption on diabetes and 
cardiovascular disease in Argentina: A modeling study. PLoS medicine, 17, e1003224.

Santra, D., Basu, S. K., Mandal, J. K., & Goswami, S. (2020). Rough set based lattice structure for 
knowledge representation in medical expert systems: Low back pain management case study. 
Expert Systems with Applications, 145, 113084. https:// doi. org/ 10. 1016/j. eswa. 2019. 113084

Sarrut, D., et al. (2014). A review of the use and potential of the GATE Monte Carlo simulation code for 
radiation therapy and dosimetry applications. Medical physics, 41, 064301.

Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M. A. L. (2019). Recent advances and applica-
tions of machine learning in solid-state materials science. npj Computational Materials, 5, 83. 
https:// doi. org/ 10. 1038/ s41524- 019- 0221-0

Schultz, S., Krüger, J., Handels, H., & Ehrhardt, J. (2019). Bayesian inference for uncertainty quantifica-

tion in point-based deformable image registration (Vol. 10949). SPIE.
Seixas, F. L., Zadrozny, B., Laks, J., Conci, A., & Muchaluat Saade, D. C. (2014). A Bayesian network 

decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive 
impairment. Computers in Biology and Medicine, 51, 140–158. https:// doi. org/ 10. 1016/j. compb 
iomed. 2014. 04. 010

Sengur, A. (2008). An expert system based on principal component analysis, artificial immune system 
and fuzzy k-NN for diagnosis of valvular heart diseases. Computers in Biology and Medicine, 38, 
329–338. https:// doi. org/ 10. 1016/j. compb iomed. 2007. 11. 004

Shadman Roodposhti, M., Aryal, J., Lucieer, A., & Bryan, B. A. (2019). Uncertainty Assessment of 
Hyperspectral Image Classification: Deep Learning vs. Random Forest Entropy, 21, 78.

Sharifrazi, D. et  al. (2020), CNN-KCL: Automatic Myocarditis Diagnosis using Convolutional Neural 
Network Combined with K-means Clustering

Shi, J.-Y., Shang, X.-Q., Gao, K., Zhang, S.-W., & Yiu, S.-M. (2018). An Integrated Local Classification 
Model of Predicting Drug-Drug Interactions via Dempster-Shafer Theory of Evidence. Scientific 

Reports, 8, 11829.
Shih, T.-Y., Liu, Y.-L., Chen, H.-H., & Wu, J. (2020). Dose evaluation of a blood irradiator using 

Monte Carlo simulation and MAGAT gel dosimeter Nuclear Instruments and Methods in Phys-
ics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment, 954, 
161249. https:// doi. org/ 10. 1016/j. nima. 2018. 09. 084

Shoeibi, A., et al. (2020a). Epileptic seizure detection using deep learning techniques: A Review arXiv pre-
print arXiv:200701276

Shoeibi, A., et al. (2020b). Automated Detection and Forecasting of COVID-19 using Deep Learning Tech-
niques: A Review arXiv preprint arXiv:200710785

https://doi.org/10.4018/IJHISI.2020040102
https://doi.org/10.6026/97320630001170
https://doi.org/10.1016/j.ins.2019.01.053
https://doi.org/10.1109/JBHI.2018.2810820
https://doi.org/10.1109/JBHI.2018.2810820
https://doi.org/10.1016/j.compbiomed.2020.103751
https://doi.org/10.1016/j.eswa.2019.113084
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1016/j.compbiomed.2014.04.010
https://doi.org/10.1016/j.compbiomed.2014.04.010
https://doi.org/10.1016/j.compbiomed.2007.11.004
https://doi.org/10.1016/j.nima.2018.09.084


 Annals of Operations Research

1 3

Shoeibi, A., et al. (2021). A comprehensive comparison of handcrafted features and convolutional autoen-
coders for epileptic seizures detection in EEG signals. Expert Systems with Applications, 163, 
113788. https:// doi. org/ 10. 1016/j. eswa. 2020. 113788

Shoushtarian, M., Alizadehsani, R., Khosravi, A., Acevedo, N., McKay, C. M., Nahavandi, S., & Fallon, 
J. B. (2020). Objective measurement of tinnitus using functional near-infrared spectroscopy and 
machine learning. PLOS ONE, 15, e0241695. https:// doi. org/ 10. 1371/ journ al. pone. 02416 95

Snoek, J., et al. (2015). Scalable Bayesian Optimization Using Deep Neural Networks. Paper presented at 

the Proceedings of the 32nd International Conference on Machine Learning,

Sood, S. K., Kaur, S., & Chahal, K. K. (2020). An intelligent framework for monitoring dengue fever risk 
using LDA-ANFIS. Journal of Ambient Intelligence and Smart Environments, 12, 5–20. https:// doi. 
org/ 10. 3233/ AIS- 200547

Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. 
Renewable and Sustainable Energy Reviews, 28, 376–384.

Stokić, E., Brtka, V., & Srdić, B. (2010). The synthesis of the rough set model for the better applicability of 
sagittal abdominal diameter in identifying high risk patients. Computers in Biology and Medicine, 40, 
786–790. https:// doi. org/ 10. 1016/j. compb iomed. 2010. 08. 001

Straszecka, E. (2006). Combining uncertainty and imprecision in models of medical diagnosis. Information 

Sciences, 176, 3026–3059.
Suchard, M. A., & Redelings, B. D. (2006). BAli-Phy: simultaneous Bayesian inference of alignment and 

phylogeny. Bioinformatics, 22, 2047–2048. https:// doi. org/ 10. 1093/ bioin forma tics/ btl175
Sujatha, K., et  al. (2020). Chapter  5 - Screening and early identification of microcalcifications in breast 

using texture-based ANFIS classification. In: Dey N, Ashour AS, James Fong S, Bhatt C (eds) Wear-
able and Implantable Medical Devices, vol 7. Academic Press, pp 115–140.https:// doi. org/ 10. 1016/ 
B978-0- 12- 815369- 7. 00005-7

Sun, X.-L., Wang, H., Li, X.-K., Cao, G.-H., Kuang, Y., & Zhang, X.-C. (2020). Monte Carlo computer 
simulation of a camera system for proton beam range verification in cancer treatment. Future Genera-

tion Computer Systems, 102, 978–991. https:// doi. org/ 10. 1016/j. future. 2019. 09. 011
Tiwari, L., Raja ,R., Sharma, V., Miri, R. (2020). Fuzzy Inference System for Efficient Lung Cancer Detec-

tion. In: Gupta M, Konar D, Bhattacharyya S, Biswas S (eds) Computer Vision and Machine Intel-
ligence in Medical Image Analysis, Singapore, 2020// 2020. Springer Singapore, pp 33–41

Toğaçar, M., Ergen, B., & Cömert, Z. (2020). COVID-19 detection using deep learning models to exploit 
Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking 
approaches. Computers in Biology and Medicine, 121, 103805. https:// doi. org/ 10. 1016/j. compb 
iomed. 2020. 103805

Tsai, M.-Y., et al. (2020). A new open-source GPU-based microscopic Monte Carlo simulation tool for the 
calculations of DNA damages caused by ionizing radiation---Part I: Core algorithm and validation. 
Medical Physics, 47, 1958–1970. https:// doi. org/ 10. 1002/ mp. 14037

Tsumoto, S. (1998). Automated extraction of medical expert system rules from clinical databases based on 
rough set theory. Information Sciences, 112, 67–84.

Tsumoto, S. (1998). Extraction of experts’ decision rules from clinical databases using rough set model. 
Intelligent Data Analysis, 2, 215–227. https:// doi. org/ 10. 3233/ IDA- 1998- 2305

Turabieh, H., Mafarja, M., & Mirjalili, S. (2019). Dynamic Adaptive Network-Based Fuzzy Inference Sys-
tem (D-ANFIS) for the Imputation of Missing Data for Internet of Medical Things Applications. 
IEEE Internet of Things Journal, 6, 9316–9325. https:// doi. org/ 10. 1109/ JIOT. 2019. 29263 21

Van Wyk, B. E. (2020). A family-level floristic inventory and analysis of medicinal plants used in Tradi-
tional African Medicine. Journal of Ethnopharmacology, 249, 112351. https:// doi. org/ 10. 1016/j. jep. 
2019. 112351

Vidhya, K., & Shanmugalakshmi, R. (2020). Modified adaptive neuro-fuzzy inference system (M-ANFIS) 
based multi-disease analysis of healthcare Big Data. The Journal of Supercomputing. https:// doi. org/ 
10. 1007/ s11227- 019- 03132-w

Wang, Y., & Dai, Y. Chen Y.-w., Meng, F. (2015). The Evidential Reasoning Approach to Medical Diagno-
sis using Intuitionistic Fuzzy Dempster-Shafer Theory, International Journal of Computational Intel-

ligence Systems, 8, 75–94.
Wang, L. L. W., & Leszczynski, K. (2007). Estimation of the focal spot size and shape for a medical lin-

ear accelerator by Monte Carlo simulation. Medical Physics, 34, 485–488. https:// doi. org/ 10. 1118/1. 
24264 07

Wang, H., & Yeung, D. (2016). Towards Bayesian Deep Learning: A Framework and Some Existing Meth-
ods. IEEE Transactions on Knowledge and Data Engineering, 28, 3395–3408. https:// doi. org/ 10. 
1109/ TKDE. 2016. 26064 28

https://doi.org/10.1016/j.eswa.2020.113788
https://doi.org/10.1371/journal.pone.0241695
https://doi.org/10.3233/AIS-200547
https://doi.org/10.3233/AIS-200547
https://doi.org/10.1016/j.compbiomed.2010.08.001
https://doi.org/10.1093/bioinformatics/btl175
https://doi.org/10.1016/B978-0-12-815369-7.00005-7
https://doi.org/10.1016/B978-0-12-815369-7.00005-7
https://doi.org/10.1016/j.future.2019.09.011
https://doi.org/10.1016/j.compbiomed.2020.103805
https://doi.org/10.1016/j.compbiomed.2020.103805
https://doi.org/10.1002/mp.14037
https://doi.org/10.3233/IDA-1998-2305
https://doi.org/10.1109/JIOT.2019.2926321
https://doi.org/10.1016/j.jep.2019.112351
https://doi.org/10.1016/j.jep.2019.112351
https://doi.org/10.1007/s11227-019-03132-w
https://doi.org/10.1007/s11227-019-03132-w
https://doi.org/10.1118/1.2426407
https://doi.org/10.1118/1.2426407
https://doi.org/10.1109/TKDE.2016.2606428
https://doi.org/10.1109/TKDE.2016.2606428


Annals of Operations Research 

1 3

Wang, S.-L., Li, X., Zhang, S., Gui, J., & Huang, D.-S. (2010). Tumor classification by combining PNN 
classifier ensemble with neighborhood rough set based gene reduction. Computers in Biology and 

Medicine, 40, 179–189.
Wang, J., Hu, Y., Xiao, F., Deng, X., & Deng, Y. (2016). A novel method to use fuzzy soft sets in deci-

sion making based on ambiguity measure and Dempster-Shafer theory of evidence: An application 
in medical diagnosis. Artificial Intelligence in Medicine, 69, 1–11. https:// doi. org/ 10. 1016/j. artmed. 
2016. 04. 004

Wang, K.-J., Chen, J.-L., & Wang, K.-M. (2019). Medical expenditure estimation by Bayesian network for 
lung cancer patients at different severity stages. Computers in Biology and Medicine, 106, 97–105. 
https:// doi. org/ 10. 1016/j. compb iomed. 2019. 01. 015

Watabe, T., Okuhara, Y., & Sagara, Y. (2014). A hierarchical Bayesian framework to infer the progression 
level to diabetes based on deficient clinical data. Computers in Biology and Medicine, 50, 107–115. 
https:// doi. org/ 10. 1016/j. compb iomed. 2014. 04. 017

Xiao, F. (2018). A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis. IEEE Access, 6, 
25300–25312. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28200 99

Xu, Q., Zhang, C., & Sun, B. (2020). Emotion recognition model based on the Dempster-Shafer evidence 
theory. Journal of Electronic Imaging, 29, 023018.

Yadollahpour, A., Nourozi, J., Mirbagheri, S. A., Simancas-Acevedo, E., & Trejo-Macotela, F. R. (2018). 
Designing and Implementing an ANFIS Based Medical Decision Support System to Predict Chronic 
Kidney Disease Progression. Frontiers in Physiology. https:// doi. org/ 10. 3389/ fphys. 2018. 01753

Yang, J.-G., Kim, J.-K., Kang, U.-G., & Lee, Y.-H. (2014). Coronary heart disease optimization system 
on adaptive-network-based fuzzy inference system and linear discriminant analysis (ANFIS---LDA). 
Personal Ubiquitous Comput, 18, 1351–1362. https:// doi. org/ 10. 1007/ s00779- 013- 0737-0

Zadeh, L. A. (1988). Fuzzy logic Computer, 21, 83–93. https:// doi. org/ 10. 1109/2. 53
Zangeneh Soroush, M., Maghooli, K., Setarehdan, S. K., & Nasrabadi, A. M. (2019). Emotion recognition 

through EEG phase space dynamics and Dempster-Shafer theory. Medical Hypotheses 127 34–45. 
https:// doi. org/ 10. 1016/j. mehy. 2019. 03. 025

Zhai, J.-h. (2011). Fuzzy decision tree based on fuzzy-rough technique. Soft Computing, 15, 1087–1096.
Zhang, X., Liang, F., Srinivasan, R., & Van Liew, M. (2009). Estimating uncertainty of streamflow simu-

lation using Bayesian neural networks. Water Resources Research. https:// doi. org/ 10. 1029/ 2008W 
R0070 30

Zhang, S.-W., Huang, D.-S., & Wang, S.-L. (2010). A method of tumor classification based on wavelet 
packet transforms and neighborhood rough set. Computers in Biology and Medicine, 40, 430–437. 
https:// doi. org/ 10. 1016/j. compb iomed. 2010. 02. 007

Zhang, Y., Sohn, K., Villegas, R., Pan,. G, Lee, H. (2015). Improving object detection with deep convolu-
tional networks via Bayesian optimization and structured prediction. Paper presented at the CVPR,

Zhang, Q., Xie, Q., & Wang, G. (2016). A survey on rough set theory and its applications. CAAI Transac-

tions on Intelligence Technology, 1, 323–333.
Zhou, Q., Yu, T., Zhang, X., & Li, J. (2020). Bayesian Inference and Uncertainty Quantification for Medical 

Image Reconstruction with Poisson Data. SIAM Journal on Imaging Sciences, 13, 29–52. https:// doi. 
org/ 10. 1137/ 19m12 48352

Ziasabounchi, N., & Askerzade, I. (2014). ANFIS based classification model for heart disease prediction. 
International Journal of Electrical & Computer Sciences IJECS-IJENS, 14, 7–12.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.artmed.2016.04.004
https://doi.org/10.1016/j.artmed.2016.04.004
https://doi.org/10.1016/j.compbiomed.2019.01.015
https://doi.org/10.1016/j.compbiomed.2014.04.017
https://doi.org/10.1109/ACCESS.2018.2820099
https://doi.org/10.3389/fphys.2018.01753
https://doi.org/10.1007/s00779-013-0737-0
https://doi.org/10.1109/2.53
https://doi.org/10.1016/j.mehy.2019.03.025
https://doi.org/10.1029/2008WR007030
https://doi.org/10.1029/2008WR007030
https://doi.org/10.1016/j.compbiomed.2010.02.007
https://doi.org/10.1137/19m1248352
https://doi.org/10.1137/19m1248352


 Annals of Operations Research

1 3

Authors and A�liations

Roohallah Alizadehsani1  · Mohamad Roshanzamir2 · Sadiq Hussain3 · 

Abbas Khosravi1 · Afsaneh Koohestani1 · Mohammad Hossein Zangooei4 · 

Moloud Abdar1 · Adham Beykikhoshk5 · Afshin Shoeibi6,7 · Assef Zare8 · 

Maryam Panahiazar9 · Saeid Nahavandi1 · Dipti Srinivasan10 · Amir F. Atiya11 · 

U. Rajendra Acharya12,13,14

1 Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, 
Australia

2 Department of Computer Engineering, Faculty of Engineering, Fasa University, 
74617-81189 Fasa, Iran

3 System Administrator, Dibrugarh University, Dibrugarh, Assam 786004, India

4 University of Texas At Dallas, Dallas, USA

5 Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia

6 Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran

7 Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi 
University of Technology, Tehran, Iran

8 Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran

9 Institute for Computational Health Sciences, University of California, San Francisco, USA

10 Dept. of Electrical and Computer Engineering, National University of Singapore, 
Singapore 117576, Singapore

11 Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo 12613, 
Egypt

12 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, 
Singapore

13 Department of Biomedical Engineering, School of Science and Technology, Singapore University 
of Social Sciences, Singapore, Singapore

14 Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan

http://orcid.org/0000-0002-3069-7932

	Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991–2020)
	Abstract
	1 Introduction
	2 Search criteria
	3 Uncertainty handling algorithms in medical science
	3.1 Bayesian inference (BI)
	3.1.1 Related work based on bayesian inference
	3.1.2 Related works based on Bayesian Deep Learning

	3.2 Fuzzy logic
	3.2.1 ANFIS
	3.2.2 Related works based on ANFIS

	3.3 Monte Carlo simulation
	3.3.1 Monte Carlo method


	4 Basic principle Monte Carlo Integration
	4.1 Related works based on Monte Carlo Simulation (MCS)
	4.2 Rough set theory (RST)
	4.2.1 Formal definition

	4.3 Related works based on RST
	4.4 Dempster–Shafer theory (DST)
	4.4.1 Formal definition
	4.4.2 Dempster’s rule of combination
	4.4.3 Related works based on DST

	4.5 Imprecise probability
	4.5.1 Definitions
	4.5.2 Related works on imprecise probability


	5 Discussion
	6 Conclusions and future works
	References


