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Abstract 

Recently we have developed a novel type of structure-based 
speech recognizer, which uses parameterized, non-recursive 
hidden  trajectory model of vocal tract resonances (VTR) or 

formants to capture the dynamic structure of long-range 
speech coarticulation and reduction. The underlying model of 
this recognizer carries out bi-directional FIR filtering on the 
piecewise constant sequences of the VTR targets. In this 
paper, we elaborate on two key aspects of the model. First, the 
phonetic context controls the movement direction and thus 
the formation of the VTR trajectories. This provides 
structured  context dependency for speech acoustics without 

using context dependent parameters as required by HMMs. 
Second, VTR targets as the key context-independent 
parameters of the model vary across speakers. We describe an 
effective target-value normalization algorithm that can be 
applied to both training and unknown test speakers. We report 
experimental results demonstrating the effectiveness of the 
normalization algorithm in the context of structure-based 
speech recognition. We also provide computational analysis 
on the HTM-based speech decoder. 
Index Terms: hidden trajectory model, phonetic contexts, 
normalization, vocal tract resonance, targets 

1. Introduction 
We recently developed a version of structure-based speech 
recognizer, which we call the hidden trajectory model (HTM), 
where a non-recursive, parametric form of the time-series 
model is used to functionally represent the dynamic structure 
of speech articulation in the domain of vocal tract resonance 
(VTR). Various aspects of the model development including 
its training and decoding algorithms as well as experimental 
results have been described in [1][2][12][13][6]. HTM can be 
considered as a special and highly structured member in the 
family of generic stochastic segment models [8]. In this 
model, dynamic structure of speech is represented in the 
unobserved VTR domain to characterize long-span contextual 
influence among phonetic units in fluent speech utterances. 
One key idea is the use of bi-directional and parametric target 
filtering to model speech coarticulation and context-
assimilated phonetic reduction.  

In a series of earlier papers, we described in detail the 
formulation of the bi-directional filter [1], the cepstral-
residual parameter learning algorithm [2], the VTR target 
learning algorithm [13], and synchronous and asynchronous 
decoders for the HTM [12][6]. In this paper, we elaborate on 
two additional aspects in HTM: 1) the role of phonetic 
contexts and its incorporation in speech recognition 
algorithms, and 2) the way to handle speaker variation via the 
normalization of resonance target parameters in HTM. These 
aspects have been discussed yet not emphasized in our earlier 
papers [12][13].  

The phonetic contexts control the values of the VTR 
trajectory. Proper incorporation of phonetic contexts is a key 
aspect in constructing accurate models for speech dynamics. 
In HTM, phonetic contexts are partially modeled by the bi-
directional target filter and partially modeled by the proper 
selection of the context-sens - sets. In this 
paper, we draw attention to the importance of the correct 
selection of the HTM-unit set. We explain why the commonly 
used phone set in HMM systems is not sufficient to accurately 
model the contextual relationships embodied in HTM, and 
show the construction of the HTM-unit set together with the 
motivations. 

It has been traditionally held that more complex statistical 
models often would have a harder time to incorporate detailed 
knowledge into the associated algorithms. As an example, in 
relatively simple models such as HMMs, speaker variation 
can be straightforwardly handled by pooling all data from 
many speakers in training. But for more complex models such 
as HTMs, such pooling would not work since some key 
parameter set (i.e., VTR targets) in the model are inherently 
speaker specific. While statistical distributions can be used to 
represent the randomness of the VTR targets due to speaker 
variation, this would significantly increase phonetic 
confusability. Special normalization techniques have been 
developed, which will be described in detail in this paper. 

The organization of this paper is as follows. In Section 2, 
we illustrate the idea of trajectory estimation using the bi-
directional target filters in the hidden trajectory model and the 
incorporation of the phonetic contexts. In Section 3, we show 
the importance of normalizing the targets and describe two 
methods for target normalization and prediction. 
Experimental results are shown in Section 4, and 
computational analysis shown in Section 5. 

2. HTM and Phonetic Contexts 
In HTM, phonetic context controls the movement direction of 
the VTR trajectories and subsequently their full formation 
when initial conditions are given. This control provides 
structured context dependency for speech acoustics without 
using context dependent parameters as required by HMMs. 
We discuss in this section details on how the phonetic context 
is incorporated in the HTM. 

As a generative model, the HTM first converts the 
temporally segmented, piecewise constant VTR target 
sequence (with sharp jumps at the segment boundaries) into 
smooth VTR trajectories using a bi-directional filter given the 
phone-sequence hypothesis and the boundaries [1][2]. The 
obtained VTR trajectories are next converted, via a nonlinear 
function, into the cepstral trajectories with sub-unit dependent 
bias parameters. In the decoding/recognition process, the 

  
the measured trajectories as the input data that are directly 
computed from the audio signal -- this comparison results in 
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the likelihood for each of the possible hypotheses. The 
hypothesis with the highest likelihood is chosen as the results 
of the recognition using the HTM.  

Figure 1 provides an illustration of using the bi-
directional filter to smooth the segmental VTR target 
sequence. Each HTM-unit (phone-like) is associated with a 
unique target vector (three dimensions in this example) and 
timing. Note that the filtered VTR trajectories exhibit both 
forward and backward coarticulation, since the VTR value at 

value but also those of the adjacent units. In this way, the 
phonetic context information is directly incorporated into the 
HTM via the filtering operation. In [1], it was shown that this 
filtering operation can quantitatively predict the magnitude of 
contextually assimilated reduction and coarticulation. Below 
we draw attention to the importance of appropriate selection 
of the HTM-unit/phone set and the related phonetic context, 
and describe the actual selection in our implemented HTM-
based recognition system.  

Figure 1: An example of using the bi-directional filter on the 
VTR target sequence (dotted green lines) to determine the 
VTR trajectories (solid red lines). Three dimensions of the 
target and VTR are illustrated, for F1, F2, and F3, 
respectively. Both the target sequence and the filtered VTR 
results are superimposed on the spectrogram of the speech 
utterance. 

The HTM-units are based on the conventional phones 
with four main categories of modifications that take into 
account regular effects of certain phonetic contexts. The first 
category concerns the place-of-articulation context including 
labial, labial-dental, and velar features for American English. 
As the HTM-units, the labial (/b/, /p/, /m/), labial-dental (/f/, 
/v/), and velar (/g/, /k/, /ng/) consonants are made conditioned 
on whether the followin front
otherwise. That is, when these consonants are followed by 
one of the following front vowels: /ae/, /eh/, /ih/, /iy/, /y/, or 
/ey/, we name them /b_f/, /p_f/, /m_f/, /f_f/, /v_f/, /g_f/, /k_f/, 
and /ng_f/, respectively, as distinguished HTM-units from the 
non-front-context counterparts. These two different sets of 
HTM-units (for the same phones) have different VTR targets 
which are trained seperately. In the decoding process, these 
two sets of units are also selected based on the following units 
in the hypotheses.  

Our second category of unit modifications (for our 
TIMIT-related experiments reported in this paper) concern the 
target-less TIMIT labels including pause, silence, and 
allophones /hh/ (unvoiced) or /hv/ (voiced). Figure 2 shows 
automatically extracted VTR/formant trajectories (F1, F2, F3) 
of a TIMIT utterance containing labels /hh/ and /hv/. There 
are no intrinsit articulatory configurations for these sounds, 
and hence no VTR targets associated with them. Instead, the 
VTR targets of the adjacent hones are 
phones in order to predict the VTR trajectories for them. 

From Figure 2, we see that the VTR trajectories for target-
e to the above 

prediction.  

Figure 2: VTR/formant trajectories (F1, F2, F3) of a TIMIT 
utterance containing labels /hh/ and /hv/ that do not have 
intrinsic VTR targets. 

The third category of HTM-unit modifications and the 
associated phonetic context are related to the `
phones including affricates (/jh/, /ch/),  and diphthongs (/ey/, 
/aw/, /ay/, /oy/, /ow/). To simplify the modeling, we split each 
composite phone into its constituents. That is, there are two 
sequentially connected VTR targets for each composite phone 
(with no specification of where the target switching is).  

In the fourth category of HTM-unit modifications, we use 
the same tying scheme as the classical one proposed in [5] for 
the TIMIT database. That is, the VTR targets are the same for 
all units within each of the following sets: {/em/, /m/}, {/en/, 
/nx/, /n/}, {/el/, /l/}, {/ao/, /aa/}, {/ux/, /uw/}, {/ix/, /ax-h/, 
/ax/}, {/axr/, /er/}, {/q/, /kcl/, /pcl/, /tcl/, /cl/}, {/bcl/, /dcl/, 
/gcl/, /vcl/}.  

3. Target Normalization across Speakers 
In this section, we present a novel algorithm for normalizing 
one key set of HTM parameters, HTM-unit-dependent VTR 
targets which are context independent, across speakers. One 
simplest approach would be to model all speakers with a 
single set of VTR targets but large variances. However, such 
simplicity would produce the VTR trajectories with wrong 
HTM-unit sequences, which may match well with data for 
some speakers, but not for other speakers (since VTR targets 
are related closely to the vocal tract length of the speaker). 
This problem has been analyzed in [13], where a peaker-
adaptive target training algorithm was described using VTRs 
estimated by a high-accuracy VTR tracking technique 
presented in [3]. In this paper, we further developed the 
target-normalization algorithm with new experimental results. 
Specifically, we show evidences that our new target-
normalization algorithm improves the performance of the 
VTR prediction. Importantly, the improvement is most 
striking when the normalization factor needs to be estimated 
using a small segments of the test set. 

In HTM and in absence of acoustic data, the VTR 
trajectory is predicted using the sequence of VTR target 
values (corresponding to the HTM-units) and their 
boundaries. The prediction is carried out by filtering the VTR 
targets using the bi-directional FIR filters [1]. In its simplest 
form, we assume that the target values for unit s, sT (a vector 
of F1, F2, F3, and F4 in our implementation), is the same for 
all speakers in the dataset. The residual difference sr between 

sT  and the true target sT follows the normal distribution 

given by ~ ; ,s s sNr r 0 , where .s s sr T T  That is, 
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 ; ,s s s sNT T r 0 . (1) 

The variance s above indicates the size of the residual 
and can be large since VTR targets depend on the vocal tract 
length, which varies widely among different speakers in the 
training data and hence is often subject to special treatment 
before feeding the features into automatic speech recognizers 
(e.g.,  [4][7][9][10][11][14]). The estimation accuracy of the 
VTR targets directly controls that of the VTR trajectories (and 
hence the qualities of speech recognition whose input acoustic 
features are direct function of the VTR trajectories). The goal 
of the target-normalization algorithm described in this section 
below is to reduce the variation of the VTR target values (and 
hence of the predicted VTR trajectories), and to account for 
realistic speaker-dependent target parameters based on the 
relatively invariant, normalized values. 

A straight-forward approach to accounting for speaker-
dependent target parameters in the HTM is to scale the 
generic , speaker-normalized VTR targets sT  according to 

 ,spk s spk sT , (2) 

where spk is the speaker-dependent normalization or scaling 
factor inversely proportional to the vocal tract length of the 
speaker spk . The dot operation above denotes an element-by-
element multiplication. This approach is based on the 
assumption that the ratio of the average VTR values (either in 
terms of targets or of actual values in the trajectories) of two 
speakers is a good estimate of a fixed physical property (the 
ratio of ). That is,  

 , ,spk s spk s
spk

s s

T z
T z

. (3) 

This assumption has been commonly used (e.g., 
[4][7][9][10][11][14]). Now with target normalization, a 
speaker-specific target will become 

 , , ,; ,spk s spk s spk s spk sNT . (4) 

The goal then is to estimate spk so that ,s spk s . 

3.1. Method one 

As developed and reported in [13], the most intuitive method 
of estimating spk is 

 spk
spk

z
z

, (5) 

where z  is the sample average of the VTR frequencies in the 
full training set and spkz is the sample average in the utterance 

from speaker spk . We now provide a brief analysis on this 
method. Using (3), we have  

, , , , .spk spk s spk s spk s spk s spk spk s s
s s s

f f fz z  (6) 

where ,
,

,

spk s
spk s

spk s
s

n
f

n
 is the relative frequency count, with 

,spk sn being the number of frames unit s  is observed in the 

speaker-specific utterances,  and ,spk sz  is the average VTR 

frequency of the phone s in speaker-specific utterances. 
Similarly, we have 

 s s
s

fz z . (7) 

Then, (5) can be rewritten as 

  
,spk s s

s
spk spk

s s
s

f

f

z

z
. (8) 

Eq. (8) indicates that the estimate of (5) would be accurate 

only when
,

1
spk s s

s

s s
s

f

f

z

z
, or ,spk s sf f ; that is, when the 

frequency of HTM-unit s in the utterances of speaker spk is 
the same as that in the utterances of all training data. 
However, if these frequencies are different, then the estimate 

of (5) will be incorrect by a factor of 
,spk s s

s

s s
s

f

f

z

z
. For 

example, in the extreme case when the utterance contains only 
unit of /aa/, then the scaling factor spk estimate becomes 

 
,

/ /
spk s s

s aa
spk spk spk

s s s s
s s

f

f f

z
z

z z
. (9) 

On the other hand, the estimate from the utterance that 
contains only unit /iy/ would be 

 
,

/ /
spk s s

iys
spk spk spk

s s s s
s s

f

f f

z z
z z

. (10) 

Since the average VTR frequencies of /aa/ and /iy/ are very 
different, the estimates (9) and (10) would differ vastly even 
though both utterances are generated by the same speaker.  

3.2. Method two 

The above problem is corrected by the second method 
described here, where the estimated scaling-factor is changed 
from (5) to  

 ,
,

spk s
spk spk s

s s

f
z

z
. (11) 

Now, substituting (3) into (11), we easily show that this 
estimate is not affected by the relative frequencies of the 
phonemes: 

 ,spk spk s spk spk
s

f . (12) 

4. Experimental Results 
We have carefully analyzed the normalization results on the 
TIMIT database and observed that different speakers may 
have their VTR targets differ over as much as 40%. The range 
of the estimated target scaling factor spk  can be as low as 
0.86 (female) and as high as 1.17 (male).  
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To further analyze the results, we have computed the root 
mean square (RMS) errors between the VTR trajectories 
estimated using the methods described in Section 3 and the 
results of a high-performance VTR tracker [3] over 192 
TIMIT utterances. Table 1 summarizes the RMS error results 
when the scaling factors are estimated using the all units in 

estimates (first row) were reported in [13], which incur very 
high RMS errors. The remaining two rows show RMS errors 
using the estimated targets by (2), where the scaling factor 

spk is estimated by (5) (Method 1) and by (11) (Method 2), 
respectively.  Errors have been drastically reduced and the 
Method 2 has slightly lower errors, indicating a reasonably 
good data balance. 

Table 2 summarizes the same comparative RMS error 
results as Table 1 except only the first five (instead of all) 
HTM-units in the utterances are used to estimate spk . It is 
clear that target normalization makes a big difference in 
accurately predicting the VTR formants from the targets in 
both conditions especially for F2, F3 and F4. When the 
scaling factors are estimated using only the first 5 units in the 
utterances, the benefit of the second method becomes clear. 

Table 1. RMS errors for VTR trajectories using different ways 
of target estimation. Target scaling factors are estimated 
using all HTM-units in the utterances 

RMS Errors F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) 
Speaker independent 68 525 1010 1663 
Speaker adjusted (1) 67 110 122 125 
Speaker adjusted (2) 66 104 121 124 

Table 2. Same as Table 1 except target scaling factors are 
estimated using only the first five HTM-units in the 
utterances. 

RMS Error F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) 
Speaker independent 68 525 1010 1663 
Speaker adjusted (1) 89 193 170 164 
Speaker adjusted (2) 75 135 147 154 

5. Complexity 
In this section, we briefly discuss computational analysis on 
decoding speech using the HTM-based speech recognizer. We 
developed a time synchronous decoder for the HTM as 
detailed in [6]. In this decoder, the likelihood of each frame 
depends not only on the observation and HTM-unit identity 
associated with the current frame, but also on the unit 
identities associated with both previous and future D frames. 
That is, each hypothesis has to record all the HTM-unit 
identities for a 2D+1 frame-long window centered at the 
current frame, or 2 1D possibilities at each frame, where is 
the size of the HTM-unit set. This gives the computation 
complexity of a naïve time synchronous decoder on the order 
of 2 1DO T , where T  is the total number of frames. We 

can restrict the search space by utilizing the lattices generated 
by an HMM and some carefully designed pruning strategies 
such as beam pruning and histogram pruning. After applying 
these technologies, the decoding time can be 100 times of the 
real time to achieve 74.68% phone accuracy for the TIMIT 
phone recognition task on the core test set [6]. 

6. Summary and Conclusion 
HTM is one of two main types of structured statistical models 
developed in the past for automatic speech recognition. It uses 
non-recursive parameterization to characterize the long-span 
dependency of VTR as well as acoustic features in speech 
utterances. Like HMM, HTM is also a parametric model, but 
its structure is substantially more complex than HMM as well 
as other types of segment models [8]. Conventional wisdom 
says that more complex statistical models often would have a 
harder time to incorporate detailed knowledge into the 
algorithm development. As an example, in relatively simple 
models such as HMMs, speaker variation can be 
straightforwardly handled by pooling all data from many 
speakers in training. But for more complex models such as 
HTMs, such pooling would not work since some key 
parameter set (i.e., VTR targets) in the model are inherently 
speaker specific. While statistical distributions can be used to 
represent the randomness of the VTR targets due to speaker 
variation, this would significantly increase phonetic 
confusability. Special normalization techniques have been 
developed for HTM, as is the main focus of this paper. 
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